Algorithmen zur Separierung von $\{0,\frac{1}{2}\}\text{-}\mathsf{Schnitten}$

Diplomarbeit bei Prof. Dr. Drs. h. c. M. Grötschel

vorgelegt von Manuel Kutschka am Institut für Mathematik der Technischen Universität Berlin

Berlin, den 15. August 2007

ii

Danksagung

Ich möchte Herrn Professor Grötschel für die Betreuung meiner Diplomarbeit sowie für seine interessanten Vorlesungen zur Algorithmischen Diskreten Mathematik danken, die mein Interesse für diesen Bereich der Mathematik geweckt und bestärkt haben.

Ebenfalls möchte ich Arie Koster und Adrian Zymolka meinen Dank für die freundliche und inspirierende mehrjährige Zusammenarbeit am Konrad-Zuse-Zentrum für Informationstechnik Berlin aussprechen, die Ausgangspunkt meiner Diplomarbeit war.

Besonderer Dank geht an Sebastian Behrendt, Eren Bilgen, Ferdinand Jurczok, Mathias Kinder, Arie Koster, Julia Kröger, Andreas Reimer und Kati Wolter für das geduldige Lesen und Kommentieren von Teilen früherer Entwürfe dieser Arbeit.

Zu guter Letzt möchte ich allen Freunden danken, die mich auf meinem bisherigen Lebensweg begleitet und unterstützt haben.

Gewidmet Paul Kutschka

iv

Inhaltsverzeichnis

1	Einleitung				
	1.1	Voraus	setzungen	2	
	1.2	Ausgewählte Probleme der ganzzahligen Programmierung			
2	Sepa	parierung von $\{0, \frac{1}{2}\}$ -Schnitten			
	2.1	Separie	erungsproblem	20	
	2.2	2 Komplexität		26	
		2.2.1	Allgemein	26	
		2.2.2	Maximal verletzte $\{0, \frac{1}{2}\}$ -Schnitte	28	
		2.2.3	Koeffizientenmatrizen mit maximal zwei ungeraden Zeileneinträgen	30	
		2.2.4	Koeffizientenmatrizen mit maximal zwei ungeraden Spalteneinträgen	33	
		2.2.5	EPT-Matrizen	35	
	2.3	Gemis	cht-ganzzahlige Programme	38	
3	Algorithmische Betrachtung			41	
	3.1	Reduktionen des Systems (\bar{A}, \bar{b})			
		3.1.1	Exakte Reduktionen	42	
		3.1.2	Heuristische Reduktionen	56	
		3.1.3	Übersicht der einzelnen Reduktionen	58	
		3.1.4	Kombination verschiedener Reduktionen: Preprocessing	59	
	3.2	Exakte Separierungsalgorithmen			

		3.2.1	Lösen eines ganzzahligen Programmes zur Bestimmung eines ver- letzten $\{0, \frac{1}{2}\}$ -Schnittes	64		
		3.2.2	Spezialverfahren für maximal verletzte $\{0, \frac{1}{2}\}$ -Schnitte	66		
		3.2.3	Spezialverfahren für Koeffizientenmatrizen mit maximal zwei un- geraden Einträgen pro Zeile	67		
		3.2.4	Spezialverfahren für Koeffizientenmatrizen mit maximal zwei un- geraden Einträgen pro Spalte	69		
	3.3 Heuristische Separierungsalgorithmen					
		3.3.1	Unvollständiges Lösen eines ganzzahligen Programmes zur Separierung eines verletzten $\{0, \frac{1}{2}\}$ -Schnittes	72		
		3.3.2	Enumeration aller möglichen Kombinationen von maximal k Zeilen	72		
		3.3.3	Erweitertes Gaußsches Eliminationsverfahren	74		
		3.3.4	LU-weakening-Heuristik	76		
	3.4	Übersi	cht der einzelnen Separierungsalgorithmen	77		
	3.5	Kombi	inationen einzelner Separierungsalgorithmen	77		
	3.6	Absch	ließende Bemerkungen	78		
4	Rec	henstud	lien	81		
	4.1	Testun	ngebung	81		
	4.2	Recher	nstudie: Wirksamkeit des Preprocessings	84		
	4.3	Recher	nstudie: Wirksamkeit der Separierungsalgorithmen	90		
	4.4	Recher	nstudie: Wirksamkeit im Branch&Cut-Verfahren	99		
	4.5	Gesam	ntergebnis	106		
5	Zusammenfassung					
Su	Summary					
A	Probleminstanzen					
B	Details zur Rechenstudie 4.2 (Teil I)					
С	C Details zur Rechenstudie 4.2 (Teil II)					

vi

INHALTSVERZEICHNIS vi				
D Details zur Rechenstudie 4.2 (Teil III)	137			
E Details zur Rechenstudie 4.3	143			
F Details zur Rechenstudie 4.4	189			
Verwendete Notation				
Algorithmenverzeichnis	215			
Abbildungsverzeichnis				
Tabellenverzeichnis				
Literaturverzeichnis				

Kapitel 1

Einleitung

Viele Optimierungsprobleme aus der Praxis lassen sich als gemischt-ganzzahlige Programme modellieren. Eine starke kombinatorische Struktur dieser Probleme erlaubt oftmals sogar eine Modellierung als rein ganzzahliges Programm. Das Lösen allgemeiner ganzzahliger Programme ist unter diesen Gesichtspunkten von großem Interesse. Allerdings ist derzeit kein effizientes, d. h. polynomielles, Verfahren bekannt, mit dem allgemeine ganzzahlige Programme gelöst werden können. Daher wird in der Praxis ein enumerativer Ansatz in Form des Branch&Bound-Verfahrens angewendet. Gleichzeitig wird versucht, z. B. durch problemspezifische Zusatzinformationen, die zu enumerierende Menge der zulässigen Lösungen zu reduzieren. Einen solchen Ansatz verfolgen die Schnittebenenverfahren, deren Anwendung zum Branch&Cut-Verfahren führt.

Im Rahmen dieser Arbeit werden die Erzeugung, Verwendung und der Nutzen spezieller Schnittungleichungen, sogenannter $\{0, \frac{1}{2}\}$ -Schnitte, untersucht. Diese Schnitte haben den Vorteil, dass sie eine starke kombinatorische Struktur besitzen aber dennoch ohne weitere Kenntnis zugrundeliegender Problemstrukturen für allgemeine ganzzahlige Programme anwendbar sind. Sie eignen sich daher besonders zur Integration in rechnergestützte Verfahren zur Lösung allgemeiner ganzzahliger Programme.

Gliederung der Arbeit

Diese Arbeit ist in fünf Kapitel unterteilt. Kapitel 1 beschreibt kurz mathematische Grundlagen und führt den Leser an die verwendete Notation heran. Anhand ausgewählter Beispiele der ganzzahligen Programmierung werden bekannte Spezialfälle von $\{0, \frac{1}{2}\}$ -Schnitte aufgezeigt. Dies liefert eine Motivation für die weitere Analyse ihrer Verallgemeinerung, der $\{0, \frac{1}{2}\}$ -Schnitte.

Kapitel 2 beschreibt die Theorie der Separierung von $\{0, \frac{1}{2}\}$ -Schnitten sowie die wichtigsten Eigenschaften dieser Klasse von Schnitten. Neben einer Einordnung in die vorhandene wis-

senschaftliche Literatur wird vor allem die Komplexität der Separierung eingehend untersucht. Dabei wird besonderer Wert auf die Identifizierung polynomieller Teilklassen gelegt, für deren Separierung effiziente Algorithmen möglich sind.

Im Anschluss widmet sich Kapitel 3 der algorithmischen Umsetzung der Separierung von $\{0, \frac{1}{2}\}$ -Schnitten. Im ersten Teil dieses Kapitels werden verschiedene Modellierungen des Separierungsproblems als ganzzahlige Programme untersucht und zahlreiche Reduktionen vorgestellt, die die Problemgröße erheblich verkleinern können. Der zweite Teil stellt sowohl exakte als auch heuristische Algorithmen zur Bestimmung verletzter $\{0, \frac{1}{2}\}$ -Schnitte vor und versucht dabei insbesondere die Kenntnis polynomieller Teilklassen zu berücksichtigen.

Kapitel 4 beschreibt ausführliche Rechenstudien zu den im vorherigen Kapitel vorgestellten Algorithmen. Für eine große Menge realer Probleminstanzen, die aus gängigen Bibliotheken wie der MIPLIB stammen, werden die beschriebenen Algorithmen und verschiedene Parametereinstellungen untersucht und gegenübergestellt. Aus der vergleichenden Analyse werden Empfehlungen für die Verwendung der einzelnen Algorithmen in der Praxis formuliert.

Das letzte Kapitel beinhaltet eine Zusammenfassung der erzielten Ergebnisse dieser Arbeit und stellt den Nutzen der Separierung von $\{0, \frac{1}{2}\}$ -Schnitten im Lösungsprozess ganzzahliger Programme dar. Zusätzlich bietet es einen Ausblick auf zukünftige Forschungsmöglichkeiten.

1.1 Voraussetzungen

Im Folgenden werden grundlegende Notationen und Definitionen angegeben. Dabei sollen dem Leser vorhandenes Vorwissen in Erinnerung gerufen und insbesondere die in dieser Arbeit verwendeten Bezeichnungen und Übersetzungen näher gebracht werden. Für eine ausführlichere Einführung in die Theorie der linearen und ganzzahligen Programmierung sei z. B. auf die Bücher von Nemhauser und Wolsey [52] und Schrijver [58, 59] verwiesen.

Grundlegendes

Sei $K \in \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$. Mit $K_{>0}$ ($K_{\geq 0}$) bezeichnen wir die *positive (nicht-negative) Teilmenge* von K. Für $\mathbb{N}_{>0}$ (bzw. $\mathbb{N}_{\geq 0}$) schreiben wir auch kurz \mathbb{N} (bzw. \mathbb{N}_0). Ist A die (*strikte*) *Teilmenge* einer Menge B so schreiben wir $A \subseteq B$ ($A \subsetneq B$) und für die *Vereinigungs-* und *Schnittmenge* $A \cup B$ bzw. $A \cap B$. Die *mengentheoretische Differenz* wird mit $A \setminus B$ und die *symmetrische Differenz* mit $A \bigtriangleup B := (A \cup B) \setminus (A \cap B)$ bezeichnet.

Für $x \in \mathbb{R}$ bezeichnet $\lfloor x \rfloor$ (bzw. $\lceil x \rceil$) die größte (kleinste) ganze Zahl kleiner (größer) als oder gleich *x*. Für $a, b \in \mathbb{Z}, b \neq 0$ ist $a \mod b := a - \lfloor a/b \rfloor b$ der *Rest der Ganzzahldivision*. Außerdem ist $a_1 \equiv a_2 \mod b$ die Kurzschreibweise für $a_1 \mod b = a_2 \mod b$. Seien $v \in \mathbb{R}^n$, $M \in \mathbb{R}^{m \times n}$ ein Vektor bzw. eine Matrix. Dann bezeichnet v_i die *i-te Komponen*te des Vektors v und M_i . die *i-te Zeile*, $M_{.j}$ die *j-te Spalte* und M_{ij} das Element in der *i-ten* Zeile und *j-ten Spalte* der Matrix M. Seien $I \subseteq \{1, \ldots, m\}$ und $J \subseteq \{1, \ldots, n\}$, so bezeichnet M_{IJ} die Teilmatrix die durch Entfernen aller Zeilen $i \notin I$ und Spalten $j \notin J$ entsteht. Analog bezeichnet v_I den entsprechenden Teilvektor nach Entfernen der Zeilen $i \notin I$. Oft schreiben wir für einen Nullvektor (Nullmatrix) geeigneter Größe kurz $\vec{0}$ (**0**) und analog $\vec{1}$ (**1**) für einen Einsvektor (Einsmatrix). Mit I_k bezeichnen wir die Einheitsmatrix mit k Zeilen und Spalten. Ist k aus dem Zusammenhang ersichtlich, so kann der Index entfallen. Außerdem bezeichnen wir mit e_j den j-ten Einheitsvektor geeigneter Länge, d. h. $e_j := I_{.j}$.

Seien ein ganzzahliger Vektor $v \in \mathbb{Z}^m$, eine ganzzahlige Matrix $M \in \mathbb{Z}^{m \times n}$ sowie eine Zahl $b \in \mathbb{N}, b \ge 2$ gegeben, so definieren wir den Rest der Ganzzahldivision komponentenweise, d. h. $v \mod b := (v_i \mod b)_{1 \le i \le m}$ und $M \mod b := (M_{ij} \mod b)_{1 \le i \le m, 1 \le j \le n}$.

Mit \mathbb{F}_2 bezeichnen wir den Restklassenkörper mit Grundmenge $\{0,1\}$ und entsprechend definierter Addition und Multiplikation.

Seien *A*, $B \subseteq A$ zwei Mengen. Sei außerdem *A* mit einer beliebigen Ordnung versehen (definiere für $a_1, a_2 \in A$ z. B. $a_1 < a_2$ g. d. w. $o(a_1) < o(a_2)$, wobei $o : A \to \{1, ..., |A|\}$ eine beliebige bijektive Abbildung sei). Dann nennen wir $\chi(B) \in \{0, 1\}^{|A|}$ den *charakteristischen Vektor* von *B* wobei $\chi(B)_i = 1$ g. d. w. das *i*-te Element von *A* auch Element von *B* ist.

Graphentheorie

Seien G = (V, E) ein Graph und $U \subseteq V$ bzw. $F \subseteq E$ Teilmengen der Knotenmenge V bzw. Kantenmenge E. Dann bezeichnet G' = (U, F) den *Teilgraphen* von G mit Knotenmenge U und Kantenmenge F. Der (Teil-)Graph $T = (V_T, E_T)$ heißt *Baum*, wenn $|V_T| = n$ und $|E_T| = n - 1$ und jeder Knoten $v \in V_T$ mit mindestens einer Kante aus E_T inzident ist. Wir bezeichnen mit $\delta(U) := \{uv \in E \mid u \in U, v \in V \setminus U\}$ den durch U definierten (*graphentheoretischen*) *Schnitt*. Wir schreiben kurz $\delta(v)$ für $\delta(\{v\})$. Ferner sei $E(U) \subseteq E$ definiert als die Menge der Kanten mit beiden Endpunkten in U. Seien eine Menge $A \in \{U, F\}$ und eine Funktion $x : A \to \mathbb{R}$ gegeben, dann nutzen wir die Kurzschreibweise x(A) für die Summe $\sum_{a \in A} x(a)$.

Die Menge *F* heißt *1-Matching*, wenn je zwei Kanten aus *F* keinen gemeinsamen Endknoten haben. Die Kantenmenge $P = \{v_1v_2, v_2v_3, \dots, v_{i-1}v_i\} \subseteq E$ heißt *Pfad* (oder *Weg*), wenn gilt $v_j \neq v_k$ für alle $j, k \in \{1, \dots, i\}, j \neq k$. Als *Kreis* definieren wir eine Kantenmenge $K := P \cup \{v_iv_1\} \subseteq E$. Der Kreis *K* ist ein *Hamiltonscher Kreis*, wenn jeder Knoten $v \in V$ genau zu zwei Kanten des Kreises inzident ist.

Komplexitätstheorie

Wir geben einen kurzen Überblick über die für diese Arbeit relevanten komplexitätstheoretischen Zusammenhänge und Notationen. Dies geschieht in Anlehnung an Grötschel [35]. Eine detaillierte Einführung in die Komplexitätstheorie bietet z. B. in Garey und Johnson [30].

Ein *Problem* ist die Frage nach einer Antwort (aus einer gegebenen Menge von möglichen Antworten) in Abhängigkeit von gegebenen *Eingabeparametern*. Ein *Entscheidungsproblem* ist ein Problem, das als mögliche Antworten nur "ja" und "nein" besitzt. Ein *Optimierungsproblem* ist ein Problem, bei dem das Minimum oder Maximum einer Bewertungsfunktion abhängig von den Eingabeparametern bestimmt werden soll. Zu jedem Optimierungsproblem lässt sich ein (zugehöriges) Entscheidungsproblem formulieren, indem als Frage gestellt wird, ob die Bewertungsfunktion des Optimierungsproblems einen bestimmt ten Wert über- bzw. unterschreitet (abhängig davon, ob maximiert oder minimiert wird). Als *Probleminstanz* bezeichnen wir eine vollständige Belegung der Eingabeparameter.

Ein Algorithmus *löst* ein Problem, wenn er für jede Probleminstanz dieses Problems eine mögliche Antwort des Problems angibt. Die *Laufzeit* oder der *Aufwand* eines Algorithmus ist die Anzahl der elementaren Rechenoperationen, die dieser zur Lösung einer Probleminstanz ausführen muss. In der Komplexitätstheorie sind hierbei das verwendete *Kodierungsschema* der Probleminstanzen und das *Rechnermodell* zu beachten. Wir nehmen an, dass die Probleminstanzen binär kodiert sind (d. h. ihre (*Eingabe-*)*Größe* oder *Kodierungslänge* entspricht einer bestimmten Anzahl von Bits). Ebenso gehen wir von Turing-Maschinen als Rechnermodell aus. Ein Algorithmus besitzt *polynomielle Laufzeit* (oder *polynomiellen Aufwand*), wenn dessen Laufzeit durch ein Polynom p(|I|) abhängig von der Größe |I| der Probleminstanzen *I* nach oben beschränkt ist. Als Notation verwenden wir dafür O(p(|I|)), wobei wir anstatt eines Polynoms $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ jeweils nur den dominierenden Term x^n angeben.

Die Klasse aller Entscheidungsprobleme, für die ein polynomieller Lösungsalgorithmus (bzgl. des gegebenen Kodierungsschemas und Rechnermodells) existiert, wird mit \mathcal{P} bezeichnet. Als Klasse \mathcal{NP} bezeichnen wir die Klasse aller Entscheidungsprobleme, für deren Probleminstanzen mit "ja"-Antwort ein Algorithmus existiert, der diese "ja"-Antwort unter Zuhilfenahme eines Objektes Q ("Lösungsvorschlag für Probleminstanz") mit polynomiellem Aufwand bestätigen oder widerlegen kann. Ein Entscheidungsproblem Π heißt \mathcal{NP} -vollständig, wenn es Element der Klasse \mathcal{NP} ist und sich jedes andere Problem aus der Klasse \mathcal{NP} mit polynomiellem Aufwand auf Π reduzieren lässt. Ein Optimierungsproblem heißt \mathcal{NP} -schwer, wenn das zugehörige Entscheidungsproblem \mathcal{NP} -vollständig ist. Für \mathcal{NP} -schwere Optimierungsprobleme existiert kein polynomieller Lösungsalgorithmus, es sei denn die Klassen \mathcal{P} und \mathcal{NP} sind identisch.

Polyedertheorie

Seien die Vektoren $x_1, x_2, ..., x_t \in \mathbb{R}^n$ gegeben. Als die *konvexe Hülle* dieser Vektoren definieren wir die Menge *conv*($\{x_1, ..., x_t\}$) := { $\lambda_1 x_1 + ... + \lambda_t x_t | \lambda_1, ..., \lambda_t \in \mathbb{R}_{\geq 0}, \sum_{i=1}^t \lambda_i = 1$ }. Seien $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ und das lineare Ungleichungssystem $Ax \leq b$ mit Zeilenindexmenge I gegeben, dann nennen wir die Menge $P(A, b) := \{x \in \mathbb{R}^n | Ax \leq b\}$ ein *Polyeder*. Ist

P(A,b) beschränkt, d. h., existiert ein M > 0, sodass $||x_1 - x_2|| < M$ für alle $x_1, x_2 \in P(A,b)$, dann heißt P(A,b) Polytop. Die konvexe Hülle der ganzzahligen Punkte eines Polyeders nennen wir ganzzahlige Hülle (kurz $conv(P(A,b) \cap \mathbb{Z}^n)$). Eine Menge S heißt Seitenfläche von P(A,b) wenn $S := \{x \in P(A,b) \mid \exists I' \subseteq I, A_{I'}. x = b_{I'}\}$ gilt. Eine Menge \mathcal{F} heißt Facette von P(A,b), wenn sie eine Seitenfläche von P(A,b) und keine Teilmenge einer anderen von P(A,b) verschiedenen Seitenfläche ist. Eine Ungleichung $v^T x \le w$ mit $v \in \mathbb{R}^n$ und $w \in \mathbb{R}$ heißt gültige Ungleichung für P(A,b), wenn $P(A,b) \cap P(v,w) = P(A,b)$ ist. Eine gültige Ungleichung $v^T x \le w$ heißt Facetten-definierend für P(A,b), wenn eine Facette \mathcal{F} von P(A,b)existiert, sodass $\mathcal{F} \subseteq \{x \in \mathbb{R}^n \mid v^T x = w\} \neq \emptyset$ gilt. Seien $v^T x \le w$ und $v'^T x \le w'$ gültige Ungleichungen für ein Polyeder P(A,b). Wir sagen die Ungleichung $v^T x \le w$ dominiert die Ungleichung $v'^T x \le w'$ wenn ein $\lambda \in \mathbb{R}_{>0}$ existiert, sodass $\lambda v' \le v$ und $\lambda w' \ge w$ gilt.

Lineare Optimierung

Eine spezielle Klasse von Optimierungsproblemen bilden die *linearen Optimierungsprobleme*, für deren Beschreibung ausschließlich lineare Funktionen genügen. Mittels linearer Optimierungsprobleme lassen sich zahlreiche reale Probleme modellieren und durch dafür bekannte Verfahren effizient lösen. Ein lineares Optimierungsproblem wird wie folgt beschrieben. Seien $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ und $c \in \mathbb{R}^n$. Dann heißt

$$\min_{s.t.} c^T x$$

$$s.t. \quad Ax \le b$$

$$(1.1)$$

ein *lineares Programm* oder kurz LP. Die Menge aller Vektoren $x \in \mathbb{R}^n$, die das LP (1.1) erfüllen, heißt Menge der *zulässigen Lösungen* und ist ein Polyeder ($P_{LP} := P(A, b)$). Eine minimale Lösung $x^* := \arg\min\{c^T x \mid Ax \leq b\}$ heißt *Optimallösung* des LP. Oft schreiben wir für diese auch kurz LP-Lösung. Zur Lösung eines linearen Programmes kann das von George B. Dantzig [22] entwickelte Simplexverfahren benutzt werden, auf welches wir hier nicht weiter eingehen möchten. Wir wollen allerdings anmerken, dass eine durch das Simplexverfahren ermittelte Optimallösung stets eine Ecke des Polyeders ist.

(Gemischt-)Ganzzahlige Optimierung

Ein lineares Programm, welches zusätzlich noch die Ganzzahligkeit aller Variablen fordert $(x \in \mathbb{Z}^n)$, heißt *ganzzahliges (lineares) Programm* oder kurz IP (engl. integer program). Wird die Ganzzahligkeit nur für einen Teil der Variablen gefordert, so sprechen wir von einem *gemischt-ganzzahligen (linearen) Programm* (MIP) (engl. mixed integer program):

$$\begin{array}{ll} \min & c^T x + d^T y \\ s.t. & Ax + By \leq b \\ & x \in \mathbb{Z}^{n_1}, \end{array}$$
(1.2)

wobei $A \in \mathbb{Q}^{m \times n_1}$, $B \in \mathbb{Q}^{m \times n_2}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^{n_1}$ und $d \in \mathbb{Q}^{n_2}$ mit $n_1 + n_2 = n$. Umgekehrt bezeichnen wir als *lineare Relaxierung* eines IP bzw. MIP das lineare Programm, das durch Entfernen der entsprechenden Ganzzahligkeitsbedingung gegeben ist. Die konvexe Hülle der Lösungsmenge eines MIP mit rationalen Daten ist ein Polyeder, das wir mit P(A, B, b) (oder kurz P(A, b) falls $B = \mathbf{0}$) bezeichnen. Betrachten wir ein IP bzw. MIP zusammen mit dessen linearer Relaxierung, so schreiben wir zur besseren Unterscheidung P_{IP} bzw. P_{MIP} für die Lösungsmenge des IP bzw. MIP und P_{LP} für die Lösungsmenge der linearen Relaxierung. Die Differenz der Zielfunktionswerte der Optimallösung der linearen Relaxierung eines IP bzw. MIP und der Optimallösung desselben IP bzw. MIP nennen wir *Ganzzahligkeitslücke*.

Branch&Bound-Verfahren Zur Lösung eines gemischt-ganzzahligen Programmes eignet sich das *Branch&Bound-Verfahren*. Dieses wurde von Land und Doig [47] sowie von Dakin [19] entwickelt.

Beim Branch&Bound-Verfahren werden alle möglichen ganzzahligen Lösungen implizit enumeriert. Dies geschieht durch die Konstruktion und Lösung geeigneter Teilprobleme: Zu einem gegebenen gemischt-ganzzahligen Programm wird die lineare Relaxierung gelöst. Ist diese auf den ganzzahligen Variablen ganzzahlig, so ist diese Lösung auch für das MIP zulässig und dieses gelöst. Anderenfalls wird eine ganzzahlige Variable *i* mit gebrochenem Lösungswert x_i^* bestimmt und es werden zwei Teilprobleme konstruiert, die jeweils eine zusätzliche Nebenbedingung enthalten. Diese lauten $x_i \leq \lfloor x_i^* \rfloor$ bzw. $x_i \geq \lfloor x_i^* \rfloor + 1$. Dieser Schritt heißt *Branching*. Für die beiden gemischt-ganzzahligen Teilprobleme wird genauso wie für das Ausgangsproblem verfahren. Dadurch entsteht ein binärer Baum, der sogenannte *Branch&Bound-Baum*, an dessen Wurzel das Ausgangsproblem und in dessen Kindsknoten die Teilprobleme des jeweiligen Elternknotens stehen. Die Blätter dieses Baumes enthalten Teilprobleme, deren zugehörige LP-Relaxierungen die entweder keine Lösung oder eine (in den ganzzahligen Variablen des MIP) ganzzahlige Optimallösung besitzen.

Ein wichtiger Schritt des Branch&Bound-Verfahrens ist das sogenannte *Bounding*: Jede für das Anfangsproblem zulässige Lösung ist eine globale obere Schranke (*GOS*) und kann den Wert der bisherigen *GOS* verbessern. Der Zielfunktionswert der Optimallösung der LP-Relaxierung in einem Branch&Bound-Knoten wird lokale untere Schranke (*LUS*) genannt. Dies ist insofern wichtig, als ein Teilbaum des Branch&Bound-Baumes nicht weiter abgearbeitet werden muss, wenn die lokale untere Schranke größer oder gleich der globalen oberen Schranke ist. Man spricht in diesem Fall davon, dass dieser Teilbaum "ausgelotet" (engl. fathomed) ist und "abgeschnitten" werden kann.

Daher kann zu Beginn des Branch&Bound-Verfahrens durch Heuristiken versucht werden, eine einfache zulässige Lösung zu finden, deren Zielfunktionswert eine möglichst kleine globale obere Schranke für den Lösungswert des gemischt-ganzzahligen Programmes darstellt. Ist dies nicht möglich, so initialisiert man die GOS mit $+\infty$.

Der schematische Ablauf des Branch&Bound-Verfahrens ist in Anlehnung an Jünger et al. [43] in Abbildung 1.1 dargestellt.

Abbildung 1.1: Branch&Bound-Verfahren

Schnittebenenverfahren Weitere Lösungsverfahren zur Bestimmung des Optimums eines MIP sind *Schnittebenenverfahren* (engl. cutting plane algorithms). Dabei werden der LP-Relaxierung eines MIP weitere Ungleichungen hinzugefügt. Diese werden so gewählt, dass vormals für die LP-Relaxierung zulässige aber für das MIP unzulässige Lösungen dann auch für die "erweiterte" LP-Relaxierung unzulässig sind. Dieser Prozess wird iterativ solange durchgeführt, bis eine Optimallösung der LP-Relaxierung auch zulässig für das MIP und somit optimal ist oder ein Beweis erbracht wird, dass eine solche Lösung nicht existiert. Zur Bestimmung geeigneter Ungleichungen, die dem LP hinzugefügt werden, löst man das folgende Problem:

ALLGEMEINES SEPARIERUNGSPROBLEM

- GEGEBEN: ein MIP, dessen LP-Relaxierung und eine für die LP-Relaxierung zulässige, aber für das MIP verletzte Lösung
- BESTIMME: eine für das MIP gültige Ungleichung, die durch die gegebene LP-Lösung verletzt ist *oder* einen Beweis, dass solch eine Ungleichung nicht existiert.

Ist das Ergebnis des Allgemeinen Separierungsproblems eine Ungleichung, so nennen wir diese eine *Schnittungleichung* oder kurz *Schnitt* (engl. cut). In der Literatur wird hier häufig von Schnittebenen (engl. cutting planes) gesprochen, wobei die begrenzenden Hyperebenen der durch die Schnittungleichungen definierten Halbräume sprachlich mit den Ungleichungen selbst gleichgesetzt werden. Im Rahmen dieser Arbeit werden wir von Schnitten sprechen und stets die Schnittungleichungen meinen. Außerdem sagen wir, dass ein Schnitt eine (LP-)Lösung oder einen Punkt "abschneidet" und meinen damit, dass der Schnitt für die betreffende Lösung bzw. den Punkt verletzt ist, er anschaulich also einen Teil des Polyeders "abschneidet" (vgl. Abb 1.2).

Grötschel, Lovász und Schrijver [39] haben 1981 bewiesen, dass Optimierung und Separierung polynomiell äquivalent sind, d. h., durch das effiziente Lösen geeigneter Separierungsprobleme kann ein Optimierungsproblem ebenfalls effizient gelöst werden. Die Abbildung 1.3 stellt ein auf Separierung von verletzten Schnitten basierendes Verfahren schematisch dar.

Bei der Separierung von durch die LP-Lösung verletzten Schnitten unterscheidet man zwischen allgemeinen Schnitten, d. h. solchen, die ohne weitere Kenntnis der Problemstruktur separierbar sind (z. B. Chvátal-Gomory-Schnitte, siehe unten) und Schnitten basierend auf bestimmten (kombinatorischen) Strukturen (z. B. Kammungleichungen für das Traveling-Salesman-Problem).

Zwar existiert für jede Lösung der LP-Relaxierung, die nicht-ganzzahlige Werte für ganzzahlige Variablen des zugrundeliegenden MIP besitzt, ein verletzter Schnitt, jedoch ist nicht immer ein (effizientes) Verfahren bekannt, diesen zu separieren. Deshalb ist man bemüht

Abbildung 1.2: Beispiel der ganzzahligen Hülle (P_{IP}) eines IP, des Polyeders der zugehörigen LP-Relaxierung (P_{LP}) sowie das IP-Optimum (x_{IP}^*) und das LP-Optimum (x_{LP}^*) bzgl. einer gegebenen Zielfunktion. Außerdem ist eine für das LP-Optimum verletzte Schnittebene dargestellt.

Abbildung 1.3: Allgemeiner Separierungsalgorithmus

Abbildung 1.4: Branch&Cut-Verfahren

Schnittebenen- und Branch&Bound-Verfahren miteinander zu verbinden, um die Vorteile beider Verfahren nutzen zu können.

Die Kombination von Schnittebenen- und Branch&Bound-Verfahren wird *Branch&Cut-Verfahren* genannt und wurde von Padberg und Rinaldi [54, 55] eingeführt. Dabei wird das Branch&Bound-Verfahren wie folgt erweitert: Ist die LP-Lösung eines Teilproblemes für das Ausgangsproblem nicht zulässig, so wird versucht, eine bestimmte Anzahl an Schnitten zu separieren, diese dem LP hinzuzufügen und anschließend das LP erneut zu lösen. Werden keine Schnitte gefunden, so wird wie beim reinen Branch&Bound-Verfahren ein Branching durchgeführt.

Dieser Ablauf ist in der Abbildung 1.4 dargestellt. Ein Branch&Cut-Verfahren, bei dem Schnitte nur im Wurzelknoten des Branch&Bound-Baumes separiert und dem LP zugefügt werden, wird auch *Cut&Branch-Verfahren* genannt.

Chvátal-Gomory-Schnitte

Die Chvátal-Gomory-Schnitte bilden eine spezielle Klasse allgemeiner Schnitte (siehe Gomory [33, 34]). Diese Schnitte galten früher als nicht hilfreich bei der Lösung ganzzahliger

1.1. VORAUSSETZUNGEN

Programme. Stattdessen wurden problemspezifische Schnitte verwendet. In den 1990er Jahren fanden Chvátal-Gomory-Schnitte allerdings erneut Beachtung, als Rechenstudien ihre Stärke und Relevanz bei der Lösung ganzzahliger Programme im Rahmen des Branch&Cut-Verfahrens belegten (vgl. Cornuéjols [17]). Seither sind Chvátal-Gomory-Schnitte wieder Bestandteil der aktuellen wissenschaftlichen Forschung und ihre Implementierungen in den gängigen Software-Paketen zum Lösen von MIPs enthalten.

Das Chvátal-Gomory-Schnitte-Separierungsproblem (CG-SEP) ist definiert als

CG-SEP

- GEGEBEN: ein ganzzahliges Programm mit ganzzahligen Koeffizienten und eine gebrochene Lösung $x^* \in P_{LP}$ der linearen Relaxierung
- BESTIMME: einen Gewichtsvektor $u \in \mathbb{R}^m_{\geq 0}$, sodass $\lfloor u^T A \rfloor x^* > \lfloor u^T b \rfloor$ gilt *oder* einen Beweis, dass ein solcher Vektor nicht existiert.

Eine Ungleichung $\lfloor u^T A \rfloor x \leq \lfloor u^T b \rfloor$, die als Ergebnis des CG-SEP ermittelt wurde und die somit für die gegebene LP-Lösung x^* verletzt ist, heißt *Chvátal-Gomory-Schnitt*.

Sei das System S = (A, b) mit $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$ gegeben. Wir definieren

$$S^{(1)} := \begin{pmatrix} A, & b \\ \lfloor u^T A \rfloor, & \lfloor u^T b \rfloor & \text{für alle } u \in \mathbb{R}^m_{\geq 0} \end{pmatrix}$$

als ersten Chvátal-Abschluss von S.

Rekursiv definieren wir für den *k-ten Chvátal-Abschluss* $S^{(k)} := (S^{(k-1)})^{(1)}$ für $k \ge 2$ sowie als *nullten Chvátal-Abschluss* $S^{(0)}$ das anfängliche System *S*. Für das entsprechende Polyeder $P(S^{(k)})$ schreiben wir kurz $P^{(k)}$. Es gilt $P^{(k)} \subseteq P^{(k-1)}$ für alle $k \ge 1$ und speziell

$$P_{IP} \subseteq P^{(1)} \subseteq P^{(0)} = P_{LP}.$$

Der *Chvátal-Rang rank*_C eines Chvátal-Gomory-Schnittes $\tilde{a}^T x \leq \tilde{b}$ ist definiert als

 $rank_C := \min\{k \in \mathbb{N}_0 \mid \tilde{a}^T x \leq \tilde{b} \text{ lässt sich aus Zeilen des Systems } S^{(k)} \text{ kombinieren}\}.$

Bereits 1963 hatte Gomory [33, 34] für beschränkte LPs mit reellen Koeffizienten bewiesen, dass für jede nicht-ganzzahlige Lösung der LP-Relaxierung eines IP ein solcher Chvátal-Gomory-Schnitt existiert. Das heißt, es existiert ein $t \in \mathbb{N}_0$, sodass gilt

$$P_{IP} = P^{(t)} \subseteq P^{(t-1)} \subseteq \cdots \subseteq P^{(1)} \subseteq P^{(0)} = P_{LP}.$$

Im Jahr 1980 bewies Schrijver [57] diese Eigenschaft auch für allgemeine (unbeschränkte) LPs mit rationalen Daten.

Im Folgenden möchten wir die zu betrachtende Menge von Chvátal-Gomory-Schnitten weiter einschränken. Es müssen nur solche Chvátal-Gomory-Schnitte betrachtet werden, die nicht durch andere Chvátal-Gomory-Schnitte dominiert werden. Diese lassen sich wie folgt charakterisieren: Zu einem gegebenen Chvátal-Gomory-Schnitt mit Gewichtsvektor $u \in \mathbb{R}_{\geq 0}^m$ lässt sich ein mindestens genauso stark verletzter Schnitt mit Gewichtsvektor $u' \in [0, 1)^m$ konstruieren, indem wir $u' := u - \lfloor u \rfloor$ setzen. Zur Herleitung betrachten wir die folgende Abschätzung

$$\lfloor u^{T}A \rfloor x^{*} = \lfloor (u - \lfloor u \rfloor + \lfloor u \rfloor)^{T}A \rfloor x^{*} = \lfloor (u - \lfloor u \rfloor)^{T}A \rfloor x^{*} + \lfloor \lfloor u \rfloor^{T}A \rfloor x^{*}$$
$$= \lfloor u'^{T}A \rfloor x^{*} + \lfloor u \rfloor^{T}Ax^{*} \leq \lfloor u'^{T}b \rfloor + \lfloor u \rfloor^{T}b$$
$$= \lfloor (u - \lfloor u \rfloor)^{T}b \rfloor + \lfloor \lfloor u \rfloor^{T}b \rfloor \leq \lfloor u^{T}b \rfloor .$$

Dabei stellen wir fest, dass die Ungleichung $\lfloor u^T A \rfloor x^* \leq \lfloor u^T b \rfloor$ durch die Ungleichung $\lfloor u'^T A \rfloor x^* \leq \lfloor u'^T b \rfloor$ dominiert wird. Es genügt also nur solche Chvátal-Gomory-Schnitte mit Gewichtsvektoren in $[0, 1)^m$ zu betrachten.

Des Weiteren können wir annehmen, dass u rational ist, denn für jedes $u \in \mathbb{R}_{\geq 0}^{m}$ lässt sich durch Lösen des linearen Programms min $\{\tilde{u}^{T}b \mid \tilde{u}^{T}A = u^{T}A, \tilde{u} \geq 0\}$ ein äquivalenter oder besserer Gewichtsvektor \tilde{u} finden. Die Basislösungen dieses linearen Programmes haben die Form $\tilde{u} = (B^{-1}(u^{T}A)^{T} \quad 0)$ wobei B eine Basis der Matrix A^{T} ist. Weil $(u^{T}A)^{T} \in \mathbb{Z}^{n}$ gilt, ist $(\det(B) \cdot \tilde{u}) \in \mathbb{Z}_{\geq 0}^{m}$ und somit $\tilde{u} \in \mathbb{Q}_{\geq 0}^{m}$ (siehe auch Caprara et al. [13]).

Sei $u \in [0,1)^m \cap \mathbb{Q}^m$ der Gewichtsvektor eines Chvátal-Gomory-Schnittes, dann lässt sich u darstellen als

$$u = \begin{pmatrix} \frac{p_1}{q_1} & \frac{p_2}{q_2} & \cdots & \frac{p_m}{q_m} \end{pmatrix}^T = \begin{pmatrix} \frac{k_1}{k} & \frac{k_2}{k} & \cdots & \frac{k_m}{k} \end{pmatrix}^T$$

mit nicht-negativen $p_1, p_2, ..., p_m \in \mathbb{N}_0$, positiven $q_1, q_2, ..., q_m \in \mathbb{N}$, $k := \prod_{i=1}^m q_i$ und $k_i := p_i \cdot k/q_i$ für alle $i \in \{1, ..., m\}$. Insbesondere gilt $k_i \in \{0, 1, ..., k-1\}$. Diese Betrachtung eines Chvátal-Gomory-Schnittes führt zu folgendem (äquivalenten) mod-*k*-Schnitte-Separierungsproblem (MOD-*k*-SEP) mit $k \in \mathbb{N}$, $k \ge 2$.

MOD-k-SEP

- GEGEBEN: ein ganzzahliges Programm mit ganzzahligen Koeffizienten und eine gebrochene Lösung $x^* \in P_{LP}$ der linearen Relaxierung
- BESTIMME: einen Gewichtsvektor $u \in \{0, \frac{1}{k}, \dots, \frac{k-1}{k}\}^m$, sodass $\lfloor u^T A \rfloor x^* > \lfloor u^T b \rfloor$ gilt *oder* einen Beweis, dass ein solcher Vektor nicht existiert.

Wir bezeichnen eine aus dem MOD-k-SEP resultierende und für die LP-Lösung x^* verletzte Ungleichung als *mod-k-Schnitt*.

Im Folgenden werden wir uns mit einem Spezialfall von Chvátal-Gomory-Schnitten bzw. mod-*k*-Schnitten befassen, den sogenannten $\{0, \frac{1}{2}\}$ -Schnitten (engl. $\{0, \frac{1}{2}\}$ -cuts). Dies sind Chvátal-Gomory-Schnitte mit Gewichtsvektoren $u \in \{0, \frac{1}{2}\}^m$, also mod-2-Schnitte.

1.2 Ausgewählte Probleme der ganzzahligen Programmierung

Wir betrachten nun einige ausgewählte Probleme der ganzzahligen Programmierung, bei denen $\{0, \frac{1}{2}\}$ -Schnitte gültige und teilweise auch Facetten-definierende Ungleichungen für die jeweiligen konvexen Hüllen der ganzzahligen Lösungen liefern. Dies zeigt die Relevanz der $\{0, \frac{1}{2}\}$ -Schnitte in der Praxis auf und liefert einen Einblick in deren Stärke bei der Lösung kombinatorischer Probleme mittels gemischt-ganzzahliger Programmierung.

Stabile (Multi-)Mengen

Wir betrachten einen ungerichteten Graphen G = (V, E). Eine Knotenteilmenge $S \subseteq V$ heißt *stabile Menge* (engl. stable set) (oder *unabhängige Menge* (engl. independent set)), wenn für je zwei Knoten $s_1, s_2 \in S$ keine Kante s_1s_2 existiert, also $s_1s_2 \notin E$ gilt. Beim Stabile-Mengen-Problem wird eine maximale Teilmenge $S^* \subseteq V$ bzgl. einer gegebenen Bewertungsfunktion gesucht. Die ganzzahlige Hülle der charakteristischen Vektoren der stabilen Mengen lässt sich wie folgt modellieren:

$$Ax \le \vec{1} \tag{1.3.1}$$

$$x \le \vec{1} \tag{1.3.2}$$

$$x \in \mathbb{Z}_{\geq 0}^{|V|},\tag{1.3.3}$$

wobei A die Kanten-Knoten-Inzidenzmaztrix von G sei. Für die lineare Relaxierung von (1.3.1) bis (1.3.3) ist durch

$$\sum_{v:\exists vw \in K} x_v \leq \left\lfloor \frac{1}{2} |K| \right\rfloor \qquad \text{für alle Kreise } K \subseteq E \text{ in } G \text{ mit } |K| \text{ ungerade} \qquad (1.4)$$

eine Klasse von Facetten-definierenden Ungleichungen definiert (vgl. z. B. Borndörfer [10]). Diese Ungleichungen werden *ungerade Kreisungleichungen* genannt.

Stabile Mengen lassen sich zu sogenannten stabilen Multimengen verallgemeinern. Dazu definieren wir

Definition 1.1. Eine *Multimenge* (engl. multi-set) *M* ist ein Paar (V,t) bestehend aus einer Grundmenge *V* und einer Funktion $t : V \to \mathbb{Z}_{\geq 0}$, wobei t(v) die Vielfachheit des Elementes $v \in V$ in der Multimenge *M* angibt.

Definition 1.2 (Koster und Zymolka [44]). Seien G = (V, E) ein ungerichteter Graph und $\alpha_v \in \mathbb{Z}_{\geq 0}$ für alle $v \in V$ sowie $\beta_{vw} \in \mathbb{Z}_{\geq 0}$ für alle $vw \in E$. Eine *stabile Multimenge* (engl. stable multi-set) ist eine Multimenge M = (V, t) für die gilt, dass $t(v) \leq \alpha_v$ für alle $v \in V$ und $t(v) + t(w) \leq \beta_{vw}$ für alle $vw \in E$.

Dies führt zu einer Verallgemeinerung des Stabile-Mengen-Problemes, dem Stabile-Multimengen-Problem (SMS-Problem) (vgl. Koster und Zymolka [44, 45]). Das zugehörigen Polytop P_{SMS} ist definiert als die ganzzahlige Hülle der charakteristischen Vektoren der stabilen Multimengen und lässt sich beschreiben als

$$Ax \le \beta \tag{1.5.1}$$

$$x \le \alpha \tag{1.5.2}$$

$$x \in \mathbb{Z}_{>0}^{|V|}.$$
 (1.5.3)

Für $\alpha = \vec{1}$ und $\beta = \vec{1}$ entspricht dies dem Stabile-Multimengen-Polytop. Die polyedrische Struktur wurde eingehend von Koster und Zymolka [44, 45] untersucht. Dabei formulierten sie folgende Verallgemeinerung der ungeraden Kreisungleichungen für das SMS-Problem

$$\sum_{\nu:\exists\nu\omega\in K} x_{\nu} \leq \left\lfloor \frac{1}{2}\beta(K) \right\rfloor \quad \text{für alle Kreise } K \subseteq E \text{ in } G \text{ mit } |K| \text{ und } \beta(K) \text{ ungerade.} \quad (1.6)$$

Im Gegensatz zu den ungeraden Kreisungleichungen für das Stabile-Mengen-Polytop sind die Ungleichungen (1.6) nur genau dann Facetten-definierend für P_{SMS} , wenn sich der Wert $\lfloor \frac{1}{2}\beta(K) \rfloor$ in einem bestimmten von den Werten α_v und β_{vw} der Knoten und Kanten des Kreises *K* abhängigen Intervall befindet (siehe Koster und Zymolka [44]).

Satz 1.3. Die ungeraden Kreisungleichungen sind $\{0, \frac{1}{2}\}$ -Schnitte.

Beweis. Für einen gegebenen Kreis *K* mit ungeradem Wert $\beta(K)$ kann die zugehörige ungerade Kreisungleichung aus den Ungleichungen (1.5.1) $x_v + x_w \leq \beta_{vw}$ für alle Kanten vw des Kreises *K* gebildet werden. Dazu werden diese mit $\frac{1}{2}$ gewichtet, addiert und anschließend die aufsummierte Ungleichung abgerundet.

Traveling-Salesman-Problem

Das Traveling-Salesman-Problem (TSP) gehört zu den am häufigsten untersuchten Problemen der kombinatorischen Optimierung. Dies verdankt es seiner Komplexität, seinen zahlreichen Anwendungsmöglichkeiten und nicht zuletzt auch seiner guten Anschaulichkeit. Auch wir wollen dieses Problem in Hinblick auf $\{0, \frac{1}{2}\}$ -Schnitte betrachten und beginnen mit der folgenden Definition

TRAVELING-SALESMAN-PROBLEM

GEGEBEN: ein Graph G = (V, E) und eine Längenfunktion $\ell : E \to \mathbb{R}$

BESTIMME: einen Hamiltonschen Kreis minimaler Länge.

Ist der zugrunde liegende Graph *G* ein Digraph, so spricht man vom *asymmetrischen TSP* (ATSP), sonst vom *symmetrischen TSP* (STSP). Betrachten wir nun (in Anlehnung an Caprara et al. [13]) das STSP und das zugehörige Polytop.

Definition 1.4. Das *Symmetrische-Traveling-Salesman-Problem-Polytop* P_{STSP} (kurz STSP-Polytop) ist definiert als konvexe Hülle der charakterischen Vektoren aller Hamiltonscher Kreise in *G*.

Eine lineare Relaxierung dieses Polytops (zurückgehend auf die Arbeiten von Dantzig und Fulkerson [20, 21]) ist gegeben durch

$$\begin{aligned} x(\delta(v)) &= 2 & \text{für alle } v \in V & (1.7.1) \\ x(E(S)) &\leq |S| - 1 & \text{für alle } S \subsetneq V, \, |S| \geq 2 & (1.7.2) \\ x_e &> 0 & \text{für alle } e \in E. & (1.7.3) \end{aligned}$$

Die Bedingungen (1.7.1), (1.7.2) und (1.7.3) heißen Gradbedingungen (engl. degree equations), Kurzzyklusungleichungen (engl. subtour elimination constraints) und Nichtnegativitätsbedingungen. Das System bestehend nur aus den Bedingungen (1.7.1) und (1.7.3) nennt man 2-*Matching-Relaxierung* (des STSP), vergleiche hierzu auch den nachfolgenden Abschnitt über *b*-Matchings. Die Bedingungen (1.7.1) – (1.7.3) zusammen mit den Ganzzahligkeitsbedingungen $x_e \in \{0, 1\}$ (für alle $e \in E$) beschreiben das STSP-Polytop vollständig.

Für gegebene Mengen $H, T_1, \ldots, T_t \subsetneq V$ mit ungeradem $t \ge 3, T_i \cap H \ne \emptyset$ und $T_i \setminus H \ne \emptyset$ (für alle $i = 1, \ldots t$) betrachten wir die folgenden Gradbedingungen und Kurzzyklusungleichungen

 $\begin{aligned} x(\delta(v)) &= 2 & \text{für alle } v \in H \\ x(E(T_i)) &\leq |T_i| - 1 & \text{für alle } i = 1, \dots, t \\ x(E(T_i \cap H)) &\leq |T_i \cap H| - 1 & \text{für alle } i = 1, \dots, t \text{ mit } |T_i \cap H| \geq 2 \\ x(E(T_i \setminus H)) &\leq |T_i \setminus H| - 1 & \text{für alle } i = 1, \dots, t \text{ mit } |T_i \setminus H| \geq 2 \\ x_e &\geq 0 & \text{für alle } e \in \delta(H) \setminus \bigcup_{i=1}^t E(T_i). \end{aligned}$

Summieren wir diese mit Gewicht $\frac{1}{2}$ auf und runden die Koeffizienten ab, so erhalten wir die bekannten Kammungleichungen (engl. comb inequalities) (vgl. Edmonds [24], Chvátal [15] sowie Grötschel und Padberg [36, 37])

$$x(E(H)) + \sum_{i=1}^{t} x(E(T_i)) \le |H| + \sum_{i=1}^{t} (|T_i| - 1) - \left\lceil \frac{t+1}{2} \right\rceil,$$

die für das STSP-Polytop Facetten-definierend sind. Wir halten fest

Satz 1.5 (Caprara et al. [13]). *Kammungleichungen sind* $\{0, \frac{1}{2}\}$ -*Schnitte*.

Des Weiteren haben Caprara et al. [13] gezeigt, dass die Facetten-definierenden erweiterten Kammungleichungen (engl. extended comb inequalities) nach Naddef und Rinaldi [51] ebenfalls $\{0, \frac{1}{2}\}$ -Schnitte sind und sich aus Gradbedingungen und Kurzzyklusungleichungen kombinieren lassen.

Satz 1.6 (Caprara et al. [13]). *Erweiterte Kammungleichungen sind* $\{0, \frac{1}{2}\}$ -*Schnitte*.

b-Matchings

Im Folgenden betrachten wir b-Matchings, die eine Verallgemeinerung der 1-Matchings darstellen. Wir beginnen mit der folgenden

Definition 1.7. Seien G = (V, E) ein Graph und $b \in \mathbb{Z}_{\geq 0}^{|V|}$. Eine Funktion $x : E \to \mathbb{Z}_{\geq 0}$ heißt *b-Matching*, wenn sie $x(\delta(v)) \le b(v)$ für alle $v \in V$ erfüllt.

Ein b-Matching ist also eine Auswahl der Kanten eines Graphen sodass jeder Knoten v des Graphen maximal zu b(v) ausgewählten Kanten (bzw. Kantenkopien) inzident ist. Dabei darf eine Kante durchaus mehrfach ausgewählt werden (Kantenkopie). Das b-Matching-Polytop ist die konvexe Hülle der charakteristischen Vektoren der b-Matchings zu gegebenem Graph G = (V, E) und $b \in \mathbb{Z}_{>0}^{|V|}$.

Edmonds [24, 25], später zusammen mit Johnson [26], untersuchte das b-Matching-Polytop und formulierte eine vollständige lineare Beschreibung desselben:

$$x(\delta(v)) \le b(v)$$
 für alle $v \in V$ (1.8.1)

für alle $U \subseteq V$ mit b(U) ungerade $x(E(U)) \le \left|\frac{1}{2}b(U)\right|$ (1.8.2)für alle $e \in E$. $x_e \geq 0$ (1.8.3)

Die einzelnen Ungleichungen dieser Beschreibung werden als Gradungleichungen (1.8.1), Blossom-Ungleichungen (1.8.2) und Nichtnegativitätsbedingungen (1.8.3) bezeichnet. Pulleyblank [56] zeigte, dass jede dieser drei verschiedenen Klassen von Nebenbedingungen Facetten-definierend ist und darüber hinaus keine weiteren Facetten-definierenden Klassen für das b-Matching-Polytop existieren.

Es ist bekannt, dass Blossom-Ungleichungen eine Teilklasse der im Zusammenhang mit dem Traveling-Salesman-Problem definierten Kammungleichungen sind (vgl. Chvátal [15] sowie Grötschel und Padberg [36]). Daher gilt ebenfalls

Satz 1.8. Blossom-Ungleichungen sind $\{0, \frac{1}{2}\}$ -Schnitte.

Weitere Probleme

Azyklisches-Teildigraph-Problem (ASP) (engl. acyclic subdigraph problem) Sei ein vollständiger gerichteter Graph D = (V,A) gegeben. Wir betrachten die Menge aller azyklischen Teilgraphen von D. Das ASP-Polytop P_{ASP} ist definiert als die konvexe Hülle der charakteristischen Vektoren dieser azyklischen Teilgraphen

$$P_{ASP} := conv \left\{ x \in \{0,1\}^{|A|} \mid \sum_{(i,j) \in C} x_{ij} \le |C| - 1 \text{ für alle gerichteten Kreise } C \subseteq A \right\}.$$

Möbiusleiter-Ungleichungen (engl. Möbius ladder inequalities) sind $\{0, \frac{1}{2}\}$ -Schnitte und gültige Ungleichungen für P_{ASP} . Siehe auch Grötschel et al. [38], Caprara und Fischetti [11].

Lineares-Anordnungsproblem (LOP) (engl. linear ordering problem) Das LOP ist eine Spezialisierung des ASP, bei der nur solche azyklischen Teilgraphen betrachtet werden, die genau eine von je zwei entgegen gerichteten Kanten $(v_1, v_2), (v_2, v_1)$ für alle $v_1, v_2 \in V$ besitzen. Das LOP-Polytop P_{LOP} ist daher definiert als

$$P_{LOP} := conv\{x \in \{0,1\}^{|A|} \mid \sum_{(i,j)\in C} x_{ij} \le |C| - 1 \text{ für alle gerichteten Kreise } C \subseteq A,$$
$$x_{ij} + x_{ji} = 1 \text{ für alle } 1 \le i < j \le |V|\}.$$

Das ASP ist eine Relaxierung des LOP (siehe z. B. Borndörfer [10]). Deswegen sind die Möbiusleiter-Ungleichungen ebenfalls gültige Ungleichungen für das LOP. Sie sind sogar Facetten-definierend (vgl. Grötschel et al. [38]).

Cliquen-Partitionierungsproblem (engl. clique partitioning problem) Sei G = (V, E)ein vollständiger ungerichteter Graph. Dann heißt $F \subseteq E$ eine Cliquen-Partition von G, wenn die Knotenmenge V in disjunkte Mengen W_1, W_2, \ldots, W_k ($k \in \mathbb{N}$) partitioniert werden kann, sodass $F = \bigcup_{i=1}^{k} E(W_i)$ gilt. Das zugehörige Polytop P_{CPP} ist die konvexe Hülle der charakteristischen Vektoren aller Cliquen-Partitionen von G,

$$P_{CPP} := conv\{x \in \{0,1\}^{|E|} \mid x_{ij} + x_{jk} - x_{ik} \le 1 \text{ für alle } i, j, k \in V \text{ und } |\{i, j, k\}| = 3\}.$$

Die *ungeraden Kreisungleichungen mit zwei Sehnen* (engl. 2-chorded (odd) cycle inequalities) und *ungerade Radungleichungen* (engl. odd wheel inequalities) sind $\{0, \frac{1}{2}\}$ -Schnitte und gültige Ungleichungen für das Cliquen-Partitionierungspolytop. Diese können aus abgeschwächten Dreiecksungleichungen der linearen Relaxierung kombiniert werden. Siehe auch Grötschel und Wakabayashi [41] sowie Caprara und Fischetti [11, 12]. **Kapazitätsunabhängiges Standortplanungsproblem (engl. uncapacitated plant location problem)** Das kapazitätsunabhängige oder einfache Standortplanungsproblem (UPLP) besitzt viele Anwendungen in der Planung von Logistik- und Versorgungssystemen (vgl. z. B. Cornuéjols et al. [16]). Sei $G = (V_1 \cup V_2, E)$ ein vollständiger bipartiter Graph, d. h. $V_1 \cap V_2 = \emptyset$ und $E := \{v_1v_2 \mid v_1 \in V_1, v_2 \in V_2\}$. Eine Kantenmenge $E' \subseteq E$ ist eine zulässige Lösung des kapazitätsunabhängigen Standortplanungsproblems, wenn $|E' \cap \delta(v)| = 1$ für alle $v \in V_1$ gilt. Das UPLP-Polytop P_{UPLP} ist definiert als die ganzzahlige Hülle der charakteristischen Vektoren aller zulässigen Lösungen.

$$P_{UPLP} := \{ x \in \{0,1\}^E \mid \sum_{v_1 v_2 \in \delta(v_1)} x_{v_1 v_2} = 1 \text{ für alle } v_1 \in V_1 \}$$

Für das Polytop P_{KSP} existiert eine Klasse gültiger Ungleichungen, welche *ungerade Kreisungleichungen* (engl. odd cycle inequalities) genannt werden. Diese sind $\{0, \frac{1}{2}\}$ -Schnitte. Siehe auch Caprara et al [11, 12].

Kapitel 2

Separierung von $\{0,\frac{1}{2}\}$ -**Schnitten**

In Kapitel 1 wurde anhand einiger Probleme dargestellt, dass sich viele gültige und teilweise auch Facetten-definierende Ungleichungen bekannter Probleme als $\{0, \frac{1}{2}\}$ -Schnitte auffassen lassen und somit auch als solche konstruierbar sind. Viele dieser Ungleichungen wurden ursprünglich unter Berücksichtigung spezieller kombinatorischer Strukturen wie z. B. ungerader Kreise aufgestellt. Bei der Konstruktion dieser Ungleichungen als $\{0, \frac{1}{2}\}$ -Schnitte ist hingegen keine weitere Kenntnis der Problemstruktur vonnöten (denn dabei werden lediglich die mit $\frac{1}{2}$ gewichteten Zeilen einer Teilmenge der vorhandenen Zeilen aufaddiert und anschließend abgerundet).

Im Folgenden wollen wir uns daher mit der Theorie zur Separierung von $\{0, \frac{1}{2}\}$ -Schnitten befassen. Dazu betrachten wir ein allgemeines ganzzahliges Programm, welches für $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$ und $c \in \mathbb{R}^n$ die folgende Form besitze:

$$\begin{array}{ll} \min & c^T x \\ s.t. & Ax \leq b \\ & x \geq \vec{0} \\ & x \in \mathbb{Z}^n, \end{array}$$
 (2.1)

wobei für jede Zeile *i* der Matrix *A* die Koeffizienten $A_{i1}, A_{i2}, \ldots, A_{in}$ teilerfremd seien.

Diese Annahmen stellen keine Einschränkung der Allgemeinheit dar, denn Variablen x_j mit negativer unterer Variablenschranke lb_j können durch die nicht-negativen Variablen $x'_j = x_j - lb_j$ ersetzt werden. Ebenso können Variablen x_j , für die lediglich eine obere Schranke ub_j aber keine untere existiert, komplementiert, d. h. durch eine nicht-negative Variable $x'_j = ub_j - x_j$ ersetzt werden. Variablen x_j ohne untere und obere Variablenschranke können durch die Summe $x_j^+ - x_j^-$ zweier nicht-negativer Variablen x_j^+ und x_j^- ersetzt werden. Zeilen *i* des Systems (A,b) mit rationalen, nicht-ganzzahligen Koeffizienten können mittels des kleinsten gemeinsamen Vielfachen dieser Koeffizienten zu Zeilen mit ganzzahligen Koeffizienten skaliert werden. Zuletzt können die Koeffizienten jeder nur aus ganzzahligen Koeffizienten bestehenden Zeile $(A_i., b_i)$ teilerfremd gemacht werden, indem die ganze Zeile (A_i, b_i) durch den größten gemeinsamen Teiler ggT_i aller Einträge der Matrixzeile A_i . dividiert wird. Ein dabei entstehender gebrochener Wert b_i/ggT_i kann abgerundet werden, da alle Koeffizienten und Variablen ganzzahlig sind und somit $A_i x \in \mathbb{Z}^n$ ist.

Wir betrachten also ein allgemeines ganzzahliges Programm der Form (2.1) und definieren dafür die Menge Z der ganzzahligen Lösungen desselben als $Z := \{x \in \mathbb{Z}^n \mid Ax \le b\}$, sowie deren konvexe Hülle $P_{IP} := \operatorname{conv}(Z)$ und das Polyeder der Lösungen der zugehörigen linearen Relaxierung $P_{LP} := \{x \in \mathbb{R}^n \mid Ax \le b\}$. Insbesondere gilt $P_{IP} = \operatorname{conv}(P_{LP} \cap \mathbb{Z}^n)$. Ferner seien \overline{A} und \overline{b} definiert als

$$\bar{A} := A \mod 2$$
$$\bar{b} := b \mod 2$$

d. h. als Matrix bzw. Vektor der Paritäten der Koeffizienten von A bzw. b.

2.1 Separierungsproblem

Wir beginnen mit der Definition des $\{0, \frac{1}{2}\}$ -Schnitte-Separierungsproblemes ($\{0, \frac{1}{2}\}$ -SEP). Aus Abschnitt 1.1 wissen wir, dass $\{0, \frac{1}{2}\}$ -Schnitte Chvátal-Gomory-Schnitte mit Gewichtsvektoren $u \in \{0, \frac{1}{2}\}^m$ bzw. mod-2-Schnitte sind. In Hinblick auf das CG-SEP definieren wir das $\{0, \frac{1}{2}\}$ -SEP wie folgt:

 $\{0, \frac{1}{2}\}$ -SEP

- GEGEBEN: das Programm (2.1) und eine gebrochene Lösung $x^* \in P_{LP}$ der linearen Relaxierung
- BESTIMME: einen Gewichtsvektor $u \in \{0, \frac{1}{2}\}^m$, sodass $\lfloor u^T A \rfloor x^* > \lfloor u^T b \rfloor$ gilt *oder* einen Beweis, dass ein solcher Vektor nicht existiert.

Liefert das $\{0, \frac{1}{2}\}$ -SEP einen solchen Gewichtsvektor, so definiert dieser eine gültige Ungleichung für P_{IP} , die für die gebrochene LP-Lösung x^* verletzt ist.

Definition 2.1. Seien das Programm (2.1) und eine gebrochene Optimallösung x^* der LP-Relaxierung gegeben. Sei $u \in \{0, \frac{1}{2}\}^m$ eine Lösung des zugehörigen $\{0, \frac{1}{2}\}$ -SEP. Dann heißt die Ungleichung

$$\left\lfloor u^{T}A\right\rfloor x \leq \left\lfloor u^{T}b\right\rfloor$$

 $\{0,\frac{1}{2}\}$ -Schnitt. Sie ist gültig für P_{IP} und wird von x^* verletzt.

Beispiel 2.2. Wir betrachten das folgende ganzzahlige Programm

Die Optimallösung der linearen Relaxierung lautet (0.5, 0.5, 0.5) und besitzt den Zielfunktionswert -1.5. Diese Lösung ist für das ganzzahlige Programm nicht zulässig und lässt sich mittels eines $\{0, \frac{1}{2}\}$ -Schnittes abschneiden. Wir kombinieren dazu die drei Nebenbedingungen aus (2.2) und erhalten folgenden Schnitt

$$x_1 + x_2 + x_3 \le 1$$
,

der für die LP-Lösung verletzt ist $(0.5+0.5+0.5=1.5 \le 1)$. Fügen wir diesen der linearen Relaxierung hinzu, so erhalten wir das modifizierte lineare Programm

und -1 als Zielfunktionswert einer Optimallösung. Alle zu Ecken des Polyeders gehörigen Optimallösungen sind ganzzahlig, also auch für die ganzzahlige Hülle zulässig (und optimal). Abbildung 2.1 zeigt die ganzzahlige Hülle des IP (2.2) (grün) und dessen lineare Relaxierung (grün und rot). Der angegebene $\{0, \frac{1}{2}\}$ -Schnitt (2.2) separiert die gebrochene Ecke (rot) (0.5, 0.5, 0.5) von der ganzzahligen Hülle (mit grünen Eckpunkten). Nun stimmt die konvexe Hülle des modifizierten LP (2.3) mit der der ganzzahligen Lösungen des IP (2.2) (grün) überein.

Wir haben in Kapitel 1 verschiedene Ungleichungen, wie z. B. die Kammungleichungen als Spezialfälle von $\{0, \frac{1}{2}\}$ -Schnitten identifiziert. Weiterhin können wir $\{0, \frac{1}{2}\}$ -Schnitte als spezielle Chvátal-Gomory-Schnitte und mod-*k*-Schnitte auffassen. Darüber hinaus gehören $\{0, \frac{1}{2}\}$ -Schnitte ebenfalls der Klasse der Balancierten Split-Schnitte (engl. balanced split cuts oder balanced intersection cuts) an (vgl. z. B. Letchford [48] sowie Caprara und Letchford [14]). Des Weiteren sind sie auch als Spezialfall der sogenannten BinäreClutterUngleichungen (engl. binary clutter inequalities) aufzufassen (vgl. hierzu ebenfalls Letchford [48]). Einen guten Überblick über die Teil- bzw. Obermengenbeziehung verschiedener Schnittungleichungen bietet der Artikel von Cornuéjols und Li [18].

Abbildung 2.1: Geometrische Darstellung der konvexen Hülle der Lösungen des IP aus Beispiel 2.2 (grün) und der konvexen Hülle dessen linearer Relaxierung (grün und rot)

Definition 2.3. Seien das Programm (2.1), eine gebrochene Lösung x^* der LP-Relaxierung und ein $\{0, \frac{1}{2}\}$ -Schnitt $\lfloor u^T A \rfloor x \leq \lfloor u^T b \rfloor$ gegeben. Dann gilt $\lfloor u^T A \rfloor x^* > \lfloor u^T b \rfloor$ und wir nennen

$$\mathcal{V}(u, x^*) := \left| u^T A \right| x^* - \left| u^T b \right|$$

die Verletzung des $\{0, \frac{1}{2}\}$ -Schnittes bzgl. der gebrochenen LP-Lösung x^* .

Definition 2.4. Sei eine Ungleichung $a^T x \leq b$ mit $a \in \mathbb{R}^n$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}$ gegeben. Dann bezeichnen wir

 $s := b - a^T x$

als den Schlupf (engl. slack) dieser Ungleichung bzgl. x.

Nachdem wir die Verletzung eines $\{0, \frac{1}{2}\}$ -Schnittes definiert haben, möchten wir nun den Zusammenhang zwischen der Verletzun und den Schlupfwerten sowie den Zeileneinträgen des Systems (A, b) betrachten. Diesen Zusammenhang formuliert das folgende

Lemma 2.5. Seien das Programm (2.1), dessen LP-Relaxierung, eine gebrochene Lösung x^* derselben sowie der Vektor $s \in \mathbb{R}^m$ der Schlupfwerte der Ungleichungen bzgl. x^* gegeben. Dann sind folgende Aussagen äquivalent:

1. Es existiert ein Gewichtsvektor $u \in \{0, \frac{1}{2}\}^m$, sodass $\mathcal{V}(u, x^*) > 0$.

2. Es existiert ein binärer Vektor $v \in \{0,1\}^m$, sodass $\bar{b}^T v$ ungerade ist und

$$s^T v + (\bar{A}^T v \operatorname{mod} 2) x^* < 1$$

gilt.

Beweis. Wir betrachten für die Verletzung $\mathcal{V}(u, x^*)$ folgende Umformungen

$$\begin{aligned} \mathcal{V}(u, x^*) &= \left\lfloor u^T A \right\rfloor x^* - \left\lfloor u^T b \right\rfloor \\ &= (u^T A - \frac{1}{2}((2u)^T A \mod 2))x^* - (u^T b - \frac{1}{2}((2u)^T b \mod 2)) \\ &= \frac{1}{2}((2u)^T b \mod 2) - u^T s - \frac{1}{2}((2u)^T A \mod 2)x^* \\ &\stackrel{v:=2u}{=} \frac{1}{2}((v^T \bar{b} \mod 2) - v^T s - (v^T \bar{A})x^*). \end{aligned}$$

Wir wissen, dass \bar{A} , \bar{b} , s und v = 2u nicht-negativ sind und $x \ge \vec{0}$ gilt. Damit die Verletzung $\mathcal{V}(u, x^*)$ positiv ist, muss daher $v^T \bar{b} \equiv 1 \mod 2$ und $v^T s + (v^T \bar{A} \mod 2) x^* < (v^T \bar{b} \mod 2) = 1$ gelten.

Die Aussage 2 des Lemmas 2.5 nennt Bedingungen an den binären Vektor v. In diese gehen aber nicht die Werte des Ausgangssystems (A,b) sondern lediglich deren Paritäten ein. Es genügt demnach für die Separierung verletzer $\{0, \frac{1}{2}\}$ -Schnitte das System (\bar{A}, \bar{b}) anstatt des Systems (A, b) zu betrachten.

Formulierung des $\{0, \frac{1}{2}\}$ -SEP als Optimierungsproblem

Das Separierungsproblem $\{0, \frac{1}{2}\}$ -SEP kann als ganzzahliges Programm modelliert werden, das die Verletzung maximiert. Dazu wird in der Zielfunktion die Summe aus Schlupfwerten der kombinierten Zeilen und aus Straftermen für ungerade Koeffizienten beim Abrunden minimiert wird, da letztgenannte den entstehenden $\{0, \frac{1}{2}\}$ -Schnitt abschwächen. Das IP beinhaltet binäre Entscheidungsvariablen v_i für jede Zeile *i* des Systems (\bar{A}, \bar{b}) , wobei $v_i = 1$ bedeutet, dass die Zeile *i* in der Kombination von Zeilen zu dem $\{0, \frac{1}{2}\}$ -Schnitt enthalten ist. Die Nebenbedingungen des IP resultieren direkt aus der Aussage 2 des Lemmas 2.5. Außerdem existieren folgende Hilfsvariablen: Für jede Spalte *j* des Systems (\bar{A}, \bar{b}) gibt es Binärvariablen $y_j := \bar{A}_{.j}^T v \mod 2$, deren Wert der Parität des Koeffizienten der Spalte *j* in der aktuellen Zeilenkombination entspricht. Zusätzlich existieren noch die ganzzahligen Variablen r_j (für jede Spalte *j*) und *q*, die benötigt werden, um die Modulo-2-Arithmetik im IP zu modellieren. Das Separierungsproblem $\{0, \frac{1}{2}\}$ -SEP lässt sich somit wie folgt formulieren:

$$\hat{z} := \min_{\substack{s.t. \\ \bar{b}^{T}v \\ \bar{v} \\ \bar{$$

Anhand des Zielfunktionswertes \hat{z} des IP (2.4) lässt sich entscheiden, ob der aus der Lösung konstruierbare $\{0, \frac{1}{2}\}$ -Schnitt verletzt ist oder nicht: Ist $\hat{z} < 1$, so ist ein verletzter Schnitt gefunden, anderenfalls ein Beweis, dass ein solcher nicht existiert (da \hat{z} minimal ist).

Korollar 2.6. Sei ein verletzter $\{0, \frac{1}{2}\}$ -Schnitt gegeben als Lösung (v, y, r, q) des IP (2.4). Dann beträgt dessen Verletzung (bzgl. der LP-Lösung x^*)

$$\mathcal{V}(u, x^*) = \mathcal{V}(\frac{1}{2}v, x^*) = \frac{1}{2}(1 - \hat{z})$$

und es gilt insbesondere

$$0 < \mathcal{V}(\frac{1}{2}v, x^*) \leq \frac{1}{2}.$$

Beweis. Nach Definition 2.3 (Verletzung eines $\{0, \frac{1}{2}\}$ -Schnittes), der Definition der Zielfunktion und der Hilfsvariablen y in IP (2.4) sowie des Schlupfes einer Ungleichung gilt,

$$\begin{aligned} \mathcal{V}(u, x^*) &= \mathcal{V}(\frac{1}{2}v, x^*) = \left\lfloor (\frac{1}{2}v)^T A \right\rfloor x^* - \left\lfloor (\frac{1}{2}v)^T b \right\rfloor \\ &= \frac{1}{2}v^T A x^* - \frac{1}{2}(v^T A \mod 2)x^* - \frac{1}{2}v^T b + \frac{1}{2}(v^T b \mod 2) \\ &= \frac{1}{2}(1 - v^T b + v^T A x^* - (v^T A \mod 2)x^*) \\ &= \frac{1}{2}(1 - v^T s - (x^*)^T y) = \frac{1}{2}(1 - \hat{z}). \end{aligned}$$

Ist ein $\{0, \frac{1}{2}\}$ -Schnitt verletzt, so gilt $\hat{z} < 1$, also $\mathcal{V}(u, x^*) > 0$. Da \bar{A} , *s* und x^* keine negativen Einträge besitzen und die Variablen *v* und *y* ebenfalls nicht-negativ sind, gilt $\hat{z} \ge 0$, also $\mathcal{V}(u, x^*) \le \frac{1}{2}$. Daraus folgt die Behauptung.

Die Separierung von $\{0, \frac{1}{2}\}$ -Schnitten als exaktes Verfahren zur ganzzahligen Optimierung

In der Einleitung haben wir Chvátal-Gomory-Schnitte vorgestellt und den *k*-ten Chvátal-Abschluss $S^{(k)}$ eines Systems *S* definiert. In diesem Abschnitt möchten wir den *k*-ten Abschluss eines Systems bzgl. $\{0, \frac{1}{2}\}$ -Schnitte definieren und ein interessantes und erst kürzlich veröffentlichtes Ergebnis von Gentile et al. [31] präsentieren, welches weitere Untersuchungen der Separierung von $\{0, \frac{1}{2}\}$ -Schnitten im Besonderen motiviert.

Definition 2.7. Sei das System S = (A, b) mit $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$ gegeben. Der *erste* $\{0, \frac{1}{2}\}$ -*Abschluss* dieses Systems ist

$$S_{1/2}^{(1)} := \begin{pmatrix} A, & b \\ \lfloor u^T A \rfloor, & \lfloor u^T b \rfloor & \text{für alle } u \in \{0, \frac{1}{2}\}^m \end{pmatrix}$$

Rekursiv sei für $k \ge 2$ der k-te $\{0, \frac{1}{2}\}$ -Abschluss $S_{1/2}^{(k)}$ definiert als

$$S_{1/2}^{(k)} := (S_{1/2}^{(k-1)})_{1/2}^{(1)}$$

Außerdem sei $S_{1/2}^{(0)} := S$ der *nullte* $\{0, \frac{1}{2}\}$ -*Abschluss*.

Wir schreiben kurz $P_{1/2}^{(k)}$ für das Polyeder $P(S_{1/2}^{(k)})$ für alle $k \ge 0$. Wie schon beim Chvátal-Abschluss gilt auch hier $P_{1/2}^{(k)} \subseteq P_{1/2}^{(k-1)}$ für alle $k \ge 1$. Im Zusammenhang mit dem ersten Chvátal-Abschluss gilt insbesondere

$$P_{IP} \subseteq P^{(1)} \subseteq P^{(1)}_{1/2} \subseteq P := P_{LP}.$$

In ihrem vor kurzem erschienenen Artikel untersuchen Gentile, Ventura und Weismantel [31] die äußere Beschreibung der konvexen Hülle aller ganzzahligen Lösungen eines linearen Ungleichungssystems mit beschränkten Variablen. Dabei stellen sie fest

Satz 2.8 (Gentile et al. [31]). Sei das beschränkte System $S : Ax \le b, -Ix \le \vec{0}, Ix \le ub$ mit oberen Variablenschranken $ub \in \mathbb{Z}^n$ gegeben. Sei außerdem P_{IP} die konvexe Hülle dessen ganzzahliger Lösungen. Dann existiert ein $t \in \mathbb{N}_0$, sodass gilt

$$P_{1/2}^{(t)} = P_{IP}.$$

Das heißt, zu jeder gebrochenen LP-Lösung $x^* \notin P_{IP}$ eines IP mit beschränkten Variablen lässt sich ein $\{0, \frac{1}{2}\}$ -Schnitt finden, der diese abschneidet. Wie im ersten Kapitel erwähnt, hat Gomory dies bereits für allgemeine Chvátal-Gomory-Schnitte gezeigt. Gentile et al. haben mit ihrem Beweis diese Aussage insofern verschärft, als allein die LP-Relaxierung eines IP zusammen mit $\{0, \frac{1}{2}\}$ -Schnitten genügen, um die konvexe Hülle der ganzzahligen Lösungen des IP zu beschreiben, sofern dessen Variablen beschränkt sind. Insbesondere können die hier betrachteten ganzzahligen Programme der Form (2.1) nur durch Hinzufügen von $\{0, \frac{1}{2}\}$ -Schnitten bereits im Wurzelknoten des Branch&Cut-Baumes gelöst werden. Gentile et al. bemerken dazu, dass vermutlich sehr viele LP-Iterationen nötig sind, d. h. dass *t* aus Satz 2.8 einen relativ große Werte annimmt. Ob sich Satz 2.8 auf unbeschränkte rationale IP verallgemeinern lässt (analog zur Verallgemeinerung der Aussage von Gomory durch Schrijver [57]) ist derzeit noch unbekannt.

2.2 Komplexität

Im folgenden Abschnitt werden wir eingangs die Komplexität des allgemeinen $\{0, \frac{1}{2}\}$ -SEP bzw. dessen Optimierungsversion untersuchen. Anschließend werden wir uns Spezialfällen widmen, deren Komplexität effizientere, d. h. polynomielle, Lösungsverfahren ermöglicht. Am Ende dieses Abschnittes geben wir in der Abbildung 2.6 eine Übersicht der untersuchten Fälle.

2.2.1 Allgemein

Zur Untersuchung der Komplexität des allgemeinen $\{0, \frac{1}{2}\}$ -SEP bedarf es in Anlehnung an Caprara und Fischetti [11] einiger Vorausbetrachtungen. Zuerst werden wir das *Minimalgewichteter-binäre-Clutter-Problem* MW-BCP (engl. minimum-weight binary clutter problem) definieren und dieses polynomiell auf $\{0, \frac{1}{2}\}$ -SEP zurückführen. Das ist MW-BCP \mathcal{NP} -schwer (vgl. Caprara und Fischetti [11]) und daher auch das $\{0, \frac{1}{2}\}$ -SEP.

Definition 2.9. Seien $Q \in \{0,1\}^{r \times t}$, $d \in \{0,1\}^r$ und $d \neq \vec{0}$. Dann heißt

$$\mathscr{C}(Q,d) := \{z \in \{0,1\}^t \mid Qz \equiv d \bmod 2\}$$

der zu (Q,d) gehörige *binäre Clutter* (engl. binary clutter).

Für einen binären Clutter definieren wir das folgende Optimierungsproblem

MW-BCP

GEGEBEN: $w \in \mathbb{R}_{>0}^t$

BESTIMME: $\min\{w^T z \mid z \in \mathscr{C}(Q, d)\}.$

Ein Vergleich des Separierungsproblems $\{0, \frac{1}{2}\}$ -SEP mit dem MW-BCP führt zu folgendem **Satz 2.10.** *Die Probleme* $\{0, \frac{1}{2}\}$ -SEP *und* MW-BCP *sind äquivalent.*

 $\min\{w^T$

Beweis. Sei eine Instanz des $\{0, \frac{1}{2}\}$ -SEP gegeben. Zur Konstruktion eines dazu äquivalenten MW-BCP setzen wir

$$w := \begin{pmatrix} s \\ x^* \end{pmatrix}, d := \begin{pmatrix} 1 \\ \vec{0} \end{pmatrix}$$
 und $Q := \begin{pmatrix} \bar{b}^T & \mathbf{0} \\ \bar{A}^T & -I \end{pmatrix}$

Dies definiert den binären Clutter $\mathscr{C}(Q,d)$ und das zugehörige MW-BCP lautet

$$z \mid z \in \mathscr{C}(Q,d)\} = \min\{w^T z \mid Qz \equiv d \mod 2, z \in \{0,1\}^t\}$$
$$= \min\left\{ \begin{pmatrix} s \\ x^* \end{pmatrix}^T z \colon \begin{pmatrix} \bar{b}^T & \mathbf{0} \\ \bar{A}^T & -I \end{pmatrix} z \equiv \begin{pmatrix} 1 \\ \bar{0} \end{pmatrix} \mod 2, z \in \{0,1\}^t \right\}$$

Aus einer Lösung z^* desselben können wir den Gewichtsvektor u eines $\{0, \frac{1}{2}\}$ -Schnittes bestimmen, indem wir $u_i = \frac{1}{2}z_i^*$ für $i \in \{1, ..., m\}$ setzen. Ist $w^T z^* \ge 1$, so ist die Ungleichung $\lfloor u^T A \rfloor x^* > \lfloor u^T b \rfloor$ nicht verletzt und wir haben einen Beweis dafür, dass kein geeigneter Gewichtsvektor existiert. Anderenfalls ist ein mit $\mathcal{V}(u, x^*) > 0$ verletzter $\{0, \frac{1}{2}\}$ -Schnitt bestimmt.

Sei nun eine Instanz des MW-BCP gegeben. Wir definieren n := r + t + 1, m := t + 1 und $M := \lfloor 2w^T \vec{1} \rfloor + (1 - (\lfloor 2w^T \vec{1} \rfloor \mod 2))$ als kleinste ungerade Zahl, die größer als das Doppelte der Summe der Einzelgewichte w_i der Zielfunktion des MW-BCP ist. Außerdem setzen wir

$$A := \begin{pmatrix} Q^T \\ d^T & 2I \end{pmatrix}, \ b := \begin{pmatrix} 2M(Q^T\vec{1} + 2\cdot\vec{1}) \\ 2M(d^T\vec{1}) + M \end{pmatrix} \text{ und } x^* := \begin{pmatrix} 2M1 \\ 2M\vec{1} - \frac{1}{2}w \\ \frac{1}{2}M \end{pmatrix}$$

Dann gilt insbesondere

$$\bar{A} = \begin{pmatrix} (Q^T \mod 2) \\ (d^T \mod 2) \end{pmatrix} = \begin{pmatrix} Q^T \\ d^T \end{pmatrix} \text{ und } \bar{b} = \begin{pmatrix} \vec{0} \\ 1 \end{pmatrix}$$

und der Schlupf s der einzelnen Zeilen von (A, b) ist gegeben durch

$$s = b - Ax^{*}$$

= $\begin{pmatrix} Q^{T}(2M\vec{1}) + (4M\vec{1}) \\ d^{T}(2M\vec{1}) + M \end{pmatrix} - \begin{pmatrix} Q^{T}(2M\vec{1}) + (4M\vec{1}) - w \\ d^{T}(2M\vec{1}) + M \end{pmatrix} = \begin{pmatrix} w \\ 0 \end{pmatrix}.$

Wir zeigen nun, dass eine Lösung (v, y, r, q) des IP (2.4) zum Separierungsproblem $\{0, \frac{1}{2}\}$ -SEP auch eine Lösung des MW-BCP liefert. Dazu betrachten wir das IP (2.4), welches unter Berücksichtigung der vorangegangenen Überlegungen im Detail wie folgt lautet

min
$$(w \ 0) v + \left(2M\vec{1} \ 2M\vec{1} - \frac{1}{2}w \ \frac{1}{2}M\right) y$$
 (2.5.1)

s.t.
$$(\vec{0}^T \ 1) v - 2q = 1$$
 (2.5.2)

$$\begin{pmatrix} Q & d \\ \mathbf{0} \end{pmatrix} v - y - 2r \qquad = \vec{0} \qquad (2.5.3)$$

$$v \in \{0,1\}^m, \ y \in \{0,1\}^n, \ r \in \mathbb{Z}^n_{\geq 0}, \ q \in \mathbb{Z}_{\geq 0}.$$
 (2.5.4)

Wir betrachten nun zulässige Lösungen dieses IP. Ist der Zielfunktionswert kleiner $\frac{1}{2}M$, so folgt, dass in der zugehörigen Lösung der Vektor $y = \vec{0}$ ist, da $x^* > \frac{1}{2}M \cdot \vec{1}$ gilt. Weiter gilt, dass jede zulässige Lösung die Ungleichung (2.5.2) erfüllt. Daher folgt, dass $v_m = 1$ ist. Der Vektor v hat somit die Struktur $v = \begin{pmatrix} v' & 1 \end{pmatrix}^T$. Die Ungleichungen (2.5.3) lassen sich demnach schreiben als $Qv' + d - y' - 2r' = \vec{0}$ und $\mathbf{0}v - y'' - 2r'' = 0$, wobei $y = \begin{pmatrix} y' & y'' \end{pmatrix}^T$ und $r = \begin{pmatrix} r' & r'' \end{pmatrix}^T$. Daraus ergibt sich

$$Qv' \equiv d - y' \operatorname{mod} 2 \tag{2.6.1}$$

$$y'' \equiv \vec{0} \mod 2. \tag{2.6.2}$$

Wir fassen zusammen: Jede zulässige Lösung von (2.5.1)–(2.5.4) mit einem Zielfunktionswert $< \frac{1}{2}M$ besitzt als Zielfunktionswert den Wert $w^T v'$ und erfüllt die Kongruenz (2.6.1), welche in diesem Fall gleichbedeutend mit $Qv' \equiv d \mod 2$ ist. Somit ist w := v' eine zulässige Lösung des MW-BCP und optimal, sofern die zulässige Lösung von des IP (2.5.1)–(2.5.4) optimal ist.

Besitzt dieses IP keine zulässige Lösung oder eine Optimallösung mit einem Zielfunktionswert $\geq \frac{1}{2}M$, so bedeutet dies aufgrund der Definition von M, dass die Kongruenz (2.6.1) mit $y' \neq \vec{0}$ erfüllt ist. Ferner existiert keine Lösung des IP mit $y = \vec{0}$, denn diese würde einen Zielfunktionswert $< \frac{1}{2}M$ implizieren. Somit besitzt auch das MW-BCP keine Lösung.

Korollar 2.11. Das Entscheidungsproblem zu $\{0, \frac{1}{2}\}$ -SEP ist \mathcal{NP} -vollständig.

Beweis. Dies folgt unmittelbar aus der Äquivalenz der Probleme $\{0, \frac{1}{2}\}$ -SEP und MW-BCP, da das Entscheidungsproblem zu MW-BCP \mathcal{NP} -vollständig ist (vgl. Caprara und Fischetti [11]).

Wir halten fest: Das Separierungsproblem $\{0, \frac{1}{2}\}$ -SEP ist im Allgemeinen \mathcal{NP} -schwer. In den folgenden Abschnitten werden wir Spezialfälle betrachten, für die das $\{0, \frac{1}{2}\}$ -SEP polynomiell lösbar ist. Diese Spezialfälle erfordern z. B. eine zusätzliche Struktureigenschaft von \overline{A} oder dem resultierenden $\{0, \frac{1}{2}\}$ -Schnitt.

2.2.2 Maximal verletzte $\{0, \frac{1}{2}\}$ -Schnitte

Betrachten wir das IP (2.4) mit einer Optimallösung (v, y, r, q) und Zielfunktionswert \hat{z} . Aus Korollar 2.6 wissen wir, dass für die Verletzung $\mathcal{V}(u, x^*)$ mit $u = \frac{1}{2}v$ gilt

$$\mathcal{V}(u, x^*) = \mathcal{V}(\frac{1}{2}v, x^*) = \frac{1}{2}(1-\hat{z}) \le \frac{1}{2}.$$

Wir definieren daher
Definition 2.12. Ein $\{0, \frac{1}{2}\}$ -Schnitt mit Verletzung $\mathcal{V}(u, x^*) = \frac{1}{2}$ heißt *maximal verletzt* bzgl. der LP-Lösung x^* .

In ihrem Artikel zu maximal verletzten mod-*k*-Schnitten haben Caprara et al. [13] gezeigt, dass diese in polynomieller Laufzeit separiert werden können. Wir beschränken uns hier auf den Fall k = 2 und zeigen

Satz 2.13. *Ein maximal verletzter* $\{0, \frac{1}{2}\}$ *-Schnitt kann mit einem polynomiellen Aufwand von O(mn*min $\{m, n\}$) bestimmt werden.

Beweis. Seien das IP (2.4) und eine Optimallösung (v, y, r, q) mit Zielfunktionswert \hat{z} gegeben. Die Optimallösung erzeuge den bezüglich der gebrochenen LP-Lösung x^* maximal verletzten $\{0, \frac{1}{2}\}$ -Schnitt $\lfloor (\frac{1}{2}v)^T A \rfloor x \leq \lfloor (\frac{1}{2}v)^T b \rfloor$. Aus unserer Vorüberlegung wissen wir, dass in diesem Fall für den Zielfunktionswert $\hat{z} = 1 - 2\mathcal{V}(\frac{1}{2}v, x^*) = 1 - 2 \cdot 0.5 = 0$ gilt. Also ist $v_i = 0$ für alle Ungleichungen $A_i \cdot x \leq b_i$ des Systems (A, b) mit Schlupf $\neq 0$. Außerdem ist $y = \vec{0}$.

Aus Satz 2.10 und dessen Beweis ist bekannt, dass das IP (2.4) äquivalent zu einem geeigneten Kongruenzsystem ist. Im Fall eines maximal verletzten Schnittes lässt sich das IP wie folgt als äquivalentes Kongruenzsystem formulieren

wobei $v' \in \{0,1\}^m$ und das System (\bar{A}', \bar{b}') alle Ungleichungen mit Schlupf = 0 von (A,b) beinhaltet. Zur Bestimmung eines maximal verletzten $\{0,\frac{1}{2}\}$ -Schnittes genügt es daher eine zulässige Lösung des Kongruenzsystems (2.7) zu finden. Dies entspricht einem MW-BCP mit $w = \vec{0}$ bzgl. des binären Clutters $\mathscr{C}(Q,d) = \mathscr{C}(\begin{pmatrix} (\bar{b}')^T \\ (\bar{A}')^T \end{pmatrix}, \begin{pmatrix} 1 \\ \vec{0} \end{pmatrix}).$

Eine Lösung für (2.7) können wir durch Anwendung des Gaußschen Eliminationsverfahrens in dem Restklassenkörper \mathbb{F}_2 auf das Gleichungssystem (\bar{A}', \bar{b}') bestimmen (vgl. Caprara et al [13]). Dadurch lässt sich das System derart transformieren, dass es (bis auf Zeilen- und Spaltenpermutationen) folgende Struktur besitzt

$$\begin{pmatrix} I & D \\ \mathbf{0} \end{pmatrix} v' \equiv \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}.$$
 (2.8)

Eine zulässige Lösung für (2.8) existiert genau dann, wenn $f_2 = \vec{0}$ ist und ist in diesem Fall z. B. gegeben durch $v = \begin{pmatrix} f_1 & \vec{0} \end{pmatrix}^T$.

Der Aufwand für das Gaußsche Eliminationsverfahren ist polynomiell und beträgt im Speziellen $O(mn\min\{m,n\})$ (vgl. Caprara et al. [13]). Daraus folgt die Behauptung. *Beispiel* 2.14. Wir erinnern uns an das IP (2.2) aus Beispiel 2.2 und versuchen für die gebrochene Lösung der LP-Relaxierung einen maximal verletzten $\{0, \frac{1}{2}\}$ -Schnitt zu finden. Wir stellen fest, dass der Schlupf aller Ungleichungen der LP-Relaxierung (bzgl. der Lösung) gleich null ist. Das zugehörige Kongruenzzsystem lautet also

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \nu' \equiv \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \mod 2.$$

Dieses kann durch das Gaußsche Eliminationsverfahren und anschließende Zeilenpermutationen transformiert werden zu

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} v' \equiv \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} \mod 2.$$

Eine dafür zulässige Lösung ist gegeben durch $v' = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$. Diese erzeugt den maximal verletzten $\{0, \frac{1}{2}\}$ -Schnitt $x_1 + x_2 + x_3 \le 1$, der uns aus den Ergebnissen in Beispiel 2.2 bereits bekannt ist.

2.2.3 Koeffizientenmatrizen mit maximal zwei ungeraden Zeileneinträgen

Besitzt die Koeffizientenmatrix A nur maximal zwei ungerade Einträge pro Zeile, so ist das $\{0, \frac{1}{2}\}$ -SEP effizient lösbar. Es reduziert sich in diesem Fall auf die Bestimmung minimaler Kreise in einem geeigneten Hilfsgraphen, wie der folgende Satz und im Detail dessen Beweis zeigen.

Satz 2.15. Seien das System (A,b), das zugehörige IP (2.1), dessen LP-Relaxierung und eine gebrochene LP-Lösung x^* gegeben. Zusätzlich gelte $\sum_{j=1}^{n} \bar{A}_{ij} \leq 2$ für alle Zeilen i der Koeffizientenmatrix \bar{A} . Dann ist das Separierungsproblem $\{0, \frac{1}{2}\}$ -SEP polynomiell lösbar.

Beweis. Seien (A,b) und x^* wie oben definiert und der Schlupf *s* gegeben durch $b - Ax^*$. Ferner beinhalte das System (\bar{A}, \bar{b}) die Paritäten der Werte des Systems (A, b).

Wir konstruieren in Anlehnung an Gerards und Schrijver [32] (vgl. Caprara und Fischetti [12]) einen ungerichteten Hilfsgraphen H = (V, E), der einen Knoten v_j für jede Nichtnullspalte von \overline{A} und einen zusätzlichen Knoten q besitzt. Für jede Zeile i von $(\overline{A}, \overline{b})$ mit genau zwei Nichtnullelementen \overline{A}_{ij} und \overline{A}_{ik} existiert eine Kante $e_i = (v_j, v_k) \in E$. Für Zeilen i, die nur einen Nichtnulleintrag \overline{A}_{ij} besitzen, existiert eine Kante $e_i = (v_j, q) \in E$. Alle Kanten e_i sind mit dem Schlupf s_i der entsprechenden Zeile gewichtet und zusätzlich mit einer Marke $\pi(e_i)$ versehen, die den Wert \bar{b}_i trägt. Darüber hinaus existiert für jeden Knoten $v_j \in V$ eine Kante $f_j = (v_j, q) \in E$, die mit x_j^* gewichtet und mit der Marke $\pi(f_j) = 0$ versehen ist. Außerdem sei $F \subseteq E$ die Menge der letztgenannten Kanten $f_j \in E$.

Sei $K \subseteq E$ ein Kreis in H mit Gewicht < 1 und ungerader Summe $\pi(K)$ über die Werte der Marken seiner Kanten. Die zu den Kanten $K \setminus F$ gehörigen Zeilen des Systems $(\overline{A}, \overline{b})$ können zu einem verletzten $\{0, \frac{1}{2}\}$ -Schnitt kombiniert werden. Dies ergibt sich aus der Konstruktion des Graphen H: Jede Kante in $E \setminus F$ entspricht einer Zeile im Ausgangssystem und ist inzident zu den zu Spalten ihrer ungeraden Einträge gehörigen Knoten. Ein Kreis in Hist also äquivalent zu einer Auswahl von Zeilen des Ausgangssystems, sodass sich jeweils zwei Spalten mit ungeraden Einträgen entsprechen. Zeilen des Ausgangssystems mit nur einem ungeraden Einträg sind daher mit dem künstlichen Knoten q verbunden. Ein Kreis durch q beinhaltet deshalb eine Kante aus F, falls kein weiterer ungerader Eintrag in derselben Spalte in einer anderen Zeile vorhanden ist. Dies entspricht den Strafkosten x^* für das Abrunden ungerader Koeffizienten in der kombinierten Summenzeile und ist uns aus der Zielfunktion des IP (2.4) bekannt. Ist außerdem die Summe der Marken π an den Kanten eines Kreises ungerade, so ist bei Kombination der entsprechenden Zeilen auch die rechte Seite der aufsummierten Zeilen ungerade.

Die Bestimmung eines verletzten $\{0, \frac{1}{2}\}$ -Schnittes im Fall, dass $\sum_{j=1}^{n} \bar{A}_{ij} \leq 2$ ist, reduziert sich also auf die Bestimmung eines Kreises in *H* mit Länge < 1 und ungerader Summe der Marken π .

Ein solcher Kreis kann mit polynomiellem Aufwand wie folgt bestimmt werden (siehe Grötschel et al. [40] und vgl. Koster und Zymolka [45]): Wir konstruieren zu *H* einen zweiten Hilfsgraphen $\tilde{H} = (\tilde{V}, \tilde{E})$ mit Knotenmenge $\tilde{V} = \{\tilde{v}, \tilde{v}' | v \in V\}$ und Kantenmenge $\tilde{E} = \{\tilde{v}\tilde{w}', \tilde{v}'\tilde{w} | vw \in E, \pi(vw) = 1\} \cup \{\tilde{v}\tilde{w}, \tilde{v}'\tilde{w}' | vw \in E, \pi(vw) = 0\}.$

Die Kanten des Graphen \tilde{H} sind mit denselben Gewichten versehen wie die entsprechenden Kanten des Graphen *H*. Im Gegensatz zu *H* verfügt der Graph \tilde{H} über keine Kantenmarken π , denn nach Konstruktion ist \tilde{H} bipartit mit den Knotenpartitionen $\tilde{V}_1 = \{\tilde{v} \mid \tilde{v} \in \tilde{V}\}$ und $\tilde{V}_2 = \{\tilde{v}' \mid \tilde{v}' \in \tilde{V}\} = \tilde{V} \setminus \tilde{V}_1$. Die Kanten, die die beiden Partitionen verbinden, entsprechen genau jenen Kanten in *H* mit ungerader Marke π .

Des Weiteren entspricht ein (\tilde{v}, \tilde{v}') -Weg in \tilde{H} genau einem Kreis in H, da sowohl \tilde{v} als auch \tilde{v}' Kopien desselben Knotens v in H sind. Da $\tilde{v} \in \tilde{V}_1$ und $\tilde{v}' \in \tilde{V}_2$ gilt, verläuft jeder (\tilde{v}, \tilde{v}') -Weg über eine ungerade Anzahl von Kanten zwischen \tilde{V}_1 und \tilde{V}_2 , was garantiert, dass die Summe der Marken π des entsprechenden Kreises in H ungerade ist. Die Länge des Weges in \tilde{H} ist identisch mit der des entsprechenden Kreises in H.

Die Konstruktion beider Hilfsgraphen H und \tilde{H} ist polynomiell, ebenso wie die Bestimmung eines kürzesten (\tilde{v}, \tilde{v}') -Weges (z. B. mittels des Algorithmus von Dijkstra [23]) in \tilde{H} für jeden Knoten $v \in H$. Daraus folgt die Behauptung.

Wir möchten anmerken, dass Parallelkanten in den Graphen H und \tilde{H} bis auf eine Kante mit minimalem Gewicht (bzw. im Graphen H je eine Kante mit minimalem Gewicht und gera-

Abbildung 2.2: Hilfsgraph *H* sowie markierter Kreis (grün) mit Kreislänge < 1 und ungerader Summe der Marken aus Beispiel 2.16

der/ungerader Markierung π) entfernt werden können, da für die Berechnung eines kürzesten Kreises bzw. Weges nur jeweils eine kürzeste von mehreren parallelen Kanten relevant ist.

Beispiel 2.16. Wir betrachten das IP

sowie dessen LP-Lösung $x^* = \begin{pmatrix} 0.1 & 0.4 & 0.7 & 0.6 \end{pmatrix}^T$ und den Schlupf der einzelnen Ungleichungen $s = \begin{pmatrix} 0.3 & 0.1 & 0.6 & 0.1 \end{pmatrix}^T$. Das zugehörige System (\bar{A}, \bar{b}) ist dann

$$\bar{A} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \ \bar{b} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

Wir konstruieren wie im Beweis zu Satz 2.15 die Hilfsgraphen H (siehe Abbildung 2.2) und \tilde{H} (siehe Abbildung 2.3). Der in Abbildung 2.3 des Graphen \tilde{H} grün markierte kürzeste

Abbildung 2.3: Hilfsgraph \tilde{H} sowie markierter Weg (grün) mit Länge < 1 aus Beispiel 2.16

 $(\tilde{v}_1, \tilde{v}'_1)$ -Weg entspricht dem in Abbildung 2.2 des Graphen *H* grün markierten Kreis. Insbesondere ist die Weg- bzw. Kreislänge < 1 (denn $s_1 + s_2 + s_4 + x_1^* = 0.6 < 1$) und die rechte Seite der kombinierten Zeilen ungerade ($\bar{b}_1 + \bar{b}_2 + \bar{b}_4 \equiv 1 \mod 2$). Somit lässt sich aus dieser Lösung der $\{0, \frac{1}{2}\}$ -Schnitt $2x_2 + 6x_3 + 2x_4 \le 6$ konstruieren, der für $x = x^*$ mit 0.2 verletzt ist.

Dieser polynomielle Spezialfall wird durch die von Caprara und Fischetti [11, 12] entwickelte *LU-weakening*-Heuristik ausgenutzt, die wir in Kapitel 3, Abschnitt 3.3.4 vorstellen werden.

Weiterhin möchten wir anmerken, dass das Stabile-(Multi-)Mengen-Problem (siehe Abschnitt 1.2) auf einem Graphen vergleichbar *H* definiert ist. Die ungeraden Kreisungleichungen mit ungeradem Gewicht werden entsprechend wie in Satz 2.15 separiert (siehe Koster und Zymolka [45]).

2.2.4 Koeffizientenmatrizen mit maximal zwei ungeraden Spalteneinträgen

Ähnlich zum vorherigen Abschnitt betrachten wir nun Koeffizientenmatrizen A mit maximal zwei ungeraden Einträgen pro Spalte. Auch in diesem Fall ist das $\{0, \frac{1}{2}\}$ -SEP effizient lösbar, indem ein entsprechendes graphentheoretisches Problem gelöst wird: die Bestimmung eines

minimalen (graphentheoretischen) Schnittes mit ungerader Knotenmenge (engl. odd cut-set) in einem geeigneten Hilfsgraphen. Wir halten fest

Satz 2.17. Seien das System (A,b), das zugehörige IP (2.1), dessen LP-Relaxierung und eine gebrochene LP-Lösung x^* gegeben. Ferner gelte $\sum_{i=1}^{m} \bar{A}_{ij} \leq 2$ für alle Spalten j der Koeffizientenmatrix \bar{A} . Dann ist das Separierungsproblem $\{0, \frac{1}{2}\}$ -SEP polynomiell lösbar.

Beweis. Seien (A,b), x^* sowie der Schlupf $s = b - Ax^*$ gegeben. Außerdem beinhalte das System (\bar{A}, \bar{b}) die Paritäten der Werte des Systems (A, b).

Wir konstruieren einen ungerichteten Hilfsgraphen H = (V, E). Dieser besitzt einen Knoten v_i für jede Nichtnullzeile i von \overline{A} , welcher mit dem Wert $\pi(v_i) := \overline{b}_i$ markiert wird. Außerdem existiert ein zusätzlicher Knoten q mit Wert $\pi(q) := (\sum_{v \in V \setminus \{q\}} \pi(v)) \mod 2$. Weiter besitzt H eine Kante $e_j = (v_{i_1}, v_{i_2})$ mit Kantengewicht x_j^* für jede Spalte j in \overline{A} mit $\overline{A}_{i_1j} = \overline{A}_{i_2j} = 1$, $i_1 \neq i_2$. Außerdem besitzt H Kanten $f_j = (v_i, q)$ für jede Spalte j in \overline{A} mit genau einem Nichtnulleintrag (in Zeile i), ebenfalls gewichtet mit x_j^* . Schließlich existiert in H ebenfalls eine Kante $g_i = (v_i, q)$ für jede Nichtnullzeile i des Systems $(\overline{A}, \overline{b})$ mit dem Schlupfwert s_i dieser Zeile als Kantengewicht. Im Graphen H nennen wir eine Knotenmenge $U \subseteq V$ ungerade markiert, wenn die Summe $\pi(U)$ der Knotenmarken ungerade ist.

Sei $U \subseteq V \setminus \{q\}$ eine ungerade markierte Knotenmenge, so dass die Summe der Kantengewichte des durch U definierten (graphentheoretischen) Schnittes $\delta(U)$ kleiner als 1 ist, dann definiert dies einen verletzten $\{0, \frac{1}{2}\}$ -Schnitt. Wir können die Kantenmenge $\delta(U)$ wie folgt partitionieren: Wegen $q \notin U$ gilt $g_i \in \delta(U)$ für alle $v_i \in U$. Außerdem gilt $f_j \in \delta(U)$ für alle Spalten j mit $\bar{A}_{\cdot j}^T \vec{1} = 1$, $\bar{A}_{ij} = 1$ und $v_i \in U$. Ebenfalls gilt $e_j \in \delta(U)$ für alle Spalten j mit $\bar{A}_{\cdot j}^T \vec{1} = 2$, $\bar{A}_{ij} = \bar{A}_{kj} = 1$ mit $v_i \in U$ und $v_k \notin U$. Daher gilt mit $v \in \{0, 1\}^m$ und $v_i := 1$ für alle $i \in U$ und $v_i := 0$ für alle $i \notin U$

$$s^T v + (\bar{A}^T v \operatorname{mod} 2) x^* = \sum_{g_i \in \delta(U)} w(g_i) + \sum_{f_j \in \delta(U)} w(f_j) + \sum_{e_j \in \delta(U)} w(e_j) < 1,$$

wobei $w : E \to \mathbb{R}$ die Kanten auf ihre Kantengewichte abbildet. Nach Lemma 2.5 erzeugt U somit einen verletzten $\{0, \frac{1}{2}\}$ -Schnitt.

Das $\{0, \frac{1}{2}\}$ -SEP reduziert sich demnach auf die Bestimmung eines (graphentheoretischen) Schnittes im Hilfgraphen *H* mit Gewicht < 1, der durch eine ungerade markierte Knotenmenge definiert wird. Dies ist mit polynomiellem Aufwand zu erreichen (vgl. Padberg und Rao [53]). Daraus folgt die Behauptung.

Abschließend möchten wir anmerken, dass Parallelkanten zwischen zwei Knoten v und w im Graphen H durch eine Kante, deren Kantengewicht der Summe der Kantengewichte der Parallelkanten entspricht, ersetzt werden können. Dies ist möglich, da für jede Kante in einem graphentheoretischen Schnitt dieser ebenfalls die Parallelkanten enthält.

Beispiel 2.18. Wir betrachten das IP mit den Nebenbedingungen

und der Optimallösung $x^* = \begin{pmatrix} 0.5 & 0.6 & 0.2 & 0.3 \end{pmatrix}^T$ der zugehörigen LP-Relaxierung sowie den resultierenden Schlupf der einzelnen Ungleichungen $s = b - Ax^* \begin{pmatrix} 0.2 & 0.6 & 0.2 \end{pmatrix}^T$. Das zugehörige System (\bar{A}, \bar{b}) lautet dann

$$\bar{A} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}, \ \bar{b} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

$$s_{2} = 0.6$$

$$s_{1} = 0.2$$

$$x_{1}^{*} = 0.5$$

$$x_{1}^{*} = 0.5$$

$$x_{1}^{*} = 0.5$$

$$y_{3} = 0.2$$

$$v_{3} = 0.2$$

$$v_{3} = 0.2$$

Abbildung 2.4: Hilfsgraph *H* mit grün hervorgehobener ungerade markierter Knotenmenge, die einen minimalen (graphentheoretischen) Schnitt definiert (Beispiel 2.18)

Nun konstruieren wir wie im Beweis zu Satz 2.17 den Hilfsgraphen *H*. Dieser ist in Abbildung 2.4 dargestellt. Die grün hervorgehobene Knotenmenge ist ungerade markiert und definiert einen minimalen (graphentheoretischen) Schnitt mit Gewicht $s_1 + s_3 + x_3^* = 0.6 < 1$ und somit einen verletzten $\{0, \frac{1}{2}\}$ -Schnitt. Dieser ergibt sich als Kombination der Zeile 1 mit der Zeile 3 und lautet $2x_1 + 3x_3 + 2x_4 \le 2$. Seine Verletzung beträgt 0.2 bzgl. x^* .

2.2.5 EPT-Matrizen

Die in den Abschnitten 2.2.3 und 2.2.4 vorgestellten polynomiellen Spezialfälle des Separierungsproblems $\{0, \frac{1}{2}\}$ -SEP finden Anwendung, wenn die Koeffizientenmatrix *A* spezielle Strukturen besitzt (d. h. maximal zwei ungerade Zeilen- bzw. Spalteneinträge pro Zeile

beinhaltet). Diese Strukureigenschaften lassen sich auf sogenannte EPT-Matrizen verallgemeinern, die wir nachfolgend vorstellen werden. Caprara und Fischetti beschreiben in ihrem Artikel [11] diese Verallgemeinerung. Wir möchten die wichtigsten Ergebnisse daraus präsentieren und beginnen mit der Definition einer EPT-Matrix.

Definition 2.19. Eine Matrix $M \in \{0,1\}^{p \times q}$ heißt *Kanten-Pfad-Inzidenzmatrix eines Baumes* oder kurz *EPT-Matrix* (engl. edge-path incidence matrix of a tree), wenn ein Baum *T* existiert, sodass jede Spalte von *M* der charakteristische Vektor der Kanten eines Pfades in *T* ist.

In diesem Zusammenhang sagen wir, dass M durch den Baum repräsentiert wird.

Beispiel 2.20. Wir betrachten die Matrix $M = \begin{pmatrix} p_1 & p_2 & p_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ und den Gra-

phen in Abbildung 2.5

Abbildung 2.5: Baum mit markierten Pfaden zu Beispiel 2.20

Der Graph ist ein Baum und die charakteristischen Vektoren der Kanten der markierten Pfade p_1 , p_2 und p_3 entsprechen genau den Spalten p_1 , p_2 und p_3 in der Matrix M. Somit ist M eine EPT-Matrix. Wir möchten anmerken, dass auch Pfade existieren können, deren charakteristische Vektoren wir nicht als Spalten in M wiederfinden. Ein Beispiel hierfür ist der Pfad bestehend aus den Kanten e_2 und e_3 .

Ein weiteres Beispiel für EPT-Matrizen sind alle $\{0,1\}$ -Matrizen mit maximal zwei Nichtnulleinträgen in einer Spalte (vgl. Caprara und Fischetti [11]).

Satz 2.21 (Caprara und Fischetti [11]). Seien das System (A,b), das zugehörige IP (2.1), dessen LP-Relaxierung und eine gebrochene LP-Lösung x^* gegeben. Außerdem sei \overline{A}^T eine EPT-Matrix. Dann ist das Separierungsproblem $\{0, \frac{1}{2}\}$ -SEP polynomiell lösbar.

Nachfolgend geben wir die Beweisidee des von Caprara und Fischetti geführten Beweises an: Die beiden Autoren nutzen aus, dass sich die Zeilen einer EPT-Matrix als charakteristische Vektoren der sogenannten fundamentalen Schnitte eines geeigneten Graphen und darin

2.2. KOMPLEXITÄT

enthaltenen aufspannenden Baumes aufzufassen lassen. Dies führt zu einem bekannten polynomiellen Spezialfall des MW-BCP. Aus der Äquivalenz der beiden Probleme $\{0, \frac{1}{2}\}$ -SEP und MW-BCP (siehe Satz 2.21) folgt die Behauptung. Für Details zum Beweis und der Definition eines fundamentalen Schnittes etc. sei auf den zitierten Artikel verwiesen.

Lemma 2.22. Der in Satz 2.21 beschriebene polynomielle Spezialfall des $\{0, \frac{1}{2}\}$ -SEP ist eine Verallgemeinerung des in Satz 2.15 beschriebenen.

Beweis. Gegeben sei ein System, das die Voraussetzungen von Satz 2.15 erfüllt. Dann besitzt \overline{A} maximal zwei Nichtnulleinträge pro Zeile und \overline{A}^T somit maximal zwei Nichtnulleinträge pro Spalte. Daher ist \overline{A}^T eine EPT-Matrix und Satz 2.21 anwendbar.

Wir möchten nun eine Verallgemeinerung für den in Abschnitt 2.2.4 beschriebenen Spezialfall angeben und formulieren

Satz 2.23 (Caprara und Fischetti [11]). Seien das System (A,b), das zugehörige IP (2.1), dessen LP-Relaxierung und eine gebrochene LP-Lösung x^* gegeben. Es gelte $\bar{A} = \begin{pmatrix} M \\ I \end{pmatrix}$, wobei M eine EPT-Matrix ist. Dann ist das Separierungsproblem $\{0, \frac{1}{2}\}$ -SEP polynomiell lösbar.

Den Beweis des Satzes 2.23 werden wir analog zum vorherigen Satz nur als Beweisskizze angeben und möchten den interessierten Leser auf den zitierten Artikel von Caprara und Fischetti verweisen. Die Autoren beweisen Satz 2.23, indem sie die Zeilen der EPT-Matrix Mwie zuvor als charakteristische Vektoren der fundamentalen Schnitte eines geeigneten Graphen bzgl. eines aufspannenden Baumes interpretieren. Durch eine geeignete Erweiterung der Knotenmenge dieses Graphen können die Spalten der Matrix \overline{A} als charakteristische Vektoren sogenannter fundamentaler Kreise in diesem erweiterten Graphen bzgl. desselben aufspannenden Baumes wie zuvor interpretiert werden. Mittels dieser Auffassung kann das Problem anschließend wieder auf einen weiteren bekannten polynomiellen Spezialfall des MW-BCP zurückgeführt und somit die Aussage des Satzes aufgrund der Äquivalenz des $\{0, \frac{1}{2}\}$ -SEP und des MW-BCP bewiesen werden.

Lemma 2.24. Der in Satz 2.23 beschriebene polynomielle Spezialfall des $\{0, \frac{1}{2}\}$ -SEP ist eine Verallgemeinerung des in Satz 2.17 beschriebenen.

Beweis. Gegeben sei ein System, das die Voraussetzungen von Satz 2.17 erfüllt. Dann besitzt \overline{A} maximal zwei Einträge pro Spalte und ist daher eine EPT-Matrix. Außerdem gilt $x \ge \vec{0}$ (vgl. IP (2.1)) und das IP min $\{c^T x | \tilde{A}x \le \tilde{b}\}$ mit $\tilde{A} := \begin{pmatrix} A \\ -I \end{pmatrix}$ und $\tilde{b} := \begin{pmatrix} b \\ \vec{0} \end{pmatrix}$ ist äquivalent zum IP (2.1). Des Weiteren erfüllt $\overline{\tilde{A}} := \tilde{A} \mod 2$ die Voraussetzungen des Satzes 2.23, woraus die Behauptung folgt.

Abbildung 2.6: Übersicht bekannter polynomieller Spezialfälle des $\{0, \frac{1}{2}\}$ -SEP

Die Voraussetzungen für Satz 2.21 oder Satz 2.23 zu prüfen ist aufwendiger als bei den Spezialfälle aus den Sätzen 2.15 und 2.17: Ob eine gegebene Matrix \overline{A} der Paritäten der Koeffizientenmatrix A maximal zwei Zeilen- oder Spalteneinträge besitzt, lässt sich mit Aufwand O(mn) prüfen. In jeder Zeile bzw. Spalte müssen dazu die Anzahl der Nichtnulleinträge gezählt werden. Das Erkennen einer EPT-Matrix hingegen bedarf eines Aufwandes von $O(m^4n)$ (siehe Nemhauser und Wolsey [52]).

2.3 Gemischt-ganzzahlige Programme

Zum Abschluss dieses Kapitels möchten wir gemischt-ganzzahlige Programme betrachten und Möglichkeiten angeben, die Separierung von $\{0, \frac{1}{2}\}$ -Schnitten für ganzzahlige Programme auf MIPs zu übertragen. Dazu geben wir das MIP (1.2) zur besseren Veranschaulichung nochmals an

$$\begin{array}{ll} \min & c^T x + d^T y \\ s.t. & Ax + By \le b \\ & x \in \mathbb{Z}^{n_1}. \end{array}$$

Bonami et al. [9] beschreiben eine Übertragung allgemeiner Chvátal-Gomory-Schnitte auf gemischt-ganzzahlige Programme. Dabei ist die Grundidee, die LP-Relaxierung des MIP auf den Unterraum der ganzzahligen Variablen zu projizieren und Chvátal-Gomory-Schnitte für das projizierte Polyeder zu bestimmen. Die dabei gewonnenen Schnitte werden *projizierte Chvátal-Gomory-Schnitte* (engl. projected Chvátal-Gomory cuts) genannt. Um die Projektion zu bestimmenden, erweitern Bonami et al. das CG-SEP dahingehend, dass für den zu bestimmenden Gewichtsvektor $u \in \mathbb{R}_{\geq 0}^m$ nicht nur $|u^T A| x > |u^T b|$, sondern zusätzlich

auch $u^T B \ge \vec{0}^T$ gelten muss. Die erzeugte Schnittungleichung $\lfloor u^T A \rfloor x \le \lfloor u^T b \rfloor$ entsteht dann durch Abrunden der Koeffizienten der Ungleichung $u^T A x \le u^T b$, welche eine Abschwächung der Ungleichung $u^T A x + u^T B y \le u^T b$ ist.

Sei P_{LP} das zur LP-Relaxierung des MIP gehörige Polyeder und seien Π die Projektion in den Raum der ganzzahligen Variablen dieses MIP und $\Pi(P_{LP})$ das projizierte Polyeder P_{LP} . Bonami et al. stellen fest: Ist die Projektion $x^* = \Pi((x^*, y^*))$ einer (gebrochenen) Optimallösung (x^*, y^*) der LP-Relaxierung des MIP im ersten Chvátal-Abschluss $(\Pi(P_{LP}))^{(1)}$ enthalten, so existiert kein verletzter projizierter Chvátal-Gomory-Schnitt, der den Punkt (x^*, y^*) abschneidet.

Ausgehend von dieser Beobachtung untersuchen sie MIPs, bei denen die kontinuierlichen Variablen nicht in der Zielfunktion enthalten sind (d. h. $d = \vec{0}$) und stattdessen z. B. nur innerhalb der Nebenbedingungen im Rahmen der Big-M-Technik verwendet werden. Sie zeigen, dass solche MIPs durch iterative Separierung projizierter Chvátal-Gomory-Schnitte optimal gelöst werden können.

Die Rechenstudien von Bonami et al. belegen, dass projizierte Chvátal-Gomory-Schnitte das Lösen von MIPs nennenswert verbessern können.

Eine direkte Übertragung dieses Ansatzes auf $\{0, \frac{1}{2}\}$ -Schnittungleichungen führt zu *projizierten* $\{0, \frac{1}{2}\}$ -*Schnitten* und einer analogen Erweiterung des $\{0, \frac{1}{2}\}$ -SEP um die Bedingung $u^T B \ge \vec{0}^T$. Da im Gegensatz zu allgemeinen Chvátal-Gomory-Schnitten der zu bestimmende Gewichtsvektor bei $\{0, \frac{1}{2}\}$ -Schnitten lediglich Einträge mit Wert 0 oder $\frac{1}{2}$ besitzt, ist es schwieriger Zeilenkombinationen zu finden, die zusätzlich $u^T B \ge \vec{0}^T$ erfüllen.

Ein möglicher Ansatz ist, nur Zeilen *i* des Systems (A_i, B_i, b_i) mit $B_i = \vec{0}^T$ zu betrachten, deren Kombinationen die zusätzliche Bedingung $u^T B \ge \vec{0}^T$ trivialerweise erfüllen.

Ansonsten empfehlen wir für ein gegebenes MIP der Form (1.2) zuerst das System (A, B, b)zu relaxieren, sodass es die Struktur $\begin{pmatrix} \tilde{A} \\ \mathbf{0} \end{pmatrix}, \begin{pmatrix} \tilde{0} \\ \tilde{B} \end{pmatrix}, \begin{pmatrix} \tilde{b}_1 \\ \tilde{b}_2 \end{pmatrix}$) erlangt. Diese Transformation ist z. B. dann möglich, wenn das Teilsystem (B, b) untere und obere Variablenschranken für die Variablen y_k beinhaltet. In diesem Fall wird zu einer Zeile $(A_i \cdot B_i \cdot b_i)$ mit $B_{i(n_1+k)} > 0$ die untere Variablenschranke $lb_k \leq y_k$ mit Faktor $B_{i(n_1+k)}$ addiert. Ist andererseits $B_{i(n_1+k)} < 0$, so wird die obere Variablenschranke $y_k \leq ub_k$ mit Faktor $-B_{i(n_1+k)}$ addiert. Außer den direkten Variablenschranken bietet jede Ungleichung der Form $A_{ij}x_j + B_{ik}y_k \leq b_i$ abhängig vom Vorzeichen von B_{ik} eine Variablenschranke $y_k \leq \frac{b_i - A_{ij}x_j}{B_{ik}}$ für die Variable y_k . Diese kann analog zu den echten Variablenschranken verwendet werden. Nach der Relaxierung mittels Variablenschranken können wir gewöhnliche (d. h. nicht projizierte) $\{0, \frac{1}{2}\}$ -Schnitte für das ganzzahlige Programm mit Koeffizientenmatrix \tilde{A} und rechter Seite \tilde{b}_1 separieren und dabei die Erkenntnisse aus der Theorie zur Separierung von $\{0, \frac{1}{2}\}$ -Schnitten für ganzzahlige Programme nutzen.

Abschließend möchten wir Folgendes anmerken: Oftmals werden bei der Modellierung gemischt-ganzzahliger Programme implizite Ganzzahligkeiten nicht explizit angegeben, d. h.,

Variablen wissentlich als nicht-ganzzahlig modelliert, obwohl diese aufgrund der Koeffizienten in den Nebenbedingungen etc. nur ganzzahlige Werte annehmen können. Dies geschieht oftmals aus der Motivation, unnötiges Branching auf ganzzahligen Variablen zu verhindern, da deren Ganzzahligkeit (implizit) bereits aus der Zulässigkeit einer Lösung folgt. Für die Separierung verletzter $\{0, \frac{1}{2}\}$ -Schnitte können diese Variablen daher als ganzzahlige Variablen angenommen werden.

Kapitel 3

Algorithmische Betrachtung

In diesem Kapitel werden wir ausgehend von der Theorie Separierungsalgorithmen zur Bestimmung verletzter $\{0, \frac{1}{2}\}$ -Schnitte vorstellen und untersuchen. Zuerst geben wir verschiedene Reduktionen an, die das System (\bar{A}, \bar{b}) erheblich verkleinern können. Anschließend untersuchen wir Separierungsalgorithmen und unterscheiden dabei zwischen exakten Verfahren, wie z. B. dem Lösen eines geeigneten ganzzahligen Programmes (vgl. IP (2.4)) und heuristischen Verfahren (Heuristiken), wie z. B. der von Caprara und Fischetti entwickelten LU-weakening-Heuristik. Zuletzt werden wir kurz auf mögliche Verallgemeinerungen im Fall gemischt-ganzzahliger Programme eingehen und Kriterien angeben, bei denen die vorgestellten Lösungsverfahren angewendet werden sollten.

3.1 Reduktionen des Systems (\bar{A}, \bar{b})

Wir betrachten wie schon zuvor das System $(\overline{A}, \overline{b})$ zusammen mit den Schlupfwerten *s* der Zeilen bzgl. einer gegebenen LP-Lösung x^* . Das System habe *m* Zeilen und *n* Spalten. Für dieses System gibt es verschiedene Reduktionen, die die Systemgröße erheblich vermindern können.

Im Hinblick auf das Separierungsproblem $\{0, \frac{1}{2}\}$ -SEP unterscheiden wir hierbei zwischen exakten und heuristischen Reduktionen und meinen damit, dass nach Anwendung einer *exakten* Reduktion das Separierungsproblem weiterhin korrekt gelöst werden kann, während nach Anwendung einer *heuristischen* Reduktion, im Fall dass kein geeigneter Gewichtsvektor existiert, im Allgemeinen kein Beweis für diese Nichtexistenz erbracht werden kann.

Für den Beweis der Exaktheit einer Reduktion genügt es zu zeigen, dass für einen beliebigen aus dem System (\bar{A}, \bar{b}) erzeugten verletzten $\{0, \frac{1}{2}\}$ -Schnitt ein mindestens genauso stark verletzter Schnitt aus dem reduzierten System (\bar{A}', \bar{b}') generiert werden kann.

Im Folgenden werden wir einzelne Reduktionen untersuchen und dabei jeweils zuerst die Reduktion im Rahmen eines Lemmas formulieren, ggf. deren Exaktheit beweisen, anschließend eine mögliche Implementierung in Form von Pseudocode angeben und zuletzt deren Aufwand betrachten.

Ein Teil dieser Reduktionen wurde (teilweise implizit) bereits in den Artikeln von Caprara und Fischetti [11, 12], Andreello et al. [5] sowie Koster et al. [46] kurz vorgestellt.

Im Abschnitt 3.1.3 geben wir eine Übersicht der einzelnen Reduktionen an.

3.1.1 Exakte Reduktionen

Zunächst betrachten wir exakte Reduktionen. Diese sind für uns von besonderem Interesse, da nach ihrer Anwendung immer noch die Möglichkeit einer exakten Separierung gegeben ist. Die genaue Definition eines exakten Separierungsalgorithmus geben wir später in Abschnitt 3.2, sie erfolgta ber analog zu der einer exakten Reduktion. Als Erstes betrachten wir Nullzeilen und -spalten des Systems (\bar{A}, \bar{b}) bzw. der Matrix \bar{A} .

Lemma 3.1. Sei *j* ein Spaltenindex von \overline{A} , sodass $\overline{A}_{,j} = \vec{0}$ gelte. Dann kann die Spalte *j* entfernt werden.

Beweis. Sei ein verletzter $\{0, \frac{1}{2}\}$ -Schnitt gegeben, d. h. es existiere ein $u \in \{0, \frac{1}{2}\}^m$ mit $\mathcal{V}(u, x^*) > 0$. Sei ferner j_0 ein Spaltenindex von \overline{A} , sodass $\overline{A}_{.j} = \vec{0}$ gelte. Dann gilt insbesondere $\lfloor u^T A \rfloor_{j_0} = (u^T A)_{j_0}$, da die Spalte j_0 keine ungeraden Koeffizienten besitzt. Deswegen kann ein $\{0, \frac{1}{2}\}$ -Schnitt durch das Abrunden von Koeffizienten dieser Spalte nicht abgeschwächt werden. Die Spalte j_0 muss also nicht berücksichtigt werden.

Eine Vorlage zur algorithmischen Umsetzung ist in der Prozedur ENTFERNENULLSPALTEN gegeben. Der Aufwand für dieser Prozedur beträgt O(mn) beim Durchlaufen aller Matrixelemente und kann auf O(n) reduziert werden, wenn geeignete Datenstrukturen verwendet werden, sodass die Anzahl von Nichtnulleinträgen in einer Zeile in O(1) ermittelt werden kann. Der Aufwand für das Entfernen von Spalten und/oder Zeilen aus dem System beträgt O(1), da dies nur in entsprechenden Spalten- bzw. Zeilenindexmengen geschehen muss.

Lemma 3.2. Sei *i* ein Zeilenindex von (\bar{A}, \bar{b}) , sodass $\bar{A}_{i} = \vec{0}^T$ und $\bar{b}_i = 0$ gelte. Dann kann die Zeile *i* entfernt werden.

Beweis. Sei ein verletzter $\{0, \frac{1}{2}\}$ -Schnitt gegeben, d. h. es existiere ein $u \in \{0, \frac{1}{2}\}^m$ mit $\mathcal{V}(u, x^*) > 0$. Ferner existiere ein i_0 , sodass $u_{i_0} = \frac{1}{2}$ und $(\bar{A}_{i_0}, \bar{b}_{i_0}) = (\vec{0}^T, 0)$ gelte. Definiere $u' \in \{0, \frac{1}{2}\}^m$ mit $u'_i := u_i$ für alle $i \in \{1, \dots, m\} \setminus \{i_0\}$ und $u'_{i_0} := 0$. Dann gilt folgende

Prozedur ENTFERNENULLSPALTEN (\bar{A}, \bar{b})

Prozedur ENTFERNENULLZEILEN (\overline{A} , \overline{b})

foreach Zeilenindex i von \bar{A} do if $\bar{b}_i = 0$ then foreach Spaltenindex j von \bar{A}_i . do $\lfloor \text{ if } \bar{A}_{ij} \neq 0 \text{ then next i}$ Entferne Zeile (\bar{A}_i, \bar{b}_i) aus dem System (\bar{A}, \bar{b})

Abschätzung

$$\begin{aligned} \mathcal{V}(u, x^*) &= \left\lfloor u^T A \right\rfloor x^* - \left\lfloor u^T b \right\rfloor = \left\lfloor {u'}^T A \right\rfloor x^* + \frac{1}{2} A_{i_0}^T x^* - \left\lfloor {u'}^T b \right\rfloor - \frac{1}{2} b_{i_0} \\ &= \mathcal{V}(u', x^*) + \frac{1}{2} (A_{i_0}^T x^* - b_{i_0}) = \mathcal{V}(u', x^*) - \frac{1}{2} s_{i_0} \le \mathcal{V}(u', x^*). \end{aligned}$$

Der $\{0, \frac{1}{2}\}$ -Schnitt definiert durch *u* ist nicht stärker verletzt als jener definiert durch *u'*, d. h., es kann stets *u'* anstatt *u* gewählt werden.

Eine Vorlage zur algorithmischen Umsetzung ist in der Prozedur ENTFERNENULLZEILEN gegeben, deren Aufwand O(mn) beträgt. Dieser kann auf O(m) reduziert werden, wenn geeignete Datenstrukturen verwendet werden, sodass die Anzahl von Nichtnulleinträgen in einer Zeile in O(1) ermittelt werden kann.

Im Folgenden möchten wir Spalten der Matrix \overline{A} mit nur einem Nichtnulleintrag betrachten. Solche Spalten *j* nennen wir *Spaltensingletons* (engl. column singletons).

Lemma 3.3. Sei j ein Spaltenindex von \overline{A} , sodass der Vektor $\overline{A}_{.j}$ nur einen Nichtnulleintrag, nämlich \overline{A}_{ij} , besitze. Dann kann die Spalte j entfernt werden, sofern der Schlupfwert s_i um x_i^* erhöht wird.

Beweis. Sei *j* ein Spaltenindex von \bar{A} und der Vektor $\bar{A}_{.j}$ besitze nur den Nichtnulleintrag $\bar{A}_{ij} = 1$. Der Gewichtsvektor $u \in \{0, \frac{1}{2}\}^m$ mit $u_i = \frac{1}{2}$ definiere einen verletzten $\{0, \frac{1}{2}\}$ -Schnitt. Dann gilt $(\bar{A}^T(2u))_j \mod 2 = 1$, d. h., sowohl der Schlupf s_i der Zeile *i* als auch die gebrochene Lösung x_j^* werden in der Berechnung der Verletzung $\mathcal{V}(u, x^*)$ des $\{0, \frac{1}{2}\}$ -Schnittes addiert. Wir setzen $\bar{A}_{ij} = 0$ und den neuen Schlupfwert $s'_i := s_i + x_j^*$ und können dann nach Lemma 3.1 die resultierende Nullspalte *j* entfernen.

Prozedur ENTFERNESPALTENSINGLETONS (\overline{A} , \overline{b} , s, x^*)

foreach Spaltenindex j von \overline{A} do $\tilde{i} \leftarrow -1$ foreach Zeilenindex i von $\overline{A}_{.j}$ do \downarrow if $\overline{A}_{ij} = 1$ then \downarrow if $\tilde{i} > -1$ then next j $\tilde{i} \leftarrow i$ if $\tilde{i} > -1$ then \downarrow $s_{\tilde{i}} \leftarrow s_{\tilde{i}} + x_{j}^{*}$ Entferne Spalte $\overline{A}_{.j}$ aus dem System $(\overline{A}, \overline{b})$

```
Prozedur IGNORIEREVARIABLENMITLSGNULL (\overline{A}, \overline{b}, x^*)
```

```
foreach Spaltenindex j von Ā do
```

if $x_i^* = 0$ then Entferne Spalte \bar{A}_{ij} aus dem System (\bar{A}, \bar{b})

Die Prozedur ENTFERNESPALTENSINGLETONS gibt eine mögliche Umsetzung des Lemmas an. Der Aufwand dieser Prozedur beträgt O(mn) bzw. O(n) bei Verwendung geeigneter Datenstrukturen (vgl. Lemma 3.1).

Als nächstes betrachten wir Spalten $\bar{A}_{.j}$ unter Berücksichtigung der LP-Lösung x_j^* der entsprechenden Variable x_j .

Lemma 3.4. Sei j ein Spaltenindex von \overline{A} , sodass $x_j^* = 0$ gelte. Dann kann die Spalte j entfernt werden.

Beweis. Sei *j* ein Spaltenindex von \bar{A} , sodass $x_j^* = 0$ gelte. Dann ist $\lfloor u^T A \rfloor_j x_j^* = 0$ für alle Gewichtsvektoren $u \in \{0, \frac{1}{2}\}^m$ eines verletzten $\{0, \frac{1}{2}\}$ -Schnittes, d. h. irrelevant für die Verletztung $\mathcal{V}(u, x^*)$ des Schnittes. Die Spalte *j* braucht daher nicht betrachtet zu werden.

Der Aufwand der entsprechenden Prozedur IGNORIEREVARIABLEN MITLSGNULL beträgt O(n).

Lemma 3.5. Sei *j* ein Spaltenindex von \bar{A} , sodass $x_j^* = lb_j$ oder $x_j^* = ub_j$ gelte, wobei lb_j (ub_j) die untere (obere) Schranke der Variablen x_j bezeichne. Dann kann die Spalte *j* entfernt werden, sofern \bar{b}_j auf den Wert ($\bar{b}_j + x_j^*$) mod 2 gesetzt wird.

Beweis. Sei *j* ein Spaltenindex von \bar{A} und sei o. B. d. A. $x_j^* = lb_j$ (Der Beweis für die obere Variablenschranke erfolgt analog). Dann kann die Gleichung $x_j^* = lb_j$ zu allen Zeilen *i* von A mit $\bar{A}_{ij} = 1$ addiert werden, ohne dass sich der Schlupf s_i ändert. Sei (\bar{A}', \bar{b}') das resultierende System. Es gilt $\bar{A}'_{ij} = 0$ und $\bar{b}'_i = (\bar{b}_i + lb_j) \mod 2 = (\bar{b}_i + x_i^*) \mod 2$ für alle Zeilen *i* mit

Prozedur IGNORIEREVARIABLENMITLSGVARSCHRANKE $(\bar{A}, \bar{b}, x^*, lb, ub)$

foreach Spaltenindex j von \bar{A} do if $x_j^* = lb_j$ then if $lb_j \mod 2 = 1$ then $\lfloor \bar{b}_j \leftarrow \bar{b}_j + 1 \mod 2$ Entferne Spalte $\bar{A}_{.j}$ aus dem System (\bar{A}, \bar{b}) else if $x_j^* = ub_j$ then $\lfloor \bar{b}_j \leftarrow \bar{b}_j + 1 \mod 2$ Entferne Spalte $\bar{A}_{.j}$ aus dem System (\bar{A}, \bar{b})

 $A_{ij} = 1$. Insbesondere ist $A'_{.j}$ eine Nullspalte und kann nach Lemma 3.1 entfernt werden. Daraus folgt die Behauptung.

Der Aufwand der zugehörigen Prozedur IGNORIEREVARIABLENMITLSGVARSCHRANKE beträgt O(n).

In den beiden folgenden Reduktionen befassen wir uns mit identischen Zeilen und Spalten von (\bar{A}, \bar{b}) bzw. \bar{A} .

Lemma 3.6. Set $J \subseteq \{1, ..., n\}$ eine Indexmenge identischer Spalten in (\bar{A}, \bar{b}) und $j' \in J$ beliebig. Dann können die Spalten $j \in J \setminus \{j'\}$ entfernt werden, sofern $x_{j'}^* = \sum_{j \in J} x_j^*$ gesetzt wird.

Beweis. Seien j und j' die Spaltenindizes zweier identischer Spalten in \bar{A} , insbesondere gelte also $\lfloor u^T \bar{A} \rfloor_j = \lfloor u^T \bar{A} \rfloor_{j'}$ für beliebige $u \in \{0, \frac{1}{2}\}^m$. Dann gilt ebenfalls die Äquivalenz $((\bar{A}^T u)_j \mod 2)x_j^* > 0 \iff ((\bar{A}^T u)_{j'} \mod 2)x_{j'}^* > 0$. Es braucht somit nur eine der beiden Spalten explizit betrachtet zu werden, dies sei o. B. d. A. die Spalte j, und wir setzen $x_j^* = x_j^* + x_{j'}^*$, um die Äquivalenz $((\bar{A}^T u)_j \mod 2)x_j^* > 0 \iff ((\bar{A}^T u)_j \mod 2)x_j^* > 0$ zu berücksichtigen. Die Behauptung folgt mittels Induktion über die Kardinalität der in Lemma 3.6 definierten Menge J.

Eine Vorlage zur algorithmischen Umsetzung ist in der Prozedur FASSEIDENTISCHESPAL-TENZUSAMMEN gegeben, deren Aufwand O(mn(n-1)) beträgt.

Lemma 3.7. Sei $I \subseteq \{1, ..., m\}$ eine Indexmenge identischer Zeilen in (\bar{A}, \bar{b}) und sei $i_{min} \in I$ eine Zeile mit minimalem Schlupf, d. h. $s_{i_{min}} = \min_{i \in I} s_i$. Dann können alle (identischen) Zeilen $i \in I \setminus \{i_{min}\}$ entfernt werden. **Prozedur** FASSEIDENTISCHESPALTENZUSAMMEN (\overline{A} , \overline{b} , x^*)

foreach Spaltenindex j_1 von \overline{A} do foreach Spaltenindex j_2 von \overline{A} mit $j_2 > j_1$ do foreach Spaltenindex i von \overline{A} do $\[if \overline{A}_{ij_1} \neq \overline{A}_{ij_2} then next j_2 \\ x_{j_1}^* \leftarrow x_{j_1}^* + x_{j_2}^* \\ x_{j_1}^* \leftarrow x_{j_1}^* + x_{j_2}^* \\ \end{bmatrix}$

Entferne Spalte \bar{A}_{j_2} aus dem System (\bar{A}, \bar{b})

```
Prozedur ENTFERNEIDENTISCHEZEILEN (\bar{A}, \bar{b}, s)foreach Zeilenindex i_1 von \bar{A} doforeach Zeilenindex i_2 von \bar{A} mit i_2 > i_1 doif b_{i_1} = b_{i_2} thenforeach Spaltenindex j von \bar{A} doLif \bar{A}_{i_1j} \neq \bar{A}_{i_2j} then next i_2if s_{i_1} \leq s_{i_2} thenLEntferme Zeile (\bar{A}_{i_2}, \bar{b}_{i_2}) aus dem System (\bar{A}, \bar{b})elseLEntferme Zeile (\bar{A}_{i_1}, \bar{b}_{i_1}) aus dem System (\bar{A}, \bar{b})
```

Beweis. Seien *i* und *i'* zwei identische Zeilen in (\bar{A}, \bar{b}) . Ohne Beschränkung der Allgemeinheit seien diese Zeilen keine Nullzeilen, denn diese können bereits nach Lemma 3.2 entfernt werden. Außerdem sei eine Zeilenindexmenge $U \subseteq \{1, \ldots, m\}$ gegeben und o. B. d. A. gelte $U \cap \{i, i'\} = \emptyset$, denn aus $|U \cap \{i, i'\}| = 1$ folgt, dass (\bar{A}_i, \bar{b}_i) oder $(\bar{A}_{i'}, \bar{b}_i)$ eine Nullzeile ist, und $\{i, i'\} \subseteq U$ bedeutet, dass die Summenzeile aus A_i . und $A_{i'}$. nur aus geraden Koeffizienten besteht, also modulo 2 betrachtet ebenso eine Nullzeile und daher für die Schnitterzeugung irrelevant ist. Ferner existieren zwei verletzte $\{0, \frac{1}{2}\}$ -Schnitte, gegeben durch die Gewichtsvektoren $u, u' \in \{0, \frac{1}{2}\}^m$, wobei $u_{\ell} := \frac{1}{2}$ für alle $\ell \in U \cup \{i\}$ und 0 sonst bzw. $u'_{\ell} := \frac{1}{2}$ für alle $\ell \in U \cup \{i'\}$ und 0 sonst.

Nach Lemma 2.5 und der Definition der Verletzung $\mathcal{V}(u, x^*)$ gilt die folgende Gleichung $\mathcal{V}(u, x^*) = \lfloor u^T A \rfloor x^* - \lfloor u^T b \rfloor = \frac{1}{2}(1 - s^T(2u) + (\bar{A}^T(2u) \mod 2)x^*)$. Daraus folgt, dass die Abschätzung $\mathcal{V}(u, x^*) \leq \mathcal{V}(u', x^*)$ genau dann gilt, wenn $s_i \geq s_{i'}$ gilt. Die Behauptung folgt mittels Induktion über die Kardinalität der in Lemma 3.7 definierten Menge *I*.

Die Prozedur ENTFERNEIDENTISCHEZEILEN bietet eine algorithmische Umsetzung des vorhergehenden Lemmas. Der Aufwand dieser Prozedur beträgt O(m(m-1)n).

Aus dem Lemma 2.5 lassen sich Forderungen an die zu einem verletzten $\{0, \frac{1}{2}\}$ -Schnitt

Prozedur ENTFERNEZEILENMITZUGROSSEMSCHLUPF (\overline{A} , \overline{b} , s)
foreach Zeilenindex i von \overline{A} do if $a > 1$ then Entforme Zeile $(\overline{A} - \overline{b})$ and dom System $(\overline{A} - \overline{b})$
$ I S_i \ge 1$ then Entreme Zene (A_i, b_i) and dem System (A, b)

 Prozedur ENTFERNESYSTEMOHNEUNGERADERECHTESEITE (\bar{A}, \bar{b})

 $B \leftarrow 0$

 foreach Zeilenindex i in (\bar{A}, \bar{b}) do

 $| \hat{b}_i = 1$ then

 $| B \leftarrow 1$

 | exit for

 if B = 0 then

 $| Lösche System (\bar{A}, \bar{b}), denn es existiert kein verletzter <math>\{0, \frac{1}{2}\}$ -Schnitt

kombinierbaren Zeilen des Systems (\bar{A}, \bar{b}) folgern. Zum Beispiel dürfen die Zeilen keinen zu großen Schlupfwert besitzen, oder es muss stets eine Zeile mit ungeradem Wert auf der rechten Seite in der Kombination enthalten sein. Diese und ähnliche Überlegungen werden wir in den folgenden Lemmata aufgreifen und detailliert beschreiben.

Lemma 3.8. Sei *i* ein Zeilenindex von $(\overline{A}, \overline{b})$, sodass $s_i \ge 1$ gelte. Dann kann die Zeile *i* entfernt werden.

Beweis. Sei ein verletzter $\{0, \frac{1}{2}\}$ -Schnitt gegeben, d. h., es existiere ein $u \in \{0, \frac{1}{2}\}^m$ mit $\mathcal{V}(u, x^*) > 0$. Dann existiert nach Lemma 2.5 zusätzlich ein Vektor $v \in \{0, 1\}^m$, sodass $s^T v + (\bar{A}^T v \mod 2) x^* < 1$ gilt. Da alle Beiträge nicht-negativ sind, folgt insbesondere $v_i = 0$ für alle Zeilen *i* mit Schlupf $s_i \ge 1$ und somit die Behauptung.

Eine mögliche Umsetzung ist durch die Prozedur ENTFERNEZEILENMITZUGROSSEM-SCHLUPF gegeben, deren Aufwand O(m) beträgt, da jede Zeile genau einmal überprüft und gegebenenfalls gelöscht werden muss.

Lemma 3.9. Sei das System (\bar{A}, \bar{b}) gegeben und es gelte $\bar{b} = \vec{0}$. Dann existiert kein verletzter $\{0, \frac{1}{2}\}$ -Schnitt.

Beweis. Sei (\bar{A}, \bar{b}) gegeben, sodass $\bar{b} = \vec{0}$ gilt. Angenommen es existiere ein verletzter $\{0, \frac{1}{2}\}$ -Schnitt. Dann existiert nach Lemma 2.5 ein $v \in \{0, 1\}^m$, sodass $\bar{b}^T v \equiv 1 \mod 2$. Nach Voraussetzung gilt $\bar{b}^T v \equiv \vec{0}^T v = 0 \not\equiv 1 \mod 2$. Widerspruch.

Der Aufwand der zugehörigen Prozedur ENTFERNESYSTEMOHNEUNGERADERECHTE-SEITE beträgt O(m).

Prozedur ENTFERNENICHTKOMBINIERBAREZEILEN (\overline{A} , \overline{b} , s)

Lemma 3.10. Seien das System (\bar{A}, \bar{b}) und der Vektor s der Schlupfwerte der Zeilen gegeben. Außerdem sei S^{odd} := min{ $s_i | \bar{b}_i = 1$ } der kleinste Schlupf einer Zeile mit ungerader rechter Seite. Dann kann jede Zeile i mit $\bar{b}_i = 0$ und $s_i + S^{odd} \ge 1$ entfernt werden.

Sei ferner $S_k^{min} := \min\{s_i | \bar{A}_{ik} = 1\}$ der kleinste Schlupf einer Zeile mit ungeradem Koeffizienten in Spalte k. Dann kann jede Zeile i entfernt werden, für die eine Spalte j mit $\bar{A}_{ij} = 1$ und $x_j^* \ge 1 - S^{odd}$ existiert und $S_j^{min} + s_i \ge 1$ gilt.

Beweis. Seien das System (\bar{A}, \bar{b}) und der Vektor *s* der Schlupfwerte der Zeilen gegeben und sei S^{odd} definiert wie in der Behauptung. Ferner sei ein verletzer $\{0, \frac{1}{2}\}$ -Schnitt gegeben, definiert durch den Gewichtsvektor $u \in \{0, \frac{1}{2}\}^m$. Nach Lemma 2.5 gilt $\bar{b}^T(2u) \mod 2 = 1$ und somit existiert eine Zeile mit Index $i \in \{1, ..., m\}$ und $\bar{b}_i = 1$ und $s_i \ge S^{odd}$. Also ist $s^T(2u) + (\bar{A}^T(2u) \mod 2)x^* \ge s_i \ge S^{odd}$. Angenommen es existiert eine Zeile $(\bar{A}_{\ell}, \bar{b}_{\ell})$ mit $s_{\ell} + S^{odd} \ge 1$ und $u_{\ell} = \frac{1}{2}$, dann gilt $s^T(2u) + (\bar{A}^T(2u) \mod 2)x^* \ge S^{odd} + (1 - S^{odd}) = 1$. Der $\{0, \frac{1}{2}\}$ -Schnitt ist also nicht verletzt. Widerspruch.

Sei S_j^{min} definiert wie in der Behauptung und sei $x_j^* \ge 1 - S^{odd}$. Dann gilt die Abschätzung $s^T(2u) + (\bar{A}^T(2u) \mod 2)x^* \ge S^{odd} + (\bar{A}^T(2u) \mod 2)_j(1 - S^{odd})$. Daraus folgt, dass $s^T(2u) + (\bar{A}^T(2u) \mod 2)x^* \ge 1$ gilt, falls $(\bar{A}^T(2u) \mod 2)_j = 1$ gilt. Damit ein $\{0, \frac{1}{2}\}$ -Schnitt verletzt sein kann, muss also eine gerade Anzahl von Zeilen mit ungeradem Koeffizienten in Spalte *j* kombiniert werden. Angenommen es existiere eine Zeile mit Index ℓ , sodass $\bar{A}_{\ell j} = 1$, $s_\ell \ge 1 - S_j^{min}$ und $u_\ell = \frac{1}{2}$ gelte. Dann folgt $s^T(2u) + (\bar{A}^T(2u) \mod 2)x^* \ge S_j^{min} + s_\ell = S_j^{min} + 1 - S_i^{min} = 1$. Widerspruch.

Mit Prozedur ENTFERNENICHTKOMBINIERBAREZEILEN ist eine algorithmische Umsetzung angegeben. Der Aufwand der Prozedur beträgt O(mn).

Im nachfolgenden Lemma betrachten wir das gesamte System (\bar{A}, \bar{b}) und versuchen eine vorteilhafte Struktur zu identifizieren mit dem Ziel das Problem, in mehrere Teilprobleme zu zerlegen.

Lemma 3.11. Seien $I = \{1, ..., m\}$ die Zeilen- und $J = \{1, ..., n\}$ die Spaltenindexmenge des Systems (\bar{A}, \bar{b}) bzw. der Matrix \bar{A} . Seien ferner disjunkte, nichtleere Teilmengen $I', I'' \subseteq I$ und $J', J'' \subseteq J$ mit $I = I' \cup I''$ und $J = J' \cup J''$ gegeben, sodass gelte $\bar{A}_{i\ell} = \bar{A}_{kj} = 0$ für alle $i \in I', j \in J', k \in I''$ und $\ell \in J''$. Das heißt das System (\bar{A}, \bar{b}) habe (bis auf Zeilen- und Spaltenpermutationen) die folgende (Blockdiagonal-)Gestalt

$$\begin{pmatrix} \begin{pmatrix} \bar{A}_{I'J'} & \mathbf{0} \\ \mathbf{0} & \bar{A}_{I''J''} \end{pmatrix}, \begin{pmatrix} \bar{b}_{I'} \\ \bar{b}_{I''} \end{pmatrix} \end{pmatrix}.$$

Dann kann das Separierungsproblem $\{0, \frac{1}{2}\}$ -SEP in zwei einzelne unabhängige $\{0, \frac{1}{2}\}$ -SEP-Separierungsprobleme für die Systeme $(\bar{A}_{I'J'}, \bar{b}_{I'})$ bzw. $(\bar{A}_{I''J''}, \bar{b}_{I''})$ zerlegt werden.

Beweis. Seien die Zeilenindex- und Spaltenindexmenge *I* bzw. *J* sowie nichtleere Teilmengen $I', I'' \subseteq I$ und $J', J'' \subseteq J$ mit den in der Behauptung geforderten Eigenschaften gegeben. Insbesondere habe das System (\bar{A}, \bar{b}) die Form

$$\begin{pmatrix} \left(\bar{A}_{I'J'} & \mathbf{0} \\ \mathbf{0} & \bar{A}_{I''J''} \right), \begin{pmatrix} \bar{b}_{I'} \\ \bar{b}_{I''} \end{pmatrix} \end{pmatrix}.$$

Seien ferner Mengen $U' \subseteq I'$ und $U'' \subseteq I''$ sowie ein verletzter $\{0, \frac{1}{2}\}$ -Schnitt gegeben, der durch den Gewichtsvektor $u \in \{0, \frac{1}{2}\}^m$ wie folgt erzeugt wird

$$u_i := \begin{cases} \frac{1}{2} & \text{für alle } i \in U' \\ \frac{1}{2} & \text{für alle } i \in U'' \\ 0 & \text{sonst} \end{cases}$$

Dann gilt $\sum_{i \in U'} u_i \bar{b}_i + \sum_{i \in U''} u_i \bar{b}_i \equiv 1 \mod 2$, d. h., genau eine der beiden Summen ist gerade und die andere ungerade. Sei o. B. d. A. $\sum_{i \in U'} u_i \bar{b}_i \equiv 1 \mod 2$. Wir definieren einen zweiten Gewichtsvektor $u' \in \{0, \frac{1}{2}\}^m$ mit

$$u_i' := \begin{cases} u_i & \text{für alle } i \in U' \\ 0 & \text{sonst} \end{cases}$$

Für die Verletzungen $\mathcal{V}(u, x^*)$ und $\mathcal{V}(u', x^*)$ der beiden $\{0, \frac{1}{2}\}$ -Schnitte gilt die Abschätzung

$$\begin{aligned} \mathcal{V}(u,x^*) &= \left\lfloor u^T A \right\rfloor x^* - \left\lfloor u^T b \right\rfloor \\ &= \sum_{j \in J'} \left\lfloor \frac{1}{2} \sum_{i \in U'} A_{ij} \right\rfloor x^*_j + \sum_{j \in J''} \left\lfloor \frac{1}{2} \sum_{i \in U'} A_{ij} \right\rfloor x^*_j - \left\lfloor \frac{1}{2} \sum_{i \in U'} b_i \right\rfloor - \frac{1}{2} \sum_{i \in U''} b_i \\ &\leq \sum_{j \in J'} \left\lfloor \frac{1}{2} \sum_{i \in U'} A_{ij} \right\rfloor x^*_j - \left\lfloor \frac{1}{2} \sum_{i \in U'} b_i \right\rfloor = \mathcal{V}(u',x^*). \end{aligned}$$

Es genügt demnach das Teilproblem $(A_{I'J'}, b_{I'})$ zu betrachten, da $u'_i = 0$ für alle $i \notin I'$.

Prozedur ZERLEGEINTEILPROBLEME (\bar{A}, \bar{b})

1	Erzeuge Zeilendurchschnittsgraph $G = (V, E)$ definiert durch			
	V := I			
	$E := \{ v_i v_k \mid i < k \text{ und } \exists j \in J \text{ mit } \bar{A}_{ij} = \bar{A}_{kj} = 1 \}$			
	$\cup \{v_i v_i \mid \exists j \in J \text{ mit } \bar{A}_{ij} = 1 \text{ und } \bar{A}_{\cdot j}^T \vec{1} = 1\}$			
2	$U \leftarrow V$			
3	$k \leftarrow 0$			
4	while $U \neq \emptyset$ do			
5	$k \leftarrow k+1$			
6	Zeilenindexmenge $I^{(k)} \leftarrow \emptyset$			
7	Spaltenindexmenge $J^{(k)} \leftarrow \emptyset$			
8	Warteschlange $Q \leftarrow \emptyset$			
9	Wähle beliebiges $v \in U$			
10	$Q \stackrel{\text{add last}}{\longleftarrow} v$			
11	$U \leftarrow U \setminus \{v\}$			
12	while $Q eq \emptyset$ do			
13	$v \stackrel{\text{get first}}{\leftarrow} O$			
14	$I^{(k)} \leftarrow I^{\widetilde{(k)}} \cup index(v)$			
15	foreach $vw \in \delta(v)$ do			
16	$J^{(k)} \leftarrow J^{(k)} \cup index(vw)$			
17	if $w \in U$ then			
18	$ \qquad \qquad U \leftarrow U \setminus \{w\} $			
19	$Q \stackrel{\text{add last}}{\longleftarrow} w$			
	\Rightarrow Zeriegung in k Teilprobleme $(A_{I^{(\lambda)}J^{(\lambda)}}, b_{I^{(\lambda)}})$ für $1 \le \lambda \le k$			

Da allerdings a priori nicht klar ist, welches der beiden Teilsysteme das relevante ist (d. h., ob $\sum_{i \in U'} u_i b_i \mod 2 = 1$ oder ob $\sum_{i \in U''} u_i b_i \mod 2 = 1$) müssen beide Teilsysteme betrachtet werden. Dies kann jedoch unabhängig voneinander geschehen.

Ein verletzter $\{0, \frac{1}{2}\}$ -Schnitt, generiert aus den Zeilen eines der Teilsysteme, ist dann auch für das Gesamtsystem (A, b) verletzt, da dieses lediglich zusätzliche Zeilen und bzgl. des besagten Teilsystems zusätzliche Nullspalten besitzt. Wird in beiden Teilsystemen kein verletzter $\{0, \frac{1}{2}\}$ -Schnitt gefunden, so existiert im Gesamtsystem kein verletzter $\{0, \frac{1}{2}\}$ -Schnitt, denn ein solcher wäre in einem der Teilsysteme enthalten und würde dort gefunden werden.

Die in diesem Lemma beschriebene Zerlegung des Problems in Teilprobleme ist in Prozedur ZERLEGEINTEILPROBLEME als Vorlage für eine mögliche algorithmische Umsetzung angegeben. Der Aufwand für die Prozedur ZERLEGEINTEILPROBLEME beträgt O(mn), da $|U| + |Q| \le |I| = m$ aus den Zuweisungen in den Zeilen 10, 11 bzw. 18, 19 folgt, wobei |Q|die Länge der Warteschlange Q bezeichne. Außerdem ist $|\delta(v)| \le |E| \le n \forall v \in V$, weswegen die Schleife beginnend in Zeile 15 maximal *n*-mal durchlaufen wird. Daraus ergibt sich der anfangs genannte Aufwand.

Addition von Zeilen Im Folgenden wollen wir eine Reduktion vorstellen, bei der Zeilen des Systems (\bar{A}, \bar{b}) addiert werden. Diese Addition (\oplus) erfolgt modulo 2 und ist für zwei Zeilen $(\bar{A}_{i_1}, \bar{b}_{i_1})$ und $(\bar{A}_{i_2}, \bar{b}_{i_2})$ des Systems (\bar{A}, \bar{b}) wie folgt definiert

$$\bar{A}_{(i_1 \oplus i_2)} ::= \bar{A}_{i_1} \oplus \bar{A}_{i_2} ::= (\bar{A}_{i_1} + \bar{A}_{i_2}) \mod 2$$

$$\bar{b}_{(i_1 \oplus i_2)} := \bar{b}_{i_1} \oplus \bar{b}_{i_2} := (\bar{b}_{i_1} + \bar{b}_{i_2}) \mod 2.$$

Der Schlupfwert $s_{i_1 \oplus i_2}$ der Summenzeile $\bar{A}_{(i_1 \oplus i_2)}$ ist definiert als $s_{i_1 \oplus i_2} := s_{i_1} + s_{i_2}$. Außerdem gilt $\bar{A}_{(i_1 \oplus i_2)} = (A_{i_1} + A_{i_2}) \mod 2$, d. h., die Zeile $\bar{A}_{(i_1 \oplus i_2)}$ entspricht den Paritäten der Koeffizienten der Summe zweier Originalzeilen des Systems (A, b). Um diese Form der Zeilenaggregation bei der Erzeugung eines $\{0, \frac{1}{2}\}$ -Schnittes rückgängig machen zu können, führen wir Indexmengen $R_i \subseteq \{1, \ldots, m\}$ für jede Zeile *i* ein, setzen diese anfangs gleich $\{i\}$ und aktualisieren diese immer dann, wenn zwei Zeilen addiert werden. Da wir Additionen modulo 2 durchführen, gilt $1 + 1 \equiv 0 \mod 2$ und deshalb $\bar{A}_{(i_1 \oplus i_1)} = \vec{0}^T$. Wir aktualisieren die Mengen R_i bei Addition der Zeilen i_1 und i_2 daher wie folgt

$$R_{i_1\oplus i_2}=R_{i_1}\bigtriangleup R_{i_2}$$

Lemma 3.12. Seien i_0 ein Zeilen- und j ein Spaltenindex von \bar{A} , so dass $\bar{A}_{i_0j} = 1$ und für den Schlupf $s_{i_0} = 0$ gelte. Dann kann die Spalte j entfernt werden, vorausgesetzt die Zeile i_0 wird zu allen anderen Zeilen i mit $\bar{A}_{ij} = 1$ addiert und außerdem $s_{i_0} = x_j^*$ gesetzt.

Beweis. Seien i_0 ein Zeilenindex und j ein Spaltenindex von (\bar{A}, \bar{b}) bzw. \bar{A} , sodass $\bar{A}_{i_0j} = 1$ und $s_{i_0} = 0$ gelte. Ferner sei $I^j := \{i \in \{1, ..., m\} | \bar{A}_{ij} = 1\} \setminus \{i_0\}$. Wir betrachten nun einen $\{0, \frac{1}{2}\}$ -Schnitt, der durch Kombination aller Zeilen mit Indizes $i \in I \subseteq \{1, ..., m\}$ des Systems (\bar{A}, \bar{b}) erzeugt wird. Außerdem sei o. B. d. A. $R_i = \{i\}$ für alle $i \in I$. Wir definieren $q := |I \cap \{i \in \{1, ..., m\} | \bar{A}_{ij} = 1\} \setminus \{i_0\}|$ und $R := R_1 \triangle R_2 ... \triangle R_m$. Dann gilt R = I.

Sei $M \subseteq \{1, ..., m\}$ eine Teilmenge der Zeilenindexmenge des Systems (\bar{A}, \bar{b}) . Dann bezeichne $\mathcal{V}(M, x^*)$ die Verletzung desjenigen $\{0, \frac{1}{2}\}$ -Schnittes, der durch den Gewichtsvektor $u \in \{0, \frac{1}{2}\}^m$ mit $u = \frac{1}{2}\chi(M)$ definiert wird. Wir betrachten nun die Verletzung $\mathcal{V}(R, x^*)$. Unter Berücksichtigung von Korollar 2.6 gilt

$$\begin{split} \mathcal{V}(R, x^*) &= \frac{1}{2} \left(1 - \sum_{i \in I} s_i + \sum_{\ell \in J} \left[\left(\sum_{i \in I} \bar{A}_{i\ell} \right) \mod 2 \right] x_{\ell}^* \right) \\ &= \frac{1}{2} \left(1 - \sum_{i \in I \setminus \{i_0\}} s_i + \sum_{\ell \in J \setminus \{j\}} \left[\left(\sum_{i \in I} \bar{A}_{i\ell} \right) \mod 2 \right] x_{\ell}^* + \left[\left(\sum_{i \in I} \bar{A}_{ij} \right) \mod 2 \right] x_{j}^* \right) \\ &= \frac{1}{2} \left(1 - \sum_{i \in I \setminus \{i_0\}} s_i + \sum_{\ell \in J \setminus \{j\}} \left[\left(\sum_{i \in I} \bar{A}_{i\ell} \right) \mod 2 \right] x_{\ell}^* \\ &+ \left[\left(\sum_{i \in I \cap I^j} \bar{A}_{ij} + \chi(I)_{i_0} \bar{A}_{i_0j} \right) \mod 2 \right] x_{j}^* \right) \\ &= \frac{1}{2} \left(1 - \sum_{i \in I \setminus \{i_0\}} s_i + \sum_{\ell \in J \setminus \{j\}} \left[\left(\sum_{i \in I} \bar{A}_{i\ell} \right) \mod 2 \right] x_{\ell}^* + \left[\left(q + \chi(I)_{i_0} \right) \mod 2 \right] x_{j}^* \right) \end{split}$$

Nun wollen wir das reduzierte System (\bar{A}', \bar{b}') betrachten, welches aus der Addition modulo 2 der Zeile i_0 zu allen anderen Zeilen $i \in I^j$ resultiert. Insbesondere ist $\bar{A}'_{i\ell} = \bar{A}_{i\ell}$ wenn $i \in I \setminus I^j$ und $\bar{A}'_{i\ell} = \bar{A}_{i\ell} + \bar{A}_{i_0\ell}$ für $i \in I \cap I^j$.

Bezeichne R'_i die aktualisierten Indexmengen, s'_i die aktualisierten Schlupfwerte und R' die zugehörige symmetrische Differenz aller Zeilen der Zeilenindexmenge I'. Dann ist die Verletzung

$$\mathcal{V}(R', x^*) = \frac{1}{2} \left(1 - \sum_{i \in I' \setminus (I^j \cup \{i_0\})} s'_i + \sum_{\ell \in J \setminus \{j\}} \left[(\sum_{i \in I'} \bar{A}'_{i\ell}) \mod 2 \right] x^*_{\ell} + q \chi(I')_{i_0} s'_{i_0} \right).$$

und es gilt

$$\begin{split} \sum_{i \in I'} \bar{A}'_{i\ell} &= \sum_{i \in I' \setminus (I^{j} \cup \{i_{0}\})} \bar{A}'_{i\ell} + \sum_{i \in I^{j} \cap I'} \bar{A}'_{i\ell} + \chi(I')_{i_{0}} \bar{A}'_{i_{0}\ell} \\ &= \sum_{i \in I' \setminus (I^{j} \cup \{i_{0}\})} \bar{A}_{i\ell} + \sum_{i \in I^{j} \cap I'} (\bar{A}_{i\ell} + \bar{A}_{i_{0}\ell}) + \chi(I')_{i_{0}} \bar{A}_{i_{0}\ell} \\ &= \sum_{i \in I' \setminus \{i_{0}\}} \bar{A}_{i\ell} + (q + \chi(I')_{i_{0}} \bar{A}_{i_{0}\ell}. \end{split}$$

Wir unterscheiden im Folgenden drei Fälle abhängig von der Parität von q und der Eigenschaft $i_0 \in I$ bzw. $i_0 \notin I$.

1. q ist gerade. Wir setzen I' = I. Dann gilt

$$\mathcal{V}(R',x^*) = \frac{1}{2} \left(1 - \sum_{i \in I \setminus \{i_0\}} s_i + \sum_{\ell \in J \setminus \{j\}} \left[(\sum_{i \in I} \bar{A}_{i\ell}) \mod 2 \right] x_{\ell}^* + \chi(I)_{i_0} x_j^* \right) = \mathcal{V}(R,x^*)$$

2. q ist ungerade und

(i) $i_0 \in I$. Dann setzen wir $I' = I \setminus \{i_0\}$ und betrachten die Verletzung

$$\begin{split} \mathcal{V}(R', x^*) &= \frac{1}{2} \left(1 - \sum_{i \in I \setminus \{i_0\}} s_i + \sum_{\ell \in J \setminus \{j\}} \left[\left(\sum_{i \in I'} \bar{A}'_{i\ell} \right) \mod 2 \right] x_{\ell}^* \right) \\ &= \frac{1}{2} \left(1 - \sum_{i \in I \setminus \{i_0\}} s_i + \sum_{\ell \in J \setminus \{j\}} \left[\left(\sum_{i \in I' \setminus I^j} \bar{A}'_{i\ell} + \sum_{i \in I^j} \bar{A}'_{i\ell} \right) \mod 2 \right] x_{\ell}^* \right) \\ &= \frac{1}{2} \left(1 - \sum_{i \in I \setminus \{i_0\}} s_i + \sum_{\ell \in J \setminus \{j\}} \left[\left(\sum_{i \in I' \setminus I^j} \bar{A}_{i\ell} + \sum_{i \in I^j} \bar{A}_{i\ell} + q \bar{A}_{i_0\ell} \right) \mod 2 \right] x_{\ell}^* \right) \\ &= \frac{1}{2} \left(1 - \sum_{i \in I \setminus \{i_0\}} s_i + \sum_{\ell \in J \setminus \{j\}} \left[\left(\sum_{i \in I \setminus \{i_0\}} \bar{A}_{i\ell} + q \bar{A}_{i_0\ell} \right) \mod 2 \right] x_{\ell}^* \right) \\ &= \frac{1}{2} \left(1 - \sum_{i \in I \setminus \{i_0\}} s_i + \sum_{\ell \in J \setminus \{j\}} \left[\left(\sum_{i \in I \setminus \{i_0\}} \bar{A}_{i\ell} + q \bar{A}_{i_0\ell} \right) \mod 2 \right] x_{\ell}^* \right) \end{split}$$

(ii) $i_0 \notin I$. Dann setzen wir $I' = I \cup \{i_0\}$ und es folgt

$$\begin{split} \mathcal{V}(R', x^*) &= \frac{1}{2} \left(1 - \sum_{i \in I} s_i + \sum_{\ell \in J \setminus \{j\}} \left[\left(\sum_{i \in I} \bar{A}'_{i\ell} + \bar{A}'_{i_0\ell} \right) \mod 2 \right] x_{\ell}^* + s'_{i_0} \right) \\ &= \frac{1}{2} \left(1 - \sum_{i \in I \setminus \{i_0\}} s_i \right) \\ &+ \sum_{\ell \in J \setminus \{j\}} \left[\left(\sum_{i \in I \setminus I^j} \bar{A}_{i\ell} + \sum_{i \in I^j} \left(\bar{A}_{i\ell} + \bar{A}_{i_0\ell} \right) + \bar{A}'_{i_0\ell} \right) \mod 2 \right] x_{\ell}^* + x_j^* \right) \\ &= \frac{1}{2} \left(1 - \sum_{i \in I \setminus \{i_0\}} s_i + \sum_{\ell \in J \setminus \{j\}} \left[\left(\sum_{i \in I} \bar{A}_{i\ell} + (q+1) \bar{A}_{i_0\ell} \right) \mod 2 \right] x_{\ell}^* + x_j^* \right) \\ &= \frac{1}{2} \left(1 - \sum_{i \in I \setminus \{i_0\}} s_i + \sum_{\ell \in J \setminus \{j\}} \left[\left(\sum_{i \in I} \bar{A}_{i\ell} \right) \mod 2 \right] x_{\ell}^* + x_j^* \right) = \mathcal{V}(R, x^*) \,. \end{split}$$

Wir haben gezeigt, dass sich zu einer gegebenen Zeilenindexmenge *I* des Systems (\bar{A}, \bar{b}) stets eine Zeilenindexmenge *I'* des reduzierten Sytems (\bar{A}', \bar{b}') konstruieren lässt, sodass ein $\{0, \frac{1}{2}\}$ -Schnitt mit exakt derselben Verletzung erzeugt wird und umgekehrt. Daraus folgt die Behauptung.

Mit dem Pseudocode zur Prozedur MODIFIZIERTEGAUSSELIMINATIONMOD2 ist eine Vorlage zur Umsetzung dieser Reduktion angegeben. Sei O(n) der Aufwand für die Addition zweier Zeilen in (\bar{A}, \bar{b}) , dann beträgt der Gesamtaufwand für die Prozedur MODIFIZIERTE-GAUSSELIMINATIONMOD2 $O(mn\min\{m,n\})$. Dies ergibt sich aus folgender Überlegung: Die äußere Schleife (Zeile 4 bis Zeile 19) wird maximal min $\{m,n\}$ -mal durchlaufen. Innerhalb dieser Schleife sind die aufwendigsten Schritte die innere Schleife (Zeile 10 bis 11), die höchstens *m*-mal durchlaufen wird und dabei jeweils einen Aufwand von O(n)(Zeile 11) verursacht, sowie der Aufruf der Prozedur ENTFERNENULLZEILEN (Zeile 17) mit Aufwand O(mn). Daraus ergibt sich für die äußere Schleife ein Gesamtaufwand von

Prozedur MODIFIZIERTEGAUSSELIMINATIONMOD2 (\bar{A} , \bar{b} , s, x^* , I, J) 1 $\mathbb{I} \leftarrow \{i \in I \mid s_i = 0\}$ **2** $k \leftarrow 1$ 3 $K \leftarrow \emptyset$ 4 while $\mathbb{I} \neq \emptyset$ und $k \leq n$ do $J(\mathbb{I}) \leftarrow \{ j \in J \mid \exists i \in \mathbb{I} \text{ mit } \bar{A}_{ij} = 1 \}$ 5 if $J(\mathbb{I}) = \emptyset$ then exit while 6 Bestimme $j \in J(\mathbb{I})$, sodass $x_j^* \ge x_\ell^*$ für alle $\ell \in J(\mathbb{I}) \setminus \{j\}$ 7 $I(j) \leftarrow \{i \in \mathbb{I} \cup K \mid \bar{A}_{ij} = 1\}$ 8 Wähle $r \in I(j)$ beliebig 9 foreach $i \in I(j) \setminus \{r\}$ do 10 Addiere Zeile *r* zu Zeile *i* 11 Tausche Zeilen k und r 12 Tausche Spalten k und j13 $K \leftarrow K \cup \{k\}$ 14 $\mathbb{I} \leftarrow \mathbb{I} \setminus \{k\}$ 15 $\mathbb{I}_0 \leftarrow \{i \in \mathbb{I} \mid (\bar{A}_i, \bar{b}_i) = (\vec{0}^T, 0)\}$ 16 ENTFERNENULLZEILEN ($\bar{A}_{\mathbb{I}_0}$, $\bar{b}_{\mathbb{I}_0}$) 17 $\mathbb{I} \leftarrow \mathbb{I} \setminus \mathbb{I}_0$ 18 $k \leftarrow k + 1$ 19 20 foreach $j \in K$ do $I(j) \leftarrow \{i \in I \setminus K \mid \bar{A}_{ij} = 1\}$ 21 foreach $i \in I(j)$ do 22 Addiere Zeile *j* zu Zeile *i* 23 24 ENTFERNESPALTENSINGLETONS (\bar{A}_{KK} , \bar{b}_K , s_K , x_K^*)

 $O(mn\min\{m,n\})$, der die Aufwände für die anderen Anweisungen außerhalb der äußeren Schleife dominiert.

Wie im Abschnitt zur Addition von Zeilen des Systems (\bar{A}, \bar{b}) erörtert, benötigen wir die Mengen R_i (mit $|R_i| \le m$), um die Zeilenaggregation bei der Schnitterzeugung "rückgängig" machen zu können, sodass die richtigen Originalzeilen kombiniert werden. Deswegen ist der Aufwand zur Addition zweier Zeilen O(n+m) und der tatsächliche Gesamtaufwand für MODIFIZIERTEGAUSSELIMINATIONMOD2 beträgt $O(m^2n)$.

Wir beenden den Abschnitt über exakte Reduktionen mit der nachfolgenden Reduktion, die spezielle einzelne Zeilen als verletzte $\{0, \frac{1}{2}\}$ -Schnitte identifiziert und separiert.

Lemma 3.13. Sei *i* ein Zeilenindex von (\bar{A}, \bar{b}) , sodass $\bar{A}_i = \vec{0}$, $\bar{b}_i = 1$ und $s_i < 1$ gelte. Dann definiert $u \in \{0, \frac{1}{2}\}^m$ mit $u_i = \frac{1}{2}$ und $u_k = 0$ für alle Zeilen $k \neq i$ einen verletzten $\{0, \frac{1}{2}\}$ -Schnitt.

Der Schnitt kann der LP-Relaxierung hinzugefügt und die Zeile i aus dem System (\bar{A}, \bar{b}) entfernt werden.

Beweis. Sei *i* wie in der Behauptung gefordert. Definiere $v \in \{0,1\}^m$ mit $v_i = 1$ und $v_k = 0$ für alle $k \in \{1, ..., m\} \setminus \{i\}$. Dann gilt $\bar{b}^T v = 1$ und $s^T v + (\bar{A}^T v \mod 2) x^* = s_i + \bar{A}_i^T x^* = s_i < 1$. Nach Lemma 2.5 existiert somit ein $u \in \{0, \frac{1}{2}\}^m$, sodass $\mathcal{V}(u, x^*) > 0$. Wir wählen $u = \frac{1}{2}v$ und können leicht nachprüfen, dass dann für die Verletzung

$$\begin{aligned} \mathcal{V}(u, x^*) &= \left[\frac{1}{2} A_{i} \right] x^* - \left[\frac{1}{2} b_i \right] = \frac{1}{2} A_{i} x^* - \frac{1}{2} b_i + \frac{1}{2} \\ &= \frac{1}{2} (1 - s_i) > 0 \end{aligned}$$

gilt. Eine Kombination der Zeile *i* mit anderen Zeilen kann einen resultierenden $\{0, \frac{1}{2}\}$ -Schnitt nicht verstärken: Denn einerseits ist $\overline{A}_{i.} = \overline{0}^T$ und somit $(\overline{A}^T v \mod 2)x^*$ bereits minimal und andererseits würde der Schlupf s_{i_2} einer weiteren kombinierten Zeile i_2 den Term s^T ebenfalls nicht verringern. Deswegen kann die Zeile *i* entfernt werden.

Zu dem Lemma 3.13 formulieren wir den Algorithmus SEPARIERETRIVIALESCHNITTE, der bereits zu den heuristischen Separierungsalgorithmen gehört, auf die wir in Abschnitt 3.3 detailliert eingehen werden. An dieser Stelle sei nur angemerkt, dass, wenn der Algorithmus SEPARIERETRIVIALESCHNITTE einen verletzten $\{0, \frac{1}{2}\}$ -Schnitt bestimmt, das Separierungsproblem $\{0, \frac{1}{2}\}$ -SEP gelöst ist. Nichtsdestoweniger ist man in der Praxis häufig an mehreren verletzten Schnitten interessiert, um einen "möglichst guten" auswählen zu können. Dieser Algorithmus kann daher ebenfalls als Reduktion dienen, da er durch Separieren verletzter $\{0, \frac{1}{2}\}$ -Schnitte die Anzahl der verbleibenden Zeilen verringert.

Wenn *i* wie in Lemma 3.13 definiert ist und $s_i = 0$ gilt, dann ist der erzeugte $\{0, \frac{1}{2}\}$ -Schnitt maximal verletzt.

Der Aufwand für den Algorithmus SEPARIERETRIVIALESCHNITTE beträgt O(mn).

Algorithmus : SEPARIERETRIVIALESCHNITTE

Eingabe : IP (2.1) und eine gebrochene Lösung x^* der LP-Relaxierung des IP **Ausgabe** : verletzter $\{0, \frac{1}{2}\}$ -Schnitt *oder* die Ausgabe, dass keiner gefunden wurde

foreach Zeilenindex i von \overline{A} do

if $\bar{b}_i = 1$ then if $s_i < 1$ then if $\bar{A}_i = \vec{0}$ then Gib verletzten $\{0, \frac{1}{2}\}$ -Schnitt $\lfloor u^T A \rfloor x \le b$ aus, wobei $u_i = \frac{1}{2}$ und $u_k = 0$ für alle $k \ne i$ ist Entferne Zeile (\bar{A}_i, \bar{b}_i) aus dem System (\bar{A}, \bar{b})

Gib aus, dass kein verletzter $\{0, \frac{1}{2}\}$ -Schnitt gefunden wurde

```
Prozedur HEURENTFERNEZEILENMITZUGROSSEMSCHLUPF (\overline{A}, \overline{b}, s, \mathcal{V}^{min})
```

foreach Zeilenindex i von \overline{A} do

if $s_i > 1 - 2\mathcal{V}^{min}$ then Entferme Zeile (\bar{A}_i, \bar{b}_i) aus dem System (\bar{A}, \bar{b})

3.1.2 Heuristische Reduktionen

Es folgen nun einige Beispiele für heuristische Reduktionen. Der erste Ansatz, den wir dabei verfolgen, ist die Einführung einer Mindestverletzung $\mathcal{V}^{min} \in (0, 0.5]$, d. h. $\{0, \frac{1}{2}\}$ -Schnitte mit einer Verletzung $\mathcal{V}(u, x^*) < \mathcal{V}^{min}$ werden nicht separiert. Aus dieser Forderung folgt, dass bestimmte Zeilen des Systems (A, b) entfernt werden können, da sie einen erzeugten $\{0, \frac{1}{2}\}$ -Schnitt zu sehr abschwächten, wenn sie zusammen mit anderen Zeilen zu einem Schnitt kombiniert würden. Dies führt zu folgenden Reduktionen

Lemma 3.14. Sei \mathcal{V}^{min} die geforderte Mindestverletzung eines $\{0, \frac{1}{2}\}$ -Schnittes. Sei außerdem i ein Zeilenindex von (\bar{A}, \bar{b}) , sodass $s_i > 1 - 2\mathcal{V}^{min}$ gelte. Dann kann die Zeile i entfernt werden.

Beweis. Sei ein verletzter $\{0, \frac{1}{2}\}$ -Schnitt durch den Gewichtsvektor $u \in \{0, \frac{1}{2}\}^m$ mit Verletzung $\mathcal{V}(u, x^*) \geq \mathcal{V}^{min}$ gegeben. Dann gilt $s^T(2u) + (\bar{A}^T(2u) \mod 2)x^* \leq 1 - 2\mathcal{V}^{min}$ nach Lemma 2.5. Somit ist $u_i = 0$ für alle Zeilenindizes *i*, für die $s_i > 1 - 2\mathcal{V}^{min}$ gilt. \Box

Die Prozedur HEURENTFERNEZEILENMITZUGROSSEMSCHLUPF ist eine algorithmische Umsetzung dieses Lemmas und besitzt einen Aufwand von O(m).

Wie wir sehen, ist Lemma 3.14 eine heuristische Analogie zu Lemma 3.8. Ebenso können wir Lemma 3.10 anpassen und erhalten

Prozedur HEURENTFERNENICHTKOMBINIERBAREZEILEN (\overline{A} , \overline{b} , s, \mathcal{V}^{min})

 $S^{odd} \leftarrow \min\{s_i \mid \bar{b}_i = 1\}$ foreach Zeilenindex i von \bar{A} do $\begin{bmatrix} \mathbf{if } \bar{b}_i = 0 \text{ then} \\ \\ \mathbf{if } s_i + S^{odd} > 1 - 2\mathcal{V}^{min} \text{ then } \text{ Entferne Zeile } (\bar{A}_i \cdot, \bar{b}_i) \text{ aus dem System } (\bar{A}, \bar{b}) \end{bmatrix}$ foreach Spaltenindex j von \bar{A} do $\begin{bmatrix} \mathbf{if } x_j^* \ge 1 - S^{odd} \text{ then} \\ \\ S_j^{min} \leftarrow \min\{s_i \mid \bar{A}_{ij} = 1\} \\ \text{ foreach Zeilenindex i von } \bar{A} \text{ do} \\ \\ \\ \begin{bmatrix} \mathbf{if } s_i + S_j^{min} > 1 - 2\mathcal{V}^{min} \text{ then } \text{ Entferne Zeile } (\bar{A}_i \cdot, \bar{b}_i) \text{ aus dem System} \\ (\bar{A}, \bar{b}) \end{bmatrix}$

Lemma 3.15. Sei \mathcal{V}^{min} die geforderte Mindestverletzung eines $\{0, \frac{1}{2}\}$ -Schnittes. Außerdem seien das System (\bar{A}, \bar{b}) und der Vektor s der Schlupfwerte der Zeilen gegeben. Außerdem sei $S^{odd} := \min\{s_i | \bar{b}_i = 1\}$ der kleinste Schlupf einer Zeile mit ungerader rechter Seite. Dann kann jede Zeile i mit $\bar{b}_i = 0$ und $s_i + S^{odd} > 1 - 2\mathcal{V}^{min}$ entfernt werden.

Sei ferner $S_k^{min} := \min\{s_i | \bar{A}_{ik} = 1\}$ der kleinste Schlupf einer Zeile mit ungeradem Koeffizienten in Spalte k. Dann kann jede Zeile i entfernt werden, für die eine Spalte j mit $\bar{A}_{ij} = 1$ und $x_i^* \ge 1 - S^{odd}$ existiert und $S_j^{min} + s_i > 1 - 2\mathcal{V}^{min}$ gilt.

Beweis. Der Beweis erfolgt analog zum Beweis des Lemmas 3.10.

Der Aufwand der entsprechenden Prozedur HEURENTFERNENICHTKOMBINIERBAREZEI-LEN beträgt O(mn).

Eine weitere heuristische Reduktion des Systems $(\overline{A}, \overline{b})$ ist das Entfernen von Spalten bei gleichzeitiger Berücksichtigung der sich daraus im schlimmsten Fall resultierende Abschwächung eines $\{0, \frac{1}{2}\}$ -Schnittes. Dies geschieht durch eine entsprechende Anpassung der Mindestverletzung, sodass die separierten Schnitte trotz einer eventuellen Abschwächung verletzt bleiben. Diesen Ansatz formuliert das folgende

Lemma 3.16. Sei $\delta \in [0,1)$ gegeben und sei o. B. d. A. $x_1^* \ge x_2^* \ge \cdots \ge x_n^*$. Wir definieren $k := \min\{\ell \mid \sum_{j=\ell}^n x_j^* \le \delta\}$. Dann können alle Spalten k, \ldots, n entfernt werden, sofern die geforderte Mindestverletzung \mathcal{V}^{min} im reduzierten Problem um $\frac{1}{2}\delta$ erhöht wird.

Beweis. Seien $\delta \in [0,1)$, o. B. d. A. $x_1^* \ge x_2^* \ge \cdots \ge x_n^*$ gegeben und *k* definiert wie in der Behauptung. Sei außerdem (\bar{A}', \bar{b}') das reduzierte System, das durch Entfernen der Spalten

Prozedur HEURIGNORIEREVARIABLENMITKLEINERLSG (\overline{A} , \overline{b} , x^* , δ , \mathcal{V}^{min})

Sortiere Spalten, sodass $x_1^* \ge x_2^* \ge \cdots \ge x_n^*$ $k \leftarrow -1$ $\sigma \leftarrow 0$ for $j \leftarrow n$ downto 1 do $\begin{bmatrix} \sigma \leftarrow \sigma + x_j^* \\ if \sigma > \delta$ then exit for $k \leftarrow j$ if k > -1 then $\mathcal{V}^{min} \leftarrow \mathcal{V}^{min} + \frac{1}{2}\delta$ for $j \leftarrow k$ to n do $\begin{bmatrix} \text{Entferne Spalte } \bar{A}_{.j} \text{ aus dem System } (\bar{A}, \bar{b}) \end{bmatrix}$

 $k, k+1, \dots, n$ aus dem System $(\overline{A}, \overline{b})$ entsteht. Für $u \in \{0, \frac{1}{2}\}^m$ gilt dann

$$\lfloor u^{T}A \rfloor x^{*} = \sum_{j=1}^{n} \lfloor u^{T}A \rfloor_{j} x_{j}^{*} = \sum_{j=1}^{k-1} \lfloor u^{T}A \rfloor_{j} x_{j}^{*} + \sum_{j=k}^{n} \lfloor u^{T}A \rfloor_{j} x_{j}^{*}$$

$$\leq \sum_{j=1}^{k-1} \lfloor u^{T}A \rfloor_{j} x_{j}^{*} + \frac{1}{2} \delta = \lfloor u^{T}A' \rfloor x_{\{1,\dots,k-1\}}^{*} + \frac{1}{2} \delta ,$$

d. h. das Entfernen der Spalten k, \ldots, n kann den entstehenden $\{0, \frac{1}{2}\}$ -Schnitt um maximal $\frac{1}{2}\delta$ gegenüber den Daten aus dem reduzierten System (\bar{A}', \bar{b}') abschwächen. Wir erhöhen daher \mathcal{V}^{min} um $\frac{1}{2}\delta$ und bezeichnen die erhöhte Mindestverletzung mit $\mathcal{V}^{min'}$. Dies garantiert, dass ein aus dem System (\bar{A}', \bar{b}') generierter $\{0, \frac{1}{2}\}$ -Schnitt mit einer Verletzung $\geq \mathcal{V}^{min'}$ auch bezüglich des Originalsystems (\bar{A}, \bar{b}) mindestens $\mathcal{V}^{min'} - \frac{1}{2}\delta = \mathcal{V}^{min}$ verletzt ist. \Box

Eine Vorlage zur algorithmischen Umsetzung ist in der Prozedur HEURIGNORIEREVARIA-BLENMITKLEINERLSG gegeben. Der Aufwand dieser Prozedur beträgt $O(n \log n)$.

3.1.3 Übersicht der einzelnen Reduktionen

Zusammenfassend geben wir in Tabelle 3.1 eine Übersicht der von uns betrachteten Reduktionen. Zu jeder Reduktion sind ein Verweis auf das entsprechende Lemma, der Name der (Pseudocode-)Prozedur und deren Aufwand angegeben. Die Tabelle ist in drei Abschnitte unterteilt: die exakten Reduktionen, $\{0, \frac{1}{2}\}$ -Schnitt-separierende Reduktionen und heuristische Reduktionen. In jedem dieser Abschnitte sind die Reduktionen nach steigendem Aufwand sortiert, wobei o. B. d. A. n < m angenommen wurde. Bei Reduktionen mit verschiedenen, von der Datenstruktur abhängigen Aufwänden ist der schlechtere in der Tabelle aufgeführt.

Lemma	Prozedur	Aufwand
3.4	IgnoriereVariablenMitLsgNull	<i>O</i> (<i>n</i>)
3.5	IgnoriereVariablenMitLsgVarSchranke	O(n)
3.9	EntferneSystemOhneUngeradeRechteSeite	O(m)
3.8	EntferneZeilenMitZuGrossemSchlupf	O(m)
3.1	EntferneNullspalten	O(mn)
3.3	ENTFERNESPALTENSINGLETONS	O(mn)
3.2	EntferneNullzeilen	O(mn)
3.11	ZerlegeInTeilprobleme	O(mn)
3.10	EntferneNichtKombinierbareZeilen	O(mn)
3.6	FasseIdentischeSpaltenZusammen	O(mn(n-1))
3.7	EntferneIdentischeZeilen	O(m(m-1)n)
3.12	Modifizierte Gauss Elimination Mod2	$O(m^2n)$
3.13	SEPARIERETRIVIALESCHNITTE	O(mn)
3.14	HEURENTFERNEZEILENMITZUGROSSEMSCHLUPF	<i>O</i> (<i>m</i>)
3.16	HEURIGNORIEREVARIABLENMITKLEINERLSG	$O(n\log n)$
3.15	HeurEntferneNichtKombinierbareZeilen	O(mn)

Tabelle 3.1: Übersicht der einzelnen Reduktionen

3.1.4 Kombination verschiedener Reduktionen: Preprocessing

Koster et al. haben in ihrem Artikel [46] dargestellt, dass eine Auswahl der hier vorgestellten Reduktionen das System (\bar{A}, \bar{b}) erheblich verkleinern können. In ihren Rechenstudien konnte die Zeilenanzahl des Systems für einige Instanzen durchschnittlich um über 90 Prozent reduziert werden. Dies legt nahe, die Reduktionen im Hinblick auf erwünschte Synergien bzw. unerwünschte Wechselwirkungen zu kombinieren. Wir werden daher verschiedene Reduktionen zu einem parameterisierten Preprocessing-Algorithmus zusammenfassen und dessen Wirksamkeit in Kapitel 4, Abschnitt 4.2 untersuchen. Im Folgenden verwenden wir zur Vereinfachung die Namen der bei den einzelnen Reduktionen in Form von Pseudocode angegebenen Prozeduren anstatt von Verweisen auf die entsprechenden Lemmata.

Koster et al. [46] legen nahe, mit den Reduktionen IGNORIEREVARIABLENMITLSGNULL, IGNORIEREVARIABLENMITLSGVARSCHRANKE und der Reduktion ENTFERNEZEILEN-MITZUGROSSEMSCHLUPF zu beginnen. In ihrer Rechenstudie konnte allein durch diese einfachen Reduktionen die Anzahl der Zeilen des Systems (\bar{A}, \bar{b}) um über 80% reduziert werden. Anschließend wandten sie die Reduktionen MODIFIZIERTEGAUSSELIMINATION-MOD2, SEPARIERETRIVIALESCHNITTE und ENTFERNEIDENTISCHEZEILEN an (wobei sie entstehende Nullzeilen und -spalten während der Durchführung einer Reduktion sofort entfernen, also implizit ENTFERNENULLZEILEN und ENTFERNENULLSPALTEN ebenfalls anwenden) und konnten dadurch die Zeilenanzahl im Durchschnitt um insgesamt 95% reduzieren.

Diese Ergebnisse wollen wir aufgreifen und die entsprechenden Reduktionen in unseren Preprocessing-Algorithmus integrieren. Außerdem sollen zusätzlich die Reduktionen ZER-LEGEINTEILPROBLEME, ENTFERNESYSTEMOHNEUNGERADERECHTESEITE, ENTFER-NENICHTKOMBINIERBAREZEILEN, FASSEIDENTISCHESPALTENZUSAMMEN und HEU-RIGNORIEREVARIABLENMITKLEINERLSG untersucht werden, die nicht Bestandteil der Studien von Koster et al. sind. Zur besseren Verständlichkeit der nachfolgenden Beschreibung gliedern wir unseren Preprocessing-Algorithmus in sechs Module, die jeweils aus einer Abfolge bestimmter Reduktionen bestehen und nacheinander angewandt werden. Abbildung 3.1 gibt eine Übersicht der bfolge der einzelnen Module innerhalb unseres Preprocessings.

Wir geben nun eine detaillierte Beschreibung jedes Moduls.

- **Modul M1** Dieses Modul beinhaltet die in Koster et al. [46] beschriebenen einfachen Reduktionen, die bereits zu einer nennenswerten Verringerung der Größe des Systems (\bar{A}, \bar{b}) führen können.
- **Modul M2** In diesem Modul wird eine Zerlegung des Problems in Teilprobleme durchgeführt, sofern solch eine Zerlegung möglich ist. Alle nachfolgenden Module sind für jedes dieser Teilprobleme anzuwenden.
- **Modul M3** Dieses Modul beinhaltet zwei Analysen: Zunächst wird überprüft, ob für das betrachtete Teilproblem ein einfacher Beweis gegeben werden kann, dass kein verletzter $\{0, \frac{1}{2}\}$ -Schnitt existiert (ENTFERNESYSTEMOHNEUNGERADERECHTESEITE). Nachfolgend wird für Teilprobleme mit nur einer Zeile überprüft, ob diese einen verletzten $\{0, \frac{1}{2}\}$ -Schnitt definiert.
- **Modul M4** In diesem Modul wird versucht, die Spaltenanzahl des betrachteten Teilproblems weiter zu verringern. Dazu werden Nullspalten und Spaltensingletons identifiziert und entfernt. Danach wird versucht die Zeilenanzahl weiter zu reduzieren, indem identische Zeilen und solche mit zu großem Schlupf entfernt werden. Abschließend werden identische Spalten zusammengefasst.
- **Modul M5** In diesem Modul sind die von Koster et al. [46] angewandten Reduktionen Mo-DIFIZIERTEGAUSSELIMINATIONMOD2, SEPARIERETRIVIALESCHNITTE und ENT-FERNEIDENTISCHEZEILEN zusammengefasst.
- **Modul M6** Abschließend wird in diesem Modul versucht, kombinatorisch weitere Zeilen auszuschließen, die nicht in einer Zeilenkombination enthalten sein können, die einen verletzten $\{0, \frac{1}{2}\}$ -Schnitt definiert.

Abbildung 3.1: Abfolge der einzelnen Module innerhalb des Preprocessing-Algorithmus

Abbildung 3.2: Preprocessing-Modul M4δ

Zu Modul M4 möchten wir ein alternatives Modul M4 δ angeben, welches die heuristische Reduktion HEURIGNORIEREVARIABLENMITKLEINERLSG beinhaltet (siehe Abbildung 3.2) und das Modul M4 ggf. ersetzen kann. In Kapitel 4, Abschnitt 4.2 werden wir den Einfluss jedes dieser Module auf die Gesamtwirksamkeit des Preprocessings in einer Rechenstudie eingehend untersuchen. Dabei werden wir jeweils eines oder mehrere der Module "deaktivieren" ohne die relative Reihenfolge der anderen Module zu verändern. Abschlie-Bend geben wir den im Pseudocode PREPROCESSING den beschriebenen Preprocessing-Algorithmus mit den Modulen M1-M6 und dem optionalen Modul M4 δ an. Außerdem ist die eventuelle Forderung nach einer Mindestverletzung berücksichtigt. Im Fall einer geforderten Mindestverletzung $\mathcal{V}^{min} > 0$ werden die Reduktionen ggf. durch ihre heuristischen Entsprechungen ersetzt (vgl. Abschnitt 3.1.2).

3.2 Exakte Separierungsalgorithmen

In den vorherigen Abschnitten haben wir Möglichkeiten untersucht, das System (\bar{A}, \bar{b}) zu reduzieren. Nachfolgend möchten wir das Separierungsproblem $\{0, \frac{1}{2}\}$ -SEP und Methoden, dieses zu lösen, betrachten. Dabei unterscheiden wir wie zuvor schon bei den Reduktionen zwischen exakten Separierungsalgorithmen, die wir in diesem Abschnitt behandeln, und heuristischen Separierungsalgorithmen, die wir im nachfolgenden Abschnitt 3.3 untersuchen. Als *exakten Separierungsalgorithmus* verstehen wir ein Verfahren, welches das gegebene Separierungsproblem $\{0, \frac{1}{2}\}$ -SEP löst. Im Gegensatz dazu kann ein *heuristischer Separierungsalgorithmus* zwar verletzte $\{0, \frac{1}{2}\}$ -Schnitte bestimmen, aber keinen Beweis liefern, dass kein verletzter Schnitt existiert.

Algorithmus : PREPROCESSING	
Fingabe : System (A, b) $(\overline{A}, \overline{b})$ s r^*	
boolsche Werte M1 M2 M3 M4 M4 δ M5 M6	
Ausgabe · reduziertes System $(\bar{A}' \ \bar{B}')$	
$k \leftarrow 1, I^{(1)} \leftarrow I, J^{(1)} \leftarrow J$,
If M1 then / * Modul M1	*/
IGNORIERE VARIABLENNIT LSONULL	
ENTEEDNEZEII ENMITZUGDOSSEMSCHI IDE	
ENTFERNEZEILENMITZUOROSSEMSCHLUFT ENTFERNENII I ZEILEN	
if M^2 then $/+$ Modul M2	+ /
ZERLEGEINTEILPROBLEME	~ /
$k \leftarrow $ #Teilprobleme	
for $\lambda = 1$ to k do	
if $M3$ then $/*$ Modul M3	*/
ENTFERNESYSTEMOHNEUNGERADERECHTESEITE	,
if $ I^{(\lambda)} = 1$ then Überprüfung auf Schnitt	
if $M4$ oder $M4\delta$ then /* Modul M4 bzw. M4 δ	*/
ENTFERNENULLSPALTEN	
ENTFERNESPALTENSINGLETONS	
if $M4\delta$ then /* Erweiterung Modul M4 δ	*/
L HEURIGNORIERE VARIABLEN MITKLEINERLSG	
SEPARIERE I RIVIALESCHNII IE	
ENTFERNEINULLZEILEN ENTFERNEIDENTISCHEZEH EN	
ENTFERNEZEN ENMIZZUC DOGGENS OHLUDE	
ENTFERNEZEILENMITZUOROSSEMSCHLUPF EASSEIDENTISCHE ^S DALTENZUSAMMEN	
if M5 then (+ Modul M5	. /
MODIFIZIERTEGAUSSELIMINATIONMOD2	*/
SEPARIERETRIVIALESCHNITTE	
EntferneIdentischeZeilen	
if <i>M6</i> then / * Modul M6	*/
L ENTFERNENICHTKOMBINIERBAREZEILEN	

3.2.1 Lösen eines ganzzahligen Programmes zur Bestimmung eines verletzten $\{0, \frac{1}{2}\}$ -Schnittes

Wie in Kapitel 2 bereits gezeigt, kann das Separierungsproblem $\{0, \frac{1}{2}\}$ -SEP als ganzzahliges Programm modelliert und gelöst werden (siehe IP (2.4)). Im Folgenden möchten wir verschiedene Zielfunktionen dieses IP angeben und diskutieren. Dazu betrachten wir zunächst das uns bekannte IP (2.4)

$$\begin{array}{rcl} \hat{z} := & \min & s^T v & + (x^*)^T y \\ & s.t. & \bar{b}^T v & -2q & = 1 \\ & \bar{A}^T v & -y & -2r & = \vec{0} \\ & & v \in \{0,1\}^m \\ & & y \in \{0,1\}^n \\ & & r \in \mathbb{Z}_{\geq 0}^n \\ & & q \in \mathbb{Z}_{> 0} \end{array}$$

Wir erinnern uns: Aus einer Optimallösung mit Zielfunktionswert $\hat{z} < 1$ lässt sich ein verletzter $\{0, \frac{1}{2}\}$ -Schnitt konstruieren und eine Optimallösung mit Zielfunktionswert $\hat{z} \ge 1$ liefert den Beweis, dass kein verletzter $\{0, \frac{1}{2}\}$ -Schnitt existiert (vgl. Kapitel 2).

Für unsere weitere Betrachtung führen wir eine neue Nebenbedingung ein. Diese entspricht der Zielfunktion des IP (2.4) und besitzt den Wert 1 als rechte Seite. Dadurch stellen wir sicher, dass aus jeder Lösung des IP ein verletzter $\{0, \frac{1}{2}\}$ -Schnitt konstruiert werden kann und die Unlösbarkeit dieses IP einen Beweis für die Nichtexistenz eines verletzten Schnittes liefert. Dieses erweiterte IP beschreibt somit ein Zulässigkeitsproblem. Wir können nun eine andere Zielfunktion festlegen und wählen die gewichtete Summe der Binärvariablen v und y. Es ist leicht zu sehen, dass diese Zielfunktion mit der alten übereinstimt, wenn als Gewichtsvektor der Vektor der Schlupfwerte s bzw. die gebrochene LP-Lösung x^* gewählt wird. Das beschriebene ganzzahlige Programm lautet somit

$$\hat{z} := \min \ w^{T}v + \tilde{w}^{T}y \\
s.t. \ s^{T}v + (x^{*})^{T}y \leq 1 - \xi \\
\bar{b}^{T}v - 2q = 1 \\
\bar{A}^{T}v - y -2r = \vec{0} \\
v \in \{0,1\}^{m} \\
y \in \{0,1\}^{n} \\
r \in \mathbb{Z}_{\geq 0}^{n} \\
q \in \mathbb{Z}_{\geq 0}
\end{cases}$$
(3.1)

mit Gewichtsvektoren $w \in \mathbb{R}^m$ und $\tilde{w} \in \mathbb{R}^n$ und $0 < \xi \ll 1$. Wir beginnen nun mit der Vorstellung ausgewählter Zielfunktionen und anschließender Diskussion derselben.

Zielfunktion (ZF1): Maximierung der Verletzung Die Zielfunktion des IP (3.1) mit w = s und $\tilde{w} = x^*$, und somit auch die Zielfunktion des ursprünglichen IP (2.4), minimiert
die Summe aus Schlupfwerten der kombinierten Zeilen und Strafkosten für das Abrunden ungerader Koeffizienten. Dies entspricht mit den Überlegungen aus Korollar 2.6 der Maximierung der Verletzung des späteren $\{0, \frac{1}{2}\}$ -Schnittes.

Zielfunktion (ZF2): Maximierung der Verletzung bei Kombination möglichst weniger Gleichungen Fischetti und Lodi legen in ihrem Artikel [27] nahe, eine möglichst geringe Anzahl Zeilen des Systems (A, b) zu kombinieren, um die Entstehung dicht besetzter Zeilen mit betraglich großen Koeffizienten zu vermeiden. Eine Möglichkeit dies zu berücksichtigen, ist die Reduktion der Anzahl von kombinierten Gleichungen mit Schlupfwert 0. Dazu ersetzen wir alle Schlupfwerte 0 durch einen geeignet kleinen Wert $0 < \varepsilon \ll 1$, also $s'_i := s_i$ für alle *i* mit $s_i \neq 0$ und $s'_i := \varepsilon$ für alle *i* mit $s_i = 0$.

Wir merken an, dass die tatsächliche Anzahl kombinierter Zeilen schwer minimiert werden kann, wenn im Rahmen von Reduktionen Zeilen des Systems (\bar{A}, \bar{b}) aggregiert werden, da in diesem Fall Zeilen des reduzierten Systems (\bar{A}', \bar{b}') mehreren Zeilen des Systems (A, b)entsprechen können. Die tatsächliche Anzahl kombinierter Zeilen ergibt sich als symmetrische Differenz $R_{i_1} \triangle R_{i_2} \triangle \cdots \triangle R_{i_k}$ der Zeilenaggregationen $R_{i_1}, R_{i_2}, \ldots, R_{i_k}$ im reduzierten System (\bar{A}', \bar{b}') . Dabei können *k* aggregierte Zeilen maximal $|R_{i_1}| + |R_{i_2}| + \cdots + |R_{i_k}|$ Originalzeilen des Systems (A, b) entsprechen, jedoch auch deutlich weniger.

Zielfunktion (ZF3): Minimierung der Anzahl aggregierter Zeilen Das IP (3.1) mit den Gewichtsvektoren $w = \vec{1}$ und $\tilde{w} = \vec{0}$ minimiert die Anzahl aggregierter Zeilen, die zu einem verletzten $\{0, \frac{1}{2}\}$ -Schnitt kombiniert werden.

Zielfunktion (ZF4): Minimierung der kardinalitätsgewichteten Anzahl aggregierter Zeilen Eine Möglichkeit die Größe der Aggregationen mit einzubeziehen und somit die maximale Anzahl kombinierter Originalzeilen zu minimieren ist die Folgenden: Wir setzen den Gewichtsvektor $w_i = |R_i|$ für alle Zeilen *i* und $\tilde{w} = \vec{0}$. Dadurch ist es möglich, die Summe $|R_{i_1}| + |R_{i_2}| + \cdots + |R_{i_k}|$ zu minimieren, wobei *k* die Anzahl der kombinierten aggregierten Zeilen und R_{i_i} die zugehörigen Zeilenaggregationsmengen seien.

Zielfunktion (ZF5_p): Maximierung der Verletzung bei Kombination weniger kardinalitätsgewichteter aggregierter Zeilen Um die Vorzüge der Zielfunktionen "Maximierung der Verletzung" und "Minimierung der kardinalitätsgewichteten Anzahl aggregierter Zeilen" zu kombinieren, setzen wir die Zielfunktion so, dass primär die Verletzung maximiert und sekundär die Anzahl kardinalitätsgewichteter aggregierter Zeilen minimiert wird. Dazu führen wir einen gewichteten Strafterm ein und setzen konkret $\tilde{w} = \vec{0}$ und $w_i = (s_i + p|R_i|)$, wobei $p \in \mathbb{Q}_{>0}$ sei.

Algorithmus : SEPARIERESCHNITTEMITTELSHILFSIP
Eingabe : IP (2.1) und eine gebrochene Lösung x^* der LP-Relaxierung des IP
Ausgabe : verletzter $\{0, \frac{1}{2}\}$ -Schnitt <i>oder</i> die Ausgabe, dass ein solcher nicht existiert
Erstelle Hilfs-IP (o. B. d. A. IP (3.1) mit gewünschter Zielfunktion) Löse Hilfs-IP
if <i>Hilfs-IP besitzt eine Optimallösung</i> (v^*, y^*, r^*, q^*) then Gib verletzten $\{0, \frac{1}{2}\}$ -Schnitt $\lfloor u^T A \rfloor x \leq b$ aus, wobei $u := \frac{1}{2}v^*$
else
Gib aus, dass kein verletzter $\{0, \frac{1}{2}\}$ -Schnitt existiert

Zielfunktion (ZF6): Vermeidung des Abrundens ungerader Koeffizienten Das Abrunden ungerader Koeffizienten in der Zeile A_i . führt zu einer Abschwächung des entstehenden $\{0, \frac{1}{2}\}$ -Schnittes. Soll dies nach Möglichkeit vermieden werden, so können wir $w = \vec{1}$ und $\tilde{w} = (m+1) \cdot \vec{1}$ setzen. Dann werden ungerade Koeffizienten nur abgerundet, wenn kein stärkerer oder gleich starker $\{0, \frac{1}{2}\}$ -Schnitt existiert, für dessen Erzeugung keine ungeraden Koeffizienten abgerundet werden müssen.

Diskussion der einzelnen Zielfunktionen Als vielversprechenste Varianten (im Hinblick auf die Ergebnisse von Caprara und Fischetti [11], Andreello et al. [5] und Koster et al. [46]) sehen wir einerseits das ursprüngliche IP (2.4), also die Maximierung der Verletzung als Zielfunktion (ZF1), da eine große Verletzung des resultierenden $\{0, \frac{1}{2}\}$ -Schnittes ebenfalls ein "großzügigeres" Abschneiden der gebrochenen Lösung begünstigt. Andererseits sollte dies nicht zu Gunsten sehr dicht besetzter $\{0, \frac{1}{2}\}$ -Schnitte geschehen, da dünn-besetzte Systeme dadurch zu viele Nichtnulleinträge erhielten und die Gesamteffizienz eines IP-Lösers darunter leiden könnte. Um dies zu berücksichtigen, versuchen wir möglichst wenige Zeilen zu kombinieren und wollen die Zielfunktion (ZF3) und (ZF4) ebenso wie die Zusammenführung beider Ansätze in der Zielfunktion (ZF5_p) als Teil einer Rechenstudie in Kapitel 4 untersuchen. Die Zielfunktion (ZF5_p) werden wir dabei mit $p \in \{0.001, 0.01, 0.1\}$ betrachten, um unterschiedlich starke Einflüsse des Strafterms für die Kombination einer großen Anzahl kardinalitätsgewichteter aggregierter Zeilen zu analysieren.

Der Aufwand des zugehörigen Separierungsalgorithmus SEPARIERESCHNITTEMITTELS-HILFSIP ist exponentiell, da ein ganzzahliges Programm gelöst werden muss und dies mit den bekannten Methoden nur mit exponentiellem Aufwand möglich ist.

3.2.2 Spezialverfahren für maximal verletzte $\{0, \frac{1}{2}\}$ -Schnitte

Wir haben in Abschnitt 2.2.2 maximal verletzte $\{0, \frac{1}{2}\}$ -Schnitte betrachtet und festgestellt, dass bei deren Erzeugung keine ungeraden Koeffizienten in der Summenzeile der Originalzeilen abgerundet werden. Dies ist klar, da jede solche Abrundung den Schnitt schwächte

Algorithmus : SEPARIEREMAXIMALVERLETZTESCHNITTE	
Eingabe : IP (2.1) und eine gebrochene Lösung x^* der LP-Relaxie	erung des IP
Ausgabe : ein maximal verletzter $\{0, \frac{1}{2}\}$ -Schnitt oder der Beweis,	dass ein solcher
nicht existiert	
ModifizierteGaussEliminationMod2 ($\bar{A}, \bar{b}, s, x^*, I, J$)	
$\mathbb{I} \leftarrow \{i \in I \mid s_i = 0\}$	
SEPARIERETRIVIALESCHNITTE ($ar{A}_{\mathbb{I}J}, ar{b}_{\mathbb{I}}, s_{\mathbb{I}}, x_{\mathbb{I}}^*$)	

und dieser somit nicht maximal wäre (Eine Ausnahme bilden ungerade Koeffizienten von Variablen *i* mit LP-Lösung x_i^* , deren Abrunden zu keiner Abschwächung führt; vgl. auch Lemma 3.4). Zudem muss der Schlupfwert s_i jeder kombinierten Zeile *i* gleich 0 sein, da jeder positive Schlupfwert einer kombinierten Zeile die Verletzung des Schnittes verringern würde.

Maximal verletzte $\{0, \frac{1}{2}\}$ -Schnitte entsprechen also genau solchen Zeilen *i* des (reduzierten) Systems (\bar{A}', \bar{b}') mit $\bar{A}'_{i} = \vec{0}$ und $\bar{b}'_{i} = 1$ und Schlupfwert $s_{i} = 0$.

In Satz 2.13 haben wir gezeigt, dass maximal verletzte $\{0, \frac{1}{2}\}$ -Schnitte mittels des Gaußschen Eliminationsverfahrens in \mathbb{F}_2 bestimmt werden können. Die vorgestellte Reduktion MODIFIZIERTEGAUSSELIMINATIONMOD2 beinhaltet dies. Existieren also maximal verletzte $\{0, \frac{1}{2}\}$ -Schnitte im Ausgangssystem (\bar{A}, \bar{b}) , so sind diese nach Anwendung von MO-DIFIZIERTEGAUSSELIMINATIONMOD2 als Zeilen $(\bar{0}^T, 1)$ mit Schlupfwert 0 im reduzierten System (\bar{A}', \bar{b}') ablesbar. Der Pseudocode SEPARIEREMAXIMALVERLETZTESCHNITTE beschreibt einen auf dieser Beobachtung beruhenden Separierungsalgorithmus.

Der Algorithmus besteht im Wesentlichen aus der Prozedur MODIFIZIERTEGAUSSELIMI-NATIONMOD2 und dem Algorithmus SEPARIERETRIVIALESCHNITTE. Die Summe derer Aufwände ergibt den Gesamtaufwand für den Algorithmus SEPARIEREMAXIMALVER-LETZTESCHNITTE und beträgt $O(m^2n)$.

3.2.3 Spezialverfahren für Koeffizientenmatrizen mit maximal zwei ungeraden Einträgen pro Zeile

Wir haben in Abschnitt 2.2.3 gezeigt, dass das Separierungsproblem $\{0, \frac{1}{2}\}$ -SEP effizient (d. h. mit polynomiellen Aufwand) gelöst werden kann, wenn die Koeffizientenmatrix A maximal zwei ungerade Einträge pro Zeile besitzt. Außerdem haben wir (im Beweis zu Satz 2.15) bereits implizit einen polynomiellen Separierungsalgorithmus vorgestellt. An dieser Stelle möchten wir diesen explizit in Form des Pseudocodes SEPARIERESCHNITTEMA-TRIXMAX2EPROZEILE angeben. Dabei vereinfachen wir den benötigten Hilfsgraphen \tilde{H} , indem wir z. B. Parallelkanten mit größerem Gewicht oder Kanten mit Gewicht > 1 nicht einfügen.

Algorithmus : SEPARIERESCHNITTEMATRIXMAX2EPROZEILE

Eingabe : IP (2.1) und eine gebrochene Lösung x^* der LP-Relaxierung des IP. Ferner gelte $\bar{A}_i \cdot \vec{1} \leq 2$ für alle Zeilen *i* des Systems (\bar{A}, \bar{b}) **Ausgabe** : verletzter $\{0, \frac{1}{2}\}$ -Schnitt oder die Ausgabe, dass ein solcher nicht existiert $I \leftarrow \{1, \dots, m\}; J \leftarrow \{1, \dots, n\}; \tilde{V}_1 \leftarrow \{v_0\}; \tilde{V}_2 \leftarrow \{v'_0\}; \tilde{E} \leftarrow \emptyset$ **foreach** Spaltenindex $j \in J$ **do**

 $| \tilde{V}_1 \leftarrow \tilde{V}_1 \cup \{v_j\}; \quad \tilde{V}_2 \leftarrow \tilde{V}_2 \cup \{v'_i\}$ $\tilde{V} \leftarrow \tilde{V}_1 \cup \tilde{V}_2$ Kanten-Zeilen-Zuordnung $z: \tilde{V} \times \tilde{V} \to I \cup \{-1\}$ Gewichtsfunktion $w: \tilde{V} \times \tilde{V} \to \mathbb{Q}_{>0} \cup \{+\infty\}$, wobei $w(p,q) = +\infty \Leftrightarrow (p,q) \notin \tilde{E}$ **foreach** Zeilenindex $i \in I$ **do** if $s_i > 1$ then next if \bar{A}_{i} , $\vec{1} = 0$ then Gib verletzten $\{0, \frac{1}{2}\}$ -Schnitt $|u^T A| x \le b$ aus, $u_i := \frac{1}{2}$ und $u_k = 0 \forall k \ne i$ stop if \overline{A}_{i} , $\overline{1} = 1$ then $\alpha \leftarrow j$, wobei $j \in J : \bar{A}_{ij} = 1$ $| \beta \leftarrow 0$ if \bar{A}_{i} . $\vec{1} = 2$ then $\alpha \leftarrow j$, wobei $j \in J : \bar{A}_{ij} = 1$ $\beta \leftarrow k$, wobei $k \in J \setminus \{j\} : \bar{A}_{ik} = 1$ if $\bar{b}_i = 1$ then $\begin{vmatrix} e_1 \leftarrow (v_{\alpha}, v_{\beta}'); & e_2 \leftarrow (v_{\alpha}', v_{\beta}) \end{vmatrix}$ else $\begin{vmatrix} e_1 \leftarrow (v_{\alpha}, v_{\beta}); & e_2 \leftarrow (v'_{\alpha}, v'_{\beta}) \end{vmatrix}$ $\tilde{E} \leftarrow \tilde{E} \cup \{e_1, e_2\}$

foreach *Spaltenindex* $j \in J$ **do**

if
$$x_j^* < w(v_j, v_0)$$
 then

$$\begin{bmatrix}
w(v_j, v_0) \leftarrow x_j^*; & w(v_j', v_0') \leftarrow x_j^* \\
z(v_j, v_0) \leftarrow -1; & z(v_j', v_0') \leftarrow -1 \\
\tilde{E} \leftarrow \tilde{E} \cup \{(v_j, v_0), (v_j', v_0')\}
\end{bmatrix}$$

foreach $v_i \in \tilde{V}_1 \setminus \{v_0\}$ **do** Bestimme einen kürzesten (v_i, v'_i) -Weg W in $\tilde{H} := (\tilde{V}, \tilde{E})$ (vgl. Dijkstra [23]) **if** Weglänge von W < 1 **then** $Z \leftarrow \{z(e) \mid e \in W\} \setminus \{-1\}$ Gib verletzten $\{0, \frac{1}{2}\}$ -Schnitt $\lfloor u^T A \rfloor x \le b$ aus, wobei $u_k = \frac{1}{2}$ für alle $k \in Z$ und $u_k = 0$ für alle $k \notin Z$ ist **stop**

Gib aus, dass kein verletzter $\{0, \frac{1}{2}\}$ -Schnitt existiert

Algorithmus : BesitztMatrixMax2EinträgeProZeile?
Eingabe : Matrix $A \in \{0,1\}^{m \times n}$
Ausgabe : "ja", wenn Matrix maximal zwei ungerade Einträge pro Zeile besitzt,
sonst "nein"
for $i \leftarrow 1$ to m do
$N \leftarrow 0$
for $j \leftarrow 1$ to n do
if $A_{ij} = 1$ then $N \leftarrow N + 1$
if $N > 2$ then Gib "nein" aus; stop
Gib "ja" aus

Der Aufwand des Algorithmus SEPARIERESCHNITTEMATRIXMAX2EPROZEILE beträgt bei Verwendung des Algorithmus von Dijkstra [23] zusammen mit Fibonacci-Heaps (vgl. Fredman und Tarjan [28, 29]) zur Kürzeste-Wege-Berechnung $O(n(m+n\log n))$. Das Problem zu bestimmen, ob eine Matrix $A \in \mathbb{Q}^{m \times n}$ die geforderte Eigenschaft besitzt, ist ebenfalls polynomiell lösbar mit Aufwand O(mn). Ein entsprechender Algorithmus wird im Pseudocode BESITZTMATRIXMAX2EINTRÄGEPROZEILE? beschrieben.

3.2.4 Spezialverfahren für Koeffizientenmatrizen mit maximal zwei ungeraden Einträgen pro Spalte

Analog zum vorherigen Abschnitt betrachten wir nun Koeffizientenmatrizen A mit maximal zwei ungeraden Einträgen pro Spalte. In Abschnitt 2.2.4 haben wir bewiesen, dass das $\{0, \frac{1}{2}\}$ -SEP für Koeffizientenmatrizen, die diese Struktur erfüllen, effizient lösbar ist. Wir haben dort bereits implizit in Form eines konstruktiven Beweises ein polynomielles Verfahren zur Separierung verletzter $\{0, \frac{1}{2}\}$ -Schnitte beschrieben. Nun möchten wir eine algorithmische Umsetzung explizit angeben. Dies geschieht in Form des Pseudocodes SEPARIERE-SCHNITTEMATRIXMAX2EPROSPALTE. Wir versuchen auch den in diesem Spezialverfahren benötigten Hilfsgraphen H z. B. durch Aggregation paralleler Kanten zu vereinfachen.

