10. Übung Optimierung B

Aufgabe 1. Seien $a_1, \ldots, a_m \in \mathbb{R}^n$, so dass die Vektoren $\mathbf{a_1}, \ldots, \mathbf{a_m}$ nicht den ganzen Raum \mathbb{R}^n aufspannen. Weiter sei $b \in \mathbb{R}^n$. Zeigen Sie, dass in diesem Fall entweder (I) oder (II) gilt:

- (I) Es ex. $\xi \in \mathbb{R}^n$ mit $\xi^t a_i \leq 0$ für $1 \leq i \leq m$ und $\xi^t b > 0$. Außerdem kann ξ so gewählt werden, dass die Menge $\{x \in \mathbb{R}^n \mid \xi^t x = 0\}$ s-1 linear unabhängige Vektoren aus $\{a_1, \ldots, a_m\}$ enthält, wobei $s = \operatorname{rang}(a_1 \mid \cdots \mid a_m \mid b)$.
- (II) $b \in K(a_1, \ldots, a_m)$.

<u>Hinweis:</u> Die entsprechende Aussage für den Fall, dass die Vektoren a_1, \ldots, a_m den ganzen \mathbb{R}^n aufspannen, können Sie als bewiesen voraussetzen (siehe Vorlesung).

Aufgabe 2. Sei $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ und $c \in \mathbb{R}^n$. Dem linearen Programm

$$\max c^t x$$
 s. t. $Ax \le b$ (P)

wurde in der Vorlesung sein duales Programm

$$\min b^t y$$
 s. t. $A^t y = c, y \ge 0$ (D)

zugeordnet. Zeigen Sie, dass das duale Programm von (D) wieder ein zu (P) äquivalentes Optimierungsproblem ist.

Aufgabe 3. Stellen Sie zu folgenden linearen Optimierungsproblemen, die zugehörigen dualen Probleme auf. Dabei sei $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ und $c \in \mathbb{R}^n$:

robleme auf. Dabei sei
$$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$
 und $c \in \mathbb{R}^n$:

a) $\max c^t x$ s. t. $Ax \le b, x \ge 0$,

b) $\min c^t x$ s. t. $Ax \ge b$,

c) $\min c^t x$ s. t. $Ax = b$,

d)
$$\begin{cases}
\max & 3x_1 + 2x_2 - 5x_3 \\
x_1 + 2x_2 - x_3 \le 8 \\
4x_1 - 5x_3 = -2 \\
9x_1 - x_2 - x_3 \ge -5 \\
x_1 - x_2 - x_3 \le 0
\end{cases}$$

Aufgabe 4. Gegeben sei das Minimum Cost Flow Problem (MCF) min $c^t x$ s. t. Bx = b und $0 \le x \le u$. Dabei ist B die Inzidenzmatrix des zugrunde liegenden Netzwerks D = (V, A), $c \in \mathbb{R}^{|A|}$ der Zielfunktionsvektor, $b \in \mathbb{R}^{|V|}$ der Nachfrage- bzw. Verbrauchsvektor und $u \in (\mathbb{R}^+ \cup \{\infty\})^{|A|}$ die Kapazitätsfunktion. Beweisen Sie die folgenden beiden Optimalitätskriterien für (MCF) mit Hilfe von Methoden aus der linearen Optimierung.

a) Es existiert ein Vektor $y \in \mathbb{R}^{|V|}$, so dass für jede Kante $a = (v, w) \in A$ gilt:

Falls
$$c_{v,w} + y_w - y_v > 0$$
, dann gilt $x_{v,w} = 0$.
Falls $0 < x_{v,w} < u_{v,w}$, dann gilt $c_{v,w} + y_w - y_v = 0$.
Falls $c_{v,w} + y_w - y_v < 0$, dann gilt $x_{v,w} = u_{v,w}$.

b) Es existiert ein Vektor $y \in \mathbb{R}^{|V|}$, so dass für jede Kante $a = (v, w) \in A$ gilt:

$$c_{v,w} + y_w - y_v \ge 0.$$