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Introduction

Given a substrate network G0 = (V 0, A0) and a
set R of virtual network requests (VNs r ∈ R),
the Virtual Network Embedding problem
(VNE) calls for an embedding of a selection of
virtual networks onto the substrate, maximizing
the pro�t (pr) of the
thus accepted VNs.
An embedding is
given by a virtual-

to-physical mapping
of nodes and links,
subject to capacity

constraints (c0i , k
0
ij).
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R1
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Since, in practical scenarios, node (wr
v) and link

demands (drvw) are typically not known exactly,
we propose and investigate robust optimization
approaches for VNE.

Formulating robust VNE

It is very unlikely for all requested resources to
simultaneously be at their peak. Assuming that
only a �xed number of these may reach such
value, a trade-of between QoS and pro�t can be
achieved by aiming at solutions which guarantee
feasibility in almost all the cases.
Denoting with yr whether a VN r is ac-
cepted and with xriv whether r's virtual node
v is mapped on i ∈ V 0, this corresponds
to solving the chance-constrained problem:

max
∑
r∈R

pryr (1)

s.t.
∑

i∈V 0(r,v)

xrvi = yr (2)

Pr
(∑
r∈R
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v∈V R:

i∈V 0(r,v)

wrvx
r
vi ≤ c0i

)
≥ ε (3)
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v,w∈V r
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vw,r
ij ≤ k0

ij

)
≥ ε (4)

∑
(i,j)∈δ+(i)

fvw,rij −
∑

(j,i)∈δ−(i)

fvw,rji = xrvi − xrwi (5)

yr, xrvi, f
vw,r
ij ∈ {0, 1} . (6)

A computationally tractable way to approximate
it is the so-called Γ-robustness model. Hereby,
each constraint is protected against at most Γ
many parameter deviations, i.e.,∑

i

aixi ≤ b −→
∑
i

āixi + max
|T |≤Γ

∑
i∈T

âixi ≤ b.

These protected versions of (3), (4) can be refor-
mulated compactly. We call the resulting MILP
the Γ-robust VNE problem.

Contribution

We propose an exact and a heuristic approach to
solve the robust VNE problem. The Γ-robust
Mixed-Integer Linear Programming for-

mulation allows us to �nd solutions o�ering
large pro�ts and are guaranteed to be feasible

with a high probability. We also introduce a
MILP-based Γ-robust heuristic carrying out
the node and link mappings sequentially.

Computational experiments indicate that:

1. The Γ robust formulation is suitable to
solve small size instances,

2. the heuristic scales well, providing high
quality solutions even for larger problems.

An exact Γ-robust approach
To better motivate the potential of robust optimization for VNE, we �rst evaluate VNE with worst
case data (i.e., Γ =∞ and ε = 1) and with average data (i.e., Γ = 0 and ε = 0), both with a time limit
of one hour. Further, we present solution values, obtained by solving the Γ-robust VNE problem

with the same time limit. As we can see, the Γ-robust solutions yield a substantial improvement
(concerning the pro�t) over the solutions corresponding to worst-case data.

Figure 1: Worst/average case obj. function value (left), obj. function values for di�erent Γ values (right).

Note that the value of an optimal Γ-robust solution should be between the average and worst case ones
and that such value should be larger for smaller values of Γ. This is not always the case, indicating
that the exact approach does not scale well for bigger sized instances.

A heuristic Γ-robust approach
Split the VNE problem in two subproblems, solved sequentially (within a time limit):
• Phase I: admission control (2) + node embedding (3), neglect link mapping (4)/capacities (5).
• Phase II: complete the solution by a link mapping (4), (5), still allowing for rejection of VNs (2).

Since Phase I is completely oblivious to the routing
aspect, depending on a parameter z, on the dis-
tance σ(i, j) between two nodes i, j ∈ V 0, and on a
demand threshold T , we add constraints of the form

xrvi + xrwi ≤ 1
∀ r ∈ R, vw ∈ V r,
∀ i, j ∈ V 0 : σ(i, j) > z, drvw > T

to the �rst phase to better account for the routing
aspect. The heuristic achieves the following results:
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Figure 2: Distance vs. capacity req.