Der Aufwand für SEPARIERESCHNITTEMATRIXMAX2EPROSPALTE wird durch den Aufwand für die Bestimmung einer ungerade markierten Knotenmenge, die einen minimal (graphentheoretischen) Schnitt definiert, dominiert und beträgt daher $O(n^2m\log(\frac{n^2}{m}))$ (vgl. Letchford et al. [49] sowie Padberg und Rao [53]). Die Überprüfung der Matrixeigenschaft ist ebenfalls effizient mit Aufwand O(mn) möglich. Wir geben dazu den Pseudocode BE-SITZTMATRIXMAX2EINTRÄGEPROSPALTE? eines entsprechenden Algorithmus an.

Algorithmus : SEPARIERESCHNITTEMATRIXMAX2EPROSPALTE

Eingabe : IP (2.1) und eine gebrochene Lösung x^* der LP-Relaxierung des IP. Ferner gelte $\bar{A}_{i}^{T} \vec{1} \leq 2$ für alle Spalten *j* der Matrix \bar{A} Ausgabe : verletzter $\{0, \frac{1}{2}\}$ -Schnitt *oder* die Ausgabe, dass ein solcher nicht existiert $I \leftarrow \{1, \dots, m\}; J \leftarrow \{1, \dots, n\}; V \leftarrow \{v_0\}; E \leftarrow \emptyset$ Knoten-Zeilen-Zuordnung $z: V \rightarrow I \cup \{-1\}$ $z(v_0) \leftarrow -1$ Knotenmarkierungen $\pi: V \to \{0, 1\}$ Kantengewichtsfunktion $w: V \times V \to \mathbb{Q}_{>0} \cup \{+\infty\}$, wobei $w(p,q) = +\infty \Leftrightarrow (p,q) \notin E$ **foreach** Zeilenindex $i \in I$ **do** if $\bar{A}_{i} \neq \vec{0}^T$ then $V \leftarrow V \cup \{v_i\}$ $\begin{bmatrix} z(v_i) \leftarrow i \\ \pi(v_i) \leftarrow \bar{b}_i \end{bmatrix}$ $\pi(v_0) \leftarrow (\sum_{i \in I} \bar{b}_i) \mod 2$ **foreach** *Spaltenindex* $j \in J$ **do** if $x_i^* > 1$ then next if $\bar{A}_{i}^T \vec{1} = 0$ then next if $\bar{A}_{\cdot i}^T \vec{1} = 1$ then $\dot{\alpha} \leftarrow i$, wobei $i \in I : \bar{A}_{ij} = 1$ $\beta \leftarrow 0$ if $\bar{A}_{\cdot i}^T \vec{1} = 2$ then $\alpha \leftarrow i_1$, wobei $i_1 \in I : \bar{A}_{i_1 j} = 1$ $\beta \leftarrow i_2$, wobei $i_2 \in I \setminus \{i_2\}$: $\bar{A}_{i_2j} = 1$ **foreach** *Zeilenindex* $i \in I$ **do** if $s_i < w(v_i v_0)$ then

 $w(v_iv_0) \leftarrow s_i$ $E \leftarrow E \cup \{v_i v_0\}$

Bestimme Knotenmenge U mit $\pi(U)$ gerade und $w(\delta(U))$ minimal (vgl. Padberg und Rao [53])

if $U \neq \emptyset$ und $w(\delta(U)) < 1$ then if $v_0 \in U$ then $U \leftarrow V \setminus U$ $Z \leftarrow \{z(v) \mid v \in U\}$ Gib verletzten $\{0, \frac{1}{2}\}$ -Schnitt $|u^T A| x \le b$ aus, wobei $u_k = \frac{1}{2}$ für alle $k \in Z$ und $u_k = 0$ für alle $k \notin Z$ ist stop Gib aus, dass kein verletzter $\{0, \frac{1}{2}\}$ -Schnitt existiert

 Algorithmus : BESITZTMATRIXMAX2EINTRÄGEPROSPALTE?

 Eingabe : Matrix $A \in \{0, 1\}^{m \times n}$

 Ausgabe : "ja", wenn Matrix maximal zwei ungerade Einträge pro Spalte besitzt, sonst "nein"

 for $j \leftarrow 1$ to n do

 $N \leftarrow 0$

 for $i \leftarrow 1$ to m do

 $if A_{ij} = 1$ then $N \leftarrow N+1$

 if N > 2 then Gib "nein" aus; stop

 Gib "ja" aus

3.3 Heuristische Separierungsalgorithmen

Im Folgenden werden wir heuristische Separierungsalgorithmen mit polynomiellen Aufwänden zur Bestimmung verletzter $\{0, \frac{1}{2}\}$ -Schnitte betrachten. Wir erinnern kurz daran, dass, im Gegensatz zu den exakten Verfahren, die hier betrachteten Heuristiken nicht jeden verletzten $\{0, \frac{1}{2}\}$ -Schnitt bestimmen und somit auch keinen Beweis für die Nichtexistenz weiterer verletzter $\{0, \frac{1}{2}\}$ -Schnitte liefern können. Der günstigere Aufwand einer Heuristik (im Vergleich zu einem exakten Verfahren) zusammen mit der Zielsetzung, zwar "nicht alle" aber zumindest "für den Lösungsprozess gute" verletzte Schnitte zu separieren, motivieren eine detailliertere Betrachtung verschiedener heuristischer Separierungsalgorithmen.

Wir unterscheiden im Folgenden zwischen IP-basierten (Abschnitt 3.3.1) und kombinatorischen Heuristiken (Abschnitte 3.3.2 bis 3.3.4). Insbesondere die Heuristiken wollen wir im Detail untersuchen, da diese sich polynomieller kombinatorischer Verfahren bedienen, um einen verletzten $\{0, \frac{1}{2}\}$ -Schnitt zu separieren. Außerdem möchten wir an dieser Stelle anmerken, dass einige der Heuristiken das System (\bar{A}, \bar{b}) unverändert lassen, während andere es während ihrer Durchführung verändern und verändert belassen. Dies ist insofern von Bedeutung, als auf unveränderte Syteme nach Anwendung einer Heuristik stets weitere Heuristiken (oder sogar exakte Verfahren) angewandt werden können. Diesen Aspekt werden wir in Abschnitt 3.5 weiter erörtern.

Bevor wir mit der Darstellung der heuristischen Separierungsalgorithmen beginnen, betrachten wir noch einmal den Ansatz der Mindestverletzung, den wir im Rahmen der heuristischen Reduktionen in Abschnitt 3.1.2 vorgestellt haben, und übertragen diesen auf Separierungsalgorithmen.

Mindestverletzung Analog zu unserem ersten Ansatz bei Betrachtung heuristischer Reduktionen (vgl. Abschnitt 3.1.2) können wir eine Mindestverletzung \mathcal{V}^{min} der separierten $\{0, \frac{1}{2}\}$ -Schnitte fordern und alle Schnitte mit einer geringeren Verletzung ignorieren. Dieser Ansatz ist bei allen nachfolgend vorgestellten Heuristiken zusätzlich verfolgbar. Dies kann ebenfalls bei den im vorherigen Abschnitt untersuchten exakten Separierungsalgorithmen erfolgen und führt dazu, dass die entsprechenden Algorithmen dann zu heuristischen Separierungsalgorithmen werden. Immer wenn wir eine Mindestverletzung $\mathcal{V}^{min} \in (0,0.5]$ fordern, müssen wir den entsprechenden Separierungsalgorithmus wie folgt anpassen: Entscheidungen, die auf der Ungleichung $s^T(2u) + (\bar{A}^T(2u) \mod 2)x^* < 1$ beruhen (vgl. Anmerkungen zum IP (2.4)), müssen unter Berücksichtigung der Mindestverletzung bzgl. der Ungleichung $s^T(2u) + (\bar{A}^T(2u) \mod 2)x^* \leq 1 - 2\mathcal{V}^{min}$ getroffen werden (da $\mathcal{V}^{min} > 0$ ist hier auch Gleichheit erlaubt).

3.3.1 Unvollständiges Lösen eines ganzzahligen Programmes zur Separierung eines verletzten $\{0, \frac{1}{2}\}$ -Schnittes

Beginnen möchten wir unsere Betrachtung von Heuristiken ausgehend vom exakten Separierungsalgorithmus SEPARIERESCHNITTEMITTELSHILFSIP, dessen Aufwand exponentiell ist (sofern $\mathcal{P} \neq \mathcal{NP}$ gilt). Eine Möglichkeit, diesen Algorithmus als Heuristik zu nutzen, besteht darin, die Berechnung des Hilfs-IP (also IP (2.4) bzw. IP (3.1)) abzubrechen, bevor eine Optimallösung gefunden wurde. Mögliche Kriterien für einen solchen Abbruch sind z. B. eine maximale Berechnungszeit, eine maximale Anzahl verarbeiteter Branch&Bound-Knoten im Branch&Bound-Baum des IP oder eine bestimmte Anzahl ermittelter zulässiger Lösungen bzw. Lösungen mit Zielfunktionswert < 1. Auch die letztgenannten Beschränkungen dienen letztlich dazu, die Berechnungszeit des IP-Lösers für das IP (2.4) (implizit) einzuschränken. Gegenüber der direkten Zeitbeschränkung haben sie allerdings den Vorteil, dass sie unabhängig vom verwendeten Rechner, also der Leistungsfähigkeit und Auslastung dessen CPU etc., sind.

3.3.2 Enumeration aller möglichen Kombinationen von maximal k Zeilen

Diese Heuristik enumeriert alle möglichen Kombinationen von 1, 2, ..., k Zeilen des Systems (\bar{A}, \bar{b}) und prüft, ob aus der Kombination ein verletzter $\{0, \frac{1}{2}\}$ -Schnitt generiert werden kann. Die Heuristik betrachtet jeweils zunächst alle Kombinationen aus κ ($0 < \kappa < k$) Zeilen, und wenn dabei kein verletzter $\{0, \frac{1}{2}\}$ -Schnitt gefunden wurde, alle Kombinationen aus $\kappa + 1$ Zeilen usw. Ebenfalls wird berücksichtigt, dass stets eine ungerade Anzahl von Zeilen *i* mit $\bar{b}_i = 1$ in den Kombinationen enthalten sein muss. Dies schränkt die Anzahl der zu überprüfenden Kombinationen weiter ein. Die Ergebnisse von Koster et al. [46] legen nahe, dass in den meisten Fällen kleine *k* (d. h. $k \leq 2$) ausreichen, sofern die Originalzeilen durch Reduktionen wie MODIFIZIERTEGAUSSELIMINATIONMOD2 im Vorfeld hinreichend stark aggregiert wurden. Wir geben nachfolgend den Pseudocode HEURSEPARIERESCHNITTEE-NUMERIEREZEILENKOMB für den beschriebenen Separierungsalgorithmus an.

Wir betrachten nachfolgend den Aufwand dieses Algorithmus: Seien dazu $m_0 := |I_0|$ und $m_1 := |I_1|$. Der Aufwand für einen Durchlauf der die Zeilen 8 bis 15 umfassenden Schleife

```
Algorithmus : HEURSEPARIERESCHNITTEENUMERIEREZEILENKOMB
     Eingabe : IP (2.1) und eine gebrochene Lösung x^* der LP-Relaxierung des IP und
                       der Parameter k
     Ausgabe : ein verletzter \{0, \frac{1}{2}\}-Schnitt oder die Aussage, dass ein solcher nicht
                      gefunden wurde
 1 I_0 \leftarrow \{i \in \text{Zeilenindexmenge } I \mid \bar{b}_i = 0\}
 2 I_1 \leftarrow \{i \in \text{Zeilenindexmenge } I \mid \bar{b}_i = 1\}
 3 \kappa \leftarrow 1
     while \kappa \leq k do
 4
           \iota \leftarrow 1
 5
            while \iota \leq \kappa do
 6
                  foreach P \in \{L \subseteq I_1 \mid |L| = \iota\} do
 7
                        foreach Q \in \{L \subseteq I_0 \mid |L| = \kappa - \iota\} do
 8
                              Wähle i_0 \in P \cup Q beliebig.
 9
                              (\bar{A}^{\Sigma}, \bar{b}^{\Sigma}, \bar{s}^{\Sigma}) \leftarrow (\bar{A}_{i_0}, \bar{b}_{i_0}, s_{i_0})
10
                              foreach i \in P \cup Q \setminus \{i_0\} do

| (\bar{A}^{\Sigma}, \bar{b}^{\Sigma}, s^{\Sigma}) \leftarrow (\bar{A}^{\Sigma} \oplus \bar{A}_{i}, \bar{b}^{\Sigma} \oplus \bar{b}_{i}, s^{\Sigma} + s_{i})
11
12
                             if s^{\Sigma} + (\bar{A}^{\Sigma})^T x^* < 1 then
13
                                    Gib verletzten \{0, \frac{1}{2}\}-Schnitt \lfloor u^T A \rfloor x \leq b aus,
14
                                        wobei u_i = \frac{1}{2} \forall i \in P \cup Q und u_i = 0 sonst
                                    stop
15
                 \iota \leftarrow \iota + 2
16
           \kappa \gets \kappa \! + \! 1
17
     Gib aus, dass kein verletzter \{0, \frac{1}{2}\}-Schnitt gefunden wurde
```

ist $O(\kappa(n+m))$. Ferner wird sie maximal $\binom{m_0}{\kappa-1}$ durchlaufen. Analog gibt es maximal $\binom{m_1}{1}$ Durchläufe der übergeordneten Schleife (Zeilen 7 bis 15). Die innere while-Schleife (Zeile 6 bis Zeile 16) wird höchstens $(1 + \lfloor \frac{\kappa-1}{2} \rfloor)$ -mal durchlaufen und die äußere Schleife maximal *k*-mal. Daraus ergibt sich durch Multiplikation und Anwendung der Vandermondeschen Identität die folgende Abschätzung

$$\begin{split} &\sum_{\kappa=1}^{k} \sum_{\lambda=0}^{\lfloor\frac{k-1}{2}\rfloor} \binom{m_1}{1+2\lambda} \binom{m_0}{\kappa-(1+2\lambda)} \kappa(n+m) \\ &= (n+m) \sum_{\kappa=1}^{k} \left(\kappa \binom{m_0+m_1}{\kappa} - \sum_{\lambda=\lfloor\frac{\kappa-1}{2}\rfloor+1}^{\kappa} \binom{m_1}{1+2\lambda} \binom{m_0}{\kappa-(1+2\lambda)} \right) \\ &\leq (n+m) \sum_{\kappa=1}^{k} \kappa \binom{m}{\kappa} \leq (n+m) \sum_{\kappa=1}^{k} \frac{m^{\kappa}}{(\kappa-1)!} \leq (n+m) \sum_{\kappa=1}^{k} m^{\kappa} \end{split}$$

und somit ein Gesamtaufwand von $O((n+m)m^k)$ für den Algorithmus HEURSEPARIERE-SCHNITTEENUMERIEREZEILENKOMB.

3.3.3 Erweitertes Gaußsches Eliminationsverfahren

Die nun folgende Heuristik ist motiviert durch die Reduktion MODIFIZIERTEGAUSSELI-MINATIONMOD2, beschrieben in Lemma 3.12. Sie versucht durch Additionen (modulo 2) Zeilen des Systems (\bar{A}, \bar{b}) derart zu aggregieren, dass einzelne aggregierte Zeilen verletzten $\{0, \frac{1}{2}\}$ -Schnitten entsprechen. Dies kann dann mit verhältnismäßig geringem Aufwand überprüft werden.

Besonders einfach ist diese Überprüfung für Zeilen der Form $(\vec{0}^T, 1)$, denn wie wir aus Lemma 2.5 wissen, existiert für jeden verletzten $\{0, \frac{1}{2}\}$ -Schnitt ein binärer Vektor $v \in \{0, 1\}^m$, sodass $s^T v + (\bar{A}^T v \mod 2) x^* < 1$ und $\bar{b}^T v \mod 2 = 1$ gilt. Aus Lemma 3.13 wissen wir, dass eine Zeile $(\bar{A}_i..,\bar{b}_i) = (\vec{0}^T, 1)$ mit Schlupfwert s_i sowohl die Ungleichung $s^T v + (\bar{A}^T v \mod 2) x^* < 1$ mit $v_i = 1$ und $v_k = 0$ für alle $k \neq i$ erfüllt als auch die Kongruenz $\bar{b}^T v \equiv 1 \mod 2$ und somit einen verletzten $\{0, \frac{1}{2}\}$ -Schnitt definiert. Dieser $\{0, \frac{1}{2}\}$ -Schnitt $\lfloor u^T A \rfloor x \leq b$ ist gegeben durch die Zeilenaggregationsmenge R_i der Zeile i, indem wir $u_k = \frac{1}{2}$ für alle $k \in R_i$ und $u_k = 0$ für alle $k \neq R_i$ setzen. Wir möchten daher, dass unsere Heuristik versucht, Zeilen der Form $(\vec{0}^T, 1)$ zu erzeugen.

Nach diesen Vorüberlegungen betrachten wir nun die Heuristik HEURSEPARIERESCHNIT-TEERWGAUSSELIMINATION im Detail: Ähnlich wie in der Reduktion MODIFIZIERTE-GAUSSELIMINATIONMOD2 wird ein modiziertes Gaußsches Eliminationsverfahren verwendet, um Zeilen der Form $(\vec{0}^T, 1)$ durch Zeilenaggregation zu erzeugen. Indem stets eine Schlupfwert-minimale Zeile als Pivotzeile gewählt wird, soll der Schlupfwert der aggregierten Zeilen gering gehalten werden. Entstehen durch die Aggregationen dennoch zu große

```
Algorithmus : HEURSEPARIERESCHNITTEERWGAUSSELIMINATION
  Eingabe : IP (2.1) und eine gebrochene Lösung x^* der LP-Relaxierung des IP
  Ausgabe : ein verletzter \{0, \frac{1}{2}\}-Schnitt oder die Aussage, dass ein solcher nicht
                    gefunden wurde
  \mathbb{I} \gets I
  k \leftarrow 1
  K \leftarrow \emptyset
  while \mathbb{I} \neq \emptyset und k \leq n do
        J(\mathbb{I}) \leftarrow \{ j \in J \mid \exists i \in \mathbb{I} \text{ mit } \bar{A}_{ii} = 1 \}
        if J(\mathbb{I}) = \emptyset then exit while
        Bestimme j \in J(\mathbb{I}), sodass x_j^* \ge x_\ell^* für alle \ell \in J(\mathbb{I}) \setminus \{j\}
        I(j) \leftarrow \{i \in \mathbb{I} \cup K \mid \bar{A}_{ij} = 1\}
        Wähle r \in I(j), sodass s_r \leq s_t für alle t \in I(j) \setminus \{r\}
        if s_r > 1 then
              Lösche (\bar{A}_{I(i)}, \bar{b}_{I(i)}) aus dem System (\bar{A}, \bar{b})
            _ next while
        while I(j) \neq \emptyset do
              Wähle i \in I(j), sodass s_i \leq s_t für alle t \in I(j) \setminus \{i\}
              if s_r + s_i > 1 then
                    Lösche (\bar{A}_{I(i)}, \bar{b}_{I(i)}) aus dem System (\bar{A}, \bar{b})
                 exit while
              (\bar{A}_{i\cdot}, \bar{b}_i, s_i) \leftarrow (\bar{A}_{r\cdot} \oplus \bar{A}_{i\cdot}, \bar{b}_r \oplus \bar{b}_i, s_r + s_i)
           I(j) \leftarrow I(j) \setminus \{i\}
        Tausche Zeilen k und r
        Tausche Spalten k und j
        K \leftarrow K \cup \{k\}
      \mathbb{I} \leftarrow \mathbb{I} \setminus \{k\}
  \mathbb{I} \leftarrow \{i \in I \mid \bar{b}_i = 1\}
  ENTFERNESPALTENSINGLETONS (\bar{A}_{\mathbb{I}}, \bar{b}_{\mathbb{I}}, s_{\mathbb{I}}, x^*)
  \#S \leftarrow 0
  foreach i \in \{t \in \mathbb{I} \mid s_t < 1\} do
        if \bar{A}_{i} = \vec{0}^T then
              Gib verletzten \{0, \frac{1}{2}\}-Schnitt |u^T A| x \le b aus,
                  wobei u_i = \frac{1}{2} und u_e = 0 für alle e \neq i ist
              \#S \leftarrow \#S + 1
```

if #S = 0 then Gib aus, dass kein verletzter $\{0, \frac{1}{2}\}$ -Schnitt gefunden wurde

Schlupfwerte (d. h. einzelne Zeilen mit Schlupf > 1), so werden die entsprechenden Zeilen sofort aus dem System entfernt. Wie bei der Reduktion MODIFIZIERTEGAUSSELIMINA-TIONMOD2 werden nach Anwendung der modifizierten Gaußschen Elimination die entstandenen Spaltensingletons entfernt (sowie dabei erneut entstehende Zeilen mit zu großem Schlupf). Bei den verbleibenden Zeilen ungerader rechter Seite wird dann geprüft, ob sie der gesuchten Form entsprechen und somit einen verletzten $\{0, \frac{1}{2}\}$ -Schnitt definieren.

Den genauen Ablauf der Heuristik HEURSEPARIERESCHNITTEERWGAUSSELIMINATION geben wir im folgenden Pseudocode noch einmal an.

Die Aufwandsbetrachtung verläuft größtenteils analog zu der der Prozedur MODIFIZIER-TEGAUSSELIMINATIONMOD2. Die äußere while-Schleife wird maximal min $\{m, n\}$ -mal durchlaufen. Innerhalb dieser Schleife dominiert der Aufwand der inneren while-Schleife (maximal *m* Durchläufe mit jeweils einer Modulo-2-Addition, d. h. jeweils m + n Additionen unter Berücksichtigung der Zeilenaggregationsmenge R_i). Es ergibt sich daher für diese Schleife ein Aufwand von $O(m^2n)$, der die Reduktion ENTFERNESPALTENSINGLETONS und die nachfolgende foreach-Schleife dominiert. Also beträgt der Gesamtaufwand des Algorithmus HEURSEPARIERESCHNITTEERWGAUSSELIMINATION $O(m^2n)$.

Nach Anwendung des Gaußschen Eliminationsverfahrens kann natürlich nicht nur nach Zeilen $(\bar{A}_{i.}, \bar{b}_{i}) = (\vec{0}^{T}, 1)$ gesucht werden, sondern allgemein nach einzelnen Zeilen *i*, die $s_i + \bar{A}_{i.}x^* < 1$ und $\bar{b}_i = 1$ erfüllen. Im Pseudocode würde dann die Bedingung der if-Abfrage nach der letzten foreach-Schleife durch $\bar{A}i \cdot x^* + s_i < 1$ ersetzt werden.

3.3.4 LU-weakening-Heuristik

Die in diesem Abschnitt betrachtete Heuristik wurde von Caprara und Fischetti [11, 12] entwickelt. Die Grundidee dieses Verfahrens ist die Folgende: Besitzt eine Zeile $\sum_{j \in J} A_{ij} x_j \leq b_i$ mehr als zwei ungerade Einträge, so wird diese durch geeignete Addition von unteren Variablenschranken $lb_j \leq x_j$ und oberen Variablenschranken $x_j \leq ub_j$ abgeschwächt, sodass die entstehende Summenzeile (A_{i}^{LU}, b_i^{LU}) maximal zwei ungerade Einträge besitzt. Dies wird für alle Zeilen angewandt und anschließend das abgeschwächte System $(\bar{A}^{LU}, \bar{b}^{LU})$ effizient gelöst (vgl. SEPARIERESCHNITTEMATRIXMAX2EPROZEILE).

Die Abschwächung wird von Caprara und Fischetti wie folgt beschrieben. Seien eine Ungleichung $\sum_{j\in J} A_{ij}x_j \leq b_i$ des gegebenen Systems (A,b) zusammen mit der Spaltenindexmenge $O_i := \{j \in J \mid A_{ij} \equiv 1 \mod 2\}$ ihrer Nichtnulleinträge gegeben, wobei J die Spaltenindexmenge des Systems und $ub_j \in \mathbb{R}_{\geq 0} \cup \{+\infty\}$ die oberere Variablenschranke der Variablen x_j bezeichne. Sei $|O_i| \geq 3$, dann wird diese Ungleichung durch die nachfolgenden LU-Abschwächungen

$$A_{ih}x_h + A_{ik}x_k - \sum_{j \in J \setminus O_i} A_{ij}x_j + \sum_{j \in L} (A_{ij} - 1)x_j + \sum_{j \in U} (A_{ij} + 1)x_j \le b_i + \sum_{j \in U} ub_j$$

für alle $h, k \in O_i, h < k$ und für alle Partitionen (L, U) von $O_i \setminus \{h, k\}$ ersetzt.

Von diesen im Allgemeinen exponentiell vielen Ungleichungen müssen für jedes Tripel (i,h,k) nur die beiden LU-Abschwächungen betrachten werden, die den geringsten Schlupfwert bei einerseits geradem bzw. andererseits ungeradem Wert $b_i + \sum_{j \in U} ub_j$ besitzen. Zur Bestimmung dieser beiden Abschwächungen geben Caprara und Fischetti ein dynamisches Programm an, das für jedes $j \in O_i \setminus \{h,k\}$ die beiden Möglichkeiten $j \in L$ und $j \in U$ betrachtet. Dadurch ergibt sich für die Durchführung der LU-Abschwächung ein Aufwand von O(n).

Andreello, Caprara und Fischetti beschreiben in ihrem Artikel [5] einen heuristischen Separierungsalgorithmus für das $\{0, \frac{1}{2}\}$ -SEP mit einem Gesamtaufwand von $O(mn^3)$, der die LU-Abschwächung verwendet.

3.4 Übersicht der einzelnen Separierungsalgorithmen

Wir möchten abschließend zu unserer Betrachtung der Separierungsalgorithmen eine Übersicht in Tabelle 3.2 angeben. Die Tabelle ist in vier Abschnitte unterteilt: allgemein exakte, für Spezialfälle exakte, allgemein heuristische und kombinierte Separierungsalgorithmen.

Abschnitt	Algorithmus / [Voraussetzungen]	Aufwand
3.2.1	SEPARIERESCHNITTEMITTELSHILFSIP	exponentiell
3.2.3	SepariereSchnitteMatrixMax2EProZeile	$O(n(m+n\log n))$
3.2.4	SEPARIERESCHNITTEMATRIXMAX2EPROSPALTE	$O(n^2 m \log(\frac{n^2}{m}))$
3.1.1	SepariereTrivialeSchnitte	O(mn)
3.2.2	SepariereMaximalVerletzteSchnitte	$O(m^2n)$
3.3	Zeit-, Knoten- oder Lösungsanzahl-beschränktes IP	exponentiell
3.3.2	HeurSepariereSchnitteEnumeriereZeilenkomb	$O((m+n)m^k)$
3.3.3	HEURSEPARIERESCHNITTEERWGAUSSELIMINATION	$O(m^2n)$
3.3.4	HEURSEPARIERESCHNITTELUWEAKENING	$O(mn^3)$

Tabelle 3.2: Übersicht der einzelnen Separierungsalgorithmen

Der Aufwand zu erkennen, ob eine Matrix maximal zwei ungerade Einträge pro Zeile oder pro Spalte besitzt, beträgt O(mn) und wird durch die Aufwände der diese Strukturen voraussetzenden polynomiellen Separierungsalgorithmen dominiert.

3.5 Kombinationen einzelner Separierungsalgorithmen

In diesem Abschnitt möchten wir die Möglichkeit zur Kombination einzelner Separierungsalgorithmen betonen und vielversprechende Kombinationen angeben. Bei der Betrachtung der möglichen Reduktionen des Systems (\bar{A}, \bar{b}) haben wir bereits in Abschnitt 3.1.4 verschiedene Reduktionen zu einem Preprocessing-Algorithmus zusammengefügt, um in späteren Rechenstudien das Zusammenwirken der einzelnen Preprocessing-Module zu untersuchen. Wir betrachten nun die Frage, wie sich einzelne Separierungsalgorithmen zu einem effizienten Separierungsalgorithmus zusammenführen lassen. Insbesondere ist uns dabei die Einbeziehung von polynomiellen exakten Algorithmen für Teilklassen von $\{0, \frac{1}{2}\}$ -Schnitten wichtig.

Wir unterscheiden zwischen Separierungsalgorithmen, deren Anwendung das System (\bar{A}, \bar{b}) invariant lassen und solchen, die das System verändern. Nach den erstgenannten können auch weitere exakte Separierungsalgorithmen aufgerufen werden, ohne die Exaktheit deren Separierung zu beinträchtigen. Nach den letztgenannten ist lediglich eine weitere heuristische Separierung verletzter $\{0, \frac{1}{2}\}$ -Schnitte möglich.

Wir empfehlen daher, zu Beginn das System auf die Voraussetzungen für die polynomiellen Spezialverfahren zu überprüfen, um diese anzuwenden. Heuristische Separierungsalgorithmen sollten nur dann verwendet werden, wenn polynomielle exakte Verfahren nicht anwendbar sind oder eine große Anzahl separierter $\{0, \frac{1}{2}\}$ -Schnitte zur späteren Auswahl möglichst wirksamer Schnitte erwünscht ist. Ebenso ermöglicht der Separierungsalgorithmus SEPARIERETRIVIALESCHNITTE die verletzten $\{0, \frac{1}{2}\}$ -Schnitte bereits im Preprocessing zu bestimmen und Rechenzeit- oder Speicheraufwendige Anwendungen weiterer Separierungsalgorithmen zu verhindern oder einfach die Menge der separierten Schnitte für eine spätere Auswahl weiter zu vergrößern.

In Kapitel 4 werden wir diese Ansätze in verschiedenen Rechenstudien aufgreifen und den Separierungsalgorithmus SEPARIERETRIVIALESCHNITTE mit dem polynomiellen Spezialverfahren SEPARIERESCHNITTEMATRIXMAX2EPROZEILE verbinden und bei Nichtanwendbarkeit des letztgenannten eine allgemeine Heuristik verwenden.

3.6 Abschließende Bemerkungen zur Entwicklung und Anwendung der vorgestellten Separierungsalgorithmen

Auch die Verwendung polynomieller Separierungsalgorithmen kann für einzelne Probleminstanzen zu einer Erhöhung der Gesamtlösungszeit führen. Insbesondere bei kleinen Probleminstanzen ist es denkbar, dass der Aufbau spezieller Datenstrukturen etc. und die anschließende Separierung mehr Zeit beanspruchen, als durch das Hinzufügen eines verletzten Schnittes und die daraus resultierende Einschränkung der weiteren Enumeration des Branch&Bound-Baumes gewonnen wird. Es stellt sich demnach die Frage, ob a priori entschieden werden kann, wann der Aufwand einer $\{0, \frac{1}{2}\}$ -Schnitte-Separierung gerechtfertigt ist. Dies ist im Allgemeinen schwierig.

Stattdessen kann z. B. versucht werden, das Systems (A, b) auf eine Teilmenge der vorhandenen Zeilenmenge einzuschränken, für die eine Separierung sinnvoll erscheint. Wir möchten daher einige Kriterien angeben bzw. Überlegungen formulieren, die bei der Separierung von $\{0, \frac{1}{2}\}$ -Schnitten und bei der Implementierung entsprechender Separierungsalgorithmen bedacht werden sollten. Polynomielle Spezialfälle sollten berücksichtigt werden, wenn der gemeinsame Aufwand diese zu identifizieren und anschließend exakt zu separieren geringer ist als der eines allgemeinen heuristischen Separierungsalgorithmus. Der Versuch das Problem in Teilprobleme zu zerlegen (ZERLEGEINTEILPROBLEME) ist ebenfalls empfehlenswert, da jedes Teilproblem gesondert betrachtet werden kann. Insbesondere ist der Aufwand für die Zerlegung mit O(mn) geringer als der jedes hier vorgestellten Separierungsalgorithmus. Die Teilprobleme sollten sortiert werden, sodass Teilprobleme zuerst bearbeitet werden, die eine geringe Zeilen- oder Spaltenanzahl oder ein geringes geometrischen Mittel der Schlupfwerte ihrer Zeilen besitzen. Für z. B. nur aus einer Zeile bestehende Teilsysteme lässt sich schnell bestimmen, ob diese einen verletzten $\{0, \frac{1}{2}\}$ -Schnitt liefern. Dabei müssen keine aufwendigen Datenstrukturen für weitere Separierungsalgorithmen erzeugt und initialisiert werden. Für andere Teilprobleme lässt sich z. B. mittels der Reduktion ENTFERNESYSTE-MOHNEUNGERADERECHTESEITE mit Aufwand O(m) ein Beweis finden, dass kein verletzter $\{0, \frac{1}{2}\}$ -Schnitt existiert.

Ein Ansatz eine möglichst kleine aber dennoch vielversprechende Teilmenge von Zeilen des Systems (A,b) zu bestimmen, ist daher, die Separierung mit "günstigen" (d. h. kleinen etc.) Teilsystemen zu beginnen und bei Separierung eines verletzten $\{0, \frac{1}{2}\}$ -Schnittes (oder mehrerer, falls gewollt) abzubrechen, ohne die verbleibenden "teureren" (d. h. größeren etc.) Teilsysteme zu betrachten. Dies ist natürlich kein Kriterium für die Wirksamkeit der gefundenen Schnitte. Gängige Maße (vgl. Andreello et al. [5], Achterberg [2]), wie z. B. der Quotient aus Verletzung und Norm der Nichtnullkoeffizienten des resultierenden Schnittes oder die Parallelität der zum Schnitt gehörigen Schnittebene zur Zielfunktionshyperebene, lassen sich allerdings in die bisherigen Überlegungen insofern miteinbeziehen, als z. B. die Entscheidung zur Behandlung weiterer Teilprobleme nicht nur von der Anzahl bisher gefundener verletzter $\{0, \frac{1}{2}\}$ -Schnitte, sondern auch von deren Wirksamkeit bzgl. der genannten Maße abhängig gemacht werden kann.

Kapitel 4

Rechenstudien

In diesem Kapitel werden wir die aus den theoretischen Ergebnissen des Kapitels 2 motivierten und in Kapitel 3 formulierten Algorithmen im Rahmen ausgewählter Rechenstudien untersuchen. Dabei werden für ganzzahlige Instanzen aus bekannten Problembibliotheken wie der MIPLIB [4, 7] verschiedene Reduktionen, Algorithmen und Parametereinstellungen gegenübergestellt. Mittels der gewonnenen Ergebnisse beurteilen wir die einzelnen Rechenstudien und leiten abschließend Empfehlungen für die Verwendung einzelner Algorithmen, Reduktionen und Parametereinstellungen in der Praxis ab.

4.1 Testumgebung

Alle im Folgenden vorgestellten Rechenstudien wurden auf einer *Dell Precision Workstation* 370 durchgeführt. Diese besitzt einen 3.8GHz Intel Pentium Prozessor, 1024kB L2-Cache, 2GB RAM (ECC DDR2-SDRAM, 533MHz) und Linux (openSUSE 10.2) als Betriebssystem.

Branch&Cut-Framework Als Branch&Cut-Framework für unsere Implementierung verwenden wir *SCIP* Version 0.90k [1, 3], ein am Konrad-Zuse-Zentrum für Informationstechnik Berlin vornehmlich von Tobias Achterberg entwickeltes nichtkommerzielles Programm zum Lösen von Constraint Integer Programs (siehe Achterberg [2]). Dieses bietet eine transparente und sehr flexible Umgebung, um unsere Implementierung einzubetten. Außerdem ist es zu gängigen nichtkommerziellen und kommerziellen MIP-Lösern wie z. B. CPLEX [42] konkurrenzfähig, wie Rechenstudien u. a. von Achterberg [2] und Wolter [60] zeigen. Die Flexibilität von SCIP ermöglicht die Auswahl verschiedener LP-Löser (z. B. CPLEX [42], SoPlex [61, 62]) zum Lösen der LP-Relaxierungen während des Branch&Cut-Verfahrens. Wir haben CPLEX 10.1.1 [42] als LP-Löser gewählt.

Priorität (prio)	Beschreibung (engl.)
-1000	Gomory MIR cuts separator
-2000	Strong CG cuts separator (Letchford and Lodi)
-3000	complemented mixed integer rounding cuts separator
	(Marchand's version)
-4000	flow cover cuts separator (c-MIR approach)
-5000	clique separator of stable set relaxation
	Priorität (prio) -1000 -2000 -3000 -4000 -5000

Tabelle 4.1: Standard-Separierungsalgorithmen (-Separatoren) in SCIP mit Prioritätswerten. Die Angaben sind aus SCIP 0.90k [3] übernommen.

Implementierung Im Rahmen dieser Arbeit wurden die 15 in Kapitel 3 vorgestellten Reduktionen, die exakten Separierungsalgorithmen SEPARIERESCHNITTEMITTELSHILFSIP, SEPARIERESCHNITTEMATRIXMAX2EPROZEILE, SEPARIERETRIVIALESCHNITTE und SEPARIEREMAXIMALVERLETZTESCHNITTE sowie die drei heuristischen Separierungsalgorithmen HEURSEPARIERESCHNITTEENUMERIEREZEILENKOMB und HEURSEPARIE-RESCHNITTEERWGAUSSELIMINATION implementiert. Ebenso wurden die in Abschnitt 3.3 beschriebenen Beschränkungen für SEPARIERESCHNITTEMITTELSHILFSIP sowie die optionale Festlegung einer Mindestverletzung umgesetzt. Wir entschieden uns bewusst dazu, den Algorithmus HEURSEPARIERESCHNITTELUWEAKENING nicht zu implementieren, da durch Unterschiede in der Implementierung (zu Andreello et al. [5]) keine Vergleichbarkeit der Rechenergebnisse gegegen wäre. Unsere Implementierung der vorgestellten Separierungsalgorithmen erfolgte in C und ist in SCIP integriert. Dabei wurden die einzelnen Reduktionen und $\{0, \frac{1}{2}\}$ -Schnitte-Separierungsalgorithmen als eigenes Separierungsmodul (in SCIP ein sogenannter Separator) gleichberechtigt zu den vorhandenen Standard-Separatoren in SCIP implementiert (vgl. Tabelle 4.1 für eine Übersicht der Standard-Separatoren). Bei jedem Separierungsaufruf durch SCIP wird die Gesamtmenge der Zeilen und Spalten des Systems der aktuellen LP-Relaxierung sowie dessen Optimallösung an unseren Algorithmus übergeben. Diese Menge umfasst die Originalungleichungen (soweit nicht durch SCIP als dominiert identifiziert und entfernt), von SCIP separierte Schnittungleichungen und bereits zugefügte $\{0, \frac{1}{2}\}$ -Schnitte früherer Separierungsaufrufe. Insbesondere können dadurch auch $\{0,\frac{1}{2}\}$ -Schnitte, die erst einem höheren, d. h. t > 1, $\{0,\frac{1}{2}\}$ -Abschluss $(A,b)_{1/2}^{(t)}$ des Systems (A,b) angehören, separiert werden.

Maximale Rechenzeiten und Speicherbedarfe Für alle Rechenstudien setzen wir, sofern nicht explizit anders erwähnt, für jede einzelne Instanz eine maximale Rechenzeit von 1 Stunde und einen maximalen Speicherbedarf von 2 GB fest.

Probleminstanzen Die in den Rechenstudien betrachteten Probleminstanzen entstammen der MIPLIB3.0 [7], der MIPLIB2003 [4] und Hans Mittelmanns Internetseite "Benchmarks

for Optimization Software" [50]. Ausgewählt wurden alle Instanzen mit ausschließlich ganzzahligen Variablen und ganzzahligen Koeffizienten sowie Instanzen, deren gebrochene Koeffizienten oder Variablen im Presolving von SCIP eliminiert werden (z. B. 10teams aus der MIPLIB3.0). Insgesamt sind dies 57 Instanzen. Diese Probleminstanzen sind mit zusätzlichen Informationen zur Problemgröße, dem Optimalwert z_{IP} , dem Optimalwert z_{LP} der LP-Relaxierung sowie weiteren Angaben zur Lösbarkeit mittels SCIP in Anhang A aufgeführt. Ist kein Optimalwert bekannt, so ist die beste bekannte zulässige Lösung angegeben und der Wert für z_{IP} in Klammern gesetzt.

In einzelnen Tests werden wir diese Testmenge geeignet in "einfache" und "schwere" Instanzen partitionieren und dadurch zwischen optimal lösbaren und nicht optimal lösbaren Probleminstanzen (unter Berücksichtigung des verwendeten Rechners und der gesetzten Schranken für Rechenzeit und Speicherbedarf) entscheiden.

Analyse Zur Anwendung in der Analyse der Rechenstudien möchten wir die folgenden Größen definieren.

Definition 4.1. Seien ein IP und dessen LP-Relaxierung gegeben und bezeichne z_{IP} , z_{LP} bzw. z den Zielfunktionswert einer Optimallösung des IP, der LP-Relaxierung bzw. einer für die LP-Relaxierung zulässigen Lösung. Dann heißt

$$gap := |z_{IP} - z_{LP}|$$
Ganzzahligkeitslücke

$$gap_{rel}\% := \begin{cases} 100 \cdot \frac{gap}{|z_{IP}|} & \text{falls } z_{IP} \neq 0 \\ 0 & \text{falls } z_{IP} = z_{LP} = 0 \\ \infty & \text{falls } z_{IP} = 0, z_{LP} \neq 0 \end{cases}$$
relative Ganzzahligkeitslücke

$$gap \ closed\% := \begin{cases} 100 \cdot \frac{|z - z_{LP}|}{gap} & \text{falls } z_{IP} \neq z_{LP} \\ 100 & \text{falls } z_{IP} = z_{LP} \end{cases}$$
(prozentuale) Verringerung
der Ganzzahligkeitslücke.

In den Auswertungen der Rechenstudien betrachten wir verschiedene Gütemaße für die einzelnen Testläufe. Bei der Präsentation der Ergebnisse und der anschließenden Analyse und Diskussion möchten wir allerdings diese Maße nicht für jede einzelne Probleminstanz angeben, sondern stattdessen gemittelte Werte als Kennzahlen eines gesamten Testlaufs. Analog zu Achterberg [2] nutzen wir dabei die folgenden Mittelwerte.

Definition 4.2. Seien die Werte $v_1, \ldots, v_k \in \mathbb{R}_{\geq 0}$ und $s \in \mathbb{R}_{\geq 0}$ gegeben. Dann heißt

$$\begin{split} \gamma(v_1, \dots, v_k) &:= \left(\prod_{i=1}^k \max\{v_i, 1\}\right)^{\frac{1}{k}} & geometrisches Mittel, \\ \gamma_s(v_1, \dots, v_k) &:= \left(\prod_{i=1}^k \max\{v_i + s, 1\}\right)^{\frac{1}{k}} - s & um \ s \ verschobenes \ geometrisches Mittel, \\ \emptyset(v_1, \dots, v_k) &:= \frac{1}{k} \sum_{i=1}^k v_i & arithmetisches \ Mittel. \end{split}$$

Wenn die Größenordnungen der Werte v_i stark abweichen, können sich die verschiedenen Mittelwerte stark unterscheiden. Dabei wird das arithmetische Mittel besonders durch große Werte beeinflusst, während beim geometrischen Mittel kleine Werte genauso stark gewichtet werden wie große. Aufgrund der höheren Heterogenität unserer Probleminstanzen und unter Berücksichtigung der Ergebnisse von Koster et al. [46] erwarten wir bei der Messung von z. B. Knotenanzahlen und Gesamtlösungzeiten Werte, die sich mitunter um vier bis fünf Zehnerpotenzen unterscheiden. Daher ist das arithmetische Mittel für unsere Analyse ungeeignet, da eine Vielzahl kleiner Werte durch wenige große Werte dominiert werden könnte. Ebenso ist das geometrische Mittel ungeeignet, da eine Veränderung kleiner Werte wie z. B. der Lösungszeit von 0.1s auf 0.2s genauso stark gewichtet würde die Veränderung von 100s zu 200s. Aber gerade die erstgenannte Veränderung könnte z. B. auch auf Ungenauigkeiten bei der Messung von Zeitspannen nahe 0 beruhen könnte. Wir wählen daher das verschobene geometrische Mittel als Kompromiss (vgl. Achterberg [2]). Dabei werden Messwerte kleiner s in einem um s verschobenen geometrischen Mittel nicht so stark berücksichtigt. In Testläufen mit vielen verrechneten Werten eienr Größenordnung wählen wir oftmals s = 1, um Werte in [0,1) zu berücksichtigen (anstatt sie auf 1 zu setzen) ohne sie besonders stark zu gewichten.

Weiterhin möchten wir anmerken, dass bei der Bewertung eines Testlaufs durch ausgewählte Mittelwerte weitere Zusatzinformationen nicht mehr erkennbar sind. Deswegen führen wir die detaillierten Ergebnisse für sämtliche Rechenstudien, Testläufe und Probleminstanzen in den Anhängen B bis F auf, sodass sie ggf. nachgeschlagen werden können.

4.2 Rechenstudie: Wirksamkeit des Preprocessings

Wir beginnen unsere Rechenstudien mit einer ersten Rechenstudie zur Wirksamkeit der in Kapitel 3, Abschnitt 3.1 vorgestellten Reduktionen. Diese haben wir in Abschnitt 3.1.4 desselben Kapitels zu sechs Modulen (M1–M6) kombiniert und in dem Algorithmus PRE-PROCESSING zusammengefasst. Wir werden nun die Wirksamkeit dieses Algorithmus in Abhängigkeit der einzelnen Module untersuchen. Dies geschieht mit dem Ziel, ein möglichst effizientes Preprocessing zu bestimmen und dieses als Grundlage für spätere Rechenstudien zu verwenden.

Parameter Wir belassen die Parameter von SCIP auf den Standardwerten und setzen lediglich eine Knotenbeschränkung von 1 (d. h., es wird nur der Wurzelknoten des Branch&Bound-Baumes gelöst). Außerdem setzen wir die Mindestverletzung V^{min} auf 0.01, wobei wir diesen Wert zur Vermeidung numerischer Probleme relativ groß wählen. Dennoch wollen wir im Folgenden von exakten Reduktionen sprechen. Wir nutzen den exakten Algorithmus SEPARIERESCHNITTEMITTELSHILFSIP, um die Laufzeitveränderung einer exakten Separierung zu messen. Damit die einzelnen Preprocessing-Varianten untereinander vergleichbar sind, möchten wir, dass stets dieselbe Reihenfolge von LP-Relaxierungen (erzeugt durch die von SCIP separierten Schnitte etc.) gelöst wird. Deswegen werden keine separierten $\{0, \frac{1}{2}\}$ -Schnitte hinzugefügt, die durch die Prozedur SEPARIERETRIVIALESCHNITTE oder den genannten Separierungsalgorithmus gefunden werden. Es werden somit nur durch SCIP separierte Schnittungleichungen (vgl. Tabelle 4.1) tatsächlich dem System hinzugefügt, was zu einer Neuberechnung der erweiterten LP-Relaxierung führt und anschließend zu einem erneuten Separierungsaufruf unseres $\{0, \frac{1}{2}\}$ -Schnitte-Separierungsalgorithmus.

Messgrößen Die Messgrößen, die wir mittels dieser Rechenstudie untersuchen wollen, sind

Reduktion in Anzahl der Zeilen und Spalten: Mit Δ_{Zeilen} bzw. $\Delta_{Spalten}$ bezeichnen wir die prozentuale Reduktion der Zeilen- bzw. Spaltenanzahl und definieren diese als

 $\Delta_{Zeilen} := 100 - 100 \cdot \frac{\text{Anzahl Zeilen nach dem Preprocessing}}{\text{Anzahl Zeilen vor dem Preprocessing}}$ $\Delta_{Spalten} := 100 - 100 \cdot \frac{\text{Anzahl Spalten nach dem Preprocessing}}{\text{Anzahl Spalten vor dem Preprocessing}}.$

Bei jedem Aufruf des Separierungsalgorithmus durch SCIP wird die Einzelreduktion der Zeilen- und Spaltenanzahl als Summe über alle Teilprobleme prozentual zur Größe des Ausgangsproblems gemessen. Anschließend wird das um s = 1 verschobene geometrische Mittel dieser Einzelwerte über alle Aufrufe gebildet. Dieser Mittelwert beschreibt die durchschnittliche prozentuale Reduktion (in Zeilen bzw. Spalten) für die betrachtete Instanz. Außerdem berechnen wir das um s = 1 verschobene geometrische Mittel über alle Instanzen als Gesamtkenngröße für jede betrachtete Preprocessing-Variante.

Beschleunigung einer exakten Separierung: Als Indiz für die realisierte "Vereinfachung" des Problems durch das durchgeführte Preprocessing möchten wir den Beschleunigungsfaktor F_{exakt} der durchschnittlichen Lösungszeit des Separierungsalgorithmus SEPARIERESCHNITTEMITTELSHILFSIP ermitteln. Wir definieren daher

 $F_{exakt} := \frac{\text{SEPARIERESCHNITTEMITTELSHILFSIP ohne Preprocessing}}{\text{arithmetisches Mittel der Lösungszeit von}}$ SEPARIERESCHNITTEMITTELSHILFSIP mit Preprocessing

Wir berechnen F_{exakt} für jede Instanz und das um s = 1 verschobene geometrische Mittel dieser Einzelwerte als Kenngröße für den gesamten Test.

Matrixstruktur: Ebenfalls möchten wir die Struktur der Koeffizientenmatrix \overline{A} untersuchen. Dazu definieren wir

> $\tau :=$ Anzahl zu betrachtender Teilprobleme nach Zerlegung $\tau_{ent fernt} :=$ Anzahl während der Zerlegung entfernter Teilprobleme

sowie die prozentuale Anzahl von Teilproblemen mit besonderer Struktur

$$\Phi_{2E/Ze} := 100 \cdot \frac{\text{Anzahl Teilprobleme mit} \le 2 \text{ ungeraden Einträgen pro Zeile}}{\tau}$$

$$\Phi_{2E/Sp} := 100 \cdot \frac{\text{Anzahl Teilprobleme mit} \le 2 \text{ ungeraden Einträgen pro Spalte}}{\tau}$$

und die relative Größe dieser Teilprobleme prozentual zur Gesamtgröße

$$\begin{split} \Psi_{2E/Ze}^{Zeilen} &:= 100 \cdot \frac{\text{Gesamtzeilenanzahl aller Teilprobleme, für die }\bar{A}_{i} \cdot \vec{1} \leq 2 \text{ gilt}}{\text{Gesamtzeilenanzahl aller Teilprobleme}} \\ \Psi_{2E/Ze}^{Spalten} &:= 100 \cdot \frac{\text{Gesamtspaltenanzahl aller Teilprobleme, für die }\bar{A}_{i} \cdot \vec{1} \leq 2 \text{ gilt}}{\text{Gesamtspaltenanzahl aller Teilprobleme}} \\ \Psi_{2E/Sp}^{Zeilen} &:= 100 \cdot \frac{\text{Gesamtzeilenanzahl aller Teilprobleme, für die }\bar{A}_{.j}^{T} \vec{1} \leq 2 \text{ gilt}}{\text{Gesamtzeilenanzahl aller Teilprobleme, für die }\bar{A}_{.j}^{T} \vec{1} \leq 2 \text{ gilt}} \\ \Psi_{2E/Sp}^{Zeilen} &:= 100 \cdot \frac{\text{Gesamtzeilenanzahl aller Teilprobleme, für die }\bar{A}_{.j}^{T} \vec{1} \leq 2 \text{ gilt}}{\text{Gesamtzeilenanzahl aller Teilprobleme}} \\ \Psi_{2E/Sp}^{Spalten} &:= 100 \cdot \frac{\text{Gesamtspaltenanzahl aller Teilprobleme, für die }\bar{A}_{.j}^{T} \vec{1} \leq 2 \text{ gilt}}{\text{Gesamtspaltenanzahl aller Teilprobleme}} \end{split}$$

Für jede Instanz berechnen wir die geometrischen Mittelwerte der Einzelwerte von τ und $\tau_{entfernt}$. Die Messgrößen $\Phi_{2E/Ze}$, $\Phi_{2E/Sp}$, $\Psi_{2E/Ze}^{Zeilen}$, $\Psi_{2E/Ze}^{Spalten}$, $\Psi_{2E/Sp}^{Spalten}$ und $\Psi_{2E/Sp}^{Spalten}$ berechnen wir für jede Instanz als arithmetisches Mittel über die einzelnen Separierungsaufrufe durch SCIP. Wir wählen hierbei das arithmetische Mittel, da sich die Größenordnung des Systems (\bar{A}, \bar{b}) zwischen den einzelnen Aufrufen nicht ändert und das arithmetische Mittel eine Verrechnung der Werte der einzelnen Teilprobleme mit derselben Struktur ermöglicht. Anschließend geben wir wiederum die um s = 1 verschobenen geometrischen Mittel über alle Instanzen für jede Messgröße als Kennzahl für den gesamten Test an.

Probleminstanzen Diese Rechenstudie umfasst alle Probleminstanzen.

Testvarianten Wir betrachten den vorgestellten Algorithmus PREPROCESSING und deaktivieren eines oder mehrere der enthaltenen Module M1 bis M6, ohne die relative Reihenfolge der anderen Module zu verändern (vgl. Abbildung 3.1 auf Seite 61). Konkret untersuchen wir die in Tabelle 4.2 angegebenen Preprocessing-Varianten.

Ergebnisse

Die Ergebnisse der Rechenstudie 4.2 sind in den Tabellen 4.3 bis 4.5 zusammengefasst. Die Details der Testläufe sind nach den einzelnen Messgrößen gegliedert in den Anhängen B (Reduktion der Systemgröße), C (Analyse der Struktur Koeffizientenmatrix) sowie D (Beschleunigung der allgemeinen exakten Separierung) aufgeführt.

	Module							
Name	M1	M2	M3	M4	M5	M6		
kein Preprocessing								
PREPROCESSING I	٠	•		•	•	•		
PREPROCESSING II	•	•	•	•	•	•		
PREPROCESSING III				•				
PREPROCESSING IV					•			
PREPROCESSING V	•	•		•		•		
PREPROCESSING VI	٠	•	•					
PREPROCESSING VII	٠	•	•		•			
PREPROCESSING VIII	٠	•	•		•	•		
PREPROCESSING IX	٠	•	•	•	•			
PREPROCESSING X	•	•	•	•	•	•		

Tabelle 4.2: Übersicht der in der Rechenstudie untersuchten Preprocessing-Varianten mit Angabe der aktivierten (●) und deaktivierten (•) Einzelmodule

Name	Δ_{Zeilen}	$\Delta_{Spalten}$
kein Preprocessing	0.00	0.00
PREPROCESSING I	69.08	74.29
PREPROCESSING II	0.15	0.24
PREPROCESSING III	29.76	0.00
PREPROCESSING IV	11.36	1.31
PREPROCESSING V	0.00	0.00
PREPROCESSING VI	69.97	75.13
PREPROCESSING VII	75.13	77.53
PREPROCESSING VIII	75.17	77.58
PREPROCESSING IX	75.33	77.76
PREPROCESSING X	75.37	77.81

Tabelle 4.3: Verringerung der Größe des Systems (\bar{A}, \bar{b})

Reduktion der Systemgröße In Tabelle 4.3 ist die Reduktion der Systemgröße als verschobenes geometrisches Mittel über alle Probleminstanzen für jede Preprocessing-Variante angegeben. In den Varianten I bis V wird jeweils nur ein Modul (bzw. bei II zwei Module) isoliert betrachtet. Dabei können wir feststellen, dass PREPROCESSING I bereits eine Verringerung um ca. 69% der Zeilen- und ca. 74% der Spaltenanzahl bewirkt. Das PRE-PROCESSING III, welches der Variante I ähnelt, erreicht lediglich eine ca. 30% ige Reduktion der Zeilenanzahl und kein Entfernen von Spalten. Auch PREPROCESSING IV ist mit einer durchschnittlichen Verringerung um 11% der Zeilenanzahl dem PREPROCESSING I unterlegen. Im Zusammenspiel der einzelnen Module (Varianten VI-X) wird allerdings eine Steigerung der Wirksamkeit deutlich: Mit der Aktivierung weiterer Module ergibt sich eine stetige Erhöhung der erzielten Reduktion. In PREPROCESSING X gelingt es schließlich unter Anwendung aller Module M1 bis M6 die Zeilenanzahl des Systems (\bar{A}, \bar{b}) um 75.37% und die Spaltenanzahl um 77.81% zu reduzieren. Dabei ist anzumerken, dass aufgrund von Synergien, z. B. die Kombination der Module M1 (PREPROCESSING I) und M4 (PREPRO-CESSING III), keine Verringerung der Zeilenanzahl von entsprechend 69.08% + 29.76%, sondern lediglich die beschriebenen 75.37% erreicht werden.

Die erzielten Prozentpunkte in der Reduktion der Größe von (\bar{A}, \bar{b}) sind geringer als in Koster et al. [46] angegeben. Dies führen wir darauf zurück, dass Koster et al. ihre Rechenstudien auf einer anderen und kleineren Menge von Probleminstanzen durchführen sowie ausschließlich den ersten Chvátal-Abschluss betrachten, d. h. verletzte $\{0, \frac{1}{2}\}$ -Schnitte werden stets nur aus der Menge der Originalzeilen erzeugt. Außerdem lösen sie die einzelnen Instanzen nicht nur im Wurzelknoten sondern vollständig bzw. bis zu einer Zeitbeschränkung von einer Stunde, wobei sie die Einzelmesswerte innerhalb einer Instanz arithmetisch mitteln. Die qualitativen Aussagen bzgl. der Wirksamkeit der einfachen Reduktionen (Modul M1) sowie die der Reduktion MODIFIZIERTEGAUSSELIMINATIONMOD2 (in Modul M5) werden durch unsere Rechenstudien bestätigt.

Matrixstruktur Die Ergebnisse der Strukturanalyse der Koeffizientenmatrix \overline{A} sind in Tabelle 4.4 zusammengefasst und im Detail in Anhang C aufgeführt.

Wir betrachten zunächst die Zerlegung des Problems in Teilprobleme. Dies geschieht in Modul M2. Eine isolierte Anwendung wie in PREPROCESSING II führt im Allgemeinen zu keiner nennenswerten Zerlegung oder Identifikation redundanter Teilprobleme. In Verbindung mit den einfachen Reduktionen (Modul M1) in den Varianten PREPROCESSING VI bis PREPROCESSING X ist es allerdings möglich, das Problem nutzbringend zu zerlegen: Es können im Mittel $\tau_{entfernt} = 6$ Teilprobleme als redundant erkannt und entfernt werden, sodass lediglich nur $\tau = 1.75$ Teilprobleme durchschnittlich betrachtet werden brauchen.

Als nächstes untersuchen wir die Matrixstruktur der Koeffizientenmatrix \overline{A} im Hinblick auf die Anwendbarkeit polynomieller Spezialverfahren. Bei Anwendung der Varianten PRE-PROCESSING I bis PREPROCESSING VI existieren keine (Teil-)Probleme, deren Koeffizientenmatrizen die Voraussetzungen des Satzes 2.15 oder 2.17 erfüllen. Beginnend mit dem

Name	$\tau_{entfernt}$	τ	$\Phi_{2E/Ze}$	$\Phi_{2E/Sp}$	$\Psi^{Zeilen}_{2E/Ze}$	$\Psi^{Spalten}_{2E/Ze}$	$\Psi^{Zeilen}_{2E/Sp}$	$\Psi^{Spalten}_{2E/Sp}$
kein Preprocessing	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PREPROCESSING I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PREPROCESSING II	0.18	1.21	0.00	0.00	0.00	0.00	0.00	0.00
PREPROCESSING III	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PREPROCESSING IV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PREPROCESSING V	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PREPROCESSING VI	6.00	1.75	0.00	0.00	0.00	0.00	0.00	0.00
PREPROCESSING VII	6.00	1.75	8.93	6.58	4.85	4.87	3.51	3.63
PREPROCESSING VIII	6.00	1.75	9.04	6.66	4.90	4.92	3.57	3.66
PREPROCESSING IX	6.00	1.75	10.14	8.41	5.35	5.33	4.08	4.10
PREPROCESSING X	6.00	1.75	10.27	8.50	5.42	5.40	4.15	4.15

Tabelle 4.4: Analyse der Struktur von \overline{A}

PREPROCESSING VII lassen sich in den reduzierten Systemen die gewünschten Strukturen identifizieren. Dabei werden in jeder folgenden Preprocessing-Variante für einen immer größeren Anteil der Teilprobleme (sowohl in Anzahl als auch in Größe) diese Strukturen erkennbar. Insbesondere besitzen nach Anwendung des PREPROCESSING X 10.27% (bzw. 8.50%) aller zerlegten Teilprobleme maximal zwei ungerade Zeileneinträge (bzw. Spalteneinträge). Unter Berücksichtigung der Größe der Teilprobleme bzgl. der Gesamtgröße aller Teilprobleme lässt sich feststellen, dass durch das PREPROCESSING X ca. 5.40% (bzw. 4.15%) aller Zeilen und Spalten in Teilproblemen mit maximal zwei ungeraden Einträgen pro Zeile (bzw. Spalte) enthalten sind. Für diese Teilprobleme sind die polynomiellen Separierungsalgorithmen SEPARIERESCHNITTEMATRIXMAX2EPROZEILE bzw. SEPARIERE-SCHNITTEMATRIXMAX2EPROSPALTE anwendbar. Abschließend möchten wir bemerken, dass eine höhere Anzahl und größere Teilprobleme mit maximal zwei Zeilen- als solche mit maximal zwei Spalteneinträgen identifiziert werden.

Beschleunigung der exakten Separierung Wir betrachten nun die Beschleunigung der Separierung mittels SEPARIERESCHNITTEMITTELSHILFSIP durch Verwendung des Preprocessings. Die Ergebnisse dazu sind in Tabelle 4.5 aufgeführt. Der entsprechende Testlauf zur Preprocessing-Variante PREPROCESSING IV ist bei Erstellung der Analyse noch nicht vollständig beendet gewesen, sodass wir uns entscheiden ihn aufgrund der mangelnden Vergleichbarkeit nicht miteinzubeziehen. Anhand der aufgeführten Ergebnisse können wir feststellen, dass außer in der Variante PREPROCESSING III durch Verwendung eines Preprocessings stets eine Beschleunigung der exakten Separierung durch Lösen des Hilfs-IP gelingt. Dabei schwanken die Werte zwischen einer Beschleunigung um den Faktor 1.04 und 5.41. Des Weiteren können wir mit steigender Anzahl aktivierter Einzelmodule auch einen tendenziellen Anstieg der Beschleunigung verzeichnen, wobei die Aktivierung

Name	ØSeparierungsdauer	Fexakt	Anzahl Zeitüberschreitungen
kein Preprocessing	389.58	1.00	16
PREPROCESSING I	163.15	2.38	10
PREPROCESSING II	373.65	1.04	16
PREPROCESSING III	419.12	0.93	14
PREPROCESSING IV	-	-	-
PREPROCESSING V	361.94	1.08	15
PREPROCESSING VI	136.91	2.84	7
PREPROCESSING VII	70.38	5.54	8
PREPROCESSING VIII	94.92	4.10	11
PREPROCESSING IX	76.46	5.10	8
PREPROCESSING X	106.44	3.66	12

 Tabelle 4.5: Beschleunigung der exakten Separierung SEPARIERESCHNITTEMITTELS-HILFSIP durch Preprocessing

des Moduls M6 jeweils eine Minderung zur Folge hat. Der ermittelte Beschleunigungsfaktor F_{exakt} beinhaltet lediglich die Beschleunigung der Separierung mittels SEPARIERE-SCHNITTEMITTELSHILFSIP und nicht die weitere Beschleunigung durch die zusätzliche bzw. alternative Verwendung polynomieller Algorithmen wie SEPARIERESCHNITTEMA-TRIXMAX2EPROZEILE, sofern die Voraussetzungen für diese gegeben sind. Die Ergebnisse zeigen insofern nur eine Tendenz auf, die jedoch deutlich für eine Anwendung von Preprocessing spricht.

Zusammenfassung Die Anwendung des PREPROCESSING X erreicht die beste Reduktion der Systemgröße und ermöglicht zusätzlich die beste Identifikation der (betrachteten) polynomiellen Spezialfälle. Ferner gelang eine Beschleunigung der allgemeinen exakten Separierung von $\{0, \frac{1}{2}\}$ -Schnitten durch SEPARIERESCHNITTEMITTELSHILFSIP um das 3.66-fache. Deswegen wählen wir das PREPROCESSING X als Standard-Preprocessing in den folgenden Rechenstudien.

4.3 Rechenstudie: Wirksamkeit der Separierungsalgorithmen

Die folgende Rechenstudie stellt verschiedene Separierungsalgorithmen und Parametereinstellungen gegenüber. Wechselwirkungen mit Standard-Separatoren und -Primalheuristiken von SCIP werden hierbei noch nicht betrachtet und die entsprechenden Komponenten in SCIP abgeschaltet. Ziel dieser Rechenstudie ist es, isoliert von beeinflussenden Komponenten von SCIP, die vielversprechensten Separierungsalgorithmen und Parametereinstellungen zu identifizieren, um diese in einer anschließenden Rechenstudie im Zusammenwirken mit allen Komponenten von SCIP zu untersuchen.

Parameter Separierungsalgorithmen beeinflussen die LP-Relaxierung und deren Optimalwert. Innerhalb des Branch&Bound-Verfahrens wird dieser oftmals als Dualschranke (engl. dual bound) bezeichnet, ebenso in SCIP. Die Differenz zwischen Dualschranke und Zielfunktionswert der ganzzahligen Optimallösung verwenden wir als Maß für die Güte des getesteten Separierungsalgorithmus. Dies werden wir nachfolgend im Punkt Messgrößen weiter ausführen. Damit dieses Maß seitens SCIP nicht beeinflusst wird und wir sämtliche Wertänderungen der Separierung verletzter $\{0, \frac{1}{2}\}$ -Schnitte zurechnen können, schalten wir in Anlehnung an Wolter [60] sämtliche die Dualschranke beeinflussenden Komponenten in SCIP aus: Dies sind alle Primalheuristiken, alle anderen Separatoren sowie das *strong branching* (wird ersetzt durch *most infeasible branching*). Zusätzlich setzen wir eine Knotenbeschränkung von 1. Als Preprocessing für die getesteten Separierungsalgorithmen wählen wir PREPROCESSING X. Wir orientieren uns bei der maximalen Anzahl separierter $\{0, \frac{1}{2}\}$ -Schnitte pro Aufruf durch SCIP an dem Chvátal-Gomory-Schnitte-Separierungsalgorithmus von SCIP und setzen diese Beschränkung auf 500.

Messgrößen Als Messgrößen verwenden wir

Verringerung der Ganzzahligkeitslücke: Als Maß für die erzielte Verbesserung der LP-Relaxierung durch das Hinzufügen von $\{0, \frac{1}{2}\}$ -Schnitten verwenden wir die prozentuale Verringerung der Ganzzahligkeitslücke *gap closed%* nach Lösen des Wurkzelknotens. Aus den Werten für die einzelnen Instanzen berechnen wir das um s = 1 verschobene geometrische Mittel als Maß für einen gesamten Testlauf. Außerdem definieren wir

 $#gap \ closed\%^{100\%} :=$ Anzahl der Instanzen mit gap closed\% = 100\%

als zusätzliche Messgröße.

- Anzahl separierter $\{0, \frac{1}{2}\}$ -Schnitte: Mit $\#\{0, \frac{1}{2}\}$ bezeichnen wir die Anzahl separierter $\{0, \frac{1}{2}\}$ -Schnitte. Aus den Werten der einzelnen Instanzen wird als Kenngröße des Testlaufs das um s = 1 verschobene geometrische Mittel gebildet.
- *Gesamtseparierungsdauer:* Des Weiteren möchten wir die Gesamtseparierungsdauer T_{sepa} , definiert als die Summe der Separierungsdauern der einzelnen Aufrufe, für jede Instanz eines Testlaufs bestimmen sowie das um s = 1 verschobene geometrische Mittel dieser Einzelwerte.
- **Probleminstanzen** Wir betrachten in dieser Rechenstudie nur die Probleminstanzen mit positiver Ganzzahligkeitslücke (d. h. $z_{IP} z_{LP} > 0$), da nur bei diesen eine Verringerung der Ganzzahligkeitslücke möglich ist. Dadurch reduziert sich die Anzahl der Probleminstanzen auf 47 (vgl. Tabellen A.1 und A.2).

- Testvarianten Als Testvarianten wählen wir die folgenden Kombinationen von Separierungsalgorithmen
 - EXAKTIPZF??? Exakte IP-basierte Separierung durch die Separierungsalgorithmen SEPARIERETRIVIALESCHNITTE (als Teil des Preprocessings) und SEPARIERE-SCHNITTEMATRIXMAX2EPROZEILE (falls benötigte Matrixstruktur erkannt wird) bzw. SEPARIERESCHNITTEMITTELSHILFSIP (falls die benötigte Matrixstruktur nicht erkannt wird). Zusätzlich vergleichen wir verschiedene Zielfunktionen für das Hilfs-IP und bezeichnen die Algorithmen dann entsprechend mit EXAKTIPZF1, EXAKTIPZF3, EXAKTIPZF4, EXAKTIPZF5P0.001, EXAKTIPZF5P0.01 und EXAKTIPZF5P0.1.
 - HEURIPZF??? Heuristische IP-basierte Separierung analog zu den exakten Algorithmen EXAKTIPZF??? mit den Unterschieden, dass einerseits dann, wenn durch SEPARIERETRIVIALESCHNITTE verletzte $\{0, \frac{1}{2}\}$ -Schnitte separiert werden konnten, die Separierung abgebrochen wird und dass andererseits für das Lösen des Hilfs-IP eine Knotenbeschränkung von 3000 Knoten gesetzt wird.
 - TRIVSCHN Heuristische Separierung nur durch SEPARIERETRIVIALESCHNITTE während des Preprocessings.
 - ENUM1, ENUM2 Heuristische Separierung durch Algorithmen SEPARIERETRI-VIALESCHNITTE (als Teil des Preprocessings) und SEPARIERESCHNITTEMA-TRIXMAX2EPROZEILE, falls die benötigte Matrixstruktur erkannt wird, bzw. HEURSEPARIERESCHNITTEENUMERIEREZEILENKOMB mit k = 1 (ENUM1) oder k = 2 (ENUM2) sonst.
 - ERWGAUSS Heuristische Separierung durch die Separierungsalgorithmen SEPA-RIERETRIVIALESCHNITTE (Teil des Preprocessings) und SEPARIERESCHNIT-TEMATRIXMAX2EPROZEILE, falls benötigte Matrixstruktur erkannt wird, und HEURSEPARIERESCHNITTEERWGAUSSELIMINATION andernfalls.
 - NURERWGAUSS Heuristische Separierung durch die Algorithmen SEPARIERE-TRIVIALESCHNITTE (Teil des Preprocessings) und HEURSEPARIERESCHNIT-TEERWGAUSSELIMINATION. (Diese Kombination entspricht ERWGAUSS ohne die Berücksichtigung des polynomiellen Spezialfalles, dass die Koeffizientenmatrix maximal zwei ungerade Zeileneinträge besitzt.)
 - TRIVSCHNERWGAUSS Heuristische Separierung analog zu NURERWGAUSS mit dem Unterschied, dass die weitere Separierung abgebrochen wird, sofern der Algorithmus SEPARIERETRIVIALESCHNITTE verletzte Schnitte separieren konnte.
 - ENUM2ERWGAUSS Heuristische Separierung mittels der Separierungsalgorithmen SEPARIERETRIVIALESCHNITTE (Teil des Preprocessings) und SEPARIE-RESCHNITTEMATRIXMAX2EPROZEILE, falls die benötigte Matrixstruktur erkannt wird, bzw. HEURSEPARIERESCHNITTEENUMERIEREZEILENKOMB mit

Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa	#gap closed% ^{100%}
EXAKTIPzf1	2.84	71	28.13	3
EXAKTIPzf3	5.17	80	14.48	3
EXAKTIPzf4	3.82	70	37.20	3
EXAKTIPzf5p0.001	4.96	89	17.03	3
EXAKTIPzf5p0.01	4.88	94	20.08	3
EXAKTIPzf5p0.1	5.19	95	19.09	3

Tabelle 4.6: Ergebnisse der exakten Separierung

k = 2 sonst. Sollten beide Algorithmen keine verletzten $\{0, \frac{1}{2}\}$ -Schnitte separieren, so wird zusätzlich die Separierung mittels HEURSEPARIERESCHNITTEER-WGAUSSELIMINATION versucht.

ENUM2HEURIPZF1 Heuristische IP-basierte Separierung analog zu der Variante ENUM2ERWGAUSS mit dem Unterschied, dass anstatt HEURSEPARIERE-SCHNITTEERWGAUSSELIMINATION der Algorithmus SEPARIERESCHNITTE-MITTELSHILFSIP mit einer Knotenbeschränkung von 3000 Knoten angewendet wird.

Alle beschriebenen heuristischen Verfahren untersuchen wir zusätzlich für die verschiedenen Mindestverletzungen $\mathcal{V}^{min} \in \{0.01, 0.10, 0.20, 0.30, 0.40, 0.50\}.$

Ergebnisse

Die Ergebnisse der Rechenstudie 4.3 sind in den Tabellen 4.6 bis 4.10 zusammengefasst, wobei Tabelle 4.6 alle Resultate der exakten Separierung beinhaltet. Die Messwerte der einzelnen Instanzen sind in Anhang E aufgeführt.

Exakte Separierungsalgorithmen Wir beginnen die Auswertung dieser Rechenstudie mit der Analyse der Ergebnisse der exakten Separierung (siehe Tabelle 4.6). Bei Betrachtung der Verringerung der Ganzzahligkeitslücke durch die Separierung fällt auf, dass der Ansatz stark verletzte $\{0, \frac{1}{2}\}$ -Schnitte (EXAKTIPZF1) zu separieren mit 2.8% den geringsten Wert aufweist. Die Separierung möglichst weniger aggregierter Zeilen (EXAKTIPZF3) erreicht einen Wert von 5.17% und ist somit besser als die kardinalitätsgewichtete Variante (EXAKTIPZF4). Sehr gute Werte um 5% erreichen ebenfalls die IP-basierten Verfahren mit der Zielfunktion (ZF5_p). Insbesondere EXAKTIPZF5P0.1, dessen Zielfunktion die Maximierung der Verletzung (wie EXAKTIPZF1) unter Berücksichtigung eines Strafterms mit p = 0.1 für zu viele (kardinalitätsgewichtete) aggregierte Zeilen (wie EXAKTIPZF4) ist, erzielt mit 5.19% den besten Wert. Dies ist insofern bemerkenswert, als die Varianten EXAKTIPZF1 und EXAKTIPZF4 einzeln betrachtet relativ schlechte Werte besitzen. Die

				gap clo	osed%		
Name	$\mathcal{V}^{min}=$	0.01	0.10	0.20	0.30	0.40	0.50
TRIVSCHN		1.70	1.54	1.55	1.84	1.93	2.33
HEURIPzf1		3.74	2.84	2.64	2.66	2.75	2.33
HEURIPzf3		4.30	4.37	3.63	3.37	3.42	2.33
HEURIPzf4		3.64	3.23	3.37	3.49	3.08	2.33
HEURIPzf5p0.00	01	4.43	3.81	3.77	4.04	3.25	2.33
HEURIPzf5p0.0	1	4.23	3.76	3.64	3.29	3.34	2.33
HEURIPzf5p0.1		4.96	3.73	3.42	3.56	3.19	2.33
ENUM1		1.98	1.86	1.84	2.13	2.12	2.33
ENUM2		1.95	1.84	1.87	2.18	2.20	2.33
ERWGAUSS		8.29	6.62	6.99	5.45	4.10	2.33
ENUM2ERWGA	USS	6.15	6.05	5.92	5.41	4.35	2.33
ENUM2HEURIP	ZF1	3.86	3.43	2.43	2.92	2.57	2.33
TRIVSCHNERW	GAUSS	6.66	6.27	5.70	5.74	3.87	2.33
NURERWGAUS	S	8.28	6.64	6.99	5.45	4.09	2.33

Tabelle 4.7: Ergebnisse der heuristischen Separierung: Verringerung der Ganzzahligkeitslücke

gewichtete Kombination beider mittels des Strafterms scheint somit vorteilhaft für die Qualität der ermittelten Schnitte. Die Anzahl separierter $\{0, \frac{1}{2}\}$ -Schnitte liegt im Mittel zwischen 70 und 95, wobei auch hier durch Anwendung von EXAKTIPZF5P0.1 die meisten Schnitte separiert werden können. Vor allem die Verfahren EXAKTIPZF1 und EXAKTIPZF4 besitzen eine bis zu dreifach höhere Gesamtseparierungsdauer im Vergleich zu den anderen betrachteten exakten Separierungsalgorithmen. Der Algorithmus EXAKTIPZF5P0.1 besitzt mit einem Wert von $T_{sepa} = 19.09s$ eine durchschnittliche Gesamtseparierungsdauer. Bei der Messgröße $\#gap \ closed\%^{100\%}$ existieren keine Unterschiede zwischen den einzelnen Verfahren.

Heuristische Separierungsalgorithmen Im Folgenden werden wir die Ergebnisse der Testläufe für die heuristischen Separierungsalgorithmen untersuchen. Dabei werden wir zunächst die Verringerung der Ganzzahligkeitslücke betrachten, anschließend die Anzahl separierter $\{0, \frac{1}{2}\}$ -Schnitte, die benötigte Rechenzeit und die Anzahl der Instanzen, bei denen die Ganzzahligkeitslücke vollständig geschlossen werden konnte. Bei allen Betrachtungen werden wir zusätzlich den Einfluss des Parameters \mathcal{V}^{min} (Minimalverletzung) für die Werte 0.01, 0.10, 0.20, 0.30, 0.40 und 0.50 untersuchen.

Verringerung der Ganzzahligkeitslücke Wir untersuchen im Folgenden die Verringerung der Ganzzahligkeitslücke durch die heuristische Separierung von $\{0, \frac{1}{2}\}$ -Schnitten (sie-

			#gap cl	$osed\%^{100\%}$	2	
Name $\mathcal{V}^{min} =$	0.01	0.10	0.20	0.30	0.40	0.50
TRIVSCHN	1	1	1	2	2	3
HEURIPZF1	3	3	3	3	3	3
HEURIPZF3	3	3	3	3	4	3
HEURIPzf4	3	3	3	3	4	3
HEURIPzf5p0.001	3	3	3	3	4	3
HEURIPzf5p0.01	3	3	3	3	4	3
HEURIPzf5p0.1	3	3	3	3	4	3
ENUM1	2	2	2	2	2	3
ENUM2	2	2	2	2	2	3
ERWGAUSS	4	4	4	4	4	3
ENUM2ERWGAUSS	4	4	4	4	4	3
ENUM2HEURIPzf1	3	3	2	3	3	3
TRIVSCHNERWGAUSS	4	4	4	4	4	3
NURERWGAUSS	4	4	4	4	4	3

Tabelle 4.8: Ergebnisse der heuristischen Separierung: Anzahl der Instanzen, bei denen die Ganzzahligkeitslücke vollständig geschlossenen werden konnte

he Tabelle 4.7). Dazu betrachten wir zunächst den Fall $\mathcal{V}^{min} = 0.01$. Der Separierungsalgorithmus TRIVSCHN erzielt hierbei das schlechteste Ergebnis mit einer im Mittel um lediglich 1.7% geschlossenen Ganzzahligkeitslücke. Ebenfalls schlechte Ergebnisse mit Werten knapp unter 2% liefern die Algorithmen ENUM1 und ENUM2, welche auf der Enumeration möglicher Zeilen(-kombinationen) zur Bestimmung eines verletzten $\{0, \frac{1}{2}\}$ -Schnittes beruhen. Sehr gute Ergebnisse lassen sich durch Anwendung der Algorithmen ERWGAUSS und NURERWGAUSS erzielen, welche zu einer Verringerung der Ganzzahligkeitslücke von jeweils ca. 8.3% führen. Gute Werte besitzen ebenfalls die Verfahren ENUM2ERW-GAUSS und TRIVSCHNERWGAUSS, die ebenso wie die vorhergenannten den Separierungsalgorithmus HEURSEPARIERESCHNITTEERWGAUSSELIMINATION beinhalten. Die betrachteten heuristischen Verfahren, die auf der beschränkten Lösung eines ganzzahligen Programmes beruhen, erzielen mittelmäßige Ergebnisse im Bereich von ca. 3.6% bis 5.0%.

Wir möchten an dieser Stelle anmerken, dass einige der heuristischen Verfahren (wie z. B. HEURIPZF1 für $\mathcal{V}^{min} = 0.01$) eine bessere Verringerung der Ganzzahligkeitslücke erzielen als einige der exakten Verfahren. Dies gründet sich unter anderem darauf, dass wir die Parameter von SCIP bis auf Deaktivierung der Dualschranken-beeinflussenden Komponenten auf ihren Standard-Einstellungen belassen. Daher gibt es z. B. Parametereinstellungen, die ein Branching veranlassen (und somit das Lösen im Wurkzelknoten des Branch&Bound-Baumes beenden), wenn nach wiederholten Separierungsaufrufen keine Verbesserung im Zielfunktionswert der LP-Relaxierung eintritt. Insofern variiert die Anzahl der im Wurzel-

knoten gelösten LP-Relaxierungen. Dies entspricht dem in SCIP verwendeten Standard und ist auch Rahmenbedingung für alle Standard-Separatoren von SCIP.

Als nächsten Schritt möchten wir den Einfluss einer geforderten Mindestverletzung \mathcal{V}^{min} auf die Verringerung der Ganzzahligkeitslücke untersuchen. Wir merken an, dass eine Mindestverletzung $\mathcal{V}^{min} = 0.5$ der Bestimmung maximal verletzter $\{0, \frac{1}{2}\}$ -Schnitte entspricht. Dies erklärt, weshalb alle untersuchten Verfahren für $\mathcal{V}^{min} = 0.5$ dasselbe Ergebnis von ca. 2.3% besitzen. Dies führt dazu, dass die Werte gap closed% für $V^{min} = 0.01$ bis $V^{min} = 0.5$ für solche Separierungsalgorithmen ansteigen, die im Testlauf mit $\mathcal{V}^{min} = 0.01$ geringere Werte als 2.3% besessen haben. Bei den anderen Algorithmen vermindern sich die Werte entsprechend. Der Verlauf dieser Veränderung ist nicht-linear und ohne erkennbare Gesetzmäßigkeit. Einzig auffällig ist, dass nach einer Verminderung der Werte gap closed% für die Mindestverletzungen 0.10 und 0.20 ein leichter Anstieg der Werte in den Testläufen mit $\mathcal{V}^{min} = 0.30$ bei einigen Separierungsalgorithmen erkennbar ist. Dies führen wir darauf zurück, dass, aufgrund der gesetzten maximalen Anzahl von 500 separierten $\{0, \frac{1}{2}\}$ -Schnitten, wenn bereits 500 Schnitte mit geringerer Verletzung gefunden wurden, weitere Schnitte mit höherer Verletzung nicht mehr separiert werden. Ist die Mindestverletzung hinreichend hoch, dies scheint bei $\mathcal{V}^{min} = 0.30$ der Fall zu sein, so werden keine minderverletzten Schnitte vorher separiert und die Beschränkung nicht erreicht (vgl. auch Tabelle 4.9).

Abschließend betrachten wir die Anzahl der Instanzen, deren Ganzzahligkeitslücke vollständig geschlossen werden konnte (*gap closed*% = 100%). Die entsprechenden Resultate für die einzelnen Testläufe sind in Tabelle 4.8 aufgeführt. Wir stellen fest, dass es in allen Testläufen für eine Instanz (z. B. TRIVSCHN, $\mathcal{V}^{min} = 0.01$) bis vier Instanzen (z. B. ERWGAUSS, $\mathcal{V}^{min} = 0.01$) gelungen ist, die Ganzzahligkeitslücke vollständig zu schließen. Insbesondere die Anwendung der Algorithmen ERWGAUSS, ENUM2ERW-GAUSS, TRIVSCHNERWGAUSS und NURERWGAUSS führt, weitestgehend unabhängig von der gewählten Mindestverletzung \mathcal{V}^{min} , zu einem Ergebnis von vier Instanzen im Mittel. Für den Fall $\mathcal{V}^{min} = 0.5$ (Separierung maximal verletzter $\{0, \frac{1}{2}\}$ -Schnitte) gleichen sich die Ergebnisse aller betrachteter Algorithmen.

Anzahl separierter $\{0, \frac{1}{2}\}$ -Schnitte In Tabelle 4.9 sind die (verschobenen) geometrischen Mittel der Anzahl separierter $\{0, \frac{1}{2}\}$ -Schnitte für die einzelnen Testläufe angegeben. Auch bei der Analyse der hierzu gemessenen Werte möchten wir zunächst den Fall $\mathcal{V}^{min} = 0.01$ betrachten. Hierbei fällt auf, dass die Algorithmen TRIVSCHN, ENUM1 und ENUM2 im Mittel relativ wenige $\{0, \frac{1}{2}\}$ -Schnitte separieren. Durch die Anwendung der weiteren IP-basierten Verfahren (HEURIPZF1, HEURIPZF3, HEURIPZF4, HEURIPZF5P0.001, HEURIPZF5P0.01, HEURIPZF5P0.1 und ENUM2HEURIPZF1) werden im Mittel ca. 50 bis 100 verletzte Schnitte bestimmt. Die Kombinationen von Separierungsalgorithmen, die HEURSEPARIERESCHNITTEERWGAUSSELIMINATION als Teil-Algorithmus beinhalten, können im Mittel 640 (ENUM2ERWGAUSS) bis 1068 (ERWGAUSS) verletzte $\{0, \frac{1}{2}\}$ -Schnitte separieren und somit um den Faktor 6 (HEURIPZF1) bis 50 (TRIVSCHN)

		separierte $\{0, \frac{1}{2}\}$ -Schnitte (# $\{0, \frac{1}{2}\}$)					
Name	$\mathcal{V}^{min}=$	0.01	0.10	0.20	0.30	0.40	0.50
TRIVSCHN		19	17	20	18	14	8
HEURIPzf1		100	82	53	34	20	8
HEURIPzf3		59	64	50	35	24	8
HEURIPzf4		46	45	51	37	22	8
HEURIPzf5p0.001		65	57	58	39	25	8
HEURIPzf5p0.01		63	54	53	38	23	8
HEURIPzf5p0.1		70	52	52	34	22	8
ENUM1		27	25	25	22	16	8
ENUM2		27	25	27	23	16	8
ERWGAUSS		1068	713	604	313	115	8
ENUM2ERWGAUSS		640	559	421	257	95	8
ENUM2HEURIPzf1		109	87	61	41	22	8
TRIVSCHNERWGAUSS		697	532	466	251	89	8
NURERWGAUSS		1040	688	589	309	108	8

Tabelle 4.9: Ergebnisse der heuristischen Separierung: Anzahl separierter $\{0, \frac{1}{2}\}$ -Schnitte

mehr Schnitte als die übrigen Separierungsalgorithmen.

Der Einfluss der Mindestverletzung \mathcal{V}^{min} auf die Anzahl der $\{0, \frac{1}{2}\}$ -Schnitte ist naheliegend: Eine Erhöhung von \mathcal{V}^{min} vermindert die Menge der möglichen Zeilenkombinationen und somit auch die Anzahl der separierten Schnitte. Dieses wird durch die Rechenstudie bestätigt. Eine Mindestverletzung $\mathcal{V}^{min} = 0.5$ entspricht, wie bereits angemerkt, der Separierung maximal verletzter $\{0, \frac{1}{2}\}$ -Schnitte, weswegen sich die Werte aller Testläufe in diesem Fall gleichen.

Gesamtseparierungsdauer Die Gesamtseparierungsdauern der einzelnen Testläufe sind als verschobenes geometrisches Mittel über alle Instanzen in der Tabelle 4.10 angegeben. Wir können feststellen, dass sich die Werte der Gesamtseparierungsdauern in dem Intervall von 0.35 Sekunden (Separierung maximal verletzter Schnitte, $\mathcal{V}^{min} = 0.5$) bis 9.73 Sekunden (HEURIPZF5P0.001, $\mathcal{V}^{min} = 0.01$) befinden und sich somit maximal um einen Faktor von 27.8 unterscheiden. Insbesondere besitzen die Verfahren geringe Gesamtseparierungsdauern, die ohne besondere Suchstrategien Zeilenkombinationen prüfen (TRIV-SCHN, ENUM1 und ENUM2). Für die Bestimmung maximal verletzter $\{0, \frac{1}{2}\}$ -Schnitte ($\mathcal{V}^{min} = 0.50$) ist die Gesamtseparierungsdauer ebenfalls gering. Außerdem können wir ablesen, dass die Gesamtseparierungsdauern der heuristischen IP-basierten Verfahren (HEU-RIPZF???) geringer als die ihrer exakten Varianten (EXAKTIPZF???) sind, was damit der Zielsetzung bei der Entwicklung dieser Algorithmen entspricht. Insbesondere konnte z. B. bei HEURIPZF4 zu EXAKTIPZF4 die Gesamtseparierungsdauer um über 80% gesenkt

		Gesamtseparierungsdauer (T_{sepa})						
Name	$\mathcal{V}^{min}=$	0.01	0.10	0.20	0.30	0.40	0.50	
TRIVSCHN		0.98	0.92	0.92	0.82	0.70	0.36	
HEURIPzf1		8.76	7.03	5.18	3.65	2.51	0.35	
HEURIPZF3		7.29	9.61	6.38	4.96	3.08	0.35	
HEURIPzf4		7.00	8.13	8.13	5.92	3.07	0.35	
HEURIPzf5p0.001		9.73	8.55	7.83	5.11	3.10	0.36	
HEURIPzf5p0.01		8.56	8.60	6.64	4.81	2.93	0.35	
HEURIPzf5p0.1		9.11	8.26	7.19	4.84	2.98	0.36	
ENUM1		1.12	1.05	1.08	0.97	0.82	0.35	
ENUM2		1.12	1.05	1.11	0.98	0.81	0.35	
ERWGAUSS		4.99	4.31	3.75	2.91	1.88	0.35	
ENUM2ERWGAUSS		4.00	3.80	3.26	2.65	1.88	0.36	
ENUM2HEURIPzf1		8.53	5.95	4.80	3.90	2.77	0.35	
TRIVSCHNERWGAUSS		4.38	3.88	3.43	2.73	1.70	0.36	
NURERWGAUSS		5.02	4.35	3.79	2.95	1.90	0.36	

Tabelle 4.10: Ergebnisse der heuristischen Separierung: Gesamtseparierungsdauer

werden. Nichtsdestoweniger besitzen die IP-basierten Heuristiken immer noch längere Rechenzeiten als die anderen kombinatorischen Verfahren. Die Gesamtseparierungsdauern der ERWGAUSS und NURERWGAUSS sind mit 4.99 und 5.02 Sekunden weder besonders langsam noch schnell.

Zusammenfassung Die Rechenstudie zeigt, dass mittels IP-basierter Separierungsverfahren unter Verwendung der multi-kriteriellen Zielfunktion (ZF5_p) eine gute Verringerung der Ganzzahligkeitslücke erzielt werden kann. Doch bedarf dieses einer relativ hohen Gesamtseparierungsdauer, sodass der Quotient gap closed%/ T_{sepa} , der gewissermaßen die Qualität eines Separierungsalgorithmus bezogen auf dessen Gesamtseparierungsdauer angibt, stets kleiner 1 und somit geringer als bei den meisten nicht IP-basierten Verfahren ist. Ebenso zeigt sich, dass Algorithmen ohne besondere Suchstrategie (z. B. ENUM1 und ENUM2) zwar eine geringe Gesamtseparierungsdauer erzielen, aber zugleich auch die geringsten Absolutwerte bei der Verringerung der Ganzzahligkeitslücke erreichen. Doch ebendiese ist das primäre Kriterium für die Wahl eines geeigneten Separierungsalgorithmus und dessen Parametereinstellung (vgl. z. B. Wolter [60]). Daher richten wir unser Hauptaugenmerk auf den Algorithmus ERWGAUSS, dessen Wert gap closed% = 8.29% maximal für die betrachteten Separierungsalgorithmen ist. Zugleich besitzt dieser Algorithmus eine durchschnittlich gute Gesamtseparierungsdauer von $T_{sepa} = 4.99s$ und somit einen Quotienten gap closed%/ T_{sepa} = 1.66. Wir wählen daher den Algorithmus ERWGAUSS als vielversprechensten für unsere nachfolgende Rechenstudie aus.

4.4 Rechenstudie: Wirksamkeit im Branch&Cut-Verfahren

In dieser Rechenstudie betrachten wir das Zusammenspiel der vielversprechendsten Separierungsalgorithmen und Parametereinstellungen mit den Standardkomponenten und einstellungen von SCIP und die resultierende Gesamtwirksamkeit. Wir verfolgen dabei den von Bixby et al. in ihrem Artikel [8] beschriebenen Ansatz und untersuchen die folgenden zwei Szenarien:

- 1. Vergleich des Lösungsprozesses bei aktivierter $\{0, \frac{1}{2}\}$ -Schnitte-Separierung mit dem Lösungsprozess ohne jegliche Separierung verletzter Schnittungleichungen
- 2. Vergleich des Lösungsprozesses bei aktivierter $\{0, \frac{1}{2}\}$ -Schnitte-Separierung und Separierung anderer Schnitte mit dem Lösungsprozess bei alleiniger Separierung anderer Schnitte.

Dadurch lassen sich im ersten Fall sogenannte Verbesserungs- und im zweiten Fall Verschlechterungsfaktoren bestimmen, die die $\{0, \frac{1}{2}\}$ -Schnitte-Separierung bzw. das Fehlen derselben beeinflusst. Diese Faktoren werden für die Messgrößen Lösungszeit, Anzahl der Branch&Bound-Knoten und die Veränderung der relativen Ganzzahligkeitslücke bei Instanzen, die innerhalb der Zeitbeschränkung nicht gelöst werden konnten, ermittelt. Ziel dieser Rechenstudie ist es, einen $\{0, \frac{1}{2}\}$ -Schnitte-Separierungsalgorithmus zusammen mit geeigneten Parametereinstellungen zu bestimmen, der das Lösungsverfahren eines MIP-Lösers, hier das von SCIP, verbessern kann.

- **Parameter** Um die Wechselwirkung der $\{0, \frac{1}{2}\}$ -Schnitte-Separierung mit SCIP unverfälscht untersuchen zu können, belassen wir die Parameter von SCIP auf ihren Standardeinstellungen. Insbesondere wird das Cut&Branch-Verfahren von SCIP unverändert angewendet und im Speziellen nur durch unseren Separierungsalgorithmus ergänzt. Wir nutzen hierbei den Algorithmus ERWGAUSS in Verbindung mit dem PREPROCES-SING X. Für eine Referenzmessung haben wir die Parameter von SCIP, wie nachfolgend beschrieben, angepasst. An dieser Stellen möchten wir noch einmal auf Tabelle 4.1, die Übersicht der Standard-Separierungsalgorithmen von SCIP, hinweisen.
- **Messgrößen** Als Messgrößen wählen wir in Anlehnung an Wolter [60] (zurückgehend auf Bixby et al. [8]) relative Angaben in Form von Verbesserungs- und Verschlechterungsfaktoren bzgl. der Referenzmessungen. Als Referenz wählen wir hierbei die folgenden beiden Testläufe, in denen unser Separierungsalgorithmus deaktiviert ist.
 - **SCIP Standard ohne Separierung** In diesem Testlauf wurde alles auf den Standardeinstellungen belassen und die Separierung von Schnitten seitens SCIP deaktiviert.
 - **SCIP Standard** In diesem Testlauf wurde alles auf den Standardeinstellungen belassen.

Wir definieren für eine gegebene Messgröße \mathcal{M} den Verbesserungsfaktor $I(\mathcal{M})$ und den Verschlechterungsfaktor $\mathcal{D}(\mathcal{M})$ wie folgt

$I(\mathcal{M}) :=$	Wert der Messgröße $\mathcal M$ im Testlauf		
	SCIP Standard ohne Separierung		
	Wert der Messgröße $\mathcal M$ im Testlauf		
	SCIP nur mit $\{0, \frac{1}{2}\}$ -Schnitte-Separierung		
$\mathcal{D}(\mathcal{M}) :=$	Wert der Messgröße $\mathcal M$ im Testlauf		
	SCIP Standard		
	Wert der Messgröße $\mathcal M$ im Testlauf		
	SCIP Standard mit $\{0, \frac{1}{2}\}$ -Schnitte-Separierung		

wobei wir Werte < 1 der Messgröße \mathcal{M} zur Berechnung des Verbesserungs- bzw. Verschlechterungsfaktors stets zu 1 aufrunden. Um diese Faktoren für einen gesamten Testlauf zu ermitteln, verwenden wir als Werte der Messgröße \mathcal{M} die Mittelwerte für die beiden betrachteten Testläufe. Als Messgrößen \mathcal{M} nutzen wir die Gesamtlösungsdauer t, die Anzahl benötigter Branch&Bound-Knoten n sowie die relative Ganzzahligkeitslücke gap_{rel}%. Die Einzelmesswerte der Knotenanzahl bzw. der Gesamtlösungsdauer werden durch Bildung des um s = 100 bzw. s = 10.0 verschobenen geometrischen Mittels zusammengefasst. Für Probleminstanzen, die im Testlauf SCIP Standard nicht innerhalb der Zeitbeschränkung von 1 Stunde gelöst werden, betrachten wir lediglich gap_{rel}%. Da wir an einer Verringerung der benötigten Branch&Bound-Knoten, der Gesamtlösungszeit und/oder der Ganzzahligkeitslücke durch die Separierung verletzter $\{0, \frac{1}{2}\}$ -Schnitte interessiert sind, interpretieren wir Werte ≥ 1 für I() und $\mathcal{D}()$ als gut und Werte < 1 als schlecht. Zum Beispiel bedeutet ein Wert von I(#Branch&Bound-Knoten) = 1.5 dass SCIP Standard ohne Separierung im Mittel 50% mehr Knoten zur Lösung der Probleme benötigt, als wenn zusätzlich $\{0, \frac{1}{2}\}$ -Schnitte separiert würden.

- Probleminstanzen Diese Rechenstudie wird bzgl. aller Probleminstanzen mit bekannter Lösung durchgeführt, unter Auslassung solcher Instanzen mit bekannten numerischen Problemen (z. B. harp2, vgl. Berthold [6]). Wir partitionieren die Menge der betrachteten 54 Instanzen in die zwei Teilmengen
 - einfache Probleminstanzen Die Menge der einfachen Probleminstanzen beinhaltet alle Probleminstanzen, die im Testlauf für die Referenzwerte innerhalb der Zeitbeschränkung von 1 Stunde optimal gelöst werden. Insgesamt umfasst diese Menge 47 Instanzen im ersten Szenario (Bestimmung der Verbesserungsfaktoren) und 48 Instanzen im zweiten Szenario (Bestimmung der Verschlechterungsfaktoren).
 - schwere Probleminstanzen Die Menge der schweren Probleminstanzen beinhaltet alle Probleminstanzen, die nicht in der Menge der einfachen Probleminstanzen
enthalten sind. Insgesamt umfasst diese Menge 7 Instanzen im ersten Szenario und 6 Instanzen im zweiten Szenario.

Eine genaue Auflistung der Partitionen ist z. B. den Tabellen F.1 und F.3 bzw. den Tabellen F.2 und F.4 zu entnehmen.

- **Testvarianten** Wir betrachten den Separierungsalgorithmus ERWGAUSS aus Rechenstudie 4.3, welcher ebenfalls das PREPROCESSING X aus Rechenstudie 4.2 beinhaltet. Dieser Algorithmus soll im Hinblick auf sein Zusammenwirken mit den Komponenten von SCIP (stellvertretend für einen beliebigen MIP-Löser) untersucht werden. Dazu führen wir drei Parameter ein, die die verschiedenen Varianten beschreiben:
 - Der boolsche Parameter F mit Werten ja/nein bzw. +/-, der angibt, ob ein separierter {0, ¹/₂}-Schnitt in den Vorrat von SCIP für separierte Schnittungleichungen übergeben werden soll, auch wenn das Wirksamkeitskriterium von SCIP (Quotient aus Verletzung des Schnittes und Norm der Nichtnulleinträge) für diesen Schnitt nicht erfüllt ist. Dieser Parameter zwingt SCIP nicht, den Schnitt entgegen seines Wirksamkeitskriteriums dem System hinzuzufügen, sofern ein anderer Schnitt existiert, der die augenblickliche LP-Lösung abschneidet.
 - Die Priorität *prio*, die die Reihenfolge angibt, in der die Separierungsalgorithmen in SCIP aufgerufen werden. Dieser Parameter bestimmt somit, welche Standard-Separatoren von SCIP vor und welche nach unserem {0, 1/2}-Schnitte-Separierungsalgorithmus aufgerufen werden, um ihrerseits Schnitte zu separieren. Separatoren mit höherer Priorität werden vor solchen mit niedrigerer aufgerufen.
 - Die Mindestverletzung \mathcal{V}^{min} , die in Kapitel 3 bereits eingehend beschrieben wurde.

Diese drei Parameter genügen, um jede in dieser Rechenstudie untersuchte Variante eindeutig zu beschreiben. Wir wollen allerdings anmerken, dass im betrachteten Szenario 1 (Bestimmung der Verbesserungsfaktoren) unser $\{0, \frac{1}{2}\}$ -Schnitte-Separierungsalgorithmus der einzige Separierungsalgorithmus ist und daher der Parameter *prio* irrelevant ist und von uns für diesen Fall nicht betrachtet wird.

Ergebnisse

Die Ergebnisse dieser Rechenstudie sind in den Tabellen 4.11 bis 4.14 zusammengefasst und im Detail in Anhang F hinterlegt. Bei Probleminstanzen, die innerhalb der Zeit- oder Speicherbedarfsbeschränkung nicht gelöst werden konnten, ist dies dies durch ein TL bzw. ML gekennzeichnet. Im Folgenden werden wir die beiden Szenarien zunächst getrennt betrachten und anschließend eine gemeinsame Bewertung geben. Zur Beschreibung der einzelnen Varianten verwenden wir die Kurzschreibweise ($F|prio|\mathcal{V}^{min}$) bzw. ($F|\mathcal{V}^{min}$). So bedeutet z. B. (+|-500|0.30), dass wir die Variante mit F = +, prio = -500 und $\mathcal{V}^{min} = 0.30$ betrachten. Szenario 1: Verbesserung bei alleiniger Separierung von $\{0, \frac{1}{2}\}$ -Schnitten Dieses Szenario dient der Bestimmung der Verbesserungsfaktoren. Anschaulich wird die Frage untersucht, ob die $\{0, \frac{1}{2}\}$ -Schnitte-Separierung aktiviert werden sollte oder nicht. In den Tabellen 4.11 und 4.12 sind die Ergebnisse für die einfachen bzw. schweren Instanzen angegeben. Neben der eindeutigen Beschreibung jeder Variante durch oben genannte Parameter sind jeweils das (verschobene) geometrische Mittel einer Messgröße und deren Verbesserungsfaktor aufgeführt. Zusätzlich beinhaltet die Tabelle zwei Spalten, in denen für einfache Instanzen die Anzahl der im Gegensatz zur Referenzmessung innerhalb der Zeit- und Speicherbedarfsbeschränkung nicht-optimal gelösten Probleminstanzen angegeben ist. Für schwere Instanzen der aufgrund der Speicherbedarfsbeschränkung abgebrochenen Probleminstanzen aufgeführt.

Wir betrachten zunächst die einfachen Instanzen (siehe Tabelle 4.11). In allen Varianten des Separierungsalgorithmus werden Verbesserungsfaktoren > 1 für die Anzahl benötigter Branch&Bound-Knoten erreicht. Insbesondere in der Variante (+|0.01) wird ein Wert von 1.68 erzielt, was bedeutet, dass in der Referenzmessung im Mittel fast 70% mehr Knoten zur Lösung der Probleminstanzen benötigt wurden. Die Instanz fast0507 konnte dabei nicht innerhalb der Speicherbedarfsbeschränkung gelöst werden. Die Verbesserungsfaktoren für die benötigte Rechenzeit sind deutlich geringer als die der Knotenanzahl und es gelingt lediglich für die Variante (-|0.40) einen Wert > 1 zu erzielen. Die übrigen Werte befinden sich im Intervall [0.81;0.98]. Zusammenfassend halten wir fest, dass die starke Verbesserung in der Knotenanzahl gegenüber einer geringen Verschlechterung (Wert < 1) in der Rechenzeit für eine Separierung von $\{0, \frac{1}{2}\}$ -Schnitten spricht. Insbesondere für die Variante (-|0.20) werden ein vielversprechend hoher Verbesserungsfaktor für die Anzahl der Knoten und ein Verbesserungsfaktor nahe 1 für die benötigte Gesamtlösungszeit erzielt.

Als nächtes betrachten wir die schweren Instanzen (siehe Tabelle 4.12). Dort können durchweg Verbesserungsfaktoren ≥ 1 für die Messgröße gap_{rel} % erzielt werden, was im Mittel einer Verringerung der Ganzzahligkeitslücke entspricht. Darüber hinaus gelingt es die Instanz manna81 innerhalb der Zeit- und Speicherbedarfsbeschränkungen optimal zu lösen, was in der Referenzmessung (SCIP ohne Separierung) nicht möglich gewesen ist. Des Weiteren bemerken wir einen signifikanten Anstieg des Verbesserungsfaktors von der Variante (+|0.01) zu den übrigen, aufgrund der optimalen Lösung der Instanz manna81. Wir halten fest, dass auch unter Berücksichtigung der schweren Instanzen eine Separierung verletzter $\{0, \frac{1}{2}\}$ -Schnitten empfehlenswert ist.

Szenario 2: Verschlechterung bei Separierung keiner $\{0, \frac{1}{2}\}$ -Schnitte In diesem Szenario widmen wir uns, anschaulich betrachtet, der Frage, wie sehr das Fehlen der Separierung verletzter $\{0, \frac{1}{2}\}$ -Schnitte die Qualität des IP-Lösungsprozesses verschlechtert. Dazu bestimmen wir die beschriebenen Verschlechterungsfaktoren. Die Ergebnisse sind in den Tabellen 4.13 und 4.14 zusammengefasst und die Details ebenfalls in Anhang F ggf. nach-

Va	riante	#K	noten n	Z	Zeit t	Anzahl Instanzen		
F	\mathcal{V}^{min}	$\overline{\gamma_{100}(n_i)}$	$I(\gamma_{100}(n_i))$	$\gamma_{10}(t_i)$	$I(\gamma_{10}(t_i))$	nicht opt.	>Speicher	
+	0.01	522.90	1.68	57.79	0.92	0	1	
-	0.01	675.12	1.30	65.84	0.81	0	0	
+	0.30	771.63	1.14	66.29	0.81	0	0	
-	0.30	743.52	1.18	55.64	0.96	0	0	
-	0.20	655.84	1.34	54.63	0.98	0	0	
-	0.40	714.56	1.23	51.81	1.03	0	0	
SCIP S	tandard							
ohne S	eparierung	880.58	1.00	53.43	1.00	0	0	

Tabelle 4.11:	Verbesserungsfaktoren	[einfache	Instanzen]
	U	L	

Var	riante	ga	ap _{rel} %	Anzahl	Instanzen
F	\mathcal{V}^{min}	$\gamma_1(gap_{rel}\%_i)$	$I(\gamma_1(gap_{rel}\%_i))$	optimal	>Speicher
+	0.01	7.76	1.00	0	0
-	0.01	6.78	1.14	1	0
+	0.30	6.80	1.14	1	0
-	0.30	6.82	1.14	1	0
-	0.20	6.64	1.17	1	0
-	0.40	6.88	1.13	1	0
SCIP St	tandard				
ohne Se	eparierung	7.76	1.00	0	0

Tabelle 4.12: Verbesserungsfaktoren [schwere Instanzen]

zuschlagen. Die beiden Tabellen sind von ihrem Aufbau identisch zu den entsprechenden des Szenarios 1, wobei selbstverständlich die Verschlechterungsfaktoren anstatt der Verbesserungsfaktoren angegeben sind.

Zunächst betrachten wir die Ergebnisse für die einfachen Probleminstanzen (siehe Tabelle 4.13). Dabei bemerken wir, dass alle erzielten Verschlechterungsfaktoren für die Anzahl der benötigten Branch&Bound-Knoten größer 1 sind, während die Faktoren für die benötigte Rechenzeit zwischen 0.68 und 0.95 schwanken. Insbesondere erreichen die Varianten mit F = + und $\mathcal{V}^{min} = 0.01$ nur Verschlechterungsfaktoren kleiner oder gleich 0.75 für die Gesamtlösungszeit, d. h. in der Referenzmessung konnten die Instanzen in durchschnittlich 75% der benötigten Zeit gelöst werden. Dies ist insofern nicht verwunderlich, da diese Varianten besonders viele verletzte $\{0, \frac{1}{2}\}$ -Schnitte separieren und aufgrund des Parameters F = + einen großen Anteil dieser dem System (A, b) hinzufügen. Dies führt zu einer signifikanten Vergrößerung des Systems und zu den schlechten Werten bzgl. der Rechenzeit. Nichtsdestoweniger benötigt die Referenzmessung ca. 27% mehr Branch&Bound-Knoten zur Lösung als die Variante (+|-500|0.01), wobei in letztgenannter eine Instanz (irp) innerhalb der Zeitbeschränkung nicht optimal gelöst werden kann und das Lösen der Instanz fast0507 die Speicherbedarfsbeschränkung nicht erfüllt. Außerdem stellen wir im Vergleich der Varianten (+|-1500|0.01) mit (-|-1500|0.01) bzw. (+|-500|0.30) mit (-|-500|0.30) fest, dass der Parameter F einen entscheidenden Einfluss auf die Verschlechterungsfaktoren hat: Durch die Wahl von F = + wird zwar der Verschlechterungsfaktor bzgl. der Knotenanzahl verbessert, aber gleichzeitig der bzgl. der Gesamtlösungszeit gemindert. Des Weiteren bemerken wir, je später unser Separierungsalgorithmus durch SCIP aufgerufen wird (d. h. je kleiner die Werte von *prio* sind), desto geringer sind die Werte der Verschlechterungsfaktoren. Wir untersuchen daher insbesondere Varianten, in denen ein früher Aufruf seitens SCIP erfolgt (prio = -500). Zuletzt betrachten wir nun den Einfluss der Mindestverletzung \mathcal{V}^{min} . Dazu untersuchen wir die Ergebnisse der Varianten (-|-500|0.20) bis (-|-500|0.40). Dabei stellen wir fest, dass nach einer anfänglichen Verringerung des Verschlechterungsfaktors für die Knotenanzahl dieser für $\mathcal{V}^{min} = 0.30$ kurzzeitig auf 1.10 ansteigt und für eine Mindestverletzung von 0.20 auf den Wert 1.04 sinkt. Der Verschlechterungsfaktor für die benötigte Rechenzeit steigt bis $\mathcal{V}^{min} = 0.30$ auf den Wert 0.95 und sinkt dann wieder auf 0.91. Zusammenfassend halten wir fest: Die Wahl eines frühen Separierungsaufrufs durch SCIP (*prio* = -500) zusammen mit F = - und einer Mindestverletzung von 0.30 ermöglicht noch immer eine gute Lösung der Probleminstanzen. Die Referenzmessung (SCIP Standard) benötigt für diesen Fall ca. 10% mehr Knoten und ca. 5% weniger Zeit.

Die Betrachtung der Ergebnisse der schweren Instanzen ist für dieses Szenario nicht so ergiebig, denn in allen Varianten mit F = + konnte mindestens eine Instanz aufgrund der Speicherbedarfsbeschränkung nicht gelöst werden. Dies sind in den Varianten mit der Mindestverletzung $\mathcal{V}^{min} = 0.01$ die Instanzen ds und sp97ar und in (+|-500|0.30) die Instanz t1717. Diese drei Probleminstanzen entstammen der MIPLIB2003 [4] und gehören den besonders schweren Problemen dieser Bibliothek an, für die derzeit keine Optimallösung be-

	Variant	e	#ŀ	Knoten <i>n</i>	2	Zeit t	Anzahl I	nstanzen
F	prio	\mathcal{V}^{min}	$\gamma_{100}(n_i)$	$\mathcal{D}(\mathbf{\gamma}_{100}(n_i))$	$\gamma_{10}(t_i)$	$\mathcal{D}(\gamma_{10}(t_i))$	nicht opt.	>Speicher
+	-500	0.01	189.55	1.27	64.60	0.75	1	1
+	-1500	0.01	199.46	1.21	65.41	0.74	1	1
+	-3500	0.01	198.33	1.22	66.15	0.73	1	1
+	-5500	0.01	236.14	1.02	70.89	0.68	1	1
-	-1500	0.01	232.27	1.04	59.21	0.81	0	0
+	-500	0.30	211.67	1.14	56.27	0.86	1	0
-	-500	0.30	220.69	1.10	50.91	0.95	0	0
-	-500	0.20	236.93	1.02	58.49	0.82	0	0
-	-500	0.40	233.65	1.04	52.98	0.91	1	0
SC	IP Standar	d	241.95	1.00	48.17	1.00	0	0

Tabelle 4.13: Verschlechterungsfaktoren [einfache Instanzen]

kannt ist. Wir werten die Verschlechterungsfaktoren für die beschriebenen Varianten als zu hoch, da die Werte der abgebrochenen Instanzen darin nicht eingehen und somit bis zu 33% der betrachteten schweren Instanzen nicht zum verschobenen geometrischen Mittel beitragen. Tatsächlich aussagekräftig sind die Verschlechterungsfaktoren der übrigen Varianten, die alle einen Wert ≥ 1 besitzen. Das heisst, dass die Separierung von $\{0, \frac{1}{2}\}$ -Schnitten einen positiven Einfluss auf die Lösung schwerer Instanzen besitzt.

Zusammenfassende Bewertung Die Priorität des Separierungsalgorithmus hat entscheidenden Einfluss auf die Güte der Separierung. Wir stellen in der Analyse der Ergebnisse beider Szenarien fest, dass ein besonders früher Separierungsaufruf eine hohe Wirksamkeit in Form von besonders guten Verbesserungs- bzw. Verschlechterungsfaktoren erzielt. Ebenfalls können wir beobachten, dass das Hinzufügen einer großen Anzahl von Schnitten zwar die LP-Relaxierung dahingehend verbessert, dass weniger Branch&Bound-Knoten zur Lösung benötigt werden, aber gleichzeitig das System derart vergrößert, dass eine höhere Gesamtlösungszeit benötigt wird. Durch geeignete Wahl der Parameter V^{min} und F kann versucht werden, die Menge der separierten $\{0, \frac{1}{2}\}$ -Schnitte zu reduzieren, wobei stets auch für den weiteren Lösungsprozess vorteilhafte Schnitte entfernt werden, was sich in der Verringerung des Verbesserungs- bzw. Verschlechterungsfaktors der Knotenanzahl zeigt.

Als gute Parameterauswahl hat sich die Variante (-|-500|0.30) herausgestellt, durch deren Verwendung im Vergleich zu SCIP Standard bei 5% iger Verlangsamung des Lösungsprozesses eine Verringerung um 10% der benötigten Branch&Bound-Knoten erzielt wird.

Ist die Verminderung der Gesamtlösungszeit in der Betrachtung sekundär, so kann durch die Variante (+|-500|0.01) die benötigte Knotenanzahl um über 20% gesenkt werden bei etwa gleichem Anstieg der Rechenzeit.

Variante		e	g	ap _{rel} %	Anzahl	Anzahl Instanzen		
F	prio	\mathcal{V}^{min}	$\gamma_1(gap_{rel}\%_i)$	$\mathcal{D}(\mathbf{y}_1(gap_{rel}\%_i))$	optimal	>Speicher		
+	-500	0.01	5.67	1.77	0	2		
+	-1500	0.01	5.52	1.82	0	2		
+	-3500	0.01	5.76	1.74	0	2		
+	-5500	0.01	5.38	1.87	0	2		
-	-1500	0.01	9.84	1.02	0	0		
+	-500	0.30	7.59	1.32	0	1		
-	-500	0.30	9.86	1.02	0	0		
-	-500	0.20	9.85	1.02	0	0		
-	-500	0.40	10.07	1.00	0	0		
SC	IP Standar	d	10.05	1.00	0	0		

4.5 Gesamtergebnis

Wir möchten abschließend die Ergebnisse der einzelnen Rechenstudien zu einem Gesamtergebnis zusammenfassen und bewerten.

In Rechenstudie 4.2 stellen wir fest, dass die Verwendung des PREPROCESSING X die Größe des betrachteten Systems (\bar{A}, \bar{b}) signifikant verringern kann. Dabei werden Reduktionen um über 75% in der Zeilen- und über 77% in der Spaltenanzahl erreicht. Des Weiteren erhöht die Verwendung dieses Preprocessings die Möglichkeit zur Anwendung polynomieller Separierungsalgorithmen, indem es die entsprechenden Strukturen in den reduzierten Koeffizientenmatrizen herausbildet. Ebenfalls können wir für ein durch PREPROCESSING X reduziertes System eine Beschleunigung einer allgemeinen exakten Separierung von $\{0, \frac{1}{2}\}$ -Schnitte um das 3.66-fache gegenüber dem nicht-reduzierten System feststellen.

In der Rechenstudie 4.3 gelingt es durch Kombination des für maximal verletzte $\{0, \frac{1}{2}\}$ -Schnitte exakten polynomiellen Separierungsalgorithmus SEPARIERETRIVIALESCHNITTE, des für Koeffizientenmatrizen mit spezieller Struktur exakten polynomiellen Separierungsalgorithmus SEPARIERESCHNITTEMATRIXMAX2EPROZEILE und des allgemeinen heuristischen Separierungsalgorithmus HEURSEPARIERESCHNITTEERWGAUSSELIMINATION einen wirksamen Algorithmus zur Separierung von $\{0, \frac{1}{2}\}$ -Schnitte zu bestimmen. Diesen kombinierten Separierungsalgorithmus nennen wir ERWGAUSS. Durch den Algorithmus ERWGAUSS kann die Ganzzahligkeitslücke um durchschnittlich 8.29% verringert werden. Außerdem gelingt es mit diesem in relativ kurzer Zeit eine große Auswahl verletzter $\{0, \frac{1}{2}\}$ -Schnitte zu separieren.

In Rechenstudie 4.4 untersuchen wir den Separierungsalgorithmus ERWGAUSS in Hinblick auf seine Integration in IP-Löser. Dabei stellen wir fest, dass die Separierung verletzter $\{0, \frac{1}{2}\}$ -Schnitte die Anzahl benötigter Branch&Bound-Knoten im Mittel um über 60% gegenüber der IP-Lösung ohne jegliche Schnittseparierung reduziert, dabei allerdings die Gesamtlösungszeit geringfügig erhöht. Im Zusammenspiel mit den Standard-Separierungsalgorithmen des MIP-Lösers SCIP gelingt eine über 20% ige Reduktion der benötigten Knotenanzahl bei annähernd gleicher Erhöhung der Rechenzeit. Die Analyse verschiedener für das Zusammenwirken mit anderen Separierungsalgorithmen wichtigen Parameter lässt uns eine Parametereinstellung finden, die bei ca. 5% iger Verlangsamung des Lösungsprozesses eine Verminderung der Knotenanzahl um 10% ermöglicht.

Die durchgeführten Rechenstudien haben gezeigt, dass die Kombination von Einzel-Reduktionen zu Modulen und schließlich zu einem wirkungsvollen Preprocessing die anschließende Separierung in der Praxis erheblich vereinfachen kann. Ebenso lässt sich durch Kombination einzelnener Separierungsalgorithmen unter Berücksichtigung polynomieller Spezialverfahren ein effizienter Separierungsalgorithmus zusammenstellen, dessen qualitatives Ergebnis die über 60%ige bzw. 20%ige Reduktion der Größe des im Lösungsprozess benötigten Branch&Bound-Baumes ist. Zusätzlich kann durch geeignete Parameterwahl die Verlängerung der Gesamtlösungszeit weiter reduziert werden.

Weiterhin haben wir festgestellt, dass unser Separierungsalgorithmus ERWGAUSS eine große Anzahl verletzter $\{0, \frac{1}{2}\}$ -Schnitte bestimmen kann. Deren Beurteilung hinsichtlich ihrer Wirksamkeit anhand des Quotienten aus Verletzung und Norm der Nichtnullkoeffizienten, wie es das verwendete Branch&Cut-Framework SCIP durchführt, scheint ungeeignet. Besonders Parametereinstellungen, die dieses Kriterium abschwächen (F = +) haben sehr gute qualitative Ergebnisse bzgl. der Knotenanzahl erzielt. Wir empfehlen daher weitere Untersuchungen in Hinblick auf ein geeigneteres Auswahlkriterium wirksamer Schnitte aus der Menge der separieren Schnitte.

Die in den Rechenstudien betrachteten Probleminstanzen sind in gängigen Problembibliotheken wie der MIPLIB entnommen. Sie entstammen Anwendungen aus der Praxis und wurden aufgrund ihrer Heterogenität und hohen Anforderungen an IP-Löser (zum Zeitpunkt ihrer Aufnahme) in diese Problembibliotheken integriert. Diesen repräsentativen Charakter der betrachteten Probleminstanzen vorausgesetzt, möchten wir unsere Ergebnisse der Rechenstudien verallgemeinern und als Gesamtergebnis festhalten:

Die Separierung verletzter $\{0, \frac{1}{2}\}$ -Schnitte ist für das Lösen ganzzahliger Programme als vorteilhaft zu bewerten.

Kapitel 5

Zusammenfassung

Viele reale Optimierungsprobleme aus z. B. Produktion, Logistik oder Telekommunikation werden als (gemischt-)ganzzahlige lineare Programme modelliert. Das in der Praxis verwendete Lösungsverfahren ist dabei meist das Branch&Bound-Verfahren in Verbindung mit der Separierung von Schnittebenen (Branch&Cut) oder Spaltengenerierung (Branch&Price). Während bei der Spaltengenerierung implizit vorhandene Variablen bei Bedarf dem Problem explizit hinzugefügt werden, ergänzen Schnittebenenverfahren das Problem um weitere zulässige Ungleichungen. Beide Verfahren haben das Ziel, die Größe des anfänglichen Problemes möglichst lange gering zu halten und erst während des Lösungsprozesses benötigte Informationen hinzuzufügen. Dies geschieht, um aktuell suboptimale oder unzulässige Lösungen für den weiteren Lösungsverlauf auszuschließen.

Im Rahmen dieser Arbeit ist ein Schnittebenenverfahren unter Verwendung der allgemeinen $\{0, \frac{1}{2}\}$ -Schnittungleichungen (kurz $\{0, \frac{1}{2}\}$ -Schnitte), einer speziellen Klasse von Chvátal-Gomory-Schnitten für ganzzahlige Programme, untersucht worden. Wir haben einen Überblick zur Theorie der Separierung dieser Schnitte gegeben und anschließend Prozeduren zur Reduktion der Problemgröße formuliert. Nachfolgend haben wir verschiedene bekannte Separierungsalgorithmen für das $\{0, \frac{1}{2}\}$ -Schnitte-Separierungsproblem sowie neue Kombinationen derselben vorgestellt. Dabei sind einerseits ein exaktes allgemein anwendbares Verfahren (basierend auf der Lösung eines ganzzahligen Hilfsprogrammes) angegeben und andererseits verschiedene polynomielle exakte Verfahren für mehrere Spezialfälle vorgestellt worden. Neben diesen Algorithmen, die zum Teil auf speziellen Problemstrukturen beruhen, haben wir effiziente Heuristiken untersucht, die allgemein anwendbar sind. Alle beschriebenen Reduktionen und Algorithmen sind zusätzlich, als Vorlage für eine Implementierung, in Form von Pseudocode angegeben und im Hinblick auf ihren Aufwand untersucht worden. Des Weiteren haben wir Ansätze zur Verallgemeinerung auf gemischt-ganzzahlige Programme sowie Empfehlungen zur Entwicklung weiterer Separierungsalgorithmen angegeben.

Alle fünfzehn vorgestellten Reduktionen und sieben Separierungsalgorithmen sind von uns im Rahmen dieser Arbeit implementiert und in das Framework SCIP integriert worden. In detaillierten Rechenstudien haben wir das Zusammenwirken der Reduktionen, der Separierungsalgorithmen und verschiedener Parametereinstellungen analysiert und die vielversprechendsten Ergebnisse in eine weitere und abschließende Rechenstudie einfließen lassen. Hierbei sind die Wechselwirkungen mit den Standard-Separierungsalgorithmen von SCIP getestet und die Verbesserung der Gesamteffizienz des Lösungsprozesses untersucht und bewertet worden.

Die durchgeführten Rechenstudien sind sowohl in Heterogenität der betrachteten Probleminstanzen als auch in der Anzahl verwendeter Messgrößen umfangreicher und detaillierter als bisher zur Separierung von $\{0, \frac{1}{2}\}$ -Schnitten veröffentlichte Studien. Sie besitzen eine hohe Repräsentativität für allgemeine ganzzahlige Programme.

In der Analyse haben wir festgestellt, dass die Separierung verletzter $\{0, \frac{1}{2}\}$ -Schnitte die Lösung ganzzahliger Programme stark verbessert: Die Anzahl der im Lösungsprozess benötigten Branch&Bound-Knoten kann im Mittel um über 20% reduziert werden. Eine gleichzeitige Verlängerung der Lösungsdauer kann durch geeignete Parameterwahl auf einen Anstieg um 5% beschränkt werden, wobei die benötigte Knotenanzahl noch immer um mindestens 10% reduziert wird. Diese qualitativ guten Ergebnisse haben wir durch die Entwicklung einer effizienten Kombination aus Preprocessing und Separierungsalgorithmen unter Berücksichtigung polynomieller Spezialfälle erzielen können.

Aufgrund unserer Ergebnisse empfehlen wir den von uns entwickelten Separierungsalgorithmus ERWGAUSS in den Lösungsprozess ganzzahliger Programme zu integrieren.

Tatsächlich wird unser Separierungsalgorithmus ERWGAUSS zusammen mit dem verwendeten Preprocessing (PREPROCESSING X) als Standard in SCIP aufgenommen. Außerdem ist bereits seitens der Entwickler des kommerziellen MIP-Lösers CPLEX Interesse an den Forschungsergebnissen zur Separierung von $\{0, \frac{1}{2}\}$ -Schnitten geäußert worden. Sie wird ab der Programmversion CPLEX 11.0 verfügbar sein.

Als weiteren Forschungsgegenstand sehen wir die Erweiterung der vorgestellten Verfahren auf gemischt-ganzzahlige Programme (z. B. in Form von projizierten $\{0, \frac{1}{2}\}$ -Schnitten oder einer Relaxierung kontinuierlicher Variablen mittels vorhandener Variablenschranken), die weitere Untersuchung von EPT-Matrizen oder des MW-BCP mit dem Ziel polynomielle Verfahren zur Separierung größerer Teilklassen zu bestimmen, und die Entwicklung weiterer allgemein anwendbarer (kombinatorischer) Heuristiken und/oder Problemreduktionen.

Ebenso empfehlen wir zu untersuchen, ob und inwiefern sich das beschriebene Ergebnis von Gentile et al. auf allgemeine (nicht notwendigerweise beschränkte) ganzzahlige Programme verallgemeinern lässt, da dies die Qualität und Relevanz der $\{0, \frac{1}{2}\}$ -Schnitte-Separierung auch aus theoretischer Sicht weiter festigte.

Summary

Many real optimization problems are modelled as (mixed) integer linear programs, for example in industry, logistics or communication. The branch-and-bound procedure is oftentimes used for solving these actual problems, commonly in conjunction with the separation of cutting planes (branch-and-cut) or the process of column generation (branch-and-price). Implicit variables can be added to the process by column generation should the need arise to make them explicit. In the cutting planes approach, the same is accomplished by adding further valid inequalities. Both processes strive to keep the initial size of the problem down, adding additional Information only during the solution phase. This is done to eliminate nonoptimal or infeasible solutions during the solution phase.

This work has examined cutting plane algorithms concerning the $\{0, \frac{1}{2}\}$ -Chvátal-Gomory Cuts $(\{0, \frac{1}{2}\}$ -Cuts), which are a subclass of the general Chvátal-Gomory-Cuts for integer programs. We have given an overview on the theory of separating these cuts, and formulated procedures that reduce the size of the respective problem. Then we presented several known algorithms for separation, and introduced some recombinations of these algorithms. A generally applicable procedure, which is based on the solution of an auxiliary integer program, was given, and different polynomial exact procedures have been presented for special cases. Alongside these rather specialized algorithms, we have examined efficient and generally applicable heuristics. All the reductions and algorithms that have been introduced, have also been presented as a template for implementation in pseudocode and examined for their computational costs. Approaches for making them applicable to mixed-integer programs have been made, as well as suggestions for developing further separation algorithms.

The fifteen reductions and seven algorithms for separation have been implemented and integrated within the SCIP Framework. We have used detailed computational studies to analyze the interactions of the reductions, the algorithms for separation and different parameter settings. The most promising results of these preceding studies have been examined in a concluding computational study. The interactions with the standard separation-algorithms of the SCIP framework have been tested and the efficiency improvement of the process has been analyzed and evaluated.

The computational studies carried out are more detailed and varied in regards to the probleminstance's heterogenity as well as in the number of measurement categorys used than in any other published study on the subject of $\{0, \frac{1}{2}\}$ -Cuts separation.

Separating violated $\{0, \frac{1}{2}\}$ -Cuts yields an significant improvement in solving integer programs: Using our algorithm ERWGAUSS we could achieve a reduction of at least 20 percent in the number of branch-and-bound nodes needed. Furthermore we determined parameter settings that limit the increase of the solving time to almost 5 percent still giving a reduction of at least 10 percent in the number of nodes. These results of good quality have been attained by developing an efficient combination of preprocessing procedures, a polynomial time algorithm for separating a large subclass of $\{0, \frac{1}{2}\}$ -Cuts and a heuristic that is general applicable.

The algorithm ERWGAUSS, which has been implemented within this paper, has actually been accepted as a standard in SCIP. Furthermore, developers of the commercial MIP solver CPLEX have uttered interest in the research findings regarding the separation of $\{0, \frac{1}{2}\}$ -Cuts. It will be available in the upcoming program version CPLEX 11.0.

We see further objects of research in the expansion of the introduced process onto mixedinteger programs (for example in the form of projected $\{0, \frac{1}{2}\}$ -Cuts or a relaxation of continous variables via existing variable bounds), and in the further examination of EPT-Matrices or the MW-BCP. These could be aimed at assigning polynomial methods for the separation of bigger subclasses. Further development of generally applicable (combinatorial) heuristics and/or problem-reductions seems to be a promising endeavor.

We also suggest to examine if and how far Gentile et al's theorem can be applied to general integer programs, whose variables are not neccessarily bounded. This would consolidate the quality and relevance of $\{0, \frac{1}{2}\}$ -Cuts separation from a theoretical standpoint, too.

Anhang A

Probleminstanzen

	nach Presolv	ing durch SCIP			
Name	#Zeilen	#Spalten	Z_{LP}	ZIP	gap _{rel} %
10teams 1 2 3	330	1600	917	924	0.76
30:70:4_5:0_5:100 ³	12022	10758	8.1	9	10.00
30:70:4_5:0_95:100 ³	12523	10973	3	3	0.00
30:70:4_5:0_95:98 ³	12400	10919	11.5	12	4.17
acc-0 ³	2016	1620	0	0	0.00
acc-1 ³	2565	1620	0	0	0.00
$\operatorname{acc-2}^3$	2799	1620	0	0	0.00
acc-3 ³	3472	1570	0	0	0.00
acc-4 ³	3522	1570	0	0	0.00
acc-5 ³	2721	1023	0	0	0.00
acc-6 ³	2725	1023	0	0	0.00
air03 ¹	87	10639	338864.25	340160	0.38
air04 ¹²³	1197	7370	55535.4364	56137	1.07
air05 ¹²⁵	682	6115	25877.6093	26374	1.88
$cap6000^{125}$	2015	5872	-2451537.33	-2451377	0.01
disctom ²	788	9991	-5000	-5000	0.00
ds -	625	6/0/6	57.234566	(283.4425)	/9.81
eilD/6 ⁻⁵	75	1823	680.538997	885.411847	23.14
$f_{-+0} = 12$	42	100	170 1455(7	0	0.00
fast0507	4/2	02997	1/2.14330/	1/4	1.07
at 2 ¹	28	1033	20146 7612	403933.18	31.20
g_{12}	28	175	20140.7015	73800708	4.82
im ³	30	10041	12123 5302	12150 4028	0.30
11521av ¹	193	19941	4656 36364	4722	1 39
lsen ¹	28	88	947 957237	1120	15.36
manna81 ²	6480	3321	-13297	-13164	1.01
markshare1 1 2 3	6	50	0	1	100.00
markshare2 ¹²³	7	60	0	1	100.00
misc03 ¹	121	138	1910	3360	43.15
misc07 ¹²³	257	232	1415	2810	49.64
mitre ¹	2040	10674	114782.467	115155	0.32
mod008 1	6	319	290.931073	307	5.23
mod010 ¹	283	2503	6532.08333	6548	0.24
neos1 ³	1838	1728	15.5	19	18.42
neos10 ³	14536	790	-1196.33333	-1135	5.40
neos16 ³	859	376	429	(450)	4.67
neos18 ³	3300	761	7	16	56.25
neos21 ³	1074	592	2.21648352	7	68.34
neos8 3	13958	558	-3725	-3719	0.16
nug08 ³	1824	1632	203.5	214	4.91
nw04 ¹²³	43	87454	16310.6667	16862	3.27
p0033 ¹	15	31	2838.54674	3089	8.11
p0201 ¹	127	195	7125	7615	6.43
p0282 ¹	304	200	246740.148	258411	4.52
p0548 ¹	2/6	420	//40.6/184	8691	10.93
p2/56 · -	1805	2541	2/04.02/5	3124	13.44
prod 1 -	114	149	-84.4158/19	-50	50.74
cop 10 ³	2149	1655	-41.93/4408	-51	55.55 2.10
qap10 ⁻	572	4150	14274 1027	16020 6027	2.19
anet1 o ¹³	453	1417	19279.1027	16029.0927	21 66
sevmour ¹²	4667	1176	403 846474	10029.0927	21.00 1 53
sp97ar ²	1639	14100	652560391	(664565104)	1.81
stein27 ¹	118	27	13	18	27 78
stein45 ¹	331	45	22	30	26.67
t1717 ²	776	67716	134531.021	(193221)	30.37
				()	2 2 /

Tabelle A.1: Übersicht der in Kapitel 4 betrachteten ganzzahligen Probleminstanzen mit Angabe der Herkunft (¹ MIPLIB 3.0 [7] ² MIPLIB 2003 [4] ³ Mittelmann [50])

	im Wur	zelknoten				
Name	ZLP	gap closed%	- ZLP	gap closed%	#Knoten	Zeit
10teams	924	100.00	924	100.00	538	39.46
30:70:4_5:0_5:100	9	100.00	9	100.00	285	1101.33
30:70:4_5:0_95:100	3	100.00	3	100.00	42	692.93
30:70:4_5:0_95:98	12	100.00	12	100.00	184	401.52
acc-0	0	100.00	0	100.00	1	17.78
acc-1	0	100.00	0	100.00	115	90.53
acc-2	0	100.00	0	100.00	1	43.68
acc-3	0	100.00	0	100.00	115	251.72
acc-4	0	100.00	0	100.00	418	716.21
acc-5	0	100.00	0	100.00	2322	871.14
acc-6	0	100.00	0	100.00	280	174.70
air03	340160	100.00	340160	100.00	4	22.77
air04	55664.9189	21.52	56137	100.00	258	207.41
air05	25985.3332	21.70	26374	100.00	342	89.45
cap6000	-2451492.23	28.13	-2451377	100.00	3065	8.57
disctom	-5000	100.00	-5000	100.00	1	91.49
ds	57.4259535	0.08	58.5108272	0.56	408	3600.00
eilD76	885.411847	100.00	885.411847	100.00	9	83.44
enigma	0	100.00	0	100.00	1593	0.83
fast0507	172.145567	0.00	174	100.00	1445	754.10
fiber	387639.469	91.20	405935.18	100.00	10	1.67
gt2	21166	100.00	21166	100.00	2	0.11
harp2	-74172168	35.97	-73901721.2	99.55	5416489	3600.00
irp	12148.868	70.46	12159.4928	100.00	10	54.85
1152lav	4664.14794	11.86	4722	100.00	24	3.66
lseu	1040.75879	53.94	1120	100.00	81	0.29
manna81	-13164	100.00	-13164	100.00	2	5.41
markshare1	0	0.00	-1e+20	0.00	0	3600.00
markshare2	0	0.00	-1e+20	0.00	0	3600.00
misc03	2261.51961	24.24	3360	100.00	60	1.44
misc07	1425	0.72	2810	100.00	25256	38.93
mitre	115155	100.00	115155	100.00	10	59.96
mod008	296.204409	32.82	307	100.00	267	0.64
mod010	6548	100.00	6548	100.00	1	2.04
neos1	19	100.00	19	100.00	14	20.20
neos10	-1178.50497	29.07	-1135	100.00	5	249.84
neos16	432	14.29	435.166667	29.37	1211598	3600.00
neos18	13	66.67	16	100.00	16403	201.14
neos21	2.87955202	13.86	7	100.00	1796	44.39
neos8	-3719	100.00	-3719	100.00	1	151.04
nug08	214	100.00	214	100.00	1	488.50
nw04	16316.2989	1.02	16862	100.00	5	77.23
p0033	3089	100.00	3089	100.00	1	0.04
p0201	7281.83344	32.01	/615	100.00	141	1.92
p0282	25/088.751	88.67	258411	100.00	19	0.93
p0548	8684.92633	99.36	8691	100.00	8	0.60
p2/56	3118.60441	98.72	3124	100.00	37	4.29
prod I	-/4.0033819	54.52	-20	100.00	25459	42.91
protiold	-41.3191489	5.34	-30.8333333	42.85	4951	3600.00
qap10	334.333493	20.49	16020 6027	100.00	4	038.20
quett	15550.0942	/1.88	16029.692/	100.00	43	0.41
	13003.1933	89.45	10029.092/	100.00	00	2400.00
seymour sp07or	408.038321	25.12	414.131811	53./U	22188	3000.00
sp9/ar	0332/1436	5.92	000821096	27.16	15/06	3000.00
stein27	13	0.00	18	100.00	4449	1.83
stell145	125070 111	0.00	125445.007	100.00	333/1	40.37
u / I /	1550/0.111	0.92	135445.007	1.56	364	3600.00

Tabelle A.2: Übersicht der Lösbarkeit der betrachteten ganzzahligen Probleminstanzen durch SCIP im Wurzelknoten bzw. bei einer Zeitbeschränkung von einer Stunde

Anhang B

Details zur Rechenstudie 4.2: Reduktion der Systemgröße

Name	Δ_{Zeilen}	$\Delta_{Spalten}$	Name	Δ_{Zeilen}	$\Delta_{Spalten}$
10teams	0.00	0.00	10teams	85.77	90.75
30:70:4_5:0_5:100	0.00	0.00	30:70:4_5:0_5:100	75.05	81.66
30:70:4_5:0_95:100	0.00	0.00	30:70:4_5:0_95:100	75.19	81.78
30:70:4_5:0_95:98	0.00	0.00	30:70:4_5:0_95:98	72.88	79.90
acc-0	0.00	0.00	acc-0	67.96	77.67
acc-1	0.00	0.00	acc-1	57.66	70.90
acc-2	0.00	0.00	acc-2	56.06	69.68
acc-3	0.00	0.00	acc-3	45.68	54.78
acc-4	0.00	0.00	acc-4	45.88	56.93
acc-5	0.00	0.00	acc-5	42.61	54.29
acc-6	0.00	0.00	acc-6	42.55	54.18
air03	0.00	0.00	air03	99.32	99.74
air04	0.00	0.00	air04	92.62	96.06
air05	0.00	0.00	air05	93.53	96.18
cap6000	0.00	0.00	cap6000	97.02	99.91
disctom	0.00	0.00	disctom	95.60	97.02
ds	0.00	0.00	ds	98.83	99.20
eilD76	0.00	0.00	eilD76	87.34	90.23
enigma	0.00	0.00	enigma	84.08	87.46
fast0507	0.00	0.00	fast0507	99.22	99.56
fiber	0.00	0.00	fiber	92.60	94.35
gt2	0.00	0.00	gt2	87.14	84.70
harp2	0.00	0.00	harp2	85.01	91.69
im	0.00	0.00	im	99.61	99.77
1152lav	0.00	0.00	1152lav	95.20	97.08
lseu	0.00	0.00	lseu	71.41	79.71
manna81	0.00	0.00	manna81	76.95	20.42
markshare1	0.00	0.00	markshare1	78.10	84.84
markshare2	0.00	0.00	markshare2	78.44	84.74
misc03	0.00	0.00	misc03	67.08	82.20
misc07	0.00	0.00	misc07	79.93	89.83
mitre	0.00	0.00	mitre	96.36	99.02
mod008	0.00	0.00	mod008	93.75	95.86
mod010	0.00	0.00	mod010	98.30	99.02
neos1	0.00	0.00	neos1	88.65	93.19
neos10	0.00	0.00	neos10	83.91	92.55
neos16	0.00	0.00	neos16	50.61	38.08
neos18	0.00	0.00	neos18	20.90	30.67
neos21	0.00	0.00	neos21	59.91	72.82
neos8	0.00	0.00	neos8	93.46	97.51
nug08	0.00	0.00	nug08	55.81	54.19
nw04	0.00	0.00	nw04	99.96	99.99
p0033	0.00	0.00	p0033	56.39	67.50
p0201	0.00	0.00	p0201	57.81	67.17
p0282	0.00	0.00	p0282	64.73	78.99
p0548	0.00	0.00	p0548	85.50	90.94
p2756	0.00	0.00	p2756	96.52	98.64
prod1	0.00	0.00	prod1	45.21	58.21
protfold	0.00	0.00	protfold	57.76	72.70
qap10	0.00	0.00	qap10	66.11	66.58
qnet1	0.00	0.00	qnet1	91.88	93.58
qnet1_o	0.00	0.00	qnet1_0	92.77	94.37
seymour	0.00	0.00	seymour	37.72	56.95
sp97ar	0.00	0.00	sp97ar	96.76	98.63
stein27	0.00	0.00	stein27	11.64	17.62
stein45	0.00	0.00	stein45	13.13	19.31
t1717	0.00	0.00	t1717	98.82	99.20
verschobenes geometrisches Mittel	0.00	0.00	verschobenes geometrisches Mittel	69.08	74.29

Tabelle B.1: Rechenstudie 4.2: kein Prepro- Tabelle B.2: Rechenstudie 4.2: PREPROCEScessing

SING I (Module: M1)

Name	Δ_{Zeilen}	$\Delta_{Spalten}$	Name	Δ_{Zeilen}	$\Delta_{Spalten}$
10teams	0.00	0.00	10teams	126.53	0.00
30:70:4_5:0_5:100	0.00	0.00	30:70:4_5:0_5:100	7.34	0.00
30:70:4_5:0_95:100	0.00	0.00	30:70:4_5:0_95:100	0.00	0.00
30:70:4_5:0_95:98	0.00	0.00	30:70:4_5:0_95:98	16.81	0.00
acc-0	0.00	0.00	acc-0	42.47	0.00
acc-1	0.00	0.00	acc-1	35.55	0.00
acc-2	0.00	0.00	acc-2	37.90	0.00
acc-3	0.00	0.00	acc-3	24.41	0.00
acc-4	0.00	0.00	acc-4	24.33	0.00
acc-5	0.00	0.00	acc-5	22.44	0.00
acc-6	0.00	0.00	acc-6	11.28	0.00
air03	0.00	0.00	air03	0.00	0.00
air04	0.00	0.00	air04	0.00	0.00
air05	0.00	0.00	air05	29.27	0.00
cap6000	0.00	5.28	cap6000	165.73	0.00
disctom	0.00	0.00	disctom	0.00	0.00
ds	0.00	0.00	ds	0.00	0.00
eilD76	0.00	0.00	eilD76	1221.35	0.00
enigma	0.00	0.00	enigma	15.29	0.00
fast0507	0.00	0.00	fast0507	0.00	0.00
fiber	0.09	14.78	fiber	150.37	0.00
gt2	1.82	0.61	gt2	205.53	0.00
harp2	0.00	0.00	harp2	403.80	0.00
irp	0.00	0.00	irp	0.00	0.00
1152lav	0.00	0.00	1152lav	178.30	0.00
lseu	2.38	0.30	lseu	121.40	0.00
manna81	0.00	0.00	manna81	40.54	0.00
markshare1	0.00	0.00	markshare1	210.20	0.00
markshare2	0.00	0.00	markshare2	223.01	0.00
misc03	0.00	0.00	misc03	93.47	0.00
misc07	0.00	0.00	misc07	71.97	0.00
mitre	0.09	0.00	mitre	165.16	0.00
mod008	5.53	0.38	mod008	1430.96	0.00
mod010	0.00	0.00	mod010	29.37	0.00
neos1	0.00	0.00	neos1	83.00	0.00
neos10	0.00	0.00	neos10	56.63	0.00
neos16	0.13	0.00	neos16	50.60	0.00
neos18	0.00	0.00	neos18	18.07	0.00
neos21	0.00	0.00	neos21	36.19	0.00
neos8	0.00	0.00	neos8	19.80	0.00
nug08	0.00	0.00	nug08	63.87	0.00
nw04	0.00	0.00	nw04	0.00	0.00
p0033	0.35	0.34	p0033	76.17	0.00
p0201	1.52	0.68	p0201	86.28	0.00
p0282	0.37	2.13	p0282	68.28	0.00
p0548	0.56	2.72	p0548	104.57	0.00
p2756	4.19	27.09	p2756	167.21	0.00
prod1	0.00	0.00	prod1	35.99	0.00
protfold	0.00	0.00	protfold	36.73	0.00
qap10	0.00	0.00	qap10	39.30	0.00
qnet1	0.00	0.06	qnetl	166.93	0.00
qnet1_o	0.00	0.11	qnet1_o	184.21	0.00
seymour	0.00	0.00	seymour	35.45	0.00
sp97ar	0.00	0.00	sp97ar	0.00	0.00
stein27	0.00	0.00	stein27	7.88	0.00
stein45	0.00	0.00	stein45	8.77	0.00
t1/1/	0.00	0.00	t1/17	0.00	0.00
verschobenes geometrisches Mittel	0.15	0.24	verschobenes geometrisches Mittel	29.76	0.00