. Substrate Objective Avg.
|R| 5 6 7 8 9 10 12 14 16 18 20 24 28 32

e
x
a
c
t

Γ
=

1

abilene 68 68 125 194 194 194 194 194 288 288 288 292 - 161 196

atlanta 332 374 453 489 553 - - - - - - - - - 440

nobel-us 294 341 389 480 518 518 - - - - - - - - 423

polska 265 312 398 452 550 550 - - - - - - - - 421

Avg. 240 274 341 404 454 421 194 194 288 288 288 292 - 161 295

h
e
u
r
i
s
t
i
c

Γ
=

1

abilene 68 68 125 194 194 194 194 194 288 288 288 324 381 381 227

atlanta 332 374 453 489 553 589 783 723 823 860 815 872 825 124 615

nobel-us 294 341 389 480 518 518 555 631 636 608 617 724 725 696 552

polska 265 312 398 422 520 520 562 606 597 580 580 548 584 710 515

Avg. 240 274 341 396 446 455 524 539 586 584 575 617 629 478 477

e
x
a
c
t

Γ
=

2

abilene 68 68 125 194 194 194 194 194 220 220 137 - - - 164

atlanta 332 374 - - - - - - - - - - - - 353

nobel-us 294 294 294 98 - - - - - - - - - - 245

polska 265 312 321 - 104 76 - - - - - - - - 215

Avg. 240 262 247 146 149 135 194 194 220 220 137 - - - 190

h
e
u
r
i
s
t
i
c

Γ
=

2

abilene 68 68 125 194 194 194 194 194 231 231 231 256 277 277 195

atlanta 332 374 453 489 511 519 605 722 609 673 673 713 600 345 544

nobel-us 294 294 342 366 402 402 366 402 405 401 402 469 335 496 384

polska 265 312 360 394 454 454 478 491 481 526 526 472 537 583 452

Avg. 240 262 320 361 390 392 411 452 432 458 458 478 437 425 394

The cases were a better objec-
tive value is achieved by the
heuristic are marked in green
while cases in which the ex-
act method produces a supe-
rior result are marked in red.
Notably, for many of the in-
stances where the exact ap-
proach does not �nd a solu-
tion, the heuristic can provide
one. We also remark that for
the heuristic, in both phases,
a signi�cant shorter runtime
limit of 300s was employed.

A note on protection

We measure the protection level of a solution by testing it against 100 di�erent realizations of
uncertain data, counting how often a solution is infeasible. The solutions for average case (worst-
case) data are always (never) violated. By increasing Γ, the protection level of both the exact ap-
proach (left) and the heuristic one (right) increase. Note that both approaches yield similar pro-
tection levels with respect to the parameter Γ, with slight advantages for the exact method (left).

. Substrate Infeasibilities(%) Avg.
|R| 5 6 7 8 9 10 12 14 16 18 20 24 28 32

Γ
=

1

abilene 4 1 6 17 11 12 17 3 19 40 20 15 - 12 14

atlanta 2 7 14 37 18 - - - - - - - - - 16

nobel-us 8 14 6 28 36 22 - - - - - - - - 19

polska 5 15 34 24 27 58 - - - - - - - - 27

Avg. 5 9 15 27 23 31 17 3 19 40 20 15 - 12 18

Γ
=

2

abilene 0 0 1 0 2 1 0 1 0 0 0 - - - 0

atlanta 0 0 - - - - - - - - - - - - 0

nobel-us 0 1 0 0 - - - - - - - - - - 0

polska 0 4 0 0 0 0 - - - - - - - - 1

Avg. 0 1 0 0 1 1 0 1 0 0 0 - - - 0

Γ
=

3

abilene 0 0 0 0 0 0 0 0 0 0 0 - - - 0

atlanta 0 - - - - - - - - - - - - - 0

nobel-us 0 0 0 - - - - - - - - - - - 0

polska 0 - - - - - - - - - - - - - 0

Avg. 0 0 0 0 0 0 0 0 0 0 0 - - - 0

Infeasibilities(%) Avg.
5 6 7 8 9 10 12 14 16 18 20 24 28 32

0 0 6 11 11 11 11 11 11 11 11 37 40 40 15

10 6 10 14 21 22 49 57 59 59 65 51 56 0 34

7 14 23 27 17 21 32 49 53 55 34 39 49 49 34

5 7 16 21 26 26 47 45 47 50 50 48 41 40 34

6 7 14 18 19 20 35 41 43 44 40 44 47 32 29

0 0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 1 1 3 2 1 1 0 4 3 2 1 2 0 2

0 0 0 1 1 1 1 0 2 0 1 0 0 4 1

0 1 0 2 1 1 1 3 1 2 2 1 1 2 1

0 1 0 2 1 1 1 1 2 1 1 1 1 2 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