SING II (Module: M2 M3)

Tabelle B.3: Rechenstudie 4.2: PREPROCES- Tabelle B.4: Rechenstudie 4.2: PREPROCES-SING III (Module: M4)

Name	Δ_{Zeilen}	$\Delta_{Spalten}$	Name	Δ_{Zeilen}	$\Delta_{Spalten}$
10teams	13.17	0.01	10teams	0.00	0.00
30:70:4_5:0_5:100	9.51	6.53	30:70:4_5:0_5:100	0.00	0.00
30:70:4_5:0_95:100	15.92	9.95	30:70:4_5:0_95:100	0.00	0.00
30:70:4_5:0_95:98	13.80	9.45	30:70:4_5:0_95:98	0.00	0.00
acc-0	19.50	12.70	acc-0	0.00	0.00
acc-1	6.82	0.07	acc-1	0.00	0.00
acc-2	6.74	0.04	acc-2	0.00	0.00
acc-3	5.18	0.00	acc-3	0.00	0.00
acc-4	5.38	0.00	acc-4	0.00	0.00
acc-5	5.83	0.00	acc-5	0.00	0.00
acc-6	3.68	0.00	acc-6	0.00	0.00
air03	7.90	0.10	air03	0.00	0.00
air04	77.91	9.42	air04	0.00	0.00
air05	65.42	6.13	air05	0.00	0.00
cap6000	54.71	0.03	cap6000	0.00	0.00
disctom	0.00	0.00	disctom	0.00	0.00
ds	0.00	0.00	ds	0.00	0.00
eilD76	81.65	3.67	eilD76	0.00	0.00
enigma	13.26	5.56	enigma	0.00	0.00
fast0507	0.00	0.00	fast0507	0.00	0.00
fiber	34.43	0.09	fiber	0.00	0.00
gt2	119.42	0.00	gt2	0.00	0.00
harp2	58.60	8.11	harp2	0.00	0.00
irp	11.34	0.10	irp	0.00	0.00
1152lav	50.80	4.89	1152lav	0.00	0.00
lseu	7.16	0.00	lseu	0.00	0.00
manna81	10.64	0.00	manna81	0.00	0.00
markshare1	55.00	9.30	markshare1	0.00	0.00
markshare2	57.60	9.08	markshare2	0.00	0.00
misc03	16.32	0.08	misc03	0.00	0.00
misc07	9.00	0.00	misc07	0.00	0.00
mitre	10.79	0.00	mitre	0.00	0.00
mod008	401.39	1.83	mod008	0.00	0.00
mod010	13.25	2.51	mod010	0.00	0.00
neos1	4.63	0.00	neos1	0.00	0.00
neos10	45.99	0.00	neos10	0.00	0.00
neos16	20.86	4.00	neos16	0.00	0.00
neos18	11.97	0.01	neos18	0.00	0.00
neos21	0.27	0.16	neos21	0.00	0.00
neos8	16.92	0.43	neos8	0.00	0.00
nug08	115.03	62.69	nug08	0.00	0.00
nw04	0.00	0.00	nw04	0.00	0.00
p0033	12.93	0.00	p0033	0.00	0.00
p0201	21.77	0.00	p0201	0.00	0.00
p0282	8.51	0.31	p0282	0.00	0.00
p0548	2.12	0.01	p0548	0.00	0.00
p2756	35.61	0.00	p2756	0.00	0.00
prod1	12.25	7.81	prod1	0.00	0.00
protfold	1.35	0.00	protfold	0.00	0.00
qap10	71.61	34.47	qap10	0.00	0.00
qnet1	52.63	6.09	qnet1	0.00	0.00
qnet1_o	58.93	8.38	qnet1_o	0.00	0.00
seymour	0.06	0.08	seymour	0.00	0.00
sp9/ar	0.09	0.00	sp9/ar	0.00	0.00
stein2/	1.27	4.64	stein2/	0.00	0.00
stein45	0.25	1.73	stein45	0.00	0.00
L1/1/	0.00	0.00	L1/1/	0.00	0.00
verschobenes geometrisches Mittel	11.36	1.31	verschobenes geometrisches Mittel	0.00	0.00

SING IV (Module: M5)

Tabelle B.5: Rechenstudie 4.2: PREPROCES- Tabelle B.6: Rechenstudie 4.2: PREPROCES-SING V (Module: M6)

Name	Δ_{Zeilen}	$\Delta_{Spalten}$	Name	Δ_{Zeilen}	$\Delta_{Spalten}$
10teams	85.77	90.75	10teams	85.77	90.76
30:70:4_5:0_5:100	76.90	81.66	30:70:4_5:0_5:100	80.09	81.70
30:70:4_5:0_95:100	77.58	81.78	30:70:4_5:0_95:100	80.59	81.81
30:70:4_5:0_95:98	74.82	79.90	30:70:4_5:0_95:98	78.23	79.94
acc-0	68.04	77.67	acc-0	74.37	78.11
acc-1	57.71	70.90	acc-1	64.98	71.01
acc-2	56.09	69.68	acc-2	63.91	69.75
acc-3	45.70	54.78	acc-3	52.18	54.78
acc-4	45.90	56.93	acc-4	52.61	56.93
acc-5	42.78	54.29	acc-5	49.80	54.29
acc-6	42.67	54.18	acc-6	45.51	54.18
air03	99.40	99.74	air03	99.64	99.82
air04	92.63	96.06	air04	96.58	98.03
air05	93.54	96.18	air05	95.26	97.02
cap6000	99.86	99.91	cap6000	99.93	99.94
disctom	95.60	97.02	disctom	98.34	98.89
ds	98.83	99.20	ds	99.28	99.50
eilD76	87.34	90.23	eilD76	88.02	91.51
enigma	84.29	87.46	enigma	79.89	84.28
fast0507	99.27	99.56	fast0507	99.27	99.56
fiber	93.25	94.40	fiber	94.44	95.25
gt2	92.07	86.45	gt2	94.20	90.32
harp2	87.10	91.69	harp2	88.18	92.09
irp	99.61	99.77	irp	99.81	99.92
1152lav	95.21	97.08	1152lav	97.39	98.40
lseu	73.97	79.71	lseu	75.66	80.61
manna81	81.66	36.58	manna81	88.98	30.10
markshare1	78.37	85.42	markshare1	90.67	95.04
markshare2	78.89	84.74	markshare2	89.31	92.22
misc03	67.17	82.20	misc03	70.73	82.45
misc07	79.93	89.83	misc07	82.83	90.04
mitre	98.27	99.02	mitre	99.20	99.36
mod008	94.10	95.90	mod008	95.98	97.39
mod010	98.32	99.02	mod010	99.12	99.52
neos1	88.70	93.19	neos1	91.55	93.19
neos10	83.91	92.55	neos10	94.76	92.55
neos16	53.44	38.08	neos16	61.04	40.30
neos18	22.42	30.67	neos18	34.57	30.67
neos21	59.94	72.82	neos21	71.78	72.82
neos8	93.48	97.51	neos8	97.57	97.82
nug08	55.81	54.19	nug08	77.69	97.93
nw04	99.97	99.99	nw04	99.98	99.99
p0033	64.12	69.45	p0033	75.05	77.40
p0201	58.34	67.26	p0201	62.92	71.59
p0282	65.40	79.35	p0282	82.57	81.68
p0548	90.04	91.48	p0548	94.54	95.07
p2/56	98.17	98.73	p2/56	98.80	99.08
prod	45.22	58.21	prod	47.43	62.34
protfold	57.76	72.70	protfold	62.69	72.70
qap10	00.11	66.58	qap10	94.83	94.75
qneti	92.29	93.75	qneti	93.28	94.42
qnet1_o	92.95	94.53	qnet1_o	94.10	95.32
seymour	39.48	30.93	seymour	42.07	30.98
spy/ar	90.99	98.63	spy/ar	97.43	98.65
stein2/	11.04	17.62	stein 27	12.63	22.54
stem45 +1717	13.13	19.31	stem45 +1717	13.47	20.78
	90.02	99.20	· · · · · · · · · · · · · · · · · · ·	77.37	99.01
verschobenes geometrisches Mittel	69.97	75.13	verschobenes geometrisches Mittel	75.13	77.53

Tabelle B.7: Rechenstudie 4.2: PREPROCES- Tabelle B.8: Rechenstudie 4.2: PREPROCES-SING VI (Module: M1 M2 M3)

SING VII (Module: M1 M2 M3 M5)

Name	Δ_{Zeilen}	$\Delta_{Spalten}$	Name	Δ_{Zeilen}	$\Delta_{Spalten}$
10teams	85.77	90.76	10teams	85.77	90.76
30:70:4_5:0_5:100	80.09	81.70	30:70:4_5:0_5:100	80.29	81.90
30:70:4_5:0_95:100	80.59	81.82	30:70:4_5:0_95:100	80.72	81.97
30:70:4_5:0_95:98	78.23	79.94	30:70:4_5:0_95:98	78.29	80.01
acc-0	74.37	78.11	acc-0	74.52	78.41
acc-1	64.98	71.01	acc-1	64.99	71.04
acc-2	63.91	69.75	acc-2	63.91	69.75
acc-3	52.18	54.78	acc-3	52.18	54.78
acc-4	52.61	56.93	acc-4	52.61	56.93
acc-5	49.80	54.29	acc-5	49.80	54.29
acc-6	45.51	54.18	acc-6	45.51	54.18
air03	99.64	99.82	air03	99.68	99.84
air04	96.58	98.03	air04	96.22	98.00
air05	95.26	97.02	air05	95.26	97.02
cap6000	99.93	99.95	cap6000	99.94	99.96
disctom	98.34	98.89	disctom	98.34	98.89
ds	99.28	99.50	ds	99.27	99.50
eilD76	88.02	91.51	eilD76	88.02	91.51
enigma	79.89	84.28	enigma	79.89	84.28
fast0507	99.27	99.56	fast0507	99.27	99.56
fiber	94.48	95.28	fiber	94.66	95.42
gt2	94.45	90.32	gt2	94.85	92.24
harp2	88.21	92.11	harp2	88.21	92.11
irp	99.81	99.92	irp	99.76	99.90
1152lav	97.39	98.40	1152lav	97.34	98.39
lseu	75.66	80.61	lseu	76.11	81.19
manna81	89.08	30.18	manna81	89.03	30.15
markshare1	90.67	95.04	markshare1	90.43	94.77
markshare2	89.31	92.22	markshare2	88.69	91.99
misc03	70.73	82.45	misc03	71.12	82.73
misc07	82.83	90.04	misc07	85.34	91.46
mitre	99.23	99.40	mitre	99.25	99.41
mod008	95.98	97.39	mod008	95.98	97.40
mod010	99.10	99.50	mod010	99.12	99.52
neos1	91.55	93.19	neos1	91.96	93.63
neos10	94.76	92.55	neos10	94.76	92.66
neos16	61.20	40.54	neos16	61.05	40.36
neos18	34.57	30.67	neos18	34.58	30.69
neos21	71.78	72.82	neos21	71.78	72.82
neos8	97.57	97.82	neos8	97.56	97.63
nug08	77.69	97.93	nug08	77.65	97.93
nw04	99.98	99.99	nw04	99.99	99.99
p0033	75.31	77.62	p0033	83.18	85.99
p0201	62.92	71.59	p0201	62.92	71.59
p0282	83.48	82.99	p0282	82.02	81.32
p0548	94.66	95.16	p0548	94.67	95.21
p2756	98.82	99.10	p2756	99.00	99.25
prod1	47.59	62.34	prod1	47.43	62.34
protfold	62.69	72.70	protfold	62.69	72.70
qap10	94.83	94.75	qap10	94.83	94.75
qnetI	93.35	94.47	qnetI	93.44	94.58
qnet1_o	94.14	95.36	qnet1_o	94.10	95.33
seymour	42.67	56.98	seymour	42.67	56.98
sp9/ar	97.44	98.66	sp9/ar	97.43	98.65
stein2/	12.63	22.54	stein2/	12.63	22.54
stein45	13.47	20.78	stein45	13.47	20.78
<u>t1/1/</u>	99.39	99.81	<u></u>	99.37	99.81
verschobenes geometrisches Mittel	75.17	77.58	verschobenes geometrisches Mittel	75.33	77.76

SING VIII (Module: M1 M2 M3 M5 M6)

Tabelle B.9: Rechenstudie 4.2: PREPROCES- Tabelle B.10: Rechenstudie 4.2: PREPRO-CESSING IX (Module: M1 M2 M3 M4 M5)

Name	Δ_{Zeilen}	$\Delta_{Spalten}$
10teams	85.77	90.76
30:70:4_5:0_5:100	80.29	81.90
30:70:4_5:0_95:100	80.72	81.97
30:70:4_5:0_95:98	78.30	80.01
acc-0	74.52	78.41
acc-1	64.99	71.04
acc-2	63.91	69.75
acc-3	52.18	54.78
acc-4	52.61	56.93
acc-5	49.80	54.29
acc-6	45.51	54.18
air03	99.68	99.84
air04	96.22	98.00
air05	95.26	97.02
cap6000	99.95	99.97
disctom	98.34	98.89
ds	99.27	99.50
eilD76	88.02	91.51
enigma	79.89	84.28
fast0507	99.27	99.56
fiber	94.71	95.46
et2	95.13	92.24
harp2	88.24	92.13
im	99.76	99.90
1152lav	97 34	98 39
lseu	76.11	81.19
manna81	89.15	30.24
markshare1	90.43	94 77
markshare?	88.69	91.99
misc03	71.12	82.73
misc07	85.40	91.56
mitre	99.29	99.45
mod008	95.98	97.40
mod010	99.10	99.50
neosl	91.96	93.63
neos10	94 76	92.66
neos16	61.22	40.61
neos18	34 58	30.69
neos21	71 78	72.82
neos8	97.56	97.63
nug08	77.65	97.93
nw04	99.99	99.99
n0033	83.60	86.46
p00000	62.00	71 59
n0282	82.92	82.66
p0548	02.74 04.76	02.00
p0348	99.02	99.27
prod1	17 59	62.34
protfold	62.69	72 70
aan10	94.83	94 75
anet1	93 50	94.63
anet1 o	94 1A	05 38
sevmour	24.14 1267	95.50 56.08
sn07ar	97 44	08 66
stein 27	12.63	20.00
stein45	12.05	22.54
t1717	90 37	20.78
	,,,,,	77.01
verschobenes geometrisches Mittel	75.37	77.81

Tabelle B.11: Rechenstudie 4.2: PREPRO-CESSING X (Module: M1 M2 M3 M4 M5 M6)

Anhang C

Details zur Rechenstudie 4.2: Struktur der Koeffizientenmatrix

Name	τ _{entfernt}	τ	$\Phi_{2E/Ze}$	$\Phi_{2E/Sp}$	$\Psi^{Zeilen}_{2E/Ze}$	$\Psi^{Spalten}_{2E/Ze}$	$\Psi^{Zeilen}_{2E/Sp}$	$\Psi^{Spalten}_{2E/Sp}$
10teams	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_5:100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
air03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
air04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
air05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
cap6000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
disctom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ds	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
eilD76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
enigma	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fast0507	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fiber	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
gt2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
harp2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
irp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1152lav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lseu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
manna81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
markshare1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
markshare2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
misc03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
misc07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mitre	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mod008	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mod010	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nug08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nw04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0033	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0201	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0282	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0548	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p2/56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
prodl	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
protfold	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
qap10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
qnetl	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
qnet1_o	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
seymour	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sp9/ar	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
stein27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
stein45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
t1/1/	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
verschobenes geometrisches Mittel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Tabelle C.1: Rechenstudie 4.2: kein Preprocessing

Name	τ _{ent fernt}	τ	$\Phi_{2E/Ze}$	$\Phi_{2E/Sp}$	$\Psi^{Zeilen}_{2E/Ze}$	$\Psi^{Spalten}_{2E/Ze}$	$\Psi^{Zeilen}_{2E/Sp}$	$\Psi^{Spalten}_{2E/Sp}$
10teams	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_5:100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
air03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
air04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
air04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
cap6000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
disctom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ds	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
eilD76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
enigma	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fast0507	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fiber	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
gt2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
harp2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
irp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1152lav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lseu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
manna81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
markshare1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
markshare2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
misc03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
misc07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mitre	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mod008	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mod010	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neosi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neosil	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nug08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nw04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0033	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0201	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0282	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0548	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p2756	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
prod1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
protfold	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
qap10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
qnet1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
qnet1_o	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
seymour	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sp97ar	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
stein27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
stein45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>11/1/</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
verschobenes geometrisches Mittel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Tabelle C.2: Rechenstudie 4.2: PREPROCESSING I (Module: M1)

Name	τ _{entfernt}	τ	$\Phi_{2E/Ze}$	$\Phi_{2E/Sp}$	$\Psi^{Zeilen}_{2E/Ze}$	$\Psi^{Spalten}_{2E/Ze}$	$\Psi^{Zeilen}_{2E/Sp}$	$\Psi^{Spalten}_{2E/Sp}$
10teams	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_5:100	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:100	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:98	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-0	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-1	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-2	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-3	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-4	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-5	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
air03	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
air04	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
an05	0.00	22.08	0.00	0.00	0.00	0.00	0.00	0.00
disatam	0.00	25.98	0.00	0.00	0.00	0.00	0.00	0.00
de	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
eiD76	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
enigma	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
fast0507	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fiber	0.54	2.16	0.00	0.00	0.00	0.00	0.00	0.00
ot2	0.54	1.38	0.00	0.00	0.00	0.00	0.00	0.00
harp2	0.00	1.65	0.00	0.00	0.00	0.00	0.00	0.00
im	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
1152lav	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
lseu	1.35	1.08	0.00	0.00	0.00	0.00	0.00	0.00
manna81	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
markshare1	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
markshare2	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
misc03	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
misc07	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
mitre	2.28	1.00	0.00	0.00	0.00	0.00	0.00	0.00
mod008	0.94	1.00	0.00	0.00	0.00	0.00	0.00	0.00
mod010	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos1	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos10	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos16	1.50	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos18	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos21	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos8	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
nug08	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
nw04	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
p0033	0.19	1.12	0.00	0.00	0.00	0.00	0.00	0.00
p0201	2.20	1.00	0.00	0.00	0.00	0.00	0.00	0.00
p0282	1.10	1.18	0.00	0.00	0.00	0.00	0.00	0.00
p0548	1.57	1.00	0.00	0.00	0.00	0.00	0.00	0.00
p2/56	5.12	22.52	0.00	0.00	0.00	0.00	0.00	0.00
prod	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
protfold	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
qap10	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
quett a	0.00	2.13	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	1.23	0.00	0.00	0.00	0.00	0.00	0.00
ap07ar	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
stein 27	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
stein/5	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
t1717	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
verschobenes geometrisches Mittel	0.18	1.21	0.00	0.00	0.00	0.00	0.00	0.00

Tabelle C.3: Rechenstudie 4.2: PREPROCESSING II (Module: M2 M3)

Name	τ _{ent fernt}	τ	$\Phi_{2E/Ze}$	$\Phi_{2E/Sp}$	$\Psi^{Zeilen}_{2E/Ze}$	$\Psi^{Spalten}_{2E/Ze}$	$\Psi^{Zeilen}_{2E/Sp}$	$\Psi^{Spalten}_{2E/Sp}$
10teams	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_5:100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
air03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
air04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
air05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
cap6000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
disctom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ds	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
eilD76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
enigma	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fast0507	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fiber	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
gt2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
harp2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
irp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
li 52lav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
iseu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
marksharel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
markshare?	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
misc03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
misc07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mitre	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mod008	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mod010	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nug08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nw04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0033	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0201	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0282	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0548	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
prod1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
protfold	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
gap10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
qnet1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
qnet1_o	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
seymour	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sp97ar	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
stein27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
stein45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
t1717	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
verschobenes geometrisches Mittel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Tabelle C.4: Rechenstudie 4.2: PREPROCESSING III (Module: M4)

Name	τ _{entfernt}	τ	$\Phi_{2E/Ze}$	$\Phi_{2E/Sp}$	$\Psi^{Zeilen}_{2E/Ze}$	$\Psi^{Spalten}_{2E/Ze}$	$\Psi^{Zeilen}_{2E/Sp}$	$\Psi^{Spalten}_{2E/Sp}$
10teams	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_5:100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
air03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
air04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
air05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
cap6000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
disctom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ds	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
eilD76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
enigma	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fast0507	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fiber	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
gt2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
harp2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
irp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1152lav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lseu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
manna81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
markshare1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
markshare2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
misc03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
misc07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mitre	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mod008	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mod010	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nug08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nw04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0033	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0201	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0282	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0548	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p2756	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
prod1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
protfold	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
qap10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
qnet1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
qnet1_0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
seymour	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sp97ar	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
stein27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
stein45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
t1717	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
verschobenes geometrisches Mittel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Tabelle C.5: Rechenstudie 4.2: PREPROCESSING IV (Module: M5)

Name	τ _{ent fernt}	τ	$\Phi_{2E/Ze}$	$\Phi_{2E/Sp}$	$\Psi^{Zeilen}_{2E/Ze}$	$\Psi^{Spalten}_{2E/Ze}$	$\Psi^{Zeilen}_{2E/Sp}$	$\Psi^{Spalten}_{2E/Sp}$
10teams	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_5:100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
air03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
air04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
air04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
cap6000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
disctom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ds	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
eilD76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
enigma	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fast0507	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fiber	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
gt2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
harp2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
irp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1152lav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lseu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
manna81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
markshare1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
markshare2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
misc03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
misc07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mitre	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mod008	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mod010	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neosi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neosil	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
neos8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nug08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nw04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0033	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0201	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0282	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p0548	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
p2756	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
prod1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
protfold	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
qap10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
qnet1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
qnet1_o	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
seymour	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sp97ar	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
stein27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
stein45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>11/1/</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
verschobenes geometrisches Mittel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Tabelle C.6: Rechenstudie 4.2: PREPROCESSING V (Module: M6)

Name	τ _{entfernt}	τ	$\Phi_{2E/Ze}$	$\Phi_{2E/Sp}$	$\Psi^{Zeilen}_{2E/Ze}$	$\Psi^{Spalten}_{2E/Ze}$	$\Psi^{Zeilen}_{2E/Sp}$	$\Psi^{Spalten}_{2E/Sp}$
10teams	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_5:100	571.28	1.52	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:100	791.25	1.67	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:98	635.10	1.56	0.00	0.00	0.00	0.00	0.00	0.00
acc-0	3.04	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-1	2.29	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-2	2.07	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-3	0.91	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-4	1.29	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-5	7.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-6	3.63	1.00	0.00	0.00	0.00	0.00	0.00	0.00
air03	16.93	1.00	0.00	0.00	0.00	0.00	0.00	0.00
air04	0.41	1.00	0.00	0.00	0.00	0.00	0.00	0.00
air05	1.15	1.00	0.00	0.00	0.00	0.00	0.00	0.00
cap6000	3/6.40	2.09	0.00	0.00	0.00	0.00	0.00	0.00
disctom	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	2.00	0.00	0.00	0.00	0.00	0.00	0.00
eliD/6	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
enigma	0.41	1.00	0.00	0.00	0.00	0.00	0.00	0.00
fastusu/	/1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
at 2	14.80	2.50	0.00	0.00	0.00	0.00	0.00	0.00
giz	17.51	5.15	0.00	0.00	0.00	0.00	0.00	0.00
im	40.39	1.24	0.00	0.00	0.00	0.00	0.00	0.00
1152lov	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
lsau	5.44	1.00	0.00	0.00	0.00	0.00	0.00	0.00
manna 81	262.32	707.76	0.00	0.00	0.00	0.00	0.00	0.00
markshare1	0.22	1.00	0.00	0.00	0.00	0.00	0.00	0.00
markshare?	0.22	1.00	0.00	0.00	0.00	0.00	0.00	0.00
misc03	0.49	1.00	0.00	0.00	0.00	0.00	0.00	0.00
misc07	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
mitre	454 56	14 19	0.00	0.00	0.00	0.00	0.00	0.00
mod008	2.12	1.53	0.00	0.00	0.00	0.00	0.00	0.00
mod010	1.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00
neos1	2.26	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos10	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos16	54.37	4.66	0.00	0.00	0.00	0.00	0.00	0.00
neos18	66.67	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos21	0.53	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos8	57.02	1.00	0.00	0.00	0.00	0.00	0.00	0.00
nug08	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
nw04	1.44	1.00	0.00	0.00	0.00	0.00	0.00	0.00
p0033	7.53	2.01	0.00	0.00	0.00	0.00	0.00	0.00
p0201	2.79	1.10	0.00	0.00	0.00	0.00	0.00	0.00
p0282	3.29	4.84	0.00	0.00	0.00	0.00	0.00	0.00
p0548	52.75	3.56	0.00	0.00	0.00	0.00	0.00	0.00
p2756	101.37	3.83	0.00	0.00	0.00	0.00	0.00	0.00
prod1	0.05	1.00	0.00	0.00	0.00	0.00	0.00	0.00
protfold	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
qap10	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
qnet1	11.52	3.00	0.00	0.00	0.00	0.00	0.00	0.00
qnet1_0	6.78	2.89	0.00	0.00	0.00	0.00	0.00	0.00
seymour	122.82	1.00	0.00	0.00	0.00	0.00	0.00	0.00
sp97ar	66.96	3.82	0.00	0.00	0.00	0.00	0.00	0.00
stein27	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
stein45	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
t1717	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
verschobenes geometrisches Mittel	6.00	1.75	0.00	0.00	0.00	0.00	0.00	0.00

Tabelle C.7: Rechenstudie 4.2: PREPROCESSING VI (Module: M1 M2 M3)

Name	τ _{ent fernt}	τ	$\Phi_{2E/Ze}$	$\Phi_{2E/Sp}$	$\Psi^{Zeilen}_{2E/Ze}$	$\Psi^{Spalten}_{2E/Ze}$	$\Psi^{Zeilen}_{2E/Sp}$	$\Psi^{Spalten}_{2E/Sp}$
10teams	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_5:100	571.28	1.52	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:100	791.25	1.67	7.69	7.69	0.02	0.02	0.02	0.02
30:70:4_5:0_95:98	635.10	1.56	25.00	0.00	0.16	0.14	0.00	0.00
acc-0	3.04	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-1	2.29	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-2	2.07	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-3	0.91	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-4	1.29	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-5	7.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-6	3.63	1.00	0.00	0.00	0.00	0.00	0.00	0.00
air03	16.93	1.00	35.71	0.00	29.74	23.58	0.00	0.00
air04	0.41	1.00	16.67	8.33	15.58	16.46	7.57	8.35
air05	1.15	1.00	22.22	22.22	20.87	21.63	20.87	21.63
cap6000	376.40	2.09	76.92	76.92	48.11	48.39	48.11	48.39
disctom	0.00	1.00	100.00	83.33	100.00	100.00	83.09	82.56
ds	0.00	2.00	35.71	21.43	35.41	34.57	21.17	20.84
eilD/6	0.00	1.00	2.55	1.70	1.30	0.74	0.71	0.67
enigma	0.41	1.00	100.00	100.00	100.00	100.00	100.00	100.00
rast0507	/1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
nber	14.80	2.56	44.83	31.03	11.88	11.00	9.28	9.01
gt2	17.31	3.13	01.11	38.89	14.40	13.44	6.20 0.75	9.14
narp2	46.59	1.24	30.50	22.22	1.04	1.40	0.75	0.98
ITP	0.00	1.00	13.89	25.00	8.84 46.82	8.20	0.55	21.09
lisen	0.41 5.44	1.00	50.00	25.00	40.82	40.55	22.10	21.98
iseu	262.22	1.13	0.00	0.00	0.00	0.00	0.00	0.00
mailiao i markabara i	202.52	1.00	99.07	96.95 71.42	97.95	96.40	94.33 69.33	95.87
markshare2	0.22	1.00	71 42	71.43 57.14	65.6J	67.10	51.56	70.39 52.10
misco3	0.49	1.00	/1.43	0.00	0.15	07.19	0.00	0.00
misc07	0.27	1.00	0.00	0.00	0.00	0.00	0.00	0.00
mitre	454 56	1/ 10	85.04	69.75	47.75	/1 00	35.14	30.06
mod008	2 12	1 53	57.14	45 71	21.05	22.30	6.90	7 32
mod010	1.00	1.55	100.00	100.00	100.00	100.00	100.00	100.00
neosl	2.26	1.10	0.00	0.00	0.00	0.00	0.00	0.00
neos10	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos16	54.37	4.66	87.63	86.60	4 4 5	5.31	4 40	5.24
neos18	66.67	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos21	0.53	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos8	57.02	1.00	0.00	0.00	0.00	0.00	0.00	0.00
nug08	0.00	1.00	6.43	3.22	5.90	5.18	2.95	2.53
nw04	1.44	1.00	85.71	85.71	79.27	76.92	79.27	76.92
p0033	7.53	2.01	50.00	33.33	25.47	28.00	10.87	13.00
p0201	2.79	1.10	14.29	14.29	8.22	8.14	8.22	8.14
p0282	3.29	4.84	81.40	79.07	7.46	11.32	4.97	9.62
p0548	52.75	3.56	78.18	72.73	26.64	26.08	14.85	15.01
p2756	101.37	3.83	82.61	76.81	27.13	27.20	23.50	23.80
prod1	0.05	1.00	7.69	0.00	7.82	7.20	0.00	0.00
protfold	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
qap10	0.00	1.00	100.00	77.27	100.00	100.00	77.51	77.21
qnet1	11.52	3.00	57.50	45.00	6.50	7.22	4.48	4.96
qnet1_o	6.78	2.89	46.67	33.33	4.87	5.10	2.51	2.55
seymour	122.82	1.00	0.00	0.00	0.00	0.00	0.00	0.00
sp97ar	66.96	3.82	70.00	70.00	1.13	1.55	1.13	1.55
stein27	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
stein45	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
t1717	0.00	1.00	20.00	20.00	19.18	19.14	19.18	19.14
verschobenes geometrisches Mittel	6.00	1.75	8.93	6.58	4.85	4.87	3.51	3.63

Tabelle C.8: Rechenstudie 4.2: PREPROCESSING VII (Module: M1 M2 M3 M5)

Name	τ _{entfernt}	τ	$\Phi_{2E/Ze}$	$\Phi_{2E/Sp}$	$\Psi^{Zeilen}_{2E/Ze}$	$\Psi^{Spalten}_{2E/Ze}$	$\Psi^{Zeilen}_{2E/Sp}$	$\Psi^{Spalten}_{2E/Sp}$
10teams	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_5:100	571.28	1.52	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_95:100	791.25	1.67	7.69	7.69	0.02	0.02	0.02	0.02
30:70:4_5:0_95:98	635.10	1.56	25.00	0.00	0.16	0.14	0.00	0.00
acc-0	3.04	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-1	2.29	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-2	2.07	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-3	0.91	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-4	1.29	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-5	7.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-6	3.63	1.00	0.00	0.00	0.00	0.00	0.00	0.00
air03	16.93	1.00	35./1	0.00	29.74	23.58	0.00	0.00
air04	0.41	1.00	10.07	8.33	15.58	16.40	1.57	8.35
all05	276.40	2.00	76.02	76.02	20.87	21.05	20.87	48.20
disctom	570.40	2.09	100.92	70.92 83.33	46.11	46.39	40.11	40.39
de	0.00	2.00	35 71	21 43	35.41	34.57	21.17	20.84
eilD76	0.00	2.00	2 55	1 70	1 30	0.74	0.71	20.84
enigma	0.00	1.00	100.00	100.00	100.00	100.00	100.00	100.00
fast0507	71.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
fiber	14.86	2.56	44.83	37.93	11.88	11.66	10.21	9.97
gt2	17.31	3.13	61.11	50.00	14.46	13.44	10.33	11.29
harp2	46.59	1.24	30.56	22.22	1.04	1.40	0.75	0.98
irp	0.00	1.00	13.89	11.11	8.84	8.20	6.55	5.98
1152lav	0.41	1.00	50.00	25.00	46.82	46.55	22.10	21.98
lseu	5.44	1.15	0.00	0.00	0.00	0.00	0.00	0.00
manna81	262.32	797.76	99.87	98.93	97.93	98.46	94.33	95.87
markshare1	0.22	1.00	85.71	71.43	83.85	84.31	68.32	70.59
markshare2	0.49	1.00	71.43	57.14	66.15	67.19	51.56	53.12
misc03	0.27	1.00	0.00	0.00	0.00	0.00	0.00	0.00
misc07	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
mitre	454.56	14.19	85.04	69.92	47.75	41.99	35.18	31.05
mod008	2.12	1.53	57.14	45.71	21.05	22.30	6.90	7.32
mod010	1.00	1.45	100.00	100.00	100.00	100.00	100.00	100.00
neos1	2.26	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos10	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos16	54.37	4.66	87.63	86.60	4.45	5.31	4.40	5.24
neos18	66.67	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos21	0.53	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neoss	57.02	1.00	0.00	0.00	0.00	0.00	0.00	0.00
nug08	0.00	1.00	0.45	5.22 95.71	5.90 70.27	J.10 76.00	2.95	2.33
nw04	1.44	2.01	63.71 50.00	33 33	19.21 25.47	70.92	10.87	13.00
p00000	2 70	2.01	14.20	14 20	23.47	20.00	8 22	8 14
p0201	3 29	4 84	81.40	79.84	7.46	11 32	5.14	9.81
p0548	52 75	3 56	78.18	72.73	26.64	26.08	14 85	15.01
p2756	101.37	3.83	82.61	76.81	27.13	27.20	23.50	23.80
prod1	0.05	1.00	15.38	0.00	12.90	12.80	0.00	0.00
protfold	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
gap10	0.00	1.00	100.00	77.27	100.00	100.00	77.51	77.21
qnet1	11.52	3.00	57.50	50.00	6.50	7.22	5.29	5.92
qnet1_o	6.78	2.89	46.67	33.33	4.87	5.10	2.51	2.55
seymour	122.82	1.00	0.00	0.00	0.00	0.00	0.00	0.00
sp97ar	66.96	3.82	70.00	70.00	1.13	1.55	1.13	1.55
stein27	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
stein45	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
t1717	0.00	1.00	20.00	20.00	19.18	19.14	19.18	19.14
verschobenes geometrisches Mittel	6.00	1.75	9.04	6.66	4.90	4.92	3.57	3.66

Tabelle C.9: Rechenstudie 4.2: PREPROCESSING VIII (Module: M1 M2 M3 M5 M6)

Name	τ _{ent fernt}	τ	$\Phi_{2E/Ze}$	$\Phi_{2E/Sp}$	$\Psi^{Zeilen}_{2E/Ze}$	$\Psi^{Spalten}_{2E/Ze}$	$\Psi^{Zeilen}_{2E/Sp}$	$\Psi^{Spalten}_{2E/Sp}$
10teams	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_5:100	571.28	1.52	18.18	18.18	0.64	0.61	0.64	0.61
30:70:4_5:0_95:100	791.25	1.67	15.38	15.38	0.23	0.20	0.23	0.20
30:70:4_5:0_95:98	635.10	1.56	33.33	33.33	0.28	0.24	0.28	0.24
acc-0	3.04	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-1	2.29	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-2	2.07	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-3	0.91	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-4	1.29	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-5	7.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
	3.03	1.00	0.00	0.00	0.00	0.00	0.00	0.00
air03	10.93	1.00	35./1	35./1 8.22	29.74	23.38	29.74	23.38
air04	0.41	1.00	10.07	8.33 11.11	15.58	10.40	10.00	8.33 10.65
an05	276.40	2.00	02.21	02.21	20.87	21.05	10.09	10.05
disctom	0.00	2.09	100.00	92.31	100.00	100.00	83.00	82.56
de	0.00	2.00	35 71	21 43	35.41	34.57	21.17	20.84
eilD76	0.00	2.00	2 55	21.43	1 30	0.74	1 30	0.74
enigma	0.00	1.00	100.00	100.00	100.00	100.00	100.00	100.00
fast0507	71.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
fiber	14.86	2.56	51.72	34.48	16.71	16.22	10.48	10.18
ot?	17.31	3.13	66.67	38.89	24.79	22.58	6.20	9.14
harp?	46.59	1.24	30.56	22.22	1.04	1.40	0.75	0.98
irp	0.00	1.00	11.11	5.56	6.55	5.98	2.95	2.53
1152lav	0.41	1.00	25.00	25.00	22.10	21.98	22.10	21.98
lseu	5.44	1.15	0.00	0.00	0.00	0.00	0.00	0.00
manna81	262.32	797.76	99.84	99.19	97.70	98.27	94.78	96.15
markshare1	0.22	1.00	85.71	71.43	83.85	84.31	68.32	70.59
markshare2	0.49	1.00	57.14	57.14	51.56	53.12	51.56	53.12
misc03	0.27	1.00	0.00	0.00	0.00	0.00	0.00	0.00
misc07	0.00	1.00	25.00	25.00	19.79	17.02	19.79	17.02
mitre	454.56	14.19	89.24	80.34	51.89	45.69	42.66	36.58
mod008	2.12	1.53	60.00	45.71	22.83	24.04	6.90	7.32
mod010	1.00	1.45	100.00	100.00	100.00	100.00	100.00	100.00
neos1	2.26	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos10	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos16	54.37	4.66	87.63	86.60	4.45	5.31	4.40	5.24
neos18	66.67	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos21	0.53	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos8	57.02	1.00	0.00	0.00	0.00	0.00	0.00	0.00
nug08	0.00	1.00	5.47	1.61	5.05	4.38	1.45	1.20
nw04	1.44	1.00	71.43	57.14	56.83	52.75	39.02	31.87
p0033	7.53	2.01	66.67	50.00	51.24	52.00	30.75	32.00
p0201	2.79	1.10	14.29	14.29	8.22	8.14	8.22	8.14
p0282	3.29	4.84	82.17	81.40	7.88	11.79	6.40	10.66
p0548	52.75	3.56	78.18	74.55	26.64	26.08	17.92	16.70
p2756	101.37	3.83	86.96	82.61	40.44	39.94	29.06	28.90
prod	0.05	1.00	7.69	0.00	7.82	7.20	0.00	0.00
protfold	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
qap10	0.00	1.00	100.00	68.18	100.00	100.00	68.32	68.03
qneti	11.52	3.00	57.50	45.00	6.50	7.22	4.48	4.96
	0.78	2.89	40.07	35.55	4.8/	5.10	2.51	2.55
seymour ap07ar	122.82	1.00	70.00	70.00	0.00	0.00	0.00	0.00
sp7/ar stein27	00.90	3.82 1.00	/0.00	/0.00	1.13	1.55	1.13	1.55
stein/5	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
stem45 +1717	0.00	1.00	20.00	10.00	10.00	10.14	0.00	0.00
	0.00	1.00	20.00	10.00	19.10	19.14	9.51	9.47
verschobenes geometrisches Mittel	6.00	1.75	10.14	8.41	5.35	5.33	4.08	4.10

Tabelle C.10: Rechenstudie 4.2: PREPROCESSING IX (Module: M1 M2 M3 M4 M5)

Name	τ _{entfernt}	τ	$\Phi_{2E/Ze}$	$\Phi_{2E/Sp}$	$\Psi^{Zeilen}_{2E/Ze}$	$\Psi^{Spalten}_{2E/Ze}$	$\Psi^{Zeilen}_{2E/Sp}$	$\Psi^{Spalten}_{2E/Sp}$
10teams	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
30:70:4_5:0_5:100	571.28	1.52	18.18	18.18	0.64	0.61	0.64	0.61
30:70:4_5:0_95:100	791.25	1.67	15.38	15.38	0.23	0.20	0.23	0.20
30:70:4_5:0_95:98	635.10	1.56	33.33	33.33	0.28	0.24	0.28	0.24
acc-0	3.04	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-1	2.29	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-2	2.07	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-3	0.91	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-4	1.29	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-5	7.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
acc-6	3.63	1.00	0.00	0.00	0.00	0.00	0.00	0.00
air03	16.93	1.00	35.71	35.71	29.74	23.58	29.74	23.58
air04	0.41	1.00	16.67	8.33	15.58	16.46	7.57	8.35
air05	1.15	1.00	22.22	11.11	20.87	21.63	10.09	10.65
cap6000	376.40	2.09	92.31	92.31	77.36	77.42	77.36	77.42
disctom	0.00	1.00	100.00	83.33	100.00	100.00	83.09	82.56
ds	0.00	2.00	35.71	21.43	35.41	34.57	21.17	20.84
eilD76	0.00	1.00	2.55	2.55	1.30	0.74	1.30	0.74
enigma	0.41	1.00	100.00	100.00	100.00	100.00	100.00	100.00
fast0507	71.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
fiber	14.86	2.56	51.72	41.38	16.71	16.22	11.40	11.13
gt2	17.31	3.13	66.67	50.00	24.79	22.58	10.33	11.29
harp2	46.59	1.24	30.56	22.22	1.04	1.40	0.75	0.98
ırp	0.00	1.00	11.11	5.56	6.55	5.98	2.95	2.53
1152lav	0.41	1.00	25.00	25.00	22.10	21.98	22.10	21.98
lseu	5.44	1.15	0.00	0.00	0.00	0.00	0.00	0.00
manna81	262.32	797.76	99.84	99.19	97.70	98.27	94.78	96.15
marksharel	0.22	1.00	85./1	/1.43	83.85	84.31	68.32	70.59
markshare2	0.49	1.00	57.14	57.14	51.50	53.12	51.50	53.12
miscu3	0.27	1.00	0.00	0.00	0.00	0.00	0.00	0.00
misc0/	0.00	14.10	25.00	25.00	19.79 51.80	17.02	19.79	17.02
	454.50	14.19	89.24	80.07	22.89	45.09	42.80	30.70
mod010	2.12	1.55	100.00	43.71	22.85	24.04	100.00	100.00
nod010	2.26	1.45	0.00	0.00	0.00	0.00	0.00	0.00
neos1	2.20	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos16	54.37	1.00	87.63	0.00 86.60	4.45	5.31	4.40	5.24
neos18	54.57 66.67	1.00	0.00	0.00	4.45	0.00	4.40	0.00
neos21	0.53	1.00	0.00	0.00	0.00	0.00	0.00	0.00
neos	57.02	1.00	0.00	0.00	0.00	0.00	0.00	0.00
nug08	0.00	1.00	0.00 5.47	1.61	5.05	4 38	1 45	1.20
nw04	1 44	1.00	71.43	57.14	56.83	52 75	39.02	31.20
n0033	7 53	2 01	66 67	50.00	51.24	52.00	30.75	32.00
p0201	2.79	1.10	14.29	14.29	8.22	8.14	8.22	8.14
p0282	3.29	4.84	82.17	81.40	7.88	11.79	6.40	10.66
p0548	52.75	3.56	78.18	74.55	26.64	26.08	17.92	16.70
p2756	101.37	3.83	88.41	84.06	45.66	45.33	34.29	34.28
prod1	0.05	1.00	15.38	0.00	12.90	12.80	0.00	0.00
protfold	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
gap10	0.00	1.00	100.00	68.18	100.00	100.00	68.32	68.03
anet1	11.52	3.00	57.50	50.00	6.50	7.22	5.29	5.92
qnet1_o	6.78	2.89	46.67	33.33	4.87	5.10	2.51	2.55
seymour	122.82	1.00	0.00	0.00	0.00	0.00	0.00	0.00
sp97ar	66.96	3.82	70.00	70.00	1.13	1.55	1.13	1.55
stein27	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
stein45	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
t1717	0.00	1.00	20.00	10.00	19.18	19.14	9.51	9.47
verschobenes geometrisches Mittel	6.00	1.75	10.27	8.50	5.42	5.40	4.15	4.15

Tabelle C.11: Rechenstudie 4.2: PREPROCESSING X (Module: M1 M2 M3 M4 M5 M6)
Anhang D

Details zur Rechenstudie 4.2: Beschleunigung der exakten Separierung

Name	ØSeparierungsdauer	Fexakt	Name	ØSeparierungsdauer	Fexakt
10teams	3601.19	1.00	10teams	3604.22	1.00
30:70:4_5:0_5:100	3549.88	1.00	30:70:4_5:0_5:100	3538.84	1.00
30:70:4_5:0_95:100	3546.27	1.00	30:70:4_5:0_95:100	3534.25	1.00
30:70:4_5:0_95:98	3568.83	1.00	30:70:4_5:0_95:98	3556.30	1.00
acc-0	1992.91	1.00	acc-0	6.19	0.00
acc-1	214.95	1.00	acc-1	3598.78	16.74
acc-2	3597.78	1.00	acc-2	3597.40	1.00
acc-3	3594.63	1.00	acc-3	3594.99	1.00
acc-4	3594.96	1.00	acc-4	3594.87	1.00
acc-5	3597.14	1.00	acc-5	3596.62	1.00
acc-6	3597.73	1.00	acc-6	3597.82	1.00
air03	3600.84	1.00	air03	0.05	0.00
air04	3579.08	1.00	air04	3600.00	1.01
air05	3584.95	1.00	air05	3600.00	1.00
cap6000	3601.76	1.00	cap6000	0.02	0.00
disctom	3604.81	1.00	disctom	3598.97	1.00
ds	3600.00	1.00	ds	3537.93	0.98
eilD76	3599.75	1.00	eilD76	3612.64	1.00
enigma	3607.63	1.00	enigma	0.02	0.00
fast0507	3600.00	1.00	fast0507	3579.17	0.99
fiber	3.78	1.00	fiber	0.02	0.01
gt2	0.08	1.00	gt2	3600.00	45000.00
harp2	3602.47	1.00	harp2	0.06	0.00
irp	504.19	1.00	irp	0.08	0.00
1152lav	3601.27	1.00	1152lav	1934.08	0.54
lseu	0.06	1.00	lseu	0.01	0.17
manna81	65.35	1.00	manna81	10.08	0.15
markshare1	0.47	1.00	markshare1	0.01	0.02
markshare2	0.14	1.00	markshare2	0.01	0.07
misc03	1.33	1.00	misc03	0.03	0.02
misc07	3.70	1.00	misc07	0.05	0.01
mitre	3607.78	1.00	mitre	2.35	0.00
mod008	0.30	1.00	mod008	0.01	0.03
mod010	3599.90	1.00	mod010	1.32	0.00
neosi	28.40	1.00	neosi	0.32	0.01
neos10	23.84	1.00	neos10	0.26	0.01
neos16	5.70	1.00	neos16	0.29	0.05
neosia	9.50	1.00	neos18	13.91	1.40
neos21	12.40	1.00	neos21	5005.54	1.00
nucle	2500.80	1.00	nucle	1.13	1.00
nugoo	3590.89	1.00	nug08	3393.76	1.00
nw04	5000.00	1.00	nw04	5.74 2600.00	72000.00
p00000	0.05	1.00	p00000 p0201	0.01	0.01
p0201	0.91	1.00	p0201	3600.00	8780.40
p0282	0.41	1.00	p0202	0.02	0.02
p0348	31.62	1.00	p0546	0.02	0.02
prod1	45.05	1.00	prod1	0.07	0.00
protfold	3592.63	1.00	protfold	3593.14	1.00
gap10	3541.46	1.00	gap10	3540.42	1.00
anet1	127.37	1.00	anet1	0.20	0.00
anet1_o	7.86	1.00	anet1_o	0.01	0.00
seymour	29.79	1.00	seymour	24.70	0.83
sp97ar	3601.77	1.00	sp97ar	0.35	0.00
stein27	3600.00	1.00	stein27	3600.00	1.00
stein45	3623.43	1.00	stein45	3633.10	1.00
t1717	3600.00	1.00	t1717	3549.05	0.99
verschobenes			verschobenes		
geometrisches Mittel	389.58		geometrisches Mittel	163.15	
Anzahl überschrittener			Anzahl überschrittener		
Zeitbeschränkungen	16		Zeitbeschränkungen	10	

Tabelle D.1: Rechenstudie 4.2: kein Prepro- Tabelle D.2: Rechenstudie 4.2: PREPROcessing

CESSING I (Module: M1)

Name	ØSeparierungsdauer	Fexakt	Name	ØSeparierungsdauer	F _{exakt}
10teams	3600.77	1.00	10teams	3600.87	1.00
30:70:4_5:0_5:100	3550.01	1.00	30:70:4_5:0_5:100	3547.00	1.00
30:70:4_5:0_95:100	3546.17	1.00	30:70:4_5:0_95:100	3542.66	1.00
30:70:4_5:0_95:98	3568.68	1.00	30:70:4_5:0_95:98	3564.99	1.00
acc-0	1981.64	0.99	acc-0	3599.78	1.81
acc-1	214.68	1.00	acc-1	3598.36	16.74
acc-2	3597.82	1.00	acc-2	3597.26	1.00
acc-3	3594.86	1.00	acc-3	3595.06	1.00
acc-4	3595.01	1.00	acc-4	3594.73	1.00
acc-5	3597.15	1.00	acc-5	3597.02	1.00
acc-6	3597.48	1.00	acc-6	3597.58	1.00
air03	3600.51	1.00	air03	3597.40	1.00
air04	3579.30	1.00	air04	3577.53	1.00
air05	3584.84	1.00	air05	3581.22	1.00
cap6000	3601.81	1.00	cap6000	3600.25	1.00
disctom	3604.33	1.00	disctom	3602.41	1.00
ds	3707.70	1.03	ds	3600.00	1.00
eilD76	3599.88	1.00	eilD76	3599.88	1.00
enigma	3607.50	1.00	enigma	3600.00	1.00
fast0507	3600.00	1.00	fast0507	3600.00	1.00
fiber	0.99	0.26	fiber	1.45	0.38
gt2	0.06	0.75	gt2	0.05	0.62
harp2	3605.08	1.00	harp2	3601.42	1.00
irp	504.72	1.00	irp	3615.37	7.17
1152lav	3601.14	1.00	1152lav	3599.73	1.00
lseu	0.05	0.83	lseu	0.03	0.50
manna81	65.33	1.00	manna81	70.85	1.08
markshare1	0.60	1.28	markshare1	0.26	0.55
markshare2	0.15	1.07	markshare2	0.13	0.93
misc03	1.34	1.01	misc03	0.09	0.07
misc07	3.61	0.98	misc07	0.16	0.04
mitre	3607.24	1.00	mitre	3604.29	1.00
mod008	0.29	0.97	mod008	0.31	1.03
mod010	3599.88	1.00	mod010	3598.32	1.00
neosl	28.33	1.00	neosl	27.57	0.97
neos10	23.88	1.00	neos10	8.75	0.37
neos16	5.58	0.98	neos16	0.85	0.15
neos18	9.61	1.01	neos18	10.04	1.05
neos21	3600.20	1.00	neos21	3600.72	1.00
neos8	13.43	1.00	neos8	5.36	0.40
nugus	3591.00	1.00	nug08	3591.13	1.00
nw04	3600.00	1.00	nw04	3600.00	1.00
p0033	0.04	0.80	p0033	0.01	0.20
p0201	0.90	0.99	p0201	0.42	0.46
p0282	0.22	0.54	p0282	0.09	0.22
p0548	0.71	0.77	p0548	0.50	0.54
p2/56	17.90	0.57	p2/56	23.85	0.75
prod I	44.45	0.99	prod I	0.69	0.02
protioid	5592.94	1.00	protioid	3592.51	1.00
qap10	3541.02	1.00	qap10	3540.91	1.00
qnet1	22.04	0.18	qnet1	22.98	0.18
qnet1_0	5.80	0.48	qnet1_0	1.79	120.77
seymour sp07or	51.14	1.05	seymour sp07or	3394.88	120.07
sp97ar stoin27	3003.09	1.00	sp9/ar stoin27	3393.1/	1.00
stein/5	2622.07	1.00	stein45	2000.00	1.00
stein45	3623.97	1.00	stein45	3628.30	1.00
	3000.00	1.00		3000.00	1.00
verschobenes			verschobenes		
geometrisches Mittel	373.65		geometrisches Mittel	419.12	
Anzahl uberschrittener			Anzahl überschrittener		
Zeitbeschrankungen	16		Zeitbeschrankungen	14	

Tabelle D.3: Rechenstudie 4.2: PREPRO Tabelle D.4: Rechenstudie 4.2: PREPRO CESSING II (Module: M2 M3)

CESSING III (Module: M4)

Name	ØSeparierungsdauer	Fexakt	Name	ØSeparierungsdauer	F _{exakt}
10teams	3601.19	1.00	10teams	3604.13	1.00
30:70:4_5:0_5:100	3551.77	1.00	30:70:4_5:0_5:100	3538.32	1.00
30:70:4_5:0_95:100	3548.14	1.00	30:70:4_5:0_95:100	3532.86	1.00
30:70:4_5:0_95:98	3572.14	1.00	30:70:4_5:0_95:98	639.06	0.18
acc-0	183.16	0.09	acc-0	3.31	0.00
acc-1	3598.48	16.74	acc-1	3598.54	16.74
acc-2	3597.95	1.00	acc-2	3597.61	1.00
acc-3	3595.11	1.00	acc-3	3594.65	1.00
acc-4	3594.93	1.00	acc-4	3594.47	1.00
acc-5	3597.66	1.00	acc-5	3597.15	1.00
acc-6	3597.56	1.00	acc-6	3597.82	1.00
air03	3602.28	1.00	air03	0.18	0.00
air04	3580.08	1.00	air04	3579.31	1.00
air05	3585.29	1.00	air05	3385.38	1.00
cap6000	3602.32	1.00	cap6000	0.03	0.00
disctom	3003.87	1.00	disctom	3598.71	1.00
us ailD76	3000.00	1.00	ailD76	2612.08	1.00
enigma	3606.44	1.00	enigma	0.03	0.00
fast0507	3600.00	1.00	fast0507	3600.00	1.00
fiber	4 81	1.00	fiber	0.08	0.02
ot?	0.08	1.00	ot?	0.03	0.02
harp2	3602.05	1.00	harn?	0.10	0.00
irp	1368.65	2.71	irp	0.09	0.00
1152lav	3600.51	1.00	1152lav	1994.73	0.55
lseu	0.04	0.67	lseu	0.01	0.17
manna81	52.17	0.80	manna81	6.80	0.10
markshare1	0.63	1.34	markshare1	0.02	0.04
markshare2	0.11	0.79	markshare2	0.02	0.14
misc03	0.60	0.45	misc03	0.03	0.02
misc07	1.33	0.36	misc07	0.05	0.01
mitre	3610.45	1.00	mitre	1.62	0.00
mod008	1.00	3.33	mod008	0.03	0.10
mod010	3599.16	1.00	mod010	1.38	0.00
neos1	30.66	1.08	neos1	1.19	0.04
neos10	24.06	1.01	neos10	0.27	0.01
neos16	559.96	98.24	neos16	0.46	0.08
neos18	6.32	0.66	neos18	7.54	0.79
neos21	3601.28	1.00	neos21	3603.25	1.00
neos8	18.12	1.34	neos8	1.19	0.09
nug08	3590.86	1.00	nug08	3596.23	1.00
nw04	3600.00	1.00	nw04	3.74	0.00
p0035	0.01	0.20	p0033	0.02	0.40
p0201	0.23	0.23	p0201	0.05	0.05
p0282	0.23	1.02	p0282	0.00	0.13
p0348	0.94 22.14	0.70	p0548	0.09	0.10
prod1	13.43	0.70	prod1	0.08	0.01
protfold	3592.58	1.00	protfold	3593.40	1.00
gap10	3541.32	1.00	gap10	3540.27	1.00
anet1	12.46	0.10	anet1	0.05	0.00
qnet1_o	8.17	1.04	qnet1_o	3600.00	458.02
seymour	29.37	0.99	seymour	3594.38	120.66
sp97ar	3604.58	1.00	sp97ar	0.68	0.00
stein27	3600.00	1.00	stein27	3600.00	1.00
stein45	0.31	0.00	stein45	3600.00	0.99
t1717	3600.00	1.00	t1717	3548.74	0.99
verschobenes			verschobenes		
geometrisches Mittel	361.94		geometrisches Mittel	136.91	
Anzahl überschrittener			Anzahl überschrittener		
Zeitbeschränkungen	15		Zeitbeschränkungen	7	

 Tabelle D.5: Rechenstudie
 4.2:
 PREPRO Tabelle D.6: Rechenstudie
 4.2:
 PREPRO CESSING V (Module: M6)

CESSING VI (Module: M1 M2 M3)

Name	ØSeparierungsdauer	Fexakt	Name	ØSeparierungsdauer	Fexakt
10teams	3600.00	1.00	10teams	3600.00	1.00
30:70:4_5:0_5:100	3537.27	1.00	30:70:4_5:0_5:100	3537.41	1.00
30:70:4_5:0_95:100	3533.72	1.00	30:70:4_5:0_95:100	3533.10	1.00
30:70:4_5:0_95:98	3556.05	1.00	30:70:4_5:0_95:98	3556.18	1.00
acc-0	29.08	0.01	acc-0	3.75	0.00
acc-1	3598.96	16.74	acc-1	3600.00	16.75
acc-2	3597.94	1.00	acc-2	3597.73	1.00
acc-3	3595.43	1.00	acc-3	3595.39	1.00
acc-4	3594.69	1.00	acc-4	3595.19	1.00
acc-5	3598.38	1.00	acc-5	3597.29	1.00
acc-6	3600.00	1.00	acc-6	3598.09	1.00
air03	0.07	0.00	air03	0.05	0.00
air04	0.63	0.00	air04	0.68	0.00
air05	0.40	0.00	air05	0.42	0.00
cap6000	0.01	0.00	cap6000	0.01	0.00
disctom	1.55	0.00	disctom	1.61	0.00
ds	8.62	0.00	ds	9.06	0.00
eiiD/6	0.03	0.00	eiiD/6	0.04	0.00
enigma foot0507	3000.00 2577 77	1.00	enigma foot0507	3000.00	1.00
files	0.02	0.99	fasi0307	5577.75	0.99
at?	0.02	0.01	at2	0.01	0.00
giz harn?	0.02	0.23	giz harn?	0.03	0.38
irn	0.03	0.00	im	0.03	0.00
11521av	0.07	0.00	11521av	0.12	0.00
lsen	0.05	0.00	lsen	0.07	0.00
manna81	0.61	0.01	manna81	0.80	0.01
markshare1	3600.00	7659.57	markshare1	3600.00	7659.57
markshare2	0.01	0.07	markshare2	0.01	0.07
misc03	0.02	0.02	misc03	0.05	0.04
misc07	0.03	0.01	misc07	0.05	0.01
mitre	1.16	0.00	mitre	1.95	0.00
mod008	3600.00	12000.00	mod008	3600.00	12000.00
mod010	0.02	0.00	mod010	0.04	0.00
neos1	0.54	0.02	neos1	1.29	0.05
neos10	0.10	0.00	neos10	0.32	0.01
neos16	0.45	0.08	neos16	0.82	0.14
neos18	8.82	0.92	neos18	13.95	1.46
neos21	35.99	0.01	neos21	3601.08	1.00
neos8	0.10	0.01	neos8	0.14	0.01
nug08	0.09	0.00	nug08	0.17	0.00
nw04	0.30	0.00	nw04	0.43	0.00
p0033	0.01	0.20	p0033	3600.00	72000.00
p0201	3600.00	3956.04	p0201	3600.00	3956.04
p0282	0.05	0.12	p0282	0.04	0.10
p0548	0.03	0.03	p0548	0.03	0.03
p2756	0.12	0.00	p2756	0.14	0.00
prod I	0.06	0.00	prod I	0.10	0.00
	5592.79	1.00	protioid	2.07	1.00
qap10	1.92	0.00	qap10	5.07	0.00
quet1 o	0.07	0.00	quet1 o	3600.00	458.02
sevmour	3595.04	120.68	sevmour	3591 50	120.56
sp97ar	18 50	0.01	sp97ar	3.85	0.00
stein27	3600.00	1.00	stein27	3600.00	1.00
stein45	3642 61	1.00	stein45	3600.00	0.90
t1717	15.57	0.00	t1717	19.99	0.01
verschobenes			verschobenes		
geometrisches Mittel	70.38		geometrisches Mittel	94.92	
Anzahl überschrittener			Anzahl überschrittener		
Zeitbeschränkungen	8		Zeitbeschränkungen	11	

 Tabelle D.7: Rechenstudie
 4.2:
 PREPRO Tabelle D.8: Rechenstudie
 4.2:
 PREPRO CESSING VII (Module: M1 M2 M3 M5)

CESSING VIII (Module: M1 M2 M3 M5 M6)

Name	ØSeparierungsdauer	Fexakt	Name	ØSeparierungsdauer	F _{exakt}
10teams	3600.00	1.00	10teams	3603.19	1.00
30:70:4_5:0_5:100	3538.36	1.00	30:70:4_5:0_5:100	3539.26	1.00
30:70:4_5:0_95:100	3516.18	0.99	30:70:4_5:0_95:100	3534.69	1.00
30:70:4_5:0_95:98	3543.94	0.99	30:70:4_5:0_95:98	3556.41	1.00
acc-0	5.88	0.00	acc-0	2.03	0.00
acc-1	3598.79	16.74	acc-1	16.59	0.08
acc-2	3596.39	1.00	acc-2	3597.89	1.00
acc-3	3595.26	1.00	acc-3	3595.52	1.00
acc-4	3594.58	1.00	acc-4	3595.01	1.00
acc-5	3598.29	1.00	acc-5	3597.49	1.00
acc-6	3597.38	1.00	acc-6	3597.75	1.00
air03	0.33	0.00	air03	0.09	0.00
air04	0.63	0.00	air04	0.63	0.00
air05	0.40	0.00	air05	0.40	0.00
cap6000	0.01	0.00	cap6000	0.02	0.00
disctom	1.54	0.00	disctom	1.53	0.00
ds	9.07	0.00	ds	9.06	0.00
eilD76	0.03	0.00	eilD76	0.03	0.00
enigma	3600.00	1.00	enigma	3600.00	1.00
fast0507	3577.57	0.99	fast0507	3577.91	0.99
fiber	0.01	0.00	fiber	0.02	0.01
gt2	0.01	0.12	gt2	0.01	0.12
harp2	0.08	0.00	harp2	0.06	0.00
irp	0.07	0.00	irp	0.08	0.00
1152lav	0.04	0.00	1152lav	0.03	0.00
lseu	0.01	0.17	lseu	0.01	0.17
manna81	0.68	0.01	manna81	0.41	0.01
markshare1	3600.00	7659.57	markshare1	3600.00	7659.57
markshare2	0.01	0.07	markshare2	0.01	0.07
misc03	0.03	0.02	misc03	0.03	0.02
misc07	0.02	0.01	misc07	3600.00	972.97
mitre	0.97	0.00	mitre	0.83	0.00
mod008	3600.00	12000.00	mod008	3600.00	12000.00
mod010	0.02	0.00	mod010	0.02	0.00
neosi	0.23	0.01	neosl	0.18	0.01
neos10	0.10	0.00	neos10	0.20	0.01
neos16	0.46	0.08	neos16	0.49	0.09
neos18	9.31	0.97	neos18	8.14 2601 52	0.85
neos21	0.12	0.01	neos21	5001.52	1.00
neoso	0.15	0.01	neoso	0.12	0.01
nugoo	0.10	0.00	nugoo	0.17	0.00
n0022	0.28	0.00	n0022	2600.00	72000.00
p0033	2600.00	2056.04	p0033	3600.00	2056.04
p0201	0.05	0.12	p0201	0.03	0.07
p0282	0.03	0.12	p0282	3600.00	3013.04
p0548	0.03	0.05	p0548	0.00	0.00
prod1	0.10	0.00	pz750 prod1	0.05	0.00
protfold	3592.68	1.00	protfold	3593.27	1.00
aan10	3 26	0.00	gan10	3 28	0.00
anet1	0.12	0.00	qup 10 quet 1	0.04	0.00
anet1 o	3600.00	458.02	quet1 o	3600.00	458.02
sevmour	3594.92	120.68	sevmour	3595.06	120.68
sp97ar	1.03	0.00	sp97ar	3.86	0.00
stein27	3600.00	1.00	stein27	3628.07	1.01
stein45	3628 58	1.00	stein45	3637 57	1.00
t1717	15.61	0.00	t1717	15.62	0.00
verschobenes			verschobenes		
geometrisches Mittel	76.46		geometrisches Mittel	106.44	
Anzahl überschrittener			Anzahl überschrittener		
Zeitbeschränkungen	8		Zeitbeschränkungen	12	

Tabelle D.9: Rechenstudie 4.2: PREPRO- Tabelle D.10: Rechenstudie 4.2: PREPRO-CESSING IX (Module: M1 M2 M3 M4 M5)

CESSING X (Module: M1 M2 M3 M4 M5 M6)

Anhang E

Details zur Rechenstudie 4.3: Wirksamkeit der Separierungsalgorithmen

Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa
10teams	0.00	4	3603.23	10teams	57.14	20	99.79
30:70:4_5:0_5:100	0.00	0	3578.36	30:70:4_5:0_5:100	0.00	5	3579.02
30:70:4_5:0_95:98	0.00	19	3580.55	30:70:4_5:0_95:98	0.00	0	0.00
air03	100.00	5	0.09	air03	100.00	4	0.43
air04	10.97	767	3578.35	air04	23.21	750	726.04
air05	10.09	1557	8.97	air05	8.79	1602	8.50
cap6000	0.73	7	0.07	cap6000	0.73	7	0.08
ds	0.06	2345	93.00	ds	0.06	2344	93.47
eilD76	2.97	388	1.35	eilD76	2.78	205	0.89
fast0507	0.00	34	3590.17	fast0507	1.34	20	359.67
fiber	30.14	1618	3601.25	fiber	31.26	304	41.55
gt2	1.29	3	0.00	gt2	1.29	3	0.00
harp2	0.00	31	0.15	harp2	0.00	26	0.12
irp	90.88	1446	3590.81	irp	59.47	75	1.17
1152lav	13.79	639	1.70	1152lav	7.32	386	0.90
lseu	45.60	1621	69.85	lseu	54.26	315	21.26
manna81	100.00	344	0.49	manna81	100.00	347	0.44
markshare1	0.00	47	0.04	markshare1	0.00	44	0.03
markshare?	0.00	54	0.05	markshare?	0.00	54	0.05
misc03	0.00	12	0.25	misc03	25.86	191	44 69
misc07	0.00	0	0.00	misc07	15.43	318	183.60
mitre	4 59	1223	24 37	mitre	3.12	686	36.98
mod008	0.50	32	0.06	mod008	0.43	29	0.10
mod010	30.89	418	159.02	mod010	20.42	208	11.82
neos1	0.00	34	2 22	neos1	0.00	17	5 23
neos10	12.89	139	3443 21	neos10	28.41	108	145.22
neos16	9.52	478	7 23	neos16	9.52	452	23.15
neos18	0.00	6	67.03	neos18	5.56	24	1092.91
neos21	0.00	0	0,00	neos21	48 74	955	1488.85
neos8	100.00	7	0.00	neos8	100.00	14	4 59
nug08	0.00	2028	1 71	nuo08	0.00	2028	1.65
nug00	1.75	127	6.13	nw04	1.75	127	6.03
n0033	53.45	218	1.68	n0033	47.27	57	0.25
p0201	0.00	210	1.00	p00000	0.00	10	0.40
p0201	0.00	18	0.05	p0201	1.15	24	0.20
p0202	20.47	2218	2815.80	p0202	24.47	152	0.14
p0548	29.81	651	2013.09	p0548	10.03	612	6.52
pz750 prod1	0.00	0.51	0.05	p2750	0.00	012	0.52
proul	0.00	100	2504.50	prout	0.00	22	266.40
gap10	0.00	6004	10.64	gap10	0.00	6001	40.57
qap10 apet1	2.24	326	3601 30	qap10 gnet1	2.24	568	274.06
anet1 o	16.02	143	3600.02	quet1 o	24.72	221	274.00
	0.00	445	2508.51		24.72	17	2506 72
seymour sp07er	0.00	0	0.00	seymour sp07or	1.00	17	10.02
sp97al	0.00	100	2627.02	sp97al	1.03	12	7 20
stein/5	0.00	100	JUZ 1.92	stein/5	0.00	13	225 10
5101114J +1717	0.00	521	40.00	500114J +1717	0.00	402	26.04
11/1/	0.04	321	40.67	11/1/	0.04	402	50.00
verschobenes geometrisches Mittel	2.84	71	28.13	verschobenes geometrisches Mittel	5.17	80	14.48
#gap closed% ^{100%}	3	. •		#gap closed% ^{100%}	3	20	

Tabelle E.1: Rechenstudie 4.3: EXAKTIP- Tabelle E.2: Rechenstudie 4.3: EXAKTIP-ZF1, $\mathcal{V}^{min} = 0.01$

ZF3, $\mathcal{V}^{min} = 0.01$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	11	477.29	10teams	0.00	9	50.18
30:70:4_5:0_5:100	0.00	2	3578.01	30:70:4_5:0_5:100	0.00	1	3768.08
30:70:4_5:0_95:98	0.00	0	0.00	30:70:4_5:0_95:98	0.00	0	0.00
air03	100.00	4	1.00	air03	100.00	6	0.28
air04	18.45	952	3049.82	air04	28.38	828	743.51
air05	6.14	1863	10.08	air05	9.13	1574	8.53
cap6000	0.73	7	0.06	cap6000	0.73	7	0.06
ds	0.06	2344	95.71	ds	0.06	2344	93.93
eilD76	3.59	212	1.21	eilD76	3.08	242	1.69
fast0507	2.81	7	3584.98	fast0507	3.56	20	256.15
fiber	32.34	601	2506.57	fiber	29.40	142	1.78
gt2	1.29	3	0.00	gt2	1.29	3	0.00
harp2	0.00	24	0.16	harp2	0.00	25	0.14
irp	47.98	135	1125.80	irp	64.73	172	5.91
1152lav	13.19	403	3507.03	1152lav	7.66	392	0.76
lsen	50.86	207	18.92	lseu	42.98	472	22.22
manna81	100.00	350	0.48	manna81	100.00	349	0.45
markshare1	0.00	45	0.03	markshare1	0.00	45	0.04
markshare?	0.00	55	0.05	markshare?	0.00	54	0.03
misc03	33.66	266	3599.75	misc03	35.05	639	3599.18
misc07	16 70	387	3599.04	misc07	13.45	325	600.03
mitre	3 73	606	47.87	mitre	3.89	647	38.85
mod008	0.83	37	0.17	mod008	3.46	107	0.77
mod010	0.05	274	31.40	mod010	21.47	235	58.15
neos1	0.00	274	36.27	neos1	0.00	17	9 50
neos10	5.03	17	64 55	neos10	22.28	00	14.88
neos16	0.52	401	31.20	neos16	0.52	90 465	16.00
ncos10	9.52	491	2500.50	neos10	9.52	405	1507.50
neos18	0.00	10	2601.62	neos10	11.11	011	1052.21
neos21	100.00	10	7 09	neos21	40.04	22	1952.51
neoso	100.00	2028	1.90	neoso	100.00	2028	J.25 1 79
nug08	0.00	2028	1.08	nugos	0.00	2028	1.70
nw04 	1./5	127	7.03	nw04	1.75	127	0.94
p0033	54.11	101	0.89	p0033	47.23	82	0.49
p0201	0.00	/6	0.18	p0201	0.00	54	0.65
p0282	1.15	23	0.14	p0282	1.15	24	0.12
p0548	27.99	210	1.92	p0548	16.53	168	1.46
p2/56	8.37	700	10.52	p2756	6.49	534	2.72
prod	0.00	0	0.03	prodl	0.00	0	0.05
protfold	0.00	10	3594.27	protfold	0.00	17	318.91
qap10	2.24	6903	49.96	qap10	2.24	6903	49.60
qnet1	14.81	145	10.73	qnet1	11.83	106	13.74
qnet1_o	25.86	441	61.57	qnet1_0	25.29	623	102.25
seymour	0.00	2	3597.54	seymour	8.62	25	3636.49
sp97ar	6.55	57	105.32	sp97ar	7.41	39	47.00
stein27	0.00	17	16.34	stein27	0.00	10	12.73
stein45	0.00	9	404.28	stein45	0.00	21	187.95
t1717	0.04	394	42.47	t1717	0.30	608	66.39
verschobenes				verschobenes			
geometrisches Mittel	3.82	70	37.20	geometrisches Mittel	4.96	89	17.03
#gap closed% ^{100%}	3			#gap closed% ^{100%}	3		

Tabelle E.3: Rechenstudie 4.3: EXAKTIP- Tabelle E.4: Rechenstudie 4.3: EXAKTIP-ZF4, $\mathcal{V}^{min} = 0.01$

ZF5P0.001, $V^{min} = 0.01$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	9	53.87	10teams	57.14	29	108.74
30:70:4_5:0_5:100	0.00	1	3663.62	30:70:4_5:0_5:100	0.00	2	3594.99
30:70:4_5:0_95:98	0.00	0	0.00	30:70:4_5:0_95:98	0.00	0	0.00
air03	100.00	2	0.29	air03	100.00	5	0.36
air04	27.60	1233	365.25	air04	18.05	914	157.48
air05	6.16	1895	9.95	air05	6.17	1905	10.43
cap6000	0.73	7	0.06	cap6000	0.73	7	0.06
ds	0.06	2345	94.02	ds	0.06	2345	96.73
eilD76	2.98	232	1.19	eilD76	3.23	274	1.98
fast0507	3.85	22	727.62	fast0507	3.55	40	702.09
fiber	30.55	331	87.75	fiber	29.33	134	0.94
gt2	1.29	3	0.00	gt2	1.29	3	0.00
harp2	0.00	25	0.14	harp2	0.00	26	0.11
im	65.03	179	5.60	im	65.24	136	5.16
1152lav	13.76	419	1.09	1152lav	11.53	414	525.59
lseu	60.97	422	19.35	lseu	58.87	602	73.89
manna81	100.00	349	0.45	manna81	100.00	348	0.50
markshare1	0.00	45	0.04	markshare1	0.00	45	0.04
markshare2	0.00	54	0.03	markshare2	0.00	55	0.05
misc03	33.39	523	3599.20	misc03	33.79	704	3599.41
misc07	17.51	614	3598.07	misc07	18.01	380	457.70
mitre	3.96	647	46 49	mitre	5 55	841	97.85
mod008	0.43	38	0.07	mod008	0.45	40	0.11
mod010	21.47	248	21.69	mod010	21.47	253	32 72
neos1	0.00	36	31.82	neos1	0.00	255	5 72
neos10	13 59	35	10.12	neos10	37 32	169	170.20
neos16	9.52	431	30.02	neos16	9.52	434	25.15
neos18	5 58	-51	3584 54	neos18	0.00	24	412.43
neos21	47.60	1606	3589.26	neos21	37.04	896	3597.22
neos	100.00	26	3.68	neos	100.00	5	0.07
nug08	0.00	2028	1 64	nug08	0.00	2028	1.75
nug00	1.75	127	7.04	nug00	1.75	127	7.24
n0033	67.00	232	5 70	n0033	53.82	127	1.00
p0055	07.90	52	0.42	p0033	0.00	50	0.20
p0201	0.00	24	0.42	p0201	0.00	24	0.20
p0282	1.15	192	0.11	p0282	24.47	162	0.14
p0546	4.55	102 545	2.11	p0546	24.47	567	0.78
p2750	0.58	545	5.80	p2750	0.47	507	2.24
prou i	0.00	10	222.02	prou i	0.00	109	1122.54
protioid	0.00	18	323.93	protioid	0.00	108	51.62
qap10	2.24	0903	49.82	qap10	2.24	0903	21.03
qnet1	15.89	247 425	21.10	qnet1	10.80	150	12.94
qnet1_0	22.80	425	31.10	qnet1_0	24.85	/33	26.5 05
seymour	1.//	31	3396.73	seymour	/.64	30	3695.05
sp97ar	15.65	94	128.78	sp97ar	8.21	89	99.41
stein 45	0.00	13	/.41	stein27	0.00	15	8.0/
stein45	0.00	13	89.45	stein45	0.00	8	46.72
	0.04	38/	50.41	t1/1/	0.04	389	54.94
verschobenes	4.00	04	20.00	verschobenes	E 10	05	10.00
geometrisches Mittel	4.88	94	20.08	geometrisches Mittel	5.19	95	19.09
#gap closed%100%	3			#gap closed%150%	3		

Tabelle E.5: Rechenstudie 4.3: EXAKTIP- Tabelle E.6: Rechenstudie 4.3: EXAKTIP-ZF5P0.01, $V^{min} = 0.01$

ZF5P0.1, $\mathcal{V}^{min} = 0.01$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	0	5.13	10teams	0.00	3	9.03
30:70:4_5:0_5:100	0.00	0	241.01	30:70:4_5:0_5:100	0.00	0	225.85
30:70:4_5:0_95:98	0.00	12	206.12	30:70:4_5:0_95:98	0.00	81	484.73
air03	100.00	1	0.02	air03	100.00	1	0.02
air04	15.66	696	47.53	air04	11.57	319	29.11
air05	10.65	2294	11.20	air05	5.28	2666	14.01
cap6000	0.73	7	0.05	cap6000	0.73	7	0.03
ds	0.06	2330	92.20	ds	0.06	1970	73.29
eilD76	3.01	483	2.72	eilD76	2.74	610	4.96
fast0507	2.74	5	17.91	fast0507	0.00	0	9.26
fiber	30.74	795	34.60	fiber	22.43	211	1.47
gt2	1.29	3	0.00	gt2	1.29	3	0.01
harp2	0.00	20	0.12	harp2	0.00	18	0.05
irp	65.34	229	3.24	irp	78.06	1485	44.15
1152lav	9.97	443	2.75	1152lav	17.77	440	7.31
lseu	46.12	1013	17.19	lseu	13.79	1040	50.16
manna81	100.00	338	1.32	manna81	100.00	338	1.44
markshare1	0.00	29	0.00	markshare1	0.00	21	0.00
markshare2	0.00	41	0.00	markshare2	0.00	22	0.00
misc03	31.16	882	141.99	misc03	0.00	24	0.18
misc07	3.15	748	43.27	misc07	3.94	551	58.28
mitre	0.94	404	0.64	mitre	0.94	353	0.43
mod008	0.94	38	0.04	mod008	0.24	15	0.45
mod010	39.06	555	2.05	mod010	45.47	615	15.68
neos1	0.00	11	3.69	neosl	0.00	108	2.04
neos10	0.00	54	0.88	neos10	0.00	15	1.00
neos16	9.52	435	6.80	neos16	9.52	307	4 79
neos18	0.00	6	52 21	neos18	0.00	105	64.48
neos21	39.14	1627	1066.91	neos21	38.52	1568	444 21
neos	100.00	31	0.40	neos	100.00	80	2 /2
nug08	0.00	2020	1 71	nug08	0.00	1638	1.43
nw04	1.75	123	5.04	nug00	1.75	1030	5.00
n0033	54.13	208	3.74	n0033	22.73	35	0.00
p00000	0.00	290	0.80	p00000	0.00	33	0.09
p0201	0.00	144	0.80	p0201	0.00	55	0.00
p0282	20.26	726	50.10	p0282	0.19	120	0.02
p0546	29.30	720 500	0.19	p0546	1.12	129	0.37
p2750	9.44	390	0.75	p2750	4.19	461	0.29
prod i	0.00	20	150.52	prod I	0.00	10	0.02
	0.00	30	150.52		0.00	(701	88.19
qapio	2.24	0895	49.52	qapio	2.24	0/01	47.54
qnet1	10.09	368	42.06	qnet1	10.75	1/5	43.23
qnet1_o	24.87	1056	248.51	qnet1_o	16.76	489	68.93
seymour	0.00	0	50.65	seymour	0.00	0	48.26
sp9/ar	4.68	33	16.46	sp9/ar	4.64	33	26.12
stein27	0.00	245	6.27	stein2/	0.00	146	3.98
stein45	0.00	129	11.70	stein45	0.00	114	14.61
t1717	0.04	537	42.69	t1717	0.05	491	39.22
verschobenes				verschobenes			
geometrisches Mittel	3.74	100	8.76	geometrisches Mittel	2.84	82	7.03
$\#gap\ closed\%^{100\%}$	3			#gap closed% ^{100%}	3		

Tabelle E.7: Rechenstudie	4.3:	HEURIP
ZF1, $\mathcal{V}^{min} = 0$.01	

P- Tabelle E.8: Rechenstudie 4.3: HEURIP-ZF1, $\mathcal{V}^{min} = 0.10$

Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa
10teams	0.00	0	4.06	10teams	0.00	0	3.76
30:70:4_5:0_5:100	0.00	0	189.83	30:70:4_5:0_5:100	0.00	0	169.75
30:70:4_5:0_95:98	0.00	61	394.62	30:70:4_5:0_95:98	0.00	25	349.66
air03	100.00	1	0.01	air03	100.00	1	0.03
air04	14.57	854	18.64	air04	9.05	454	11.79
air05	5 50	2382	12 57	air05	11.26	1345	6 31
cap6000	0.73	4	0.03	cap6000	0.73	4	0.02
ds	0.06	1935	72.41	ds	0.06	1931	72.39
eilD76	2.67	350	1.03	eilD76	2.71	342	0.94
fast0507	0.00	0	7.06	fast0507	0.00	0	9.06
fiber	21.76	88	0.29	fiber	15.67	76	0.72
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	23	0.10	harp2	0.00	13	0.05
im	69.89	855	22.88	im	68.94	86	1.36
1152lav	10.83	389	2.58	1152lav	6.35	231	2.20
lseu	41.64	363	13.27	lsen	1 49	8	0.02
manna81	100.00	338	1.33	manna81	100.00	273	0.24
markshare1	0.00	19	0.00	markshare1	0.00	2.0	0.00
markshare?	0.00	22	0.00	markshare?	0.00	27	0.00
misc03	0.00	8	0.21	misc03	21.86	165	47.23
misc07	4.03	647	72.41	misc07	2.55	191	17.13
mitre	1 48	300	0.40	mitre	1.62	314	0.34
mod008	0.09	7	0.00	mod008	0.08	4	0.00
mod010	15.63	377	3 23	mod010	12 57	36	0.06
neos1	0.00	46	3.25	neos1	14 29	137	2.07
neos10	0.00		0.62	neos10	0.00	6	0.44
neos16	9.52	387	4 46	neos16	9.52	371	0.44
neos18	0.00	8	60.34	neos18	0.00	6	23 30
neos21	24.55	1234	267.84	neos21	17.26	691	100.43
neos	100.00	20	1 15	neos	100.00	1/	1.02
nug08	0.00	1638	1.15	nuo08	0.00	1637	1.02
nug00	2 30	1050	5 38	nw04	1.81	117	5.65
n0033	40.98	108	0.21	n0033	27.38	20	0.03
p00000	-0.00	33	0.21	p00000	0.00	2)	0.05
p0201	0.00	22	0.00	p0201	0.00	2	0.00
p0282	0.07	112	0.00	p0282	2.61	20	0.01
p0546	0.27	200	0.18	p0548	2.01	20 110	0.04
p2750	1.05	298	0.08	p2730	0.58	119	0.09
prou i	0.00	0	22.06	prod I protfold	0.00	0	21.17
protioid	0.00	6600	47.02	gen10	0.00	6600	21.17
qap10	2.24	140	47.02	qap10	2.24	120	40.90
quet1	11.00	280	54.04 45.41	quet1	10.09	128	19.14
	18.18	309	45.41	quet 1_0	12.89	25	21.55
seymour an07an	0.00	1	40.08	seymour an07an	0.00	12	31.33
sp97ar	0.00	101	3.98	sp97ar	2.00	15	24.03
stein 27	0.00	101	3.95	stein 45	0.00	90	4.04
stein45	0.00	88	13.99	stein45	0.00	86	12.64
	0.05	505	38.67		0.04	545	23.23
verschobenes				verschobenes			
geometrisches Mittel	2.64	53	5.18	geometrisches Mittel	2.66	34	3.65
#gap closed% ^{100%}	3			#gap closed% ^{100%}	3		

Tabelle E.9: Rechenstudie 4.3: HEURIP- Tabelle E.10: Rechenstudie 4.3: HEURIP-ZF1, $\mathcal{V}^{min} = 0.20$

ZF1, $\mathcal{V}^{min} = 0.30$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10teams	57.14	1	5.07	10teams	100.00	42	0.03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30:70:4_5:0_5:100	0.00	0	167.16	30:70:4_5:0_5:100	0.00	60	51.24
air03 100.00 2 0.02 air03 100.00 2 0.01 air04 13.82 748 12.25 air04 0.00 0.00 0.00 cap6000 0.00 0.00 0.00 $cap6000$ 0.00 0.00 0.00 ds 0.06 1744 62.03 ds 0.00 0.00 0.00 fastO507 0.00 0 7.92 fastO507 0.00 0 0.01 fastO507 0.00 0 7.92 fastO507 0.00 0 0.01 fabr 14.44 60 1.32 fiber 8.36 8.00 gr2 1.29 2 0.00 gr2 1.29 2 0.01 harp2 0.00 0 0.01 harp2 0.00 0 0.01 irp 33.31 43 0.49 irp 30.45 11 0.0 lseu 1.46 7 0.00 lseu 0.21 5 0.01 manna81 100.00 27.3 0.26 manna81 100.00 0.27 0.01 markshare1 0.00 0 0.00 markshare2 0.00 1 0.01 markshare2 0.00 4 0.00 markshare2 0.00 1 0.01 misc03 15.92 92 8.66 misc03 11.56 7.3 0.01 markshare1 0.00 0.08 4 0.00 mod008 0.05 1 0.01 mod08 $0.$	30:70:4_5:0_95:98	0.00	6	133.42	30:70:4_5:0_95:98	0.00	83	75.85
air04 13.82 748 12.25 $ir104$ 0.00 0.00 0.00 air05 7.06 562 2.75 $ir105$ 1.70 2 0.00 cap6000 0.00 0.00 $cap6000$ 0.00 1.06 0.00 0.00 0.00 ds 0.06 1744 62.03 ds 0.00 0.00 0.00 0.00 eilD76 2.41 396 1.06 eilD76 0.00 0.00 0.00 fast0507 0.00 0.00 0.792 fast0507 0.00 0.00 0.00 hpr2 0.00 0.00 0.01 harp2 0.00 0.00 0.01 hpr2 0.00 0.00 0.00 lisu 0.00 0.00 0.01 lisl2lav 7.04 7.6 0.08 lis2lav 0.00 0.00 0.00 markshare1 0.00 0.00 markshare1 0.00 0.00 0.00 misc03 15.92 92 8.66 misc03 11.56 7.3 0.6 misc04 0.00 4 0.00 markshare1 0.00 10.00 0.00 mod008 0.08 4 0.00 markshare1 0.00 11.00 misc07 0.91 108 6.54 misc07 0.72 70 0.00 mod008 0.08 4 0.00 mod008 0.05 1 0.00 mod010 12.57 36 0.05 mod10 12.57 34 <t< td=""><td>air03</td><td>100.00</td><td>2</td><td>0.02</td><td>air03</td><td>100.00</td><td>2</td><td>0.02</td></t<>	air03	100.00	2	0.02	air03	100.00	2	0.02
air057.065622.75air051.7020.0cap60000.0000.00cap60000.000.000.00cilD762.413961.06cilD760.0000.01fast05070.0007.92fast05070.0000.01fast01.44.44601.32fiber8.3680.00gt21.2920.00gt21.2920.00harp20.0000.01harp20.00000.01irp33.31430.49irp30.45110.0lseu1.4670.00lseu0.2150.00mans81100.002.730.26manna81100.002.730.26markshare10.0000.00markshare20.0010.00misc0315.92928.66misc0311.567.30.0misc070.911086.54misc070.727.00.0mod0080.0840.00mod0080.0510.0mod01012.57360.05mod01012.57340.0necs169.524440.29necs180.00110.0necs169.524440.29necs1811.00.00.0nog810.0030.00p03318.12120.00.	air04	13.82	748	12.25	air04	0.00	0	0.02
cap6000 0.00 0.00 $cap6000$ 0.00 0.00 0.00 0.00 ds 0.06 1744 62.03 ds 0.00 0.00 0.00 fibr 2.41 396 1.06 $cilD76$ 0.00 0.00 0.01 fibr 14.44 60 1.32 fiber 8.36 8.00 gl2 1.29 2 0.00 00 1.22 1.29 2 0.00 harp2 0.00 0 0.01 harp2 0.00 0 0.01 irp 33.31 43 0.49 irp 30.45 11 0.0 lseu 1.46 7 0.00 lseu 0.21 5 0.00 markshar1 0.000 0.00 markshar2 0.00 0.00 0.00 markshar2 0.00 4 0.00 markshar2 0.00 0.00 misc07 0.91 108 6.54 misc07 0.72 70 0.00 misc03 15.92 92 8.66 misc03 11.56 73 0.00 misc04 0.00 0.56 3.16 neos1 0.00 10.00 mod010 12.57 36 0.05 mod010 12.57 34 0.00 necs1 0.00 56 3.16 neos1 0.00 10.00 necs1 0.00 153 131.21 neos16 0.00 10.00 necs1 0.00 1634 1.42 $ng08$ 10.30 <td>air05</td> <td>7.06</td> <td>562</td> <td>2.75</td> <td>air05</td> <td>1.70</td> <td>2</td> <td>0.03</td>	air05	7.06	562	2.75	air05	1.70	2	0.03
ds 0.06 1744 62.03 ds 0.00 1 0.2 eiD76 2.41 396 1.66 eiD76 0.00 0 0.00 fisdx0507 0.00 0 0.792 fistx0507 0.00 0 0.00 fiber 14.44 60 1.32 fiber 8.36 8 0.00 gt2 1.29 2 0.00 gt2 1.29 2 0.00 irp 33.31 43 0.49 irp 30.45 11 0.0 lseu 1.46 7 0.00 lseu 0.21 5 0.0 markshare1 0.00 0 0.00 markshare2 0.00 1 0.0 misc07 0.91 108 6.54 misc03 11.56 73 0.0 mod08 0.08 4 0.00 mod08 0.05 1 0.0 markshare1 0.00 56 3.16 necs1	cap6000	0.00	0	0.00	cap6000	0.00	0	0.00
eilD762.413961.06eilD760.0000.01fast05070.001.44601.32fiber8.3680.0gt21.2920.00gt21.2920.00harp20.0000.01harp20.00000152lav7.04760.081152lav0.00000lseu1.4670.00lseu0.2150.00mana81100.002730.26mana81100.002730.0markshare10.0000.00markshare20.0010.00misc0315.92928.66misc0311.56730.0misc040.911086.54misc070.72700.0mod0080.0840.00mod0080.0510.0neos10.00563.16neos10.001170.0neos10.00381.26neos857.14100.0neos10.0016341.42nug0810.306631.5nucol18.12120.00p003318.12120.0nucol0.033.000p02820.0720.00.0nucol0.033.000p02010.0030.000.0nucol0.0000.00p03318.12100	ds	0.06	1744	62.03	ds	0.00	1	0.31
fast0507 0.00 0 7.92 fast0507 0.00 0.00 0.00 fiber14.44601.32fiber8.368 0.00 gl21.292 0.00 gl21.292 0.00 hap2 0.00 0 0.01 harp2 0.00 0.00 0.01 irp 33.31 43 0.49 irp 30.45 11 0.0 lscu 1.46 7 0.00 lscu 0.21 5 0.0 markshare1 0.00 273 0.26 manna81 100.00 273 0.06 markshare2 0.00 4 0.00 markshare2 0.00 1 0.0 misc03 15.92 92 8.66 misc03 11.56 73 0.0 mitre 2.39 142 0.17 mitre 1.62 107 0.0 mod08 0.08 4 0.00 mod08 0.05 1 0.0 ncos1 0.00 56 3.16 ncos1 0.00 10 0.0 ncos16 9.52 444 0.29 ncos18 22.22 700 0.1 ncos16 9.52 444 0.29 ncos18 0.00 1 0.0 ncos18 11.11 91 19.41 ncos18 13.21 16.30 0.00 0033 18.12 122 0.00 9033 18.12 12 0.00 0033 18.12 122 0.00 9	eilD76	2.41	396	1.06	eilD76	0.00	0	0.00
fiber14.44601.32fiber8.3680.0g21.2920.00g21.2920.00irp33.31430.49irp30.45110.1152lav7.04760.081152lav0.0000.00lseu1.4670.00lseu0.2150.0manna81100.002730.26manna81100.002730.2markshare10.0000.00markshare20.0010.0misc0315.52928.66misc0311.56730.0misc070.911086.54misc070.72700.0mire2.391420.17mitre1.621070.0mod01012.57360.05mod01012.57340.0necs10.00563.16ncs10.0010.0necs169.524440.29ncs160.0010.0necs1119.0235113.21ncs215.7.14100.0necs1219.0030.00p02820.0720.0nud810.119194.1ncs1812.22700.1nucs318.12120.00p02820.0720.0nucs419.0235113.21ncs215.7.14100.0nucs419.0	fast0507	0.00	0	7.92	fast0507	0.00	0	0.08
gt21.2920.00gt21.2920.00harp20.0000.01harp20.0000irp33.31430.49irp30.45110.01ltSlav7.04760.081152lav0.0000.01lseu1.4670.00lseu0.2150.0mana81100.002730.26mana81100.002730.26markshare10.0000.00markshare20.0010.00misc0315.92928.66misc070.72700.01misc070.911086.54misc070.72700.01misc0312.57360.05mod01012.57340.01mod01012.57360.05mod01012.57340.01ncos10.00563.16ncos10.00170.01ncos169.524440.29ncos160.0010.02ncos8100.0030.00p003318.12120.00p02010.0000.00prod10.0000.02p02010.0000.00prod10.0000.02p02010.0000.00prod10.0000.00p03318.12120.000.00prod10.0000.02p044 <td>fiber</td> <td>14.44</td> <td>60</td> <td>1.32</td> <td>fiber</td> <td>8.36</td> <td>8</td> <td>0.00</td>	fiber	14.44	60	1.32	fiber	8.36	8	0.00
harp20.0000.01harp20.0000.01irp 33.31 43 0.49irp 30.45 110.011152lav7.04760.081152lav0.0000.01lseu1.4670.00lseu0.2150.01markshare10.0000.00markshare20.0010.00markshare20.0000.00markshare20.0010.00misc0315.92928.66misc0311.567.30.01misc070.911086.54misc070.72700.01mire2.391420.17mitre1.621070.1mod0080.0840.00mod0080.0510.01mod01012.57360.05mod1012.57340.01ncos10.00563.16ncos10.0010.01ncos169.524440.29ncos160.0010.01ncos1811.119119.41ncos1822.227001.31ncos2119.02351131.21ncos215.411.300.66ny040.0000.09nw040.0000.02p023318.12120.00p03318.12120.00p02481.99220.02p05481.801.60p0	gt2	1.29	2	0.00	gt2	1.29	2	0.00
	harp2	0.00	0	0.01	harp2	0.00	0	0.01
1152lav7.04760.08152lav0.0000.00lseu1.4670.00lseu0.2150.0manna81100.002730.26manna81100.002730.2markshare10.0000.00markshare10.0000markshare20.0040.00markshare10.0000misc0315.92928.66misc0311.56730.0misc070.911086.54misc070.72700.0mod0080.0840.00mod0080.0510.0mod01012.57360.05mod01012.57340.0ncos10.00563.16ncos1016.41500.0ncos169.524440.29ncos160.0010.0ncos1811.119119.41ncos1822.227001.3ncos2119.02351131.21ncos1812.120.00ng080.0016341.42nug0810.306631.2ng080.0016341.42nug0810.306631.2ng080.0016341.42nug0810.306631.2ng080.0016341.42nug0810.306631.2ng080.0016341.42nug0810.306631.2 <tr< td=""><td>irp</td><td>33.31</td><td>43</td><td>0.49</td><td>irp</td><td>30.45</td><td>11</td><td>0.13</td></tr<>	irp	33.31	43	0.49	irp	30.45	11	0.13
lseu1.4670.00lseu0.2150.0manna81100.002730.26manna81100.002730.2markshare10.0000.00markshare10.0000.00markshare20.0040.00markshare20.0010.0misc0315.92928.66misc0311.56730.0misc070.911086.54misc070.72700.0mod080.0840.00mod01012.57340.0mod01012.57360.05mod01012.57340.0neos10.00563.16neos10.00110.0neos169.524440.29neos160.0010.0neos1811.119119.41neos1822.227001.3neos1811.119119.44neos1822.227001.4neos8100.00381.26neos857.14100.0nug080.0016341.42nug0810.306631.2p02010.0030.00p02820.0720.0p02820.0720.00p02841.801.600.0p02010.0000.00p0.0020.20.2p02140.0000.00p0.002.311.90.0p	1152lav	7.04	76	0.08	1152lav	0.00	0	0.00
mana81100.002730.26mana81100.002730.27markshare10.0000.00markshare20.0010.00misc0315.92928.66misc0311.56730.0misc070.911086.54misc070.72700.0mitre2.391420.17mitre1.621070.mod0080.0840.00mod0080.0510.0mod1012.57360.05mod01012.57340.0ncos10.00563.16ncos10.00110.0ncos169.524440.29ncos160.0010.0ncos1811.119119.41ncos1822.227001.8ncos2119.0235113.21ncos215.41130.0ncos8100.00381.26ncos857.14100.0ng080.0016341.42ng0810.306631.5p02010.0030.00p023318.12120.0p02420.28700.02p27560.20430.0p7560.28700.02p27560.20430.0prod10.0000.00p0.0782.2prod10.0000.00p0.0782.5p7560.2870	lseu	1.46	7	0.00	lseu	0.21	5	0.01
markshare10.0000.00markshare10.0000.01markshare20.0040.00markshare20.0010.01misc0315.92928.66misc0311.56730.01misc070.911086.54misc070.72700.01moto0.911086.54misc070.72700.01mod080.0840.00mod0080.0510.00mod01012.57360.05mod01012.57340.01neos10.00563.16neos10.001170.01neos169.524440.29neos160.0010.01neos1811.119119.41neos1822.227001.3neos2119.0235113.21neos215.41130.01neos8100.0031.26neos857.14100.01nug080.0016341.42nug0810.306631.2nug040.0000.09nw040.0000.02p02010.0030.00p02820.0720.02p05481.99220.02p27560.20430.0p05481.99220.02p27560.20430.02potfold0.0000.01potfold0.0020.07 <td>manna81</td> <td>100.00</td> <td>273</td> <td>0.26</td> <td>manna81</td> <td>100.00</td> <td>273</td> <td>0.21</td>	manna81	100.00	273	0.26	manna81	100.00	273	0.21
narkshare20.0040.00markshare20.0010.00misc03 15.92 92 8.66 misc03 11.56 73 0.0misc070.91108 6.54 misc07 0.72 70 0.0mitre 2.39 1420.17mitre 1.62 107 0.72 mod0080.0840.00mod008 0.05 1 0.0 mod01012.57 36 0.05mod010 12.57 34 0.0 ncos10.0056 3.16 ncos1 0.00 117 0.0 ncos16 9.52 444 0.29 ncos16 0.00 1 0.0 ncos18 11.11 91 19.41 ncos18 22.22 700 13.12 ncos21 19.02 351 131.21 ncos21 5.41 13 0.0 nug08 0.00 1634 1.42 nug08 10.30 663 1.24 nug08 0.00 1634 1.42 nug08 0.00 0 0.0 p0233 18.12 12 0.00 $p0282$ 0.07 2 0.02 p0548 1.99 22 0.02 $p2756$ 0.20 43 0.0 p071 0.00 0 0.00 $p0.17$ $p0.00$ 0.07 2.44 14 0.00 prod1 0.00 0 0.00 $p0.17$ $p0.07$ 2.44 14 0.07 2.44 14	markshare1	0.00	0	0.00	markshare1	0.00	0	0.00
misc0315.92928.66mixton15.6730.0misc070.911086.54misc070.72700.0mitre2.391420.17mitre1.621070.mod0080.0840.00mod0080.0510.0mod01012.57360.05mod01012.57340.0neos10.00563.16neos10.001170.0neos100.4170.37neos1016.41500.0neos1811.119119.41neos215.41130.0neos2119.02351131.21neos215.41130.0nug080.0016341.42nug0810.306631.2nug080.0016341.42nug0810.306631.2p02010.0030.00p02010.0030.0p02820.0720.00p02820.0720.0p05481.99220.02p25481.80160.0profold0.0000.00profold0.0020.3profold0.0000.1247.16qap100.0782.2qap102.24669347.16qap100.0782.5seymour0.00021.78seymour16.05570.7 <t< td=""><td>markshare?</td><td>0.00</td><td>4</td><td>0.00</td><td>markshare?</td><td>0.00</td><td>1</td><td>0.00</td></t<>	markshare?	0.00	4	0.00	markshare?	0.00	1	0.00
Initial10.210.86.54mixtor10.8017.80700.00mixtor 2.39 1420.17mitre1.621070.1mod0080.0840.00mod0080.0510.0mod01012.57360.05mod01012.57340.0neos10.00563.16neos10.001170.0neos100.4170.37neos160.0010.0neos169.524440.29neos160.0010.0neos1811.119119.41neos1822.227001.3neos2119.02351131.21neos215.41130.0nug080.0016341.42nug0810.306631.2nug080.0016341.42nug0810.306631.2p02010.0030.00p02820.0720.0p05481.99220.02p27560.20430.0p07410.0000.00p0.0020.000protold0.0000.17p0.412.31190.0seymour0.00021.74protold0.0020.0protold0.0000.00p0.782.5qpt1_o2.24669347.16qap100.0782.5	misc03	15.92	92	8.66	misc03	11.56	73	0.01
Innec) 130 <t< td=""><td>misc07</td><td>0.91</td><td>108</td><td>6 54</td><td>misc07</td><td>0.72</td><td>70</td><td>0.00</td></t<>	misc07	0.91	108	6 54	misc07	0.72	70	0.00
ninte 1.32 1.61 1.112 1.61 1.62 1.61 1.62 1.61 mod008 0.08 4 0.00 mod008 0.05 1 0.00 mod010 12.57 36 0.05 mod010 12.57 34 0.0 neos1 0.00 56 3.16 neos1 0.00 117 0.0 neos10 0.41 7 0.37 neos10 16.41 50 0.0 neos16 9.52 444 0.29 neos16 0.00 1 0.0 neos18 11.11 91 19.41 neos18 22.22 700 1.3 neos21 19.02 351 13.121 neos21 5.41 13 0.0 neos8 100.00 38 1.26 neos8 57.14 10 0.0 nug08 0.00 1634 1.42 nug08 10.30 663 1.2 nw04 0.00 0 0.09 nw04 0.00 0 0.0 p0201 0.00 3 0.00 p0282 0.07 2 0.02 p0548 1.99 22 0.02 $p2756$ 0.20 43 0.00 protfold 0.00 0 0.02 $p2756$ 0.20 43 0.00 protfold 0.00 0 0.174 protfold 0.00 2 0.7 qpt1 7.18 59 9.01 qpt1 2.44 14 0.00 seymour $0.$	mitre	2 39	142	0.17	mitre	1.62	107	0.00
Inclusion1.001.001.001.001.00mod01012.57360.05mod01012.57340.00neos10.00563.16neos10.001170.0neos100.4170.37neos1016.41500.0neos169.524440.29neos160.0010.0neos1811.119119.41neos1822.227001.3neos2119.02351131.21neos854.1130.0neos8100.00381.26neos857.14100.0nug080.0016341.42nug0810.306631.3nw040.0000.09nw040.0000.0p02010.0030.00p02010.0030.0p02820.0720.00p02820.0720.0po5481.99220.02p05481.80160.0prof10.0000.00prof10.0000prof10.00021.74prof1old0.0782.5qnet17.18599.01qnet12.44140.0qnet10.12.89230.10qnet12.13190.0seymour0.00021.78seymour16.05570.7sp97ar7.822315	mod008	0.08	142	0.17	mod008	0.05	107	0.00
Induito 12.57 50 60.57 10.00 12.57 13.7 14.7 0.57 neos1 0.00 56 3.16 neos1 0.00 117 0.0 neos10 0.41 7 0.37 neos10 16.41 50 0.0 neos16 9.52 444 0.29 neos16 0.00 1 0.0 neos18 11.11 91 19.41 neos18 22.22 700 1.3 neos21 19.02 351 131.21 neos21 5.41 13 0.0 nu08 0.00 1634 1.42 nug08 10.30 663 1.2 nu098 0.00 1634 1.42 nug08 10.30 663 1.2 nu04 0.00 0 0.09 nu04 0.00 0 0.0 p0201 0.00 3 0.00 p0201 0.00 3 0.00 p0282 0.07 2 0.02 p0548 1.80 16 0.0 p2756 0.28 70 0.22 $p2756$ 0.20 43 0.0 potfold 0.00 0 0.00 prod1 0.00 0 0.00 qnet1 7.18 59 9.01 qnet1 2.44 14 0.0 qnet1 7.82 23 0.10 qnet1 2.44 14 0.0 seymour 0.00 0 0.00 $seymour$ 16.05 57 0.7 $seymour$ 0.00 <	mod010	12 57	36	0.00	mod010	12 57	34	0.00
Incosi 0.00 0.0 0.00 10 0.00 117 0.00 neosil0 0.41 7 0.37 neosil0 16.41 50 0.00 neosil6 9.52 444 0.29 neosil6 0.00 1 0.00 neosil8 11.11 91 19.41 neosil8 22.22 700 1.8 neos21 19.02 351 131.21 neos21 5.41 13 0.0 nug08 0.00 1634 1.42 nug08 10.30 663 1.2 nw04 0.00 0 0.09 nw04 0.00 0 0.00 p0201 0.00 3 0.00 p0201 0.00 3 0.00 p0282 0.07 2 0.00 p0282 0.07 2 0.00 p0548 1.99 22 0.02 p2548 1.80 16 0.0 prof1 0.00 0 0.00 prod1 0.00 2 0.2 prof1 0.00 0 0.00 prod1 0.00 2 0.2 qnet1 7.18 59 9.01 qnet1 2.44 14 0.00 qnet1_o 12.89 23 0.10 qnet1_o 12.31 19 0.00 seymour 0.00 0 0.00 stein27 0.00 0 0.00 stein27 0.00 0 0.00 stein45 0.00 0 0.00	neos1	0.00	56	3.16	neos1	0.00	117	0.03
Incos10 0.41 1 0.37 $ncos10$ 10.41 30 0.01 neos16 9.52 444 0.29 neos16 0.00 1 0.01 neos18 11.11 91 19.41 neos18 22.22 700 1.8 neos21 19.02 351 131.21 neos21 5.41 13 0.01 nug08 0.00 1634 1.42 nug08 10.30 663 1.2 nw04 0.00 0 0.09 nw04 0.00 0 0.01 p0201 0.00 3 0.00 $p0282$ 0.07 2 0.02 p0282 0.07 2 0.00 $p0282$ 0.07 2 0.02 p0548 1.99 22 0.02 $p2548$ 1.80 16 0.02 pord1 0.00 0 0.00 $prod1$ 0.00 2 0.21 protfold 0.00 0 21.74 protfold 0.00 2 0.21 qnet1 7.18 59 9.01 qnet1 2.44 14 0.01 qnet1_0 12.89 23 0.10 qnet1_0 12.31 19 0.02 seymour 0.00 0 0.00 stein27 0.00 0 0.00 stein27 0.00 0 0.00 stein45 0.00 0 0.00	neos10	0.00	50	0.37	neos10	16.41	50	0.02
Incos10 3.22 444 0.29 10010 0.00 1 0.0 neos1811.119119.41neos18 22.22 700 1.3neos2119.02351131.21neos21 5.41 13 0.0 neos8100.00381.26neos8 57.14 10 0.0 nug080.0016341.42nug08 10.30 663 1.3 nw040.0000.09nw04 0.00 0 0.00 p003318.12120.00p003318.1212 0.0 p02010.0030.00p0282 0.07 2 0.0 p05481.99220.02p05481.8016 0.0 prot10.0000.00prot1 0.00 0 0.0 prot10.00021.74protfold 0.00 2 0.7 qp102.24669347.16qp10 0.07 8 2.9 qnet17.18599.01qnet1 2.44 14 0.0 qp102.28230.10qnet1_012.3119 0.0 seymour0.00021.78seymour16.05 57 0.7 sp97ar7.822315.87sp97ar19.07 68 0.4 stein270.0000.00stein450.000 0.0	neos16	0.41	111	0.37	neos16	0.00	1	0.03
neos1s11.119119.41neos1s 22.22 7001.4neos2119.02351131.21neos215.41130.0neos8100.00381.26neos857.14100.0nug080.0016341.42nug0810.306631.2nw040.0000.09nw040.0000.0p02010.0030.00p02320.0720.00p02820.0720.00p02820.0720.0p05481.99220.02p27560.20430.0prot10.0000.00prot10.0000.0protfold0.00021.74protfold0.0020.2qnet17.18599.01qnet12.44140.0qnet1_012.89230.10qnet1_012.31190.0seymour0.00021.78seymour16.05570.7sp7ar7.822315.87sp97ar19.07680.4stein270.0000.00stein450.0000.00stein450.0000.00stein450.0000.00	neos18	9.52	01	10.41	ncos10	0.00	700	1.94
neos2119.02331131.21neos21 3.41 13 0.0 neos8100.00381.26neos8 57.14 10 0.0 nug080.0016341.42nug0810.30663 1.2 nw040.0000.09nw040.000 0.0 p003318.12120.00p003318.1212 0.0 p02820.0720.00p0282 0.07 2 0.00 p05481.99220.02p25481.8016 0.0 prof10.0000.00prof1 0.00 0.00 0.00 prof10.00021.74profold 0.00 2 0.07 qap102.24669347.16qap10 0.07 82.9qnet17.18599.01qnet12.4414 0.0 seymour0.00021.78seymour16.0557 0.7 sp7ar7.822315.87sp97ar19.0768 0.4 stein270.0000.00stein450.00 0.00 0.00 0.00	neos18	11.11	251	121 21	neos18	5.41	12	1.04
neose 100.00 38 1.26 $1ecse$ 57.14 10 0.01 nug08 0.00 1634 1.42 nug08 10.30 663 1.7 nw04 0.00 0 0.09 nw04 0.00 0 0.0 p0033 18.12 12 0.00 $p0033$ 18.12 12 0.0 p0201 0.00 3 0.00 $p0282$ 0.07 2 0.00 p0548 1.99 22 0.02 $p0548$ 1.80 16 0.00 p2756 0.28 70 0.02 $p2756$ 0.20 43 0.00 prod1 0.00 0 0.00 prod1 0.00 0 0.00 protfold 0.00 0 21.74 protfold 0.00 2 0.7 qnet1 7.18 59 9.01 qnet1 2.44 14 0.00 qret1_o 12.89 23 0.10 qnet1_o 12.31 19 0.00 seymour 0.00 0 21.78 seymour 16.05 57 0.7 $sp7ar$ 7.82 23 15.87 $sp7ar$ 19.07 68 0.4 stein27 0.00 0 0.00 stein45 0.00 0 0.00	neos21	19.02	20	131.21	neos21	57.14	13	0.02
hugos 0.00 1034 1.42 11008 10.50 005 1.42 nw04 0.00 0 0.09 $nw04$ 0.00 0 0.00 $p0033$ 18.12 12 0.00 $p0033$ 18.12 12 0.0 $p0201$ 0.00 3 0.00 $p0201$ 0.00 3 0.0 $p0282$ 0.07 2 0.00 $p0282$ 0.07 2 0.00 $p0548$ 1.99 22 0.02 $p0548$ 1.80 16 0.0 $p2756$ 0.28 70 0.02 $p2756$ 0.20 43 0.0 $prot11$ 0.00 0 0.00 $prod1$ 0.00 0 0.00 $protfold$ 0.00 0 21.74 $protfold$ 0.00 2 0.1 $qp10$ 2.24 6693 47.16 $qap10$ 0.07 8 2.9 $qnet1$ 7.18 59 9.01 $qnet1$ 2.44 14 0.0 $qert1_o$ 12.89 23 0.10 $qnet1_o$ 12.31 19 0.0 $seymour$ 0.00 0 0.00 $seymour$ 16.05 57 0.7 $sp7ar$ 7.82 23 15.87 $sp7ar$ 19.07 68 0.4 $stein27$ 0.00 0 0.00 $stein45$ 0.00 0 0.00	neoso	100.00	30 1624	1.20	neoso	37.14	10	0.02
$nW04$ 0.00 0 0.09 $nW04$ 0.00 0 0.00 $p0033$ 18.12 12 0.00 $p0033$ 18.12 12 0.0 $p0201$ 0.00 3 0.00 $p0201$ 0.00 3 0.0 $p0282$ 0.07 2 0.00 $p0282$ 0.07 2 0.0 $p0548$ 1.99 22 0.02 $p0548$ 1.80 16 0.0 $p2756$ 0.28 70 0.02 $p2756$ 0.20 43 0.0 $prot1$ 0.00 0 0.00 $prod1$ 0.00 0 0.0 $protfold$ 0.00 0 21.74 $protfold$ 0.00 2 0.1 $qp10$ 2.24 6693 47.16 $qap10$ 0.07 8 2.9 $qnet1$ 7.18 59 9.01 $qnet1$ 2.44 14 0.0 $qpt1.o$ 12.89 23 0.10 $qnet1_o$ 12.31 19 0.0 $seymour$ 0.00 0 21.78 $seymour$ 16.05 57 0.7 $sp7ar$ 7.82 23 15.87 $sp7ar$ 19.07 68 0.4 $stein27$ 0.00 0 0.00 $stein45$ 0.00 0 0.00	nug08	0.00	1054	1.42	nug08	10.50	003	1.20
$p0053$ 18.12 12 0.00 $p0035$ 18.12 12 0.00 $p0201$ 0.00 3 0.00 $p0201$ 0.00 3 0.00 $p0282$ 0.07 2 0.00 $p0282$ 0.07 2 0.00 $p0548$ 1.99 22 0.02 $p0548$ 1.80 16 0.00 $p2756$ 0.28 70 0.02 $p2756$ 0.20 43 0.00 $prot1$ 0.00 0 0.00 $prod1$ 0.00 0 0.00 $protfold$ 0.00 0 21.74 $protfold$ 0.00 2 0.17 $qp10$ 2.24 6693 47.16 $qap10$ 0.07 8 2.5 $qnet1$ 7.18 59 9.01 $qnet1$ 2.44 14 0.00 $qret1_o$ 12.89 23 0.10 $qnet1_o$ 12.31 19 0.00 $seymour$ 0.00 0 21.78 $seymour$ 16.05 57 0.7 $sp97ar$ 7.82 23 15.87 $sp97ar$ 19.07 68 0.4 $stein27$ 0.00 0 0.00 $stein45$ 0.00 0 0.00	nw04	0.00	10	0.09	nw04 =0022	0.00	12	0.08
p0201 0.00 3 0.00 $p0201$ 0.00 3 0.00 $p0282$ 0.07 2 0.00 $p0282$ 0.07 2 0.00 $p0548$ 1.99 22 0.02 $p0548$ 1.80 16 0.0 $p2756$ 0.28 70 0.02 $p2756$ 0.20 43 0.0 $prod1$ 0.00 0 0.00 $prod1$ 0.00 0 0.01 $protfold$ 0.00 0 21.74 $protfold$ 0.00 2 0.1 $qap10$ 2.24 6693 47.16 $qap10$ 0.07 8 2.5 $qnet1$ 7.18 59 9.01 $qnet1$ 2.44 14 0.0 $qnet1.o$ 12.89 23 0.10 $qnet1.o$ 12.31 19 0.0 $seymour$ 0.00 0 21.78 $seymour$ 16.05 57 0.7 $sp7ar$ 7.82 23 15.87 $sp97ar$ 19.07 68 0.4 $stein27$ 0.00 0 0.00 $stein45$ 0.00 0 0.00	p0033	18.12	12	0.00	p0033	18.12	12	0.00
p0282 0.07 2 0.00 $p0282$ 0.07 2 0.07 $p0548$ 1.99 22 0.02 $p0548$ 1.80 16 0.01 $p2756$ 0.28 70 0.02 $p2756$ 0.20 43 0.01 $prod1$ 0.00 0 0.00 $prod1$ 0.00 0 0.01 $protfold$ 0.00 0 21.74 $protfold$ 0.00 2 0.12 $qap10$ 2.24 6693 47.16 $qap10$ 0.07 8 2.5 $qnet1$ 7.18 59 9.01 $qnet1$ 2.44 14 0.06 $qnet1.o$ 12.89 23 0.10 $qnet1.o$ 12.31 19 0.06 $seymour$ 0.00 0 21.78 $seymour$ 16.05 57 0.7 $sp97ar$ 7.82 23 15.87 $sp97ar$ 19.07 68 0.47 $stein27$ 0.00 0 0.00 $stein45$ 0.00 0 0.00	p0201	0.00	3	0.00	p0201	0.00	3	0.00
p0548 1.99 22 0.02 $p0548$ 1.80 16 0.01 $p2756$ 0.28 70 0.02 $p2756$ 0.20 43 0.01 $prod1$ 0.00 0 0.00 $prod1$ 0.00 0 0.01 $protfold$ 0.00 0 21.74 $protfold$ 0.00 2 0.12 $qap10$ 2.24 6693 47.16 $qap10$ 0.07 8 2.5 $qnet1$ 7.18 59 9.01 $qnet1$ 2.44 14 0.02 $qnet1.o$ 12.89 23 0.10 $qnet1.o$ 12.31 19 0.02 $seymour$ 0.00 0 21.78 $seymour$ 16.05 57 0.75 $sp97ar$ 7.82 23 15.87 $sp97ar$ 19.07 68 0.45 $stein27$ 0.00 0 0.00 $stein27$ 0.00 0 0.00 $stein45$ 0.00 0 0.00 $stein45$ 0.00 0 0.00	p0282	0.07	2	0.00	p0282	0.07	2	0.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p0548	1.99	22	0.02	p0548	1.80	16	0.01
prod1 0.00 0 0.00 prod1 0.00 0 0.00 protfold 0.00 0 21.74 protfold 0.00 2 0.1 qap10 2.24 6693 47.16 qap10 0.07 8 2.5 qnet1 7.18 59 9.01 qnet1 2.44 14 0.0 qnet1_o 12.89 23 0.10 qnet1_o 12.31 19 0.0 seymour 0.00 0 21.78 seymour 16.05 57 0.7 sp97ar 7.82 23 15.87 sp97ar 19.07 68 0.4 stein27 0.00 0 0.00 stein27 0.00 0 0.0 stein45 0.00 0 0.00 stein45 0.00 0 0.0	p2/56	0.28	70	0.02	p2/56	0.20	43	0.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	prod	0.00	0	0.00	prod	0.00	0	0.00
qap10 2.24 6693 47.16 qap10 0.07 8 2.5 qnet1 7.18 59 9.01 qnet1 2.44 14 0.0 qnet1_o 12.89 23 0.10 qnet1_o 12.31 19 0.0 seymour 0.00 0 21.78 seymour 16.05 57 0.7 sp97ar 7.82 23 15.87 sp97ar 19.07 68 0.4 stein27 0.00 0 0.00 stein27 0.00 0 0.0 stein45 0.00 0 0.00 stein45 0.00 0 0.0	protfold	0.00	0	21.74	protfold	0.00	2	0.15
qnet1 7.18 59 9.01 qnet1 2.44 14 0.0 qnet1_o 12.89 23 0.10 qnet1_o 12.31 19 0.0 seymour 0.00 0 21.78 seymour 16.05 57 0.7 sp97ar 7.82 23 15.87 sp97ar 19.07 68 0.4 stein27 0.00 0 0.00 stein27 0.00 0 0.0 stein45 0.00 0 0.00 stein45 0.00 0 0.0	qap10	2.24	6693	47.16	qap10	0.07	8	2.98
qnet1_o 12.89 23 0.10 qnet1_o 12.31 19 0.0 seymour 0.00 0 21.78 seymour 16.05 57 0.7 sp97ar 7.82 23 15.87 sp97ar 19.07 68 0.4 stein27 0.00 0 0.00 stein27 0.00 0 0.0 stein45 0.00 0 0.00 stein45 0.00 0 0.0	qnet1	7.18	59	9.01	qnet1	2.44	14	0.01
seymour 0.00 0 21.78 seymour 16.05 57 0.7 sp97ar 7.82 23 15.87 sp97ar 19.07 68 0.4 stein27 0.00 0 0.00 stein27 0.00 0 0.0 stein45 0.00 0 0.00 stein45 0.00 0 0.0	qnet1_o	12.89	23	0.10	qnet1_0	12.31	19	0.00
sp97ar 7.82 23 15.87 sp97ar 19.07 68 0.4 stein27 0.00 0 0.00 stein27 0.00 0 0.0 stein45 0.00 0 0.00 stein45 0.00 0 0.0	seymour	0.00	0	21.78	seymour	16.05	57	0.76
stein27 0.00 0 0.00 stein27 0.00 0 0.0 stein45 0.00 0 0.00 stein45 0.00 0 0.0	sp97ar	7.82	23	15.87	sp97ar	19.07	68	0.41
stein45 0.00 0 0.00 stein45 0.00 0 0.0	stein27	0.00	0	0.00	stein27	0.00	0	0.00
	stein45	0.00	0	0.00	stein45	0.00	0	0.00
t1/1/ 0.05 286 19.50 $t1/1/$ 0.01 1 0.3	t1717	0.05	286	19.50	t1717	0.01	1	0.35
verschobenes verschobenes	verschobenes				verschobenes			
geometrisches Mittel 2.75 20 2.51 geometrisches Mittel 2.33 8 0.4	geometrisches Mittel	2.75	20	2.51	geometrisches Mittel	2.33	8	0.35
#ean closed% ^{100%} 3 #oan closed% ^{100%} 3	#gap closed% ^{100%}	3	_0	1	#gap closed% ^{100%}	3	0	

Tabelle E.11: Rechenstudie4.3:	HEURIP
ZF1, $\mathcal{V}^{min} = 0.40$	

P- Tabelle E.12: Rechenstudie 4.3: HEURIP-ZF1, $\mathcal{V}^{min} = 0.50$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	4	20.00	10teams	42.86	3	8.74
30:70:4_5:0_5:100	0.00	0	0.00	30:70:4_5:0_5:100	1.23	18	3349.14
30:70:4_5:0_95:98	0.00	8	889.19	30:70:4_5:0_95:98	0.00	24	1332.44
air03	100.00	1	0.02	air03	100.00	1	0.01
air04	13.01	687	25.47	air04	9.00	313	9.59
air05	10.65	2294	11.27	air05	5.28	2666	14.62
cap6000	0.73	7	0.06	cap6000	0.73	7	0.04
ds	0.06	2330	93.72	ds	0.06	1970	74.80
eilD76	2.77	203	0.81	eilD76	2.61	212	0.52
fast0507	0.00	0	11.90	fast0507	0.00	7	41.05
fiber	30.86	213	20.97	fiber	23.98	223	15.29
gt2	1.29	3	0.00	gt2	1.29	3	0.00
harp2	0.00	15	0.05	harp2	0.00	13	0.06
irp	51.01	70	0.57	irp	51.09	70	0.54
1152lav	6.70	337	0.37	1152lav	9.17	358	5.57
lsen	45.79	134	4.50	lseu	61.08	542	70.03
manna81	100.00	342	1.29	manna81	100.00	342	1.27
markshare1	0.00	2.9	0.00	markshare1	0.00	21	0.00
markshare?	0.00	41	0.00	markshare?	0.00	22	0.00
misc03	22.86	136	28.17	misc03	25.86	164	31.94
misc07	13.26	222	50.48	misc07	4 66	101	4 31
mitre	0.94	404	0.64	mitre	0.94	353	0.46
mod008	0.54	35	0.04	mod008	0.24	15	0.40
mod010	42.28	503	10.20	mod010	43.65	572	6.61
neos1	42.28	13	5.40	neos1	43.05	13	4.43
neos10	24.42	106	152.90	neos1	10.33	13	4.45
neos16	24.42	100	6 77	neos16	0.53	201	45.60
neos10	9.32	405	0.77 860.24	neos10	9.32	16	206.52
neos18	22.04	24	226.21		0.00	10	190.32
neos21	52.04	292	520.51	neos21	50.12	150	169.41
neoso	100.00	2020	4.70	neosa	100.00	14	4.08
nug08	0.00	2020	1.05	nug08	0.00	1638	1.49
nw04	1.75	123	5.91	nw04	1.75	123	5.93
p0033	47.27	55	0.39	p0033	68.06	147	3.81
p0201	0.00	47	0.35	p0201	0.00	33	0.00
p0282	1.15	20	0.11	p0282	0.19	6	0.01
p0548	20.40	204	0.62	p0548	21.38	177	1.49
p2756	9.44	599	1.04	p2756	4.04	463	0.26
prod1	0.00	0	0.03	prod1	0.00	0	0.02
protfold	0.00	7	124.49	protfold	0.00	4	73.30
qap10	2.24	6895	49.58	qap10	2.24	6701	47.67
qnet1	15.73	189	19.06	qnet1	16.69	188	50.77
qnet1_0	19.79	173	4.64	qnet1_0	35.02	445	82.91
seymour	12.48	29	3596.40	seymour	5.57	15	1586.85
sp97ar	1.46	12	10.89	sp97ar	10.75	74	91.00
stein27	0.00	4	6.62	stein27	0.00	13	11.47
stein45	0.00	0	3.12	stein45	0.00	0	3.19
t1717	0.04	396	29.93	t1717	0.04	301	26.70
verschobenes	1.00	-		verschobenes	. a=		0.41
geometrisches Mittel #aan closed% ^{100%}	4.30	59	7.29	geometrisches Mittel	4.37	64	9.61
"sup crosed 10	3			ngup croseu /0	5		

Tabelle E.13: Rechenstudie 4.3: HEURIP- Tabelle E.14: Rechenstudie 4.3: HEURIP-ZF3, $\mathcal{V}^{min} = 0.01$

ZF3, $\mathcal{V}^{min} = 0.10$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	0	4.94	10teams	0.00	0	4.62
30:70:4_5:0_5:100	0.00	3	3895.65	30:70:4_5:0_5:100	0.00	0	386.01
30:70:4_5:0_95:98	0.00	18	383.23	30:70:4_5:0_95:98	0.00	15	798.22
air03	100.00	1	0.02	air03	100.00	1	0.01
air04	14.57	854	12.65	air04	9.62	456	15.75
air05	5.50	2382	12.53	air05	11.26	1327	6.21
cap6000	0.73	4	0.02	cap6000	0.73	4	0.03
ds	0.06	1935	72.47	ds	0.06	1931	73.32
eilD76	2.57	205	0.44	eilD76	2.57	199	0.47
fast0507	0.64	3	15.00	fast0507	0.00	0	6.73
fiber	21.57	104	1.10	fiber	15.59	69	1.73
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	24	0.06	harp2	0.00	14	0.06
irp	43.68	116	1.38	irp	69.82	72	0.70
1152lav	11.02	382	3.80	1152lav	15.84	285	3.20
lseu	32.00	29	0.19	lseu	1.49	9	0.02
manna81	100.00	342	1.35	manna81	100.00	273	0.25
markshare1	0.00	19	0.00	markshare1	0.00	2.2	0.00
markshare?	0.00	22	0.00	markshare?	0.00	- 7	0.00
misc03	10.86	56	12.80	misc03	10.84	68	15.18
misc07	6.09	124	17.78	misc07	7.16	180	15.10
mitre	1 48	300	0.37	mitre	1.62	314	0.32
mod008	0.09	500	0.01	mod008	0.08	4	0.02
mod010	15.63	375	3.13	mod010	12 57	36	0.00
neos1	0.00	13	3.78	neos1	14.29	169	1.52
neos10	16.85	19	15.12	neos10	28.26	10)	7.00
neos16	0.52	283	13.12	neos16	0.52	372	2.14
ncos10	9.52	14	220.54	neos10	9.52	16	104.26
neos16	12.40	14	529.54 66.72	neos18	0.00	10	20.06
neos21	12.49	27	00.75	neos21	100.00	10	20.00
neoso	100.00	1629	1.40	neoso	100.00	1627	4.79
nug08	0.00	1030	5.25	nug08	1.00	1057	1.55
n0022	2.30	108	5.55	nw04 #0022	1.01	20	5.58
p0055	50.50	22	0.00	p0055	27.38	29	0.00
p0201	0.00	33	0.00	p0201	0.00	3	0.00
p0282	0.07	105	0.00	p0282	0.07	2	0.00
p0548	7.49	105	0.27	p0548	2.57	33	0.14
p2/56	1.65	300	0.11	p2/56	0.38	119	0.07
prod	0.00	0	0.01	prod	0.00	0	0.00
protfold	0.00	0	26.70	protfold	0.00	0	25.58
qap10	2.24	6699	47.33	qap10	2.24	6699	47.30
qnet1	16.24	157	11.35	qnet1	11.84	108	23.77
qnet1_0	31.24	365	48.32	qnet1_0	16.34	125	17.89
seymour	10.30	22	1434.71	seymour	10.89	34	507.21
sp97ar	22.33	96	121.22	sp97ar	22.50	96	95.55
stein27	0.00	61	5.19	stein27	0.00	59	6.55
stein45	0.00	21	18.39	stein45	0.00	16	20.64
t1717	0.04	275	19.44	t1717	0.04	253	16.69
verschobenes				verschobenes		-	
geometrisches Mittel	3.63	50	6.38	geometrisches Mittel	3.37	35	4.96
#gap closed% ^{100%}	3			#gap closed% ^{100%}	3		

Tabelle E.15: Rechenstudie4.3:	HEURIP
ZF3, $\mathcal{V}^{min} = 0.20$	

P- Tabelle E.16: Rechenstudie 4.3: HEURIP-ZF3, $\mathcal{V}^{min} = 0.30$

Name	gap closed%	$\#\{0,\frac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0,\frac{1}{2}\}$	Tsepa
10teams	100.00	6	13.00	10teams	100.00	42	0.05
30:70:4_5:0_5:100	0.00	11	675.48	30:70:4_5:0_5:100	0.00	60	54.47
30:70:4 5:0 95:98	0.00	12	283.28	30:70:4 5:0 95:98	0.00	83	78.39
air03	100.00	2	0.02	air03	100.00	2	0.02
air04	13.82	748	9.68	air04	0.00	0	0.02
air05	7.06	562	2.74	air05	1.70	2	0.03
cap6000	0.00	0	0.01	cap6000	0.00	0	0.00
ds	0.06	1744	61.66	ds	0.00	1	0.37
eilD76	2.52	249	0.50	eilD76	0.00	0	0.00
fast0507	0.00	0	5.46	fast0507	0.00	0	0.07
fiber	14.85	59	0.22	fiber	8.36	8	0.01
ot?	1.29	2	0.00	ot?	1.29	2	0.00
harp?	0.00	0	0.00	harp2	0.00	0	0.00
im	33.31	43	0.49	im	30.45	11	0.12
1152lav	8 47	78	0.07	1152lav	0.00	0	0.00
lsen	1.46	7	0.00	lseu	0.21	5	0.00
manna81	100.00	273	0.00	manna81	100.00	273	0.00
markshare1	0.00	2/5	0.00	markshare1	0.00	2,3	0.00
markshare?	0.00	4	0.00	markshare?	0.00	1	0.00
misc03	11.26	50	5 30	misc03	11.56	73	0.00
misc07	6.09	134	10.65	misc07	0.72	70	0.01
mitre	2 30	1/1	0.10	mitre	1.62	107	0.00
mod008	2.39	141	0.19	mod008	0.05	107	0.12
mod010	12.57	36	0.00	mod010	12.57	3/	0.00
neos1	0.00	127	0.07	neos1	0.00	117	0.03
neos10	22.35	62	0.52	neos10	16.41	50	0.04
neos16	22.33	143	9.10	neos16	0.00	1	0.10
neos10	9.52	102	45.60	neos10	22.22	700	1.96
neos10	2.60	102	45.09	neos10 neos21	5.41	12	1.60
neos21	100.00	0 14	0.24	neos21	57.14	13	0.04
nucle	100.00	14	0.54	neoso	10.20	10	0.01
nug08	0.00	1054	1.45	nug08	10.50	005	1.22
nw04 #0022	18.12	12	0.08	nw04 #0022	18.12	12	0.08
p0055	18.12	12	0.01	p0055 	16.12	12	0.00
p0201	0.00	3	0.00	p0201	0.00	3	0.00
p0282	0.07	2	0.01	p0282	0.07	2	0.00
p0548	1.99	21	0.02	p0548	1.80	16	0.00
p2756	0.28	70	0.02	p2/56	0.20	43	0.02
prod	0.00	0	0.00	prod	0.00	0	0.00
protfold	0.00	2	36.22	protfold	0.00	2	0.13
qap10	2.24	6693	47.22	qap10	0.07	8	2.96
qnet1	10.69	108	19.66	qnet1	2.44	14	0.00
qnet1_o	14.65	117	12.12	qnet1_0	12.31	19	0.00
seymour	19.98	27	171.64	seymour	16.05	57	0.75
sp97ar	24.62	77	46.44	sp97ar	19.07	68	0.40
stein27	0.00	0	0.00	stein27	0.00	0	0.00
stein45	0.00	0	0.00	stein45	0.00	0	0.00
t1717	0.04	185	12.65	t1717	0.01	1	0.38
verschobenes	2.40	24	2.00	verschobenes	2.22	0	0.25
#gap closed% ^{100%}	3.42 4	24	3.08	geometrisches Mittel #gap closed% ^{100%}	2.33	8	0.35

Tabelle E.17: Rechenstudie 4.3: HEURIP- Tabelle E.18: Rechenstudie 4.3: HEURIP-ZF3, $\mathcal{V}^{min} = 0.40$

ZF3, $\mathcal{V}^{min} = 0.50$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	T _{sepa}	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	0	6.07	10teams	0.00	2	21.65
30:70:4_5:0_5:100	0.00	0	0.00	30:70:4_5:0_5:100	0.00	0	791.23
30:70:4_5:0_95:98	0.00	10	1774.02	30:70:4_5:0_95:98	0.00	14	1297.08
air03	100.00	1	0.01	air03	100.00	1	0.00
air04	11.31	686	27.07	air04	9.00	313	9.70
air05	10.65	2294	11.34	air05	5.28	2666	14.30
cap6000	0.73	7	0.06	cap6000	0.73	7	0.03
ds	0.06	2330	92.77	ds	0.06	1970	74.70
eilD76	3.42	220	1.28	eilD76	2.52	214	0.37
fast0507	0.00	0	11.39	fast0507	0.00	0	10.65
fiber	33.94	287	41.29	fiber	22.71	129	27.76
gt2	1.29	3	0.00	gt2	1.29	3	0.00
harp2	0.00	13	0.12	harp2	0.00	13	0.03
irp	62.38	156	2.01	im	78.62	155	9.84
1152lav	13.80	422	1.96	1152lav	8.74	353	6.97
lsen	51.46	175	10.84	lseu	60.96	266	18.74
manna81	100.00	344	1.30	manna81	100.00	344	1.24
markshare1	0.00	29	0.00	markshare1	0.00	21	0.00
markshare2	0.00	41	0.00	markshare2	0.00	22	0.00
misc03	20.42	86	38.33	misc03	3.02	22	3.27
misc07	5.89	138	22.77	misc07	7.42	137	13.11
mitre	0.94	404	0.63	mitre	0.94	353	0.46
mod008	3.13	61	0.19	mod008	0.18	17	0.02
mod010	39.06	555	3 32	mod010	41 94	577	9.08
neos1	0.00	9	8.85	neosl	0.00	9	10.80
neos10	1 77	8	9.81	neos10	1 77	6	5.86
neos16	9.52	420	3.88	neos16	9.52	387	2.99
neos18	0.00	1	132.15	neos18	0.00	146	497.32
neos21	20.62	169	406.26	neos21	12.21	64	226.31
neos8	100.00	24	19.84	neos8	100.00	23	10.65
nug08	0.00	2020	1.65	nug08	0.00	1638	1.44
nw04	1.75	123	5.93	nw04	1 75	123	6.02
n0033	54.11	93	0.88	n0033	59.34	94	1.21
p0201	0.00	49	0.60	p00000 p0201	0.00	33	0.00
p0201	1.15	10	0.01	p0282	0.00	6	0.00
p0202	20.05	206	1 73	p0202	8.37	108	0.03
p0546	20.05	506	1.75	p0546	4.04	163	0.15
prod1	0.00	5,0	0.05	p2750 prod1	0.00	0.0	0.20
protfold	0.00	0	41.33	protfold	0.00	1	71.65
aan10	2 24	6895	49.98	gap10	2 24	6701	47.18
qup10	14 32	1/7	10.68	qap10 anet1	16 73	150	55.00
anet1 o	33.43	766	136.68	anet1 o	28.19	282	30.33
seymour	0.00	/00	312.67	sevmour	0.00	202	238.07
sp97ar	0.00	12	19 33	sp97ar	11.16	101	250.07
stein 27	0.00	0	1 73	stein?7	0.00	0	1.68
stein/15	0.00	0	3.68	stein/15	0.00	0	3 71
t1717	0.00	380	34 73	t1717	0.00	305	23.07
	0.04	509	57.75		0.04	505	23.91
verschobenes				verschobenes			
geometrisches Mittel	3.64	46	7.00	geometrisches Mittel	3.23	45	8.13
#gap closed% ^{100%}	3			#gap closed% ^{100%}	3		

Tabelle E.19: Re	chenstudie	4.3:	HEURIP
ZF	$\mathcal{V}^{min} = 0$	0.01	

P- Tabelle E.20: Rechenstudie 4.3: HEURIP-ZF4, $\mathcal{V}^{min} = 0.10$

Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa
10teams	0.00	0	5.38	10teams	0.00	2	15.91
30:70:4_5:0_5:100	0.00	0	1550.23	30:70:4_5:0_5:100	0.00	0	418.39
30:70:4_5:0_95:98	0.00	11	398.11	30:70:4_5:0_95:98	0.00	9	749.05
air03	100.00	1	0.02	air03	100.00	1	0.02
air04	17.80	855	20.97	air04	9.05	454	8.31
air05	5.50	2382	12.40	air05	11.29	1353	6.43
cap6000	0.73	4	0.04	cap6000	0.73	4	0.02
ds	0.06	1935	73.26	ds	0.06	1931	72.09
eilD76	2.91	235	0.84	eilD76	4.04	244	1.15
fast0507	0.00	0	8 44	fast0507	0.00	0	7.30
fiber	21.72	114	4.94	fiber	16.80	179	31.07
ot?	1.29	2	0.00	ot?	1.29	2	0.00
harp2	0.00	23	0.05	harp2	0.00	13	0.06
im	40.43	101	1.19	im	69.01	63	0.64
1152lav	11.57	418	4.06	1152lav	8.20	237	2.99
lseu	41.05	223	27.26	lseu	1 49	9	0.01
manna81	100.00	344	1 31	manna81	100.00	273	0.01
markshare1	0.00	19	0.00	markshare1	0.00	213	0.00
markshare?	0.00	22	0.00	markshare?	0.00	7	0.00
misc03	20.68	110	27.15	misc03	22.34	95	58.25
misc07	9.69	182	52 36	misc07	7 89	172	38.98
mitre	1.48	300	0.38	mitre	1.62	314	0.33
mod008	0.00	500	0.58	mod008	0.08	1	0.33
mod010	15.63	376	5.57	mod010	12 57	37	0.00
neos1	0.00	12	12.53	neos1	28.57	240	6 70
neos10	7.61	23	6.21	neos10	13.00	240 46	4.81
neos16	0.52	301	4.01	neos16	0.52	372	2 10
neos18	0.00	22	476.28	neos18	14.81	572	571.63
neos21	2.06	11	51 71	neos21	6 73	12	166.43
neos21	100.00	11	1.61	neos21	100.00	42	6 22
nucle	100.00	1629	1.01	nucle	100.00	1627	0.52
nug08	0.00	1030	5 41	nug0o	0.00	1037	5.50
nw04 #0022	2.30	108	5.41 7.12	nw04 #0022	1.81	20	5.58
p0055	93.99	192	/.15	p0055	27.58	29	0.02
p0201	0.00	33	0.00	p0201	0.00	3	0.00
p0282	0.07	110	0.00	p0282	0.07	2	0.00
p0548	8.01	119	0.10	p0548	/.84	01	0.08
p2/56	1.65	299	0.09	p2/56	0.38	119	0.08
prod	0.00	0	0.00	prod	0.00	0	0.00
protfold	0.00	5	103.74	protfold	0.00	1	58.97
qap10	2.24	6699	47.25	qap10	2.24	6699	47.21
qnetl	13.18	117	10.82	qnet1	12.10	102	18.00
qnet1_0	30.78	278	98.15	qnet1_o	21.18	97	25.04
seymour	2.46	18	1255.48	seymour	0.00	0	55.15
sp9/ar	7.13	59	87.02	sp9/ar	11.40	56	35.80
stein27	0.00	53	9.32	stein27	0.00	54	2.66
stein45	0.00	14	20.59	stein45	0.00	14	15.32
t1717	0.04	274	19.38	t1717	0.04	256	17.97
verschobenes geometrisches Mittel #gan closed% ^{100%}	3.37	51	8.13	verschobenes geometrisches Mittel #gan closed% ^{100%}	3.49	37	5.92
geometrisches Mittel #gap closed% ^{100%}	3.37 3	51	8.13	geometrisches Mittel #gap closed% ^{100%}	3.49 3	37	

Tabelle E.21: Rechenstudie 4.3: HEURIP- Tabelle E.22: Rechenstudie 4.3: HEURIP-ZF4, $\mathcal{V}^{min} = 0.20$

ZF4, $\mathcal{V}^{min} = 0.30$

Ibeams 100.00 2 11.12 Ibeams 100.00 42 0.03 307:04-5:0.5:100 0.00 0 196.81 307:04-5:0.5:100 0.00 6 52.18 air03 100.00 2 0.02 air03 100.00 2 0.03 air04 13.82 74.8 9.66 air04 0.00 0 0.03 air05 7.06 562 2.69 air05 1.70 2 0.02 cap6000 0.00 0 0.00 cap6000 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 nor 0.00 nor <th>Name</th> <th>gap closed%</th> <th>$\#\{0, \tfrac{1}{2}\}$</th> <th>Tsepa</th> <th>Name</th> <th>gap closed%</th> <th>$\#\{0, \tfrac{1}{2}\}$</th> <th>Tsepa</th>	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10teams	100.00	2	11.12	10teams	100.00	42	0.03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30:70:4_5:0_5:100	0.00	0	196.81	30:70:4_5:0_5:100	0.00	60	52.18
air03 100.00 2 0.02 air03 100.00 2 0.01 air04 13.82 748 9.66 air04 0.00 0 0.03 air05 7.06 552 2.69 air05 1.70 2 0.02 cap6000 0.00 0 0.00 cap6000 0.00 0 0.03 cilD76 2.98 2.66 0.94 eilD76 0.00 0 0.00 factS077 0.00 0 5.54 factS077 0.00 0 0.00 gr2 1.29 2 0.00 p2 1.29 2 0.00 gr2 1.29 2 0.00 0 0.00 ands in1 0.11 ltsu 1.46 7 0.00 lsu 0.21 5 0.00 markshare1 0.00 0 0.01 markshare1 0.00 1 0.01 misc03 16.93 80 18.35 misc03 11.56 73 0.00 markshare2 0.00	30:70:4_5:0_95:98	0.00	16	116.15	30:70:4_5:0_95:98	0.00	83	76.55
air04 13.82 748 9.66 air04 0.00 0 0.03 air05 7.06 562 2.69 air05 1.70 2 0.02 cap6000 0.00 0 0.00 cap6000 0.00 1.70 2 0.02 fast0507 0.00 0 5.54 fast0507 0.00 0 0.00 fiber 14.81 80 2.43 fiber 8.36 8 0.00 barp2 0.00 0 0.00 parp2 0.00 0 0.00 barp2 0.00 0 0.00 harp2 0.00 0 0.00 scu 1.46 7 0.00 lscu 0.21 5 0.00 mans1 100.00 273 0.23 manna81 100.00 273 0.24 markshare1 0.00 0 0.01 markshare2 0.00 1 0.01 markshare1 0.00 16.93 80 18.35 misc03 11.56 73 0.00	air03	100.00	2	0.02	air03	100.00	2	0.01
air05 7.06 562 2.69 air05 1.70 2 0.02 cap6000 0.00 0 0.00 0 0.00 0.00 0.00 ds 0.06 1744 62.83 ds 0.00 0 0.00 fabrosov 0.00 0 5.54 fastosov 0.00 0 0.00 fiber 14.81 80 2.43 fiber 8.36 8 0.00 gr2 1.29 2 0.00 0 0.00 hord 0.00 0 0.00 harp2 0.00 0 0.00 hord hord 0.00 0 0.00 scau 1.46 7 0.00 lseu 0.21 5 0.00 markshare1 0.00 0 0.01 markshare2 0.00 1.01 1.01 misc03 16.93 80 18.35 misc03 11.56 7.3 0.00 mod008 0.08 4 0.00 mod008 0.05 1 0.00 mod010	air04	13.82	748	9.66	air04	0.00	0	0.03
cap6000 0.00 0.00 cap6000 0.00 0.00 0.00 0.00 ds 0.06 1744 62.83 ds 0.00 1 0.31 eiD76 2.98 2.66 0.94 eiD76 0.00 0 0.00 fast0507 0.00 0 5.54 fast0507 0.00 0 0.00 harp 14.81 80 2.43 fiber 8.36 8 0.00 harp 0.00 0 0.00 harp 0.00 0 0.00 harp 33.31 43 0.48 irp 3.045 11 0.11 1152av 5.02 86 0.93 1152av 0.00 0 0.00 mananal 100.00 2.73 0.23 mananal 100.00 0 0.00 markshare1 0.00 0 0.01 markshare2 0.00 1 0.01 misc07 4.10 164 13.2	air05	7.06	562	2.69	air05	1.70	2	0.02
ds 0.06 1744 62.83 ds 0.00 1 0.31 cilD76 2.98 266 0.94 cilD76 0.00 0 0.00 fisotS07 0.00 0 5.54 fast0507 0.00 0 0.00 fiber 14.81 80 2.43 fiber 8.36 8 0.00 gl2 1.29 2 0.00 gl2 1.29 2 0.00 irp 33.31 43 0.48 irp 3.045 11 0.11 11S2lav 5.02 86 0.93 1152lav 0.00 0 0.00 mana81 100.00 273 0.23 manna81 100.00 273 0.24 misc03 16.93 80 18.35 misc03 11.56 73 0.00 misc07 4.10 164 13.27 misc07 0.72 70 0.01 misc03 0.08 4.000 mod08 <td>cap6000</td> <td>0.00</td> <td>0</td> <td>0.00</td> <td>cap6000</td> <td>0.00</td> <td>0</td> <td>0.00</td>	cap6000	0.00	0	0.00	cap6000	0.00	0	0.00
eilD76 2.98 266 0.94 eilD76 0.00 0 0.00 fast0507 0.00 0 5.54 fast0507 0.00 0 0.00 gl2 1.29 2 0.00 gl2 1.29 2 0.00 harp2 0.00 0 0.00 harp2 0.00 0 0.00 irp 33.31 43 0.48 irp 30.45 11 0.11 lisu 1.46 7 0.00 lseu 0.21 5 0.00 markshare1 0.00 0 0.01 markshare2 0.00 1 0.01 markshare2 0.00 4 0.00 markshare2 0.00 1 0.01 markshare1 0.00 0.03 markshare2 0.00 1 0.01 mitre 2.39 141 0.17 mitre 1.62 107 0.14 mod010 1.2.57 37 0.06 mod	ds	0.06	1744	62.83	ds	0.00	1	0.31
fast0507 0.00 0 5.54 fast0507 0.00 0 0.07 fiber 14.81 80 2.43 fiber 8.36 8 0.00 harp2 0.00 0 0.00 harp2 0.00 0 0.00 harp2 0.00 0 0.00 harp2 0.00 0 0.00 irp 3.3.1 43 0.48 irp 3.0.45 11 0.11 lscu 1.46 7 0.00 lscu 0.21 5 0.00 markshare1 0.00 0 0.01 markshare1 0.00 0 0.01 misc03 16.93 80 18.35 misc07 0.72 70 0.01 misc04 0.00 mod08 0.05 1 0.00 mod010 12.57 37 0.06 mod010 12.57 34 0.44 neos1 0.00 94 0.25 neos10 16.41 50 0.09 neos16 9.52 442 0.24 neos16	eilD76	2.98	266	0.94	eilD76	0.00	0	0.00
fiber 14.81 80 2.43 fiber 8.36 8 0.00 g2 1.29 2 0.00 gt2 1.29 2 0.00 hap2 0.00 0 0.00 hap2 0.00 0 0.00 irp 33.31 43 0.48 irp 30.45 11 0.11 lscu 1.46 7 0.00 lscu 0.21 5 0.00 markshare1 0.00 273 0.23 manna81 100.00 273 0.24 markshare2 0.00 4 0.00 markshare2 0.00 1 0.01 misc03 16.93 80 18.35 misc07 0.72 70 0.01 misc04 0.00 mod010 12.57 73 0.00 10 12.57 34 0.04 neos1 0.00 94 0.25 neos1 0.00 117 0.44 neos16 0.00 117 0.44 neos10 0.41 10 0.66 neos16 0.00	fast0507	0.00	0	5.54	fast0507	0.00	0	0.07
gl2 1.29 2 0.00 gl2 1.29 2 0.00 harp2 0.00 0 0.00 harp2 0.00 0 0.00 ip 33.31 43 0.48 irp 30.45 11 10.11 1152lav 5.02 86 0.93 1152lav 0.00 0 0.00 mama81 100.00 273 0.23 manna81 100.00 273 0.24 markshare1 0.00 0 0.01 markshare2 0.00 1 0.01 misc03 16.93 80 18.35 misc03 11.56 73 0.00 misc07 4.10 164 13.27 misc03 0.12 70 0.01 mod08 0.08 4 0.00 mod08 0.05 1 0.00 mcos1 0.00 94 0.25 neos1 0.00 11.06 0.00 neos16 9.52 442 0.24 neos18 22.22 700 1.83 neos16 9.52	fiber	14.81	80	2.43	fiber	8.36	8	0.00
barp2 0.00 0 0.00 harp2 0.00 0 0.00 irp 33.31 43 0.48 irp 30.45 11 0.11 liSlaw 5.02 86 0.93 IlSlaw 0.00 0 0.00 lseu 1.46 7 0.00 lseu 0.21 5 0.00 markshare1 0.00 0 0.01 markshare2 0.00 1 0.01 misc03 16.93 80 18.35 misc03 11.56 73 0.00 misc07 4.10 164 13.27 misc03 0.02 10.17 mitre 2.39 141 0.17 mitre 1.62 107 0.14 mod010 12.57 37 0.06 mod010 12.57 34 0.04 neos1 0.00 94 0.25 neos1 0.00 117 0.4 neos16 9.52 442 0.24 neos16	gt2	1.29	2	0.00	gt2	1.29	2	0.00
inp 33.31 43 0.48 inp 30.45 11 0.11 1152lav 5.02 86 0.93 1152lav 0.00 0.00 0.00 manksharel 100.00 273 0.23 manksharel 0.00 0 0.00 marksharel 0.00 0 0.00 marksharel 0.00 0 0.01 markshare2 0.00 4 0.00 markshare2 0.00 10.01 misc03 16.93 80 18.35 misc03 11.56 73 0.00 mitre 2.39 14.1 0.17 mitre 1.62 107 0.14 mod008 0.08 4 0.00 mod008 0.05 1 0.00 mod10 12.57 37 0.06 mod10 12.57 34 0.04 neos1 0.00 14 0.49 neos1 0.00 11 0.01 neos16 9.52 442 0	harp2	0.00	0	0.00	harp2	0.00	0	0.00
1152lav 5.02 86 0.93 1152lav 0.00 0 0.00 lseu 1.46 7 0.00 lseu 0.21 5 0.00 manna81 100.00 273 0.23 manna81 100.00 273 0.24 markshare1 0.00 0 0.01 markshare2 0.00 1 0.01 misc03 16.93 80 18.35 misc03 11.56 73 0.00 misc07 4.10 164 13.27 misc07 0.72 70 0.01 mod008 0.08 4 0.00 mod008 0.05 1 0.00 mod010 12.57 37 0.06 mod10 12.57 34 0.04 neos1 0.00 94 0.25 neos10 16.41 50 0.09 neos10 0.41 10 0.60 neos18 11.11 10 64.97 neos18 22.22 700 1.83 neos18 11.11 110 64.97 neos18 10.30 6	irp	33.31	43	0.48	irp	30.45	11	0.11
Iseu 1.46 7 0.00 Iseu 0.21 5 0.00 manna81 100.00 273 0.23 manna81 100.00 273 0.24 markshare1 0.00 0 0.01 markshare2 0.00 1 0.01 markshare2 0.00 4 0.00 markshare2 0.00 1 0.01 misc03 16.93 80 18.35 misc07 0.72 70 0.01 mitre 2.39 141 0.17 mitre 1.62 107 0.14 mod008 0.08 4 0.00 mod008 0.05 1 0.00 mod10 12.57 37 0.06 mod010 12.57 34 0.04 neos1 0.00 0.41 0 0.60 neos10 16.41 50 0.09 neos18 11.11 10 64.97 neos18 22.22 700 1.83 neos8 100.00 14 0.49 neos8 57.14 10 0.01 nug8 </td <td>1152lav</td> <td>5.02</td> <td>86</td> <td>0.93</td> <td>1152lav</td> <td>0.00</td> <td>0</td> <td>0.00</td>	1152lav	5.02	86	0.93	1152lav	0.00	0	0.00
mana81 100.00 273 0.23 mana81 100.00 273 0.24 markshare1 0.00 0 0.01 markshare1 0.00 0 0.00 markshare2 0.00 4 0.00 markshare2 0.00 1 0.01 misc03 16.93 80 18.35 misc03 11.56 73 0.00 misc07 4.10 164 13.27 misc03 0.15 1 0.00 mod008 0.08 4 0.00 mod008 0.05 1 0.04 mod010 12.57 37 0.06 mod010 12.57 34 0.04 neos1 0.00 94 0.25 neos1 0.00 1 0.01 neos16 9.52 442 0.24 neos16 0.00 1 0.01 neos21 3.16 15 75.22 neos21 5.41 13 0.03 neos4 100.00 16.34	lseu	1.46	7	0.00	lseu	0.21	5	0.00
markshare10.0000.01markshare10.00000.00markshare20.0040.00markshare20.0010.01misc0316.938018.35misc0311.56730.00misc074.1016413.27misc070.72700.01mitre2.391410.17mitre1.621070.14mod0080.0840.00mod0080.0510.00mod1012.57370.06mod01012.57340.04ncos10.00940.25ncos10.001170.04ncos169.524420.24ncos160.0010.01ncos169.524420.24ncos160.0010.01ncos1811.1111064.97ncos160.0010.01nug080.0016341.38nug0810.306631.27nv040.0000.08nv040.0000.09p02010.0030.00p02010.0030.00p02820.0720.00p02481.80160.00p7560.28700.11p27560.20430.29prod10.0000.00prod10.0000.00prod10.0000.00sein270.0000.00 </td <td>manna81</td> <td>100.00</td> <td>273</td> <td>0.23</td> <td>manna81</td> <td>100.00</td> <td>273</td> <td>0.24</td>	manna81	100.00	273	0.23	manna81	100.00	273	0.24
markshare2 0.00 4 0.00 markshare2 0.00 1 0.01 misc03 16.93 80 18.35 misc03 11.56 73 0.00 misc07 4.10 164 13.27 misc03 11.56 73 0.00 mitre 2.39 141 0.17 mitre 1.62 107 0.14 mod008 0.08 4 0.00 mod008 0.05 1 0.00 mod10 12.57 37 0.06 mod010 12.57 34 0.04 neos1 0.00 94 0.25 neos1 0.00 1 0.01 neos16 9.52 442 0.24 neos16 0.00 1 0.01 neos18 11.11 110 6.497 neos21 5.41 13 0.03 nug08 0.00 1634 1.38 nug08 10.30 663 1.27 nw44 0.00 0	markshare1	0.00	0	0.01	markshare1	0.00	0	0.00
misc03 16.93 80 18.35 misc03 11.56 73 0.00 misc07 4.10 164 13.27 misc07 0.72 70 0.01 mitre 2.39 141 0.17 mitre 1.62 107 0.14 mod008 0.08 4 0.00 mod010 12.57 34 0.00 mco10 12.57 37 0.06 mco110 12.57 34 0.04 ncos1 0.00 94 0.25 ncos1 0.00 11.7 0.04 ncos10 0.41 10 0.60 ncos10 16.41 50 0.09 ncos18 11.11 110 64.97 ncos18 22.22 700 1.83 nug08 0.00 1634 1.38 nug08 10.30 663 1.27 nw04 0.00 0 0.8 nw04 0.00 0.00 0.00 0.00 p0282 0.07	markshare?	0.00	4	0.00	markshare?	0.00	1	0.01
miscol 10.55 miscol 10.55 miscol 10.55	misc03	16.93	80	18 35	misc03	11.56	73	0.00
Index10.110.1mitre1.621070.14mod0080.0840.00mod0080.0510.00mod01012.57370.06mod01012.57340.04neos10.00940.25neos10.001170.04neos100.41100.60neos1016.41500.09neos169.524420.24neos160.0010.01neos1811.1111064.97neos1822.227001.83neos213.16157.522neos215.41130.03nug080.0016341.38nug0810.306631.27nw040.0000.08nw040.0000.09p02010.0030.00p02820.0720.00p02420.0720.00p02820.0720.00p05481.99220.02p05481.80160.00p07560.28700.01p27560.20430.02prof10.0000.00prof10.0020.15qap102.24669347.16qap100.0782.97qnet111.058319.62qnet12.44140.00qnet10.69824.83qnet1.012.3119.07680.41seymou	misc07	4 10	164	13.27	misc07	0.72	70	0.00
Inite 1.02 1.01 1.02 1.02 1.01 1.02 1.01 1.02 1.01	mitre	2 39	141	0.17	mitre	1.62	107	0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mod008	0.08	4	0.00	mod008	0.05	107	0.00
Inductor 12.57 57 0.00 12.57 157 0.00 neos1 0.00 94 0.25 neos1 0.00 117 0.04 neos10 0.41 10 0.60 neos10 16.41 50 0.09 neos16 9.52 442 0.24 neos16 0.00 1 0.01 neos18 11.11 110 64.97 neos18 22.22 700 1.83 neos21 3.16 15 75.22 neos21 5.41 13 0.03 neos8 100.00 14 0.49 neos8 57.14 10 0.01 nug08 0.00 1634 1.38 nug08 10.30 663 1.27 nw04 0.00 0 0.08 nw04 0.00 0 0.09 p0201 0.00 3 0.00 p0201 0.00 3 0.00 p0248 1.99 22 0.02 p0548 1.80 16 0.00 p756 0.28 70 0.01 <td>mod010</td> <td>12 57</td> <td>37</td> <td>0.00</td> <td>mod010</td> <td>12 57</td> <td>3/</td> <td>0.00</td>	mod010	12 57	37	0.00	mod010	12 57	3/	0.00
Incosit 0.00 0.41 10 0.00 10 0.00 11 0.00 neos10 0.41 10 0.60 neos10 16.41 50 0.09 neos16 9.52 442 0.24 neos16 0.00 1 0.01 neos18 11.11 110 64.97 neos18 22.22 700 1.83 neos21 3.16 15 75.22 neos21 5.41 13 0.03 neos8 100.00 14 0.49 neos8 57.14 10 0.01 nug08 0.00 1634 1.38 nug08 10.30 663 1.27 nw04 0.00 0 0.8 nw04 0.00 0.09 p0033 18.12 12 0.00 p201 0.00 3 0.00 p0282 0.07 2 0.00 p0282 0.07 2 0.00 prod1 0.00 0 0.01 p2756 0.20 43 0.02 p.15 qap10 2.24 6693	neos1	0.00	9/	0.00	neos1	0.00	117	0.04
Incosito 0.41 10 0.00 incosito 10.41 50 0.00 neosito 9.52 442 0.24 neosito 0.00 1 0.01 neosita 11.11 110 64.97 neosita 22.22 700 1.83 neosita 100.00 14 0.49 neosita 5.41 13 0.03 neosita 100.00 1634 1.38 nug08 10.30 663 1.27 nw04 0.00 0 0.08 nw04 0.00 0 0.09 p0201 0.00 3 0.00 p0201 0.00 3 0.00 p0282 0.07 2 0.00 p0282 0.07 2 0.00 po548 1.99 22 0.02 p0548 1.80 16 0.00 profl 0.00 0 0.00 profl 0.00 0 0.00 profl 0.00 0 16.70 profl 0.00 0 0.00 profl 0.00 0 </td <td>neos10</td> <td>0.00</td> <td>10</td> <td>0.23</td> <td>neos10</td> <td>16.41</td> <td>50</td> <td>0.04</td>	neos10	0.00	10	0.23	neos10	16.41	50	0.04
ncos10 $J.52$ 442 0.24 10000 1 0.00 1 0.01 ncos18 11.11 110 64.97 ncos18 22.22 700 1.833 ncos21 3.16 15 75.22 ncos21 5.41 13 0.03 nug08 0.00 1634 1.38 nug08 10.30 663 1.27 nw04 0.00 0 0.08 $nw04$ 0.00 0 0.09 p0233 18.12 12 0.00 $p0033$ 18.12 12 0.00 p0201 0.00 3 0.00 $p0282$ 0.07 2 0.00 p0248 1.99 22 0.02 $p0548$ 1.80 16 0.00 p2756 0.28 70 0.01 $p2756$ 0.20 43 0.02 profl 0.00 0 0.00 profl 0.00 2.97 $qnet1$ 2.44 44 0.00 $qnet1$ 2.44	neos16	0.41	10	0.00	neos16	0.00	1	0.01
Incosito11.1111.0 $0.0.7$ Incosito 22.22 5.00 1.03 neos213.1615 75.22 neos215.41130.03neos8100.00140.49neos8 57.14 100.01nug080.0016341.38nug0810.306631.27nw040.0000.08nw040.0000.09p003318.12120.00p003318.12120.00p02820.0720.00p02820.0720.00p05481.99220.02p05481.80160.00prod10.0000.00prod10.0000.00prod10.00016.70protfold0.0020.15qap102.24669347.16qap100.0782.97qnet111.058319.62qnet12.31190.01seymour11.4730279.70seymour16.05570.77sp7ar20.207152.83sp97ar19.07680.41stein270.0000.00stein450.0000.00tein450.0000.00stein450.0000.00tein450.0000.00stein450.0000.00tein450.0000.00stein450.0000	neos18	11 11	110	64.97	neos18	22.22	700	1.83
Incosal1.101.131.5.22Incosal1.141.150.051neos8100.00140.49neos857.14100.01nug080.0016341.38nug0810.306631.27nw040.0000.08nw040.0000.09p003318.12120.00p003318.12120.00p02010.0030.00p02820.0720.00p05481.99220.02p05481.80160.00p27560.28700.01p27560.20430.02prod10.0000.00prod10.0000.00prod10.00016.70profold0.0020.15qap102.24669347.16qap100.0782.97qnet111.058319.62qnet12.44140.00qnet1_o16.90824.83qnet1_o12.31190.01seymour11.4730279.70seymour16.05570.77sp7ar20.207152.83sp97ar19.07680.41stein270.0000.00stein450.0000.00tein450.0000.00stein450.0000.00tein450.0000.00stein450.0000.00	neos21	3.16	110	75 22	neos21	5 41	13	0.03
Incoso100.00140.49incoso17.14100.01nug080.0016341.38nug0810.306631.27nw040.0000.08nw040.0000.09p003318.12120.00p003318.12120.00p02010.0030.00p02820.0720.00p05481.99220.02p05481.80160.00p27560.28700.01p27560.20430.02prod10.00016.70prod1d0.0020.15qap102.24669347.16qap100.0782.97qnet111.058319.62qnet12.44140.00qnet111.4730279.70seymour16.05570.77sp97ar20.207152.83sp97ar19.07680.41stein270.0000.00stein270.0000.00stein450.0000.00stein450.0000.00t17170.0418813.71t17170.0110.36werschobenesyerschobenesgeometrisches Mittel2.3380.35#gap closed% 100%4#gap closed% 100%333	neos	100.00	13	0.40	neos21	57.14	10	0.03
Ingos0.0010.341.35Ingos10.300.031.27nw040.0000.08nw040.0000.09p003318.12120.00p00210.0030.00p02010.0030.00p02820.0720.00p05481.99220.02p05481.80160.00prod10.0000.00prod10.0000.00prod10.00000.00prod10.0000.00protold0.00016.70protfold0.0020.15qap102.24669347.16qap100.0782.97qnet111.058319.62qnet12.44140.00qnet1_o16.90824.83qnet1_o12.31190.01seymour11.4730279.70seymour16.05570.77sp97ar20.207152.83sp97ar19.07680.41stein270.0000.00stein450.0000.00ttirt770.0418813.71t17170.0110.36verschobenesgeometrisches Mittel3.08223.07geometrisches Mittel2.3380.35#gap closed% 100%4#gap closed% 100%33333	nug08	100.00	1634	1.38	nucle	10.30	663	1.27
nwork0.0000.03nwork0.0000.03p003318.12120.00p003318.12120.00p02010.0030.00p02010.0030.00p02820.0720.00p02820.0720.00p05481.99220.02p05481.80160.00prof10.0000.00prod10.0000.00prof10.00016.70prof1d0.0020.15qap102.24669347.16qap100.0782.97qnet111.058319.62qnet12.44140.00qnet1_o16.90824.83qnet1_o12.31190.01seymour11.4730279.70seymour16.05570.77sp97ar20.207152.83sp97ar19.07680.41stein270.0000.00stein450.0000.00ttin450.0000.00stein450.0000.00ttin450.0000.00stein450.0000.00ttin450.0000.00stein450.0000.00ttin450.0000.00stein450.0000.00ttin450.0000.00stein450.0000.00ttin45<	nug0o	0.00	1054	0.09	nug00	0.00	005	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n0022	18.12	12	0.08	n0022	18.12	12	0.09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p0033	10.12	12	0.00	p0033	16.12	12	0.00
$p0282$ 0.07 2 0.00 $p0282$ 0.07 2 0.00 $p0548$ 1.99 22 0.02 $p0548$ 1.80 16 0.00 $p2756$ 0.28 70 0.01 $p2756$ 0.20 43 0.02 $prod1$ 0.00 0 0.00 $prod1$ 0.00 0 0.00 $protfold$ 0.00 0 16.70 $protfold$ 0.00 2 0.15 $qap10$ 2.24 6693 47.16 $qap10$ 0.07 8 2.97 $qnet1$ 11.05 83 19.62 $qnet1$ 2.44 14 0.00 $qnet1_o$ 16.90 82 4.83 $qnet1_o$ 12.31 19 0.01 $seymour$ 11.47 30 279.70 $seymour$ 16.05 57 0.77 $sp97ar$ 20.20 71 52.83 $sp97ar$ 19.07 68 0.41 $stein27$ 0.00 0 0.00 stein27 0.00 0 0.00 $t1717$ 0.04 188 13.71 $t1717$ 0.01 1 0.36 $verschobenes$ $verschobenes$ $verschobenes$ $verschobenes$ $verschobenes$ $sep closed\%^{100\%}$ 3	p0201	0.00	2	0.00	p0201	0.00	2	0.00
p05481.99220.02p05481.80160.00p27560.28700.01p27560.20430.02prod10.0000.00prod10.0000.00protfold0.00016.70protfold0.0020.15qap102.24669347.16qap100.0782.97qnet111.058319.62qnet12.44140.00qnet1_o16.90824.83qnet1_o12.31190.01seymour11.4730279.70seymour16.05570.77sp97ar20.207152.83sp97ar19.07680.41stein270.0000.00stein270.0000.00ttin450.0000.00stein450.0000.00verschobenesgeometrisches Mittel3.08223.07geometrisches Mittel2.3380.35#gap closed%100%4#gap closed%100%33333	p0282	0.07	2	0.00	p0282	0.07	16	0.00
p2/56 0.28 70 0.01 $p2/56$ 0.20 4.3 0.02 prod1 0.00 0 0.00 prod1 0.00 0 0.00 protfold 0.00 0 16.70 protfold 0.00 2 0.15 qap10 2.24 6693 47.16 qap10 0.07 8 2.97 qnet1 11.05 83 19.62 qnet1 2.44 14 0.00 qnet1.o 16.90 82 4.83 qnet1.o 12.31 19 0.01 seymour 11.47 30 279.70 seymour 16.05 57 0.77 sp97ar 20.20 71 52.83 sp97ar 19.07 68 0.41 stein27 0.00 0 0.00 stein27 0.00 0 0.00 t1717 0.04 188 13.71 $t1717$ 0.01 1 0.36 verschobenesgeometrisches Mittel 3.08 22 3.07 geometrisches Mittel 2.33 8 0.35 #gap closed% $^{100\%}$ 4 #gap closed% $^{100\%}$ 3 3 3	p0548	1.99	22	0.02	p0548	1.80	10	0.00
prod1 0.00 0 0.00 prod1 0.00 0 0.00 protfold 0.00 0 16.70 protfold 0.00 2 0.15 qap10 2.24 6693 47.16 qap10 0.07 8 2.97 qnet1 11.05 83 19.62 qnet1 2.44 14 0.00 qnet1_o 16.90 82 4.83 qnet1_o 12.31 19 0.01 seymour 11.47 30 279.70 seymour 16.05 57 0.77 $sp97ar$ 20.20 71 52.83 $sp97ar$ 19.07 68 0.41 stein27 0.00 0 0.00 stein27 0.00 0 0.00 stein45 0.00 0 0.00 stein45 0.00 0 0.00 $t1717$ 0.04 188 13.71 $t1717$ 0.01 1 0.36 verschobenesgeometrisches Mittel 2.33 8 0.35 #gap closed% $^{100\%}$ 4 #gap closed% $^{100\%}$ 3	p2/56	0.28	/0	0.01	p2/56	0.20	43	0.02
protroid 0.00 0 16.70 protroid 0.00 2 0.15 qap10 2.24 6693 47.16 qap10 0.07 8 2.97 qnet1 11.05 83 19.62 qnet1 2.44 14 0.00 qnet1_o 16.90 82 4.83 qnet1_o 12.31 19 0.01 seymour 11.47 30 279.70 seymour 16.05 57 0.77 $sp97ar$ 20.20 71 52.83 $sp97ar$ 19.07 68 0.41 stein27 0.00 0 0.00 stein27 0.00 0 0.00 stein45 0.00 0 0.00 stein45 0.00 0 0.00 $t1717$ 0.04 188 13.71 $t1717$ 0.01 1 0.36 verschobenesgeometrisches Mittel 3.08 22 3.07 geometrisches Mittel 2.33 8 0.35 #gap closed% $^{100\%}$ 4 #gap closed% $^{100\%}$ 3 3 3 3	prod	0.00	0	0.00	prod	0.00	0	0.00
qap102.24669347.16qap100.0782.97qnet111.058319.62qnet12.44140.00qnet1_o16.90824.83qnet1_o12.31190.01seymour11.4730279.70seymour16.05570.77sp97ar20.207152.83sp97ar19.07680.41stein270.0000.00stein270.0000.00stein450.0000.00stein450.0000.00t17170.0418813.71t17170.0110.36verschobenesgeometrisches Mittel3.08223.07geometrisches Mittel2.3380.35#gap closed%100%4#gap closed%100%33333	protioid	0.00	0	16.70	protioid	0.00	2	0.15
qnet111.058319.62qnet12.44140.00qnet1_o16.90824.83qnet1_o12.31190.01seymour11.4730279.70seymour16.05570.77sp97ar20.207152.83sp97ar19.07680.41stein270.0000.00stein270.0000.00stein450.0000.00stein450.0000.00t17170.0418813.71t17170.0110.36verschobenesyerschobenesyerschobenesyerschobenes380.35#gap closed%100%4#gap closed%100%333	qap10	2.24	6693	4/.16	qap10	0.07	8	2.97
qnet1.0 16.90 82 4.83 qnet1.0 12.31 19 0.01 seymour 11.47 30 279.70 seymour 16.05 57 0.77 sp97ar 20.20 71 52.83 sp97ar 19.07 68 0.41 stein27 0.00 0 0.00 stein27 0.00 0 0.00 stein45 0.00 0 0.00 stein45 0.00 0 0.00 t1717 0.04 188 13.71 t1717 0.01 1 0.36 verschobenes geometrisches Mittel 3.08 22 3.07 geometrisches Mittel 2.33 8 0.35 #gap closed%100% 4 #gap closed%100% 3 3 3	qnet1	11.05	83	19.62	qnetl	2.44	14	0.00
seymour 11.47 30 2/9.70 seymour 16.05 57 0.77 sp97ar 20.20 71 52.83 sp97ar 19.07 68 0.41 stein27 0.00 0 0.00 stein27 0.00 0 0.00 stein45 0.00 0 0.00 stein45 0.00 0 0.00 t1717 0.04 188 13.71 t1717 0.01 1 0.36 verschobenes geometrisches Mittel 3.08 22 3.07 geometrisches Mittel 2.33 8 0.35 #gap closed%100% 4 #gap closed%100% 3 3 3	qnet1_o	16.90	82	4.83	qnet1_o	12.31	19	0.01
sp9/ar 20.20 71 52.83 sp9/ar 19.07 68 0.41 stein27 0.00 0 0.00 stein27 0.00 0 0.00 stein45 0.00 0 0.00 stein45 0.00 0 0.00 t1717 0.04 188 13.71 t1717 0.01 1 0.36 verschobenes geometrisches Mittel 3.08 22 3.07 geometrisches Mittel 2.33 8 0.35 #gap closed%100% 4 #gap closed%100% 3 3 3	seymour	11.47	30	279.70	seymour	16.05	5/	0.77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sp9/ar	20.20	71	52.83	sp9/ar	19.07	68	0.41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	stein27	0.00	0	0.00	stein2/	0.00	0	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	stein45	0.00	0	0.00	stein45	0.00	0	0.00
verschobenesverschobenesgeometrisches Mittel 3.08 22 3.07 geometrisches Mittel 2.33 8 0.35 #gap closed%100% 4 #gap closed%100% 3	t1717	0.04	188	13.71	t1717	0.01	1	0.36
geometrisches Mittel 3.08 22 3.07 geometrisches Mittel 2.33 8 0.35 #gap closed%100%4#gap closed%100%3	verschobenes				verschobenes			
$\#_{eap} closed \%^{100\%}$ 4 $\#_{eap} closed \%^{100\%}$ 3	geometrisches Mittel	3.08	22	3.07	geometrisches Mittel	2.33	8	0.35
	#gap closed% ^{100%}	4			#gap closed% ^{100%}	3		

Tabelle E.23:	Rech	enstudie	4.3:	HEURIP
	zf4,	$\mathcal{V}^{min} = 0$	0.40	

P- Tabelle E.24: Rechenstudie 4.3: HEURIP-ZF4, $\mathcal{V}^{min} = 0.50$

Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa
10teams	0.00	1	8.72	10teams	0.00	0	5.52
30:70:4_5:0_5:100	0.00	0	2936.03	30:70:4_5:0_5:100	0.00	9	1829.53
30:70:4_5:0_95:98	0.00	10	952.91	30:70:4_5:0_95:98	0.00	22	511.66
air03	100.00	1	0.02	air03	100.00	1	0.02
air04	10.97	685	13.78	air04	9.00	313	9.68
air05	10.65	2294	11.36	air05	5.28	2666	14.40
cap6000	0.73	7	0.05	cap6000	0.73	7	0.05
ds	0.06	2330	92.43	ds	0.06	1970	74.08
eilD76	2.86	241	0.97	eilD76	2.61	225	0.58
fast0507	0.00	1	23.34	fast0507	0.00	0	8.76
fiber	30.31	248	29.84	fiber	22.90	241	30.10
ot?	1.29	3	0.00	ot?	1.29	3	0.00
harp?	0.00	14	0.09	harn?	0.00	15	0.04
im	51.09	73	0.58	im	51.09	70	0.55
1152lav	7 40	356	0.50	1152lav	11.80	389	6 44
lseu	36.11	109	2 23	lseu	55 39	285	6 99
manna81	100.00	343	1 41	manna81	100.00	343	1 33
markshare1	0.00	29	0.00	markshare1	0.00	21	0.01
markshare?	0.00	2) 41	0.00	markshare?	0.00	21	0.01
misc03	25.14	172	52.78	misc03	28.58	136	34.96
misc07	0.34	220	62.13	misc07	4 75	180	/1 07
mitre	0.04	404	02.15	mitre	4.75	353	-1.57
mod008	1.50	404	0.05	mod008	0.94	14	0.45
mod010	30.53	+0 556	5.26	mod010	40.00	580	6.11
neos1	0.00	11	2.44	neos1	40.09	21	7.03
neos10	0.00	00	45.12	neos1	7.89	40	7.95
neos16	0.52	400	45.15	neos16	7.00	40	1.90
neos10	9.52	400	690.70	neos10	9.52	404	9.32
neos18	11.11	29	452 67		26.02	13	099.75
	54.70	203	435.07	1100821	100.02	22	444.50
neosa	100.00	2020	5.19	neosa	100.00	1(29	5.18
nugus	0.00	2020	1.0/	nugus	0.00	1038	1.37
nw04	1.75	123	5.98	nw04	1.75	123	5.89
p0033	53.79	88	0.37	p0033	53.76	218	/.63
p0201	0.00	4/	0.51	p0201	0.00	33	0.00
p0282	1.15	20	0.07	p0282	0.19	6	0.02
p0548	24.46	165	0.64	p0548	20.30	159	1.25
p2756	9.44	591	1.60	p2756	4.04	463	0.20
prodl	0.00	0	0.04	prodl	0.00	0	0.01
protfold	0.00	22	256.26	protfold	0.00	0	35.43
qap10	2.24	6895	50.08	qap10	2.24	6701	47.21
qnet1	18.14	259	75.84	qnet1	15.15	110	18.95
qnet1_o	22.03	400	46.88	qnet1_0	17.95	190	8.85
seymour	1.96	6	1200.45	seymour	5.38	12	1645.83
sp97ar	12.40	61	62.52	sp97ar	16.47	112	159.76
stein27	0.00	10	6.47	stein27	0.00	14	11.31
stein45	0.00	0	3.00	stein45	0.00	0	2.87
t1717	0.04	390	47.47	t1717	0.12	384	28.47
verschobenes	4 4 2	<i>45</i>	0.72	verschobenes	2 0 1	57	0 55
#gap closed% ^{100%}	4.4 <i>3</i> 3	63	9.73	#gap closed% ^{100%}	3.81	57	8.55

Tabelle E.25: Rechenstudie 4.3: HEURIP- Tabelle E.26: Rechenstudie 4.3: HEURIP-ZF5P0.001, $V^{min} = 0.01$

ZF5P0.001, $V^{min} = 0.10$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	0	5.00	10teams	57.14	4	14.79
30:70:4_5:0_5:100	0.00	1	3173.01	30:70:4_5:0_5:100	0.00	0	352.52
30:70:4_5:0_95:98	0.00	24	971.26	30:70:4_5:0_95:98	0.00	20	124.49
air03	100.00	1	0.02	air03	100.00	1	0.01
air04	16.13	856	22.07	air04	9.05	454	8.44
air05	5.50	2382	12.93	air05	11.21	1341	6.41
cap6000	0.73	4	0.03	cap6000	0.73	4	0.03
ds	0.06	1935	72.39	ds	0.06	1931	72.21
eilD76	2.59	217	0.50	eilD76	2.59	211	0.52
fast0507	0.00	0	7.56	fast0507	0.00	0	6.10
fiber	22.16	125	1.35	fiber	15.95	91	3.75
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	23	0.07	harp2	0.00	12	0.06
irp	78.72	151	2.44	irp	69.82	72	0.75
1152lav	8.59	384	3.09	1152lav	7.54	278	5.34
lseu	35.97	246	11.10	lseu	1.49	9	0.02
manna81	100.00	343	1.37	manna81	100.00	273	0.24
markshare1	0.00	19	0.01	markshare1	0.00	2/3	0.00
markshare?	0.00	22	0.00	markshare?	0.00	2	0.00
misc03	18.89	137	54 71	misc03	18.98	99	18.60
misc07	5.02	159	19.16	misc07	4 66	135	7 29
mitre	1 48	300	0.39	mitre	1.62	314	0.35
mod008	0.09	500	0.00	mod008	0.08	J14 1	0.00
mod010	18.12	388	7.80	mod010	12 57	36	0.00
neos1	0.00	10	3.00	neos1	14.29	171	3 25
neos10	20.02	04	2.02	neos10	38.86	160	25.84
neos16	9.52	303	20.20	neos16	9.50	375	23.84
neos18	0.00	13	457.21	neos18	2.52	04	861.76
neos21	11.16	36	50.61	neos21	8 00	24	44.20
ncos21	100.00	11	0.80	ncos21	100.00	23	1 24
nucoso	100.00	1629	0.69	nucoso	0.00	1627	1.24
nug08	0.00	1030	5.20	nug08	0.00	1057	1.39
nw04	2.30	108	5.59 1.22	nw04 #0022	1.01	20	0.02
p0055	/2.01	109	1.55	p0055	27.58	29	0.02
p0201	0.00	22	0.01	p0201	0.00	2	0.00
p0282	0.07	200	0.00	p0282	0.07	2	0.00
p0548	21.89	209	0.72	p0548	2.54	27	0.04
p2/56	1.65	300	0.17	p2/56	0.38	119	0.07
prod	0.00	0	0.01	prod	0.00	0	0.00
prottold	0.00	3	52.88	protfold	0.00	3	82.08
qap10	2.24	6699	47.78	qap10	2.24	6699	47.58
qnet1	14.69	156	22.94	qnetl	12.50	107	9.87
qnet1_o	20.59	275	39.22	qnetl_o	18.05	206	37.63
seymour	9.70	41	2133.56	seymour	9.49	15	454.34
sp97ar	18.76	104	157.93	sp97ar	14.60	42	37.59
stein27	0.00	75	6.45	stein27	0.00	59	1.95
stein45	0.00	29	14.87	stein45	0.00	20	11.99
t1717	0.04	274	20.02	t1717	0.04	256	17.89
verschobenes geometrisches Mittel #gap closed% ^{100%}	3.77 3	58	7.83	verschobenes geometrisches Mittel #gap closed% ^{100%}	4.04	39	5.11

Tabelle E.27: Rechenstudie 4.3: HEURIP- Tabelle E.28: Rechenstudie 4.3: HEURIP-ZF5P0.001, $V^{min} = 0.20$

ZF5P0.001, $V^{min} = 0.30$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	100.00	6	11.79	10teams	100.00	42	0.05
30:70:4_5:0_5:100	0.00	31	387.68	30:70:4_5:0_5:100	0.00	60	51.92
30:70:4_5:0_95:98	0.00	21	217.75	30:70:4_5:0_95:98	0.00	83	78.34
air03	100.00	2	0.01	air03	100.00	2	0.02
air04	13.82	748	9.24	air04	0.00	0	0.03
air05	7.06	562	2.84	air05	1.70	2	0.03
cap6000	0.00	0	0.00	cap6000	0.00	0	0.00
ds	0.06	1744	62.85	ds	0.00	1	0.40
eilD76	2.42	248	0.34	eilD76	0.00	0	0.00
fast0507	0.00	0	5.57	fast0507	0.00	0	0.07
fiber	15.13	84	2.20	fiber	8.36	8	0.01
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	0	0.00	harp2	0.00	0	0.00
irp	33.31	43	0.50	irp	30.45	11	0.14
1152lav	6.78	78	1.83	1152lav	0.00	0	0.00
lseu	1.46	7	0.00	lseu	0.21	5	0.00
manna81	100.00	273	0.22	manna81	100.00	273	0.27
markshare1	0.00	0	0.00	markshare1	0.00	0	0.00
markshare2	0.00	4	0.00	markshare2	0.00	1	0.00
misc03	19.84	106	15.66	misc03	11.56	73	0.00
misc07	4.66	167	3.99	misc07	0.72	70	0.00
mitre	2.39	142	0.16	mitre	1.62	107	0.14
mod008	0.08	4	0.01	mod008	0.05	1	0.00
mod010	12.57	37	0.07	mod010	12.57	34	0.05
neos1	0.00	65	2.04	neos1	0.00	117	0.05
neos10	0.41	11	0.43	neos10	16.41	50	0.09
neos16	9.52	439	0.20	neos16	0.00	1	0.02
neos18	11.11	114	66.24	neos18	22.22	700	1.83
neos21	14.97	36	84.15	neos21	5.41	13	0.03
neos8	100.00	14	0.20	neos8	57.14	10	0.01
nug08	0.00	1634	1.51	nug08	10.30	663	1.29
nw04	0.00	0	0.08	nw04	0.00	0	0.08
p0033	18.12	12	0.00	p0033	18.12	12	0.00
p0201	0.00	3	0.00	p0201	0.00	3	0.00
p0282	0.07	2	0.00	p0282	0.07	2	0.00
p0548	1.99	22	0.02	p0548	1.80	16	0.01
p2756	0.28	70	0.02	p2756	0.20	43	0.02
prod1	0.00	0	0.00	prod1	0.00	0	0.00
protfold	0.00	0	14.78	protfold	0.00	2	0.15
qap10	2.24	6693	46.57	qap10	0.07	8	2.99
qnet1	11.50	160	45.58	qnet1	2.44	14	0.00
qnet1_0	13.32	46	2.19	qnet1_0	12.31	19	0.01
seymour	13.68	25	142.54	seymour	16.05	57	0.82
sp97ar	19.43	71	44.81	sp97ar	19.07	68	0.43
stein27	0.00	0	0.00	stein27	0.00	0	0.00
stein45	0.00	0	0.00	stein45	0.00	0	0.00
t1717	0.30	284	19.13	t1717	0.01	1	0.35
verschobenes				verschobenes			
geometrisches Mittel	3.25	25	3.10	geometrisches Mittel	2.33	8	0.36
#gap closed% ^{100%}	4			#gap closed% ^{100%}	3		

Tabelle E.29: Rechenstudie 4.3: HEURIP- Tabelle E.30: Rechenstudie 4.3: HEURIP-ZF5P0.001, $V^{min} = 0.40$

ZF5P0.001, $V^{min} = 0.50$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	0	5.95	10teams	0.00	0	5.49
30:70:4_5:0_5:100	1.23	2	3651.45	30:70:4_5:0_5:100	1.23	6	3231.27
30:70:4_5:0_95:98	0.00	6	950.58	30:70:4_5:0_95:98	0.00	12	834.92
air03	100.00	1	0.03	air03	100.00	1	0.01
air04	10.97	685	13.00	air04	9.00	313	9.94
air05	10.65	2294	11.37	air05	5.28	2666	14.46
cap6000	0.73	7	0.05	cap6000	0.73	7	0.04
ds	0.06	2330	92.36	ds	0.06	1970	74.00
eilD76	5.53	264	5.74	eilD76	4.43	236	0.62
fast0507	0.00	2	21.80	fast0507	0.00	4	26.47
fiber	29.92	176	3.94	fiber	24.36	233	24.57
gt2	1.29	3	0.01	gt2	1.29	3	0.00
harp2	0.00	14	0.12	harp2	0.00	15	0.04
irp	51.09	73	0.61	im	51.09	70	0.55
1152lav	6.73	340	3.28	1152lav	8.74	352	3.00
lsen	48.52	225	7.69	lseu	56.76	170	11.50
manna81	100.00	343	1.30	manna81	100.00	343	1.37
markshare1	0.00	29	0.00	markshare1	0.00	21	0.00
markshare?	0.00	41	0.00	markshare?	0.00	21	0.00
misc03	27.28	203	47.25	misc03	19.79	131	28.87
misc07	1.08	89	18 57	misc07	1.08	98	10.19
mitre	0.94	404	0.64	mitre	0.94	353	0.46
mod008	1.60	404	0.04	mod008	0.94	14	0.40
mod010	40.00	594	0.39 רר ר	mod010	20.27	555	0.05 8.20
neos1	40.09	10	5.21	neos1	0.00	13	0.29 8 77
neosi	12.50	25	0.20	neos10	5.43	24	8.77 8.70
neos16	0.52	420	9.30 5.70	neos16	0.52	206	0.79
neos10	9.52	420	1470 70	neos10	9.32	17	207.21
	11.14	45 210	14/2.78		0.00	17	520.09
	50.05	519	204.27	1100821	41.21	402	2 74
neosa	100.00	20	3.72	neosa	100.00	1(20	5.74
nugus	0.00	2020	1.72	nugus	0.00	1038	1.40
nw04	1.75	123	5.91	nw04	1.75	123	5.97
p0033	53.82	96	0.40	p0033	53.76	142	2.61
p0201	0.00	53	0.54	p0201	0.00	33	0.00
p0282	1.15	20	0.10	p0282	0.19	6	0.02
p0548	27.11	164	0.33	p0548	14.79	145	0.94
p2756	9.44	592	1.38	p2756	4.04	463	0.25
prod	0.00	0	0.05	prodl	0.00	0	0.01
protfold	0.00	19	247.55	protfold	0.00	0	35.78
qap10	2.24	6895	50.28	qap10	2.24	6701	47.37
qnet1	11.45	133	4.93	qnet1	15.75	186	58.87
qnet1_0	22.89	479	42.61	qnet1_0	21.70	222	21.25
seymour	0.85	2	503.48	seymour	6.24	13	1879.85
sp97ar	5.91	52	51.51	sp97ar	17.24	117	154.57
stein27	0.00	13	5.42	stein27	0.00	3	7.43
stein45	0.00	0	2.77	stein45	0.00	0	2.83
t1717	0.04	385	46.85	t1717	0.04	307	22.86
verschobenes				verschobenes			
geometrisches Mittel	4.23	63	8.56	geometrisches Mittel	3.76	54	8.60
#gap closed% ^{100%}	3			#gap closed% ^{100%}	3		2.50
0.1	Ð			0 P	Ð		

Tabelle E.31: I	Rechenstudie	4.3:	HEURIP
2	ZF5P0.01, \mathcal{V}^{r}	$n^{in} =$	0.01

P- Tabelle E.32: Rechenstudie 4.3: HEURIP-ZF5P0.01, $\mathcal{V}^{min} = 0.10$

Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa
10teams	57.14	4	16.22	10teams	0.00	0	4.31
30:70:4_5:0_5:100	0.00	2	2113.04	30:70:4_5:0_5:100	0.00	3	834.35
30:70:4 5:0 95:98	0.00	21	1666.26	30:70:4 5:0 95:98	0.00	19	450.84
air03	100.00	1	0.01	air03	100.00	1	0.02
air04	14.57	854	12.91	air04	9.62	458	14.15
air05	5 50	2382	12.63	air05	11.21	1341	6.43
cap6000	0.73	4	0.02	cap6000	0.73	4	0.02
ds	0.06	1935	73 47	ds	0.06	1931	72.28
eilD76	4 43	229	0.50	eilD76	4 43	223	0.54
fast0507	0.00	0	7 30	fast0507	0.00	0	6.23
fiber	21.72	108	0.84	fiber	15 99	104	5.19
at?	1 20	2	0.04	at?	1 29	2	0.01
barn?	0.00	23	0.00	barn?	0.00	12	0.01
im	44.50	104	1.52	im	70.10	68	1.09
1152lov	44.30 8.17	306	0.44	1152lov	70.10	250	3.65
loon	0.17	390	0.44	lion	1.49	250	0.02
iseu	2.75	242	0.22	Iseu	1.49	9 272	0.02
mannað í	100.00	343	1.33	mannað í	100.00	275	0.19
marksharel	0.00	19	0.00	marksharel	0.00	2	0.00
markshare2	0.00	22	0.00	markshare2	0.00		0.01
misc03	11.48	/9	19.22	misc03	6.03	64	3.20
misc07	4.66	109	8.35	misc0/	5.20	157	6.27
mitre	1.48	300	0.39	mitre	1.62	314	0.34
mod008	0.09	7	0.00	mod008	0.08	4	0.00
mod010	17.07	388	8.20	mod010	12.57	36	0.06
neos1	0.00	14	5.19	neosl	28.57	237	11.18
neos10	3.26	30	6.36	neos10	24.46	99	5.31
neos16	9.52	380	4.10	neos16	9.52	375	2.36
neos18	0.00	23	621.13	neos18	0.00	21	57.40
neos21	34.41	139	208.42	neos21	1.52	28	49.33
neos8	100.00	15	1.46	neos8	100.00	2	0.77
nug08	0.00	1638	1.37	nug08	0.00	1637	1.45
nw04	2.30	108	5.41	nw04	1.81	117	5.58
p0033	53.76	100	0.68	p0033	27.38	29	0.02
p0201	0.00	33	0.01	p0201	0.00	3	0.00
p0282	0.07	2	0.01	p0282	0.07	2	0.00
p0548	9.84	123	0.17	p0548	7.84	71	0.06
p2756	1.65	300	0.10	p2756	0.38	119	0.04
prod1	0.00	0	0.00	prod1	0.00	0	0.00
protfold	0.00	0	28.30	protfold	0.00	2	54.87
qap10	2.24	6699	47.48	qap10	2.24	6699	47.38
anet1	12.21	125	15.98	anet1	12.83	99	9.99
anet1_o	19.79	236	27.24	anet1_o	19.55	397	93.38
sevmour	8.57	25	1969.48	sevmour	8.84	17	359.99
sp97ar	15.74	76	87.58	sp97ar	19.44	57	42.85
stein27	0.00	68	6.01	stein27	0.00	59	2.95
stein45	0.00	23	13 38	stein45	0.00	22	14 57
t1717	0.04	273	19.53	t1717	0.04	254	17.72
verschobenes geometrisches Mittel #aan closed% ^{100%}	3.64	53	6.64	verschobenes geometrisches Mittel	3.29	38	4.81
"sup crosed /0	5			"sup crosed /o	5		

Tabelle E.33: Rechenstudie 4.3: HEURIP- Tabelle E.34: Rechenstudie 4.3: HEURIP-ZF5P0.01, $V^{min} = 0.20$

ZF5P0.01, $\mathcal{V}^{min} = 0.30$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	100.00	2	7.03	10teams	100.00	42	0.03
30:70:4_5:0_5:100	0.00	6	681.85	30:70:4_5:0_5:100	0.00	60	51.71
30:70:4_5:0_95:98	0.00	16	277.69	30:70:4_5:0_95:98	0.00	83	77.64
air03	100.00	2	0.02	air03	100.00	2	0.02
air04	13.82	748	8.99	air04	0.00	0	0.02
air05	7.06	562	2.77	air05	1.70	2	0.03
cap6000	0.00	0	0.00	cap6000	0.00	0	0.00
ds	0.06	1744	62.99	ds	0.00	1	0.31
eilD76	4.41	287	1.22	eilD76	0.00	0	0.00
fast0507	0.00	0	5.00	fast0507	0.00	0	0.07
fiber	14.85	70	0.44	fiber	8.36	8	0.01
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	0	0.00	harp2	0.00	0	0.00
irp	33.31	43	0.46	irp	30.45	11	0.13
1152lav	6.90	80	5.14	1152lav	0.00	0	0.00
lseu	1.46	7	0.00	lseu	0.21	5	0.00
manna81	100.00	273	0.22	manna81	100.00	273	0.25
markshare1	0.00	0	0.00	markshare1	0.00	0	0.00
markshare?	0.00	4	0.00	markshare?	0.00	1	0.00
misc03	19.33	123	24.86	misc03	11.56	73	0.01
misc07	3.94	146	7.88	misc07	0.72	70	0.01
mitre	2 39	142	0.18	mitre	1.62	107	0.01
mod008	0.08	4	0.10	mod008	0.05	107	0.00
mod010	12 57	37	0.00	mod010	12 57	34	0.06
neos1	0.00	63	0.00	neosl	0.00	117	0.00
neos10	16.85	17	1 33	neos10	16.41	50	0.05
neos16	9.52	117	0.26	neos16	0.00	1	0.00
neos18	11.11	102	50.20	neos18	22.22	700	1.84
neos21	3 97	102	29.04	neos21	5 41	13	0.02
neos	100.00	13	0.16	neos8	57.14	10	0.02
nug08	0.00	1634	1.40	nuo08	10.30	663	1 19
nw04	0.00	1054	0.08	nug00	0.00	005	0.00
n0033	18.12	12	0.08	n0033	18.12	12	0.09
p00000	0.00	12	0.00	p00000	0.00	3	0.00
p0201	0.00	2	0.00	p0201	0.00	3	0.00
p0202	1.00	21	0.01	p0202	1.80	16	0.00
p0548	0.28	21	0.02	p0546	0.20	10	0.01
p2750	0.28	/0	0.04	pz750	0.20	43	0.02
proul	0.00	5	32.20	proul	0.00	2	0.00
gap10	0.00	6603	32.29 47.20	gap10	0.00	2	3 13
qap10	0.06	0093	16.67	qap10	0.07	14	0.00
quet1 o	9.90	00 69	0.54	quet1 o	2.44	14	0.00
	0.87	10	120.24		12.51	19 57	0.01
sp07or	9.07	19	129.34	seymour sp07or	10.05	57	0.75
sp97ai stoin27	17.20	4/	12.03	sp97ai stoin27	19.07	00	0.42
stein 27	0.00	0	0.00	stein/5	0.00	0	0.00
stem45	0.00	100	12.00	sten143 +1717	0.00	1	0.00
	0.04	188	13.80		0.01	1	0.34
verschobenes				verschobenes			
geometrisches Mittel	3.34	23	2.93	geometrisches Mittel	2.33	8	0.35
#gap closed% ^{100%}	4			#gap closed% ^{100%}	3		

Tabelle E.35:	Rechenstudie	4.3:	HEURIP-
	ZF5P0.01, \mathcal{V}	^{min} =	0.40

P- Tabelle E.36: Rechenstudie 4.3: HEURIP-ZF5P0.01, $\mathcal{V}^{min} = 0.50$

Name gap closed % $\#[0, \frac{1}{2}]$ Tapp 100eams 42.86 3 18.96 0 0.00 30.704.5.0.5100 0.00 2 3799.36 307.704.5.0.51.00 0.00 10 124799 30.704.5.0.5100 0.00 2 3799.36 307.704.5.0.51.00 0.00 1 10.01 int03 100.00 1 0.01 air04 10.97 685 15.10 air04 9.00 313 8.72 air05 10.65 2294 11.27 cardo00 0.73 7 0.04 dis 0.06 2330 92.66 eib 1076 6.19 2.44 1.23 fast0507 0.00 0 12.61 fast0507 0.00 2 2.00 fibr 51.18 88 0.66 117 73.88 213 2.29 1132lav 6.84 36 6.64 152av 1.83 3.04 fibr 51.18								
Ubeams 42.86 3 18.96 I Uteams 0.00 2 23793.6 307.70.4.5.0.5.100 0.00 10 1247.99 30.70.4.5.0.55.100 0.00 4 373.42 air03 100.00 1 0.01 ir04 9.00 313 8.72 air05 10.65 2294 11.27 air05 5.28 2666 14.40 ap6000 0.73 7 0.05 cap6000 7.3 7 0.04 air05 0.06 23.0 92.66 ds 0.06 19.00 24.4 1.23 air0507 0.00 0 12.61 fisto507 0.00 2.000 istar0507 0.00 15 0.03 ipr 13.3 3.13 2.29 siza0507 0.000 15 0.08 inpr 73.88 2.13 2.29 jt21 1.17 2.66 3.73 lseu 15.00 3.71 2.28 jt22 0.000 <t< th=""><th>Name</th><th>gap closed%</th><th>$\#\{0, \frac{1}{2}\}$</th><th>Tsepa</th><th>Name</th><th>gap closed%</th><th>$\#\{0, \frac{1}{2}\}$</th><th>T_{sepa}</th></t<>	Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \frac{1}{2}\}$	T _{sepa}
307:04.5:0.5:100 0.00 10 1247.99 307:04.5:0.5:100 0.00 1 373.42 307:04.5:0.95:98 0.00 1 0.01 air03 100.00 1 0.01 air04 10.97 685 15.10 air04 9.00 13 8.72 air05 10.65 224 11.27 air05 5.28 2666 14.40 cap6000 0.73 7 0.05 cap6000 0.73 7 0.04 ds 0.06 230 92.66 ds 0.06 174.18 cibD76 5.00 291 4.45 cibD76 6.19 244 1.23 fast0507 0.00 15 0.08 hap2 1.29 3 0.00 15 0.08 hap2 1.29 3 0.00 15 0.08 hap2 1.29 3 0.00 13 2.28 1.00 1.013 3.71 2.26 mans1 1.010 1.03 3.71	10teams	42.86	3	18.96	10teams	0.00	8	24.12
30:704.5:0.95:98 0.00 10 1247.99 30:704.5:0.95:98 0.00 4 373.42 air03 100.00 1 10.01 air03 100.00 313 8.72 air05 10.65 2294 11.27 air05 5.28 2066 14.40 ag6000 0.73 7 0.05 cap6000 0.73 7 0.04 ds 0.06 2330 92.66 ds 0.00 2 20.00 fiber 31.17 266 28.21 fiber 2.53 2066 31.19 gt2 1.29 3 0.00 gt2 1.29 3 0.00 harp2 0.00 15 0.08 hrp2 0.00 15 0.03 sinp 51.18 88 0.63 ip 73.88 21.29 3 0.00 markshare1 0.00 29 0.00 markshare1 0.00 21 0.00 markshare2	30:70:4_5:0_5:100	0.00	0	0.00	30:70:4_5:0_5:100	0.00	2	3799.36
air03 100.00 1 0.01 air03 100.00 1 0.01 air04 10.97 685 15.10 air04 9.00 313 8.72 air05 10.65 2294 11.27 air05 5.28 266 14.40 cap6000 0.73 7 0.05 cap6000 0.73 7 0.04 ds 0.06 230 92.66 ds 0.00 12 4.12 fat0507 0.00 0 12.61 fast0507 0.00 15 0.08 harp2 0.00 15 0.08 harp2 0.00 10.03 3.119 gt 3 0.00 15 0.08 harp2 0.00 15 0.08 harp2 0.00 16 0.03 371 2.28 mans1 100.00 342 1.24 markshare1 0.00 21 1.04 0.34 1.24 1.24 1.33 1.40 39.35 0.45 1.02 markshare2 </td <td>30:70:4_5:0_95:98</td> <td>0.00</td> <td>10</td> <td>1247.99</td> <td>30:70:4_5:0_95:98</td> <td>0.00</td> <td>4</td> <td>373.42</td>	30:70:4_5:0_95:98	0.00	10	1247.99	30:70:4_5:0_95:98	0.00	4	373.42
air04 10.97 685 15.10 air04 9.00 313 8.72 air05 10.65 2294 11.27 air05 5.28 266 14.40 ds 0.06 2330 92.66 ds 0.06 1970 74.18 fair0507 0.00 0 12.61 fair0507 0.00 2 20.00 fiber 31.17 266 28.21 fiber 2.5.3 266 31.19 gt2 1.29 3 0.00 gt2 1.29 3 0.00 harp2 0.00 15 0.03 harp2 0.00 15 0.03 sign 51.18 88 0.63 ip 73.88 213 2.29 1152lav 6.84 346 0.66 1152law 10.83 2.14 markshare1 0.00 342 1.49 markshare1 0.00 21 0.00 markshare2 0.00 14 0.00	air03	100.00	1	0.01	air03	100.00	1	0.01
air05 10.65 2294 11.27 air05 5.28 2666 14.40 cap6000 0.73 7 0.05 cap6000 0.73 7 0.04 scap507 0.00 2230 92.66 ds 0.06 1770 74.18 sidu507 0.00 0.21 fast0507 0.00 2 2.00 fiber 31.17 266 28.21 fiber 25.53 2.66 31.19 gt2 1.29 3 0.00 barp2 0.00 15 0.08 harp2 0.00 15 0.03 371 2.29 lseu 44.64 159 3.37 Iseu 59.70 346 25.62 mankshare1 0.00 24 1.49 manna81 100.00 342 1.24 markshare2 0.00 41 0.00 markshare2 0.00 21 0.00 misc03 19.66 127 1.64 misc03 29.45 140 39.85 misc03 19.66 127 1.64 misc03	air04	10.97	685	15.10	air04	9.00	313	8.72
cap6000 0.73 70.05cap6000 0.73 70.04ds0.0623092.66ds0.06197074.18filD765.002914.45eilD766.192441.23fact05070.00012.61fast05070.00220.00fiber31.1726628.21fiber25.5326631.19gt21.2930.00gt21.2930.00harp20.00150.08harp20.00150.03gtip51.18880.661152lav10.833712.28lscu44.641593.37lscu59.7034625.62markshare10.00290.00markshare10.00210.00misc0319.6612721.64misc0329.451.4039.85misc0714.3725083.76misc0329.451.4039.85mod01039.425578.83mod01039.665535.98neos169.524093.25neos169.523934.37neos180.002438.84neos180.001.4435.86neos180.00201.75ng080.006.0541.38neos180.002.001.75ng080.006.0535.91p02010.00681.27p03369.1	air05	10.65	2294	11.27	air05	5.28	2666	14.40
ds 0.06 2330 92.66 ds 0.06 1970 74.18 eilD76 5.00 291 4.45 eilD76 6.19 244 1.23 faad507 0.00 0 12.61 fast0507 0.00 2.200 fiber 31.17 266 28.21 fiber 2.53 266 31.19 grl2 1.29 3 0.00 grl2 1.29 3 0.00 harp2 0.00 15 0.08 harp2 0.00 15 0.03 ips 6.84 346 0.66 Ipp 73.88 213 2.29 152lav 0.84 446 0.66 Ipp 73.88 213 2.29 152lav 0.00 3.37 lscu 59.70 346 25.62 markshare1 0.00 29 0.00 markshare2 0.00 22 10.00 markshare2 0.00 414 0.00 markshare2 <td>cap6000</td> <td>0.73</td> <td>7</td> <td>0.05</td> <td>cap6000</td> <td>0.73</td> <td>7</td> <td>0.04</td>	cap6000	0.73	7	0.05	cap6000	0.73	7	0.04
eilD76 5.00 291 4.45 eilD76 6.19 244 1.23 fast0507 0.00 0 12.61 fast0507 0.00 2 20.00 gl2 1.29 3 0.00 gl2 1.29 3 0.00 gl2 1.29 3 0.00 gl2 1.29 3 0.00 imp 51.18 88 0.63 imp 73.88 213 2.29 1152lav 6.84 346 0.66 1152lav 10.83 371 2.28 markshare1 0.00 342 1.49 manna81 100.00 342 1.24 markshare2 0.00 markshare1 0.00 22 0.00 misc03 19.66 127 21.64 misc03 29.45 140 333 0.45 mod008 1.60 62 0.47 mod010 39.06 553 5.98 neos1 0.00 13 4.83 neos1 0.00 24 383 1.45 mod008 1.60	ds	0.06	2330	92.66	ds	0.06	1970	74.18
fact05070.00012.61fact05070.002220.00fiber31.1726628.21fiber25.5326631.19gt21.2930.00gt21.2930.00harp20.00150.08harp20.00150.03irp51.18880.63irp73.882132.29lscu44.641593.37Iseu59.7034625.62mans81100.003421.49manna81100.003421.24markshare10.00290.00markshare10.00220.00markshare20.00410.00markshare10.00220.00misc0319.6612721.64misc0329.4514039.85misc0714.3725083.76misc075.6812511.02mitre0.944040.64mitre0.943530.45mod01039.425578.83mod1039.065535.98neos10.00134.83neos106.093610.86neos169.524093.25neos169.523934.37neos180.0024388.43neos180.00164.45neos180.00201.75nug080.00166.94ng03360.9728822.71p0033 <td>eilD76</td> <td>5.00</td> <td>291</td> <td>4.45</td> <td>eilD76</td> <td>6.19</td> <td>244</td> <td>1.23</td>	eilD76	5.00	291	4.45	eilD76	6.19	244	1.23
fiber 31.17 266 28.21 fiber 25.53 266 31.19 gt2 1.29 3 0.00 gt2 1.29 3 0.00 happ2 0.00 15 0.08 harp2 0.00 15 0.03 inp 51.18 88 0.63 irp 73.88 213 2.29 1152lav 6.84 346 0.66 irp 73.88 213 2.29 manshare1 0.00 342 1.49 manna81 100.00 342 1.24 markshare1 0.00 29 0.00 markshare2 0.00 22 0.00 misc03 19.66 127 21.64 misc03 29.45 140 39.85 misc07 14.37 250 83.76 misc03 29.45 140 39.85 mod010 39.42 557 8.83 mod010 39.06 53 5.98 neos16 9.52 409	fast0507	0.00	0	12.61	fast0507	0.00	2	20.00
gl2 1.29 3 0.00 gl2 1.29 3 0.00 harp2 0.00 15 0.08 harp2 0.00 15 0.03 pip 51.18 88 0.63 irp 73.88 213 2.29 llS2lav 6.84 346 0.66 1152lav 10.83 371 2.28 lseu 44.64 159 3.37 lseu 59.70 346 2.52 markshare1 0.00 29 0.00 markshare2 0.00 22 0.00 markshare2 0.00 41 0.00 markshare2 0.00 22 0.00 mic03 19.66 127 21.64 misc03 29.45 140 0.38 56 micr 0.94 404 0.64 micr 0.94 353 0.45 mod010 39.42 557 8.83 mod010 39.06 553 5.98 neos16 9.52	fiber	31.17	266	28.21	fiber	25.53	266	31.19
harp20.00150.08harp20.00150.03irp51.18880.63irp73.882.132.29lscu6.843460.661152lav10.833712.28lscu44.641593.37lscu59.7034625.62manna81100.003421.49manna81100.00210.00markshare10.00290.00markshare20.00220.00misclo319.6612721.64misc075.6812511.02mitre0.944040.64mitre0.943530.45mod01039.425578.83mcol1039.065535.98neos10.00134.83ncos10.00209.28neos169.524093.25ncos169.523334.37neos180.002438.43ncos180.0014435.86neos180.002001.75nug080.0016381.38nu030.002001.75nug080.0060.54nug080.002.211.75nug080.001.6381.38nu041.751235.92nud11.751235.91p02010.00680.211.751235.919.97p02110.0000.011.751235.91 <td>gt2</td> <td>1.29</td> <td>3</td> <td>0.00</td> <td>gt2</td> <td>1.29</td> <td>3</td> <td>0.00</td>	gt2	1.29	3	0.00	gt2	1.29	3	0.00
inp 51.18 88 0.63 irp 73.88 213 2.29 1152lav 6.84 346 0.66 1152lav 10.83 371 2.28 manksharel 0.00 342 1.49 mana81 100.00 342 1.24 marksharel 0.00 29 0.00 marksharel 0.00 21 0.00 markshare2 0.00 41 0.00 markshare2 0.00 22 0.00 misc03 19.66 127 21.64 misc03 29.45 140 39.85 mitre 0.94 404 0.64 mitre 0.94 353 0.45 mod008 1.60 62 0.47 mod008 0.21 14 0.03 meos1 0.00 13 4.83 neos10 0.00 20 9.28 neos18 0.00 24 388.43 neos18 0.00 14 435.86 neos21 27.08	harp2	0.00	15	0.08	harp2	0.00	15	0.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	irp	51.18	88	0.63	irp	73.88	213	2.29
lseu 44.64 159 3.37 lseu 59.70 346 25.62 manna81 100.00 342 1.49 manna81 100.00 342 1.24 markshare1 0.00 29 0.00 markshare2 0.00 21 0.00 misc03 19.66 127 21.64 misc03 29.45 140 39.85 minic0 0.94 404 0.64 mitre 0.94 353 0.45 mod008 1.60 62 0.47 mod008 0.21 14 0.03 mod010 39.42 57 8.83 mod010 39.06 553 5.98 neos1 0.00 28.96 128 107.30 neos10 6.09 36 10.86 neos16 9.52 409 3.25 neos18 0.00 14 435.86 neos16 9.52 409 3.25 neos18 0.00 1638 1.38 nug08 0.00 2020 1.75 nug08 0.00 1638 1.38 <	1152lav	6.84	346	0.66	1152lav	10.83	371	2.28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	lseu	44.64	159	3.37	lseu	59.70	346	25.62
markshare1 0.00 29 0.00 markshare1 0.00 21 0.00 markshare2 0.00 41 0.00 markshare2 0.00 22 0.00 misc03 19.66 127 21.64 misc03 29.45 140 39.85 mitre 0.94 404 0.64 mitre 0.94 353 0.45 mod008 1.60 62 0.77 mod008 0.21 14 0.03 neos1 0.00 13 4.83 neos1 0.00 20 9.28 neos16 9.52 409 3.25 neos18 0.00 14 435.86 neos18 0.00 24 38.843 neos18 0.00 16.38 1.38 nug08 0.00 2020 1.75 nug08 0.00 16.38 1.38 nug04 1.75 123 5.92 nw04 1.75 123 5.91 p0233 60.97	manna81	100.00	342	1.49	manna81	100.00	342	1.24
markshare2 0.00 41 0.00 markshare2 0.00 22 0.00 misc03 19.66 127 21.64 misc03 29.45 140 39.85 misc07 14.37 250 83.76 misc07 5.68 125 11.02 mod008 1.60 62 0.47 mod008 0.21 14 0.03 mod010 39.42 557 8.83 mod010 39.06 553 5.98 neos1 0.00 13 4.83 neos10 6.09 36 10.86 neos16 9.52 409 3.25 neos16 9.52 393 4.37 neos8 0.00 5 0.40.25 neos18 0.00 14 435.86 nug08 0.00 50 0.44 neos8 100.00 6 0.54 nug08 0.00 220 1.75 nug08 0.00 1638 1.38 nw04 1.75	markshare1	0.00	29	0.00	markshare1	0.00	21	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	markshare2	0.00	41	0.00	markshare2	0.00	22	0.00
misc0714.3725083.76misc075.6812511.02mitre0.944040.64mitre0.943530.45mod0081.60620.47mod0080.21140.03mod01039.425578.83mod01039.065535.98neos10.00134.83neos10.00209.28neos1028.96128107.30neos106.093610.86neos169.524093.25neos169.523934.37neos180.0024388.43neos180.0014435.86neos2146.987951040.25neos2127.08303383.11neos8100.0050.94neos8100.0060.54nug080.0020201.75nug080.0016381.38nw041.751235.92nw041.751235.91p003360.9728822.71p003369.181899.57p02100.00680.12p2010.00330.00p02821.15200.09p02820.1960.02prof10.00000.04prof10.0000.74.9qap102.24689550.41qap102.24670147.64quet1_023.20521134.82quet1_0 <td< td=""><td>misc03</td><td>19.66</td><td>127</td><td>21.64</td><td>misc03</td><td>29.45</td><td>140</td><td>39.85</td></td<>	misc03	19.66	127	21.64	misc03	29.45	140	39.85
mitre0.944040.64mitre0.943530.45mod0081.60620.47mod0080.21140.03mod01039.425578.83mod01039.065535.98neos10.00134.83neos10.00209.28neos1028.96128107.30neos106.093610.86neos169.524093.25neos169.523934.37neos180.0024388.43neos180.0014435.86neos2146.987951040.25neos2127.08303383.11neos8100.0050.94neos8100.0060.54nug080.0020201.75nug080.0016381.38nw041.751235.92nw041.751235.91p003360.9728822.71p003369.181899.57p02010.00680.12p27564.044630.21prod10.0000.04prod10.0000.01profold0.0039287.37profold0.0000.749qap102.24689550.41qap102.24670147.64seymour7.76223074.51seymour0.0001.47stein450.0002.69stein450.00 <td>misc07</td> <td>14.37</td> <td>250</td> <td>83.76</td> <td>misc07</td> <td>5.68</td> <td>125</td> <td>11.02</td>	misc07	14.37	250	83.76	misc07	5.68	125	11.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mitre	0.94	404	0.64	mitre	0.94	353	0.45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mod008	1.60	62	0.47	mod008	0.21	14	0.03
neos10.00134.83neos10.00209.28neos1028.96128107.30neos106.093610.86neos169.524093.25neos169.523934.37neos180.0024388.43neos180.0014435.86neos2146.987951040.25neos2127.08303383.11neos8100.0050.94neos8100.0060.54nug080.0020201.75nug080.0016381.38nw041.751235.92nw041.751235.91p02010.00680.12p02010.00330.00p02821.15200.09p02820.1960.02p054825.412181.51p05488.191050.11p27569.445941.20p27564.044630.21prod10.0000.04prod10.00037.49qap102.24689550.41qap102.24670147.64sp97ar17.20158197.20sp97ar19.73143161.56stein450.0002.49stein450.0002.80stein450.0002.69stein450.0002.80stein450.0002.69stein450.000 <td>mod010</td> <td>39.42</td> <td>557</td> <td>8.83</td> <td>mod010</td> <td>39.06</td> <td>553</td> <td>5.98</td>	mod010	39.42	557	8.83	mod010	39.06	553	5.98
neos1028.96128107.30neos106.093610.86neos169.524093.25neos169.523934.37neos180.0024388.43neos180.0014455.86neos2146.987951040.25neos2127.08303383.11neos8100.0050.94neos8100.0060.54nug080.0020201.75nug080.0016381.38nw041.751235.92nw041.751235.91p003360.9728822.71p003369.181899.57p02010.00680.12p02010.00330.00p02821.15200.09p02820.1960.02p054825.412181.51p05488.191050.11p27569.445941.20p27564.044630.21prod10.0000.04prod10.00037.49qap102.24689550.41qap102.24670147.64qnet123.2052113.48qnet118.8116825.29qnet1_o22.1246530.20qnet1_o29.6953488.03seymour7.76223074.51seymour0.0001.47stein450.0002.69stin450.00<	neos1	0.00	13	4.83	neos1	0.00	20	9.28
neos169.524093.25neos169.523934.37neos180.0024388.43neos180.0014435.86neos2146.987951040.25neos2127.08303383.11neos8100.0050.94neos8100.0060.54nug080.0020201.75nug080.0016381.38nw041.751235.92nw041.751235.91p003360.9728822.71p003369.181899.57p02010.00680.12p02010.00330.00p02821.15200.09p02820.1960.02p054825.412181.51p05488.191050.11p27569.445941.20p27564.044630.21prod10.0000.04prod10.00037.49qap102.24689550.41qap102.24670147.64qnet123.20521134.82qnet118.8116825.29qnet1_o22.1246530.20qnet1_o29.6953488.03seymour7.76223074.51seymour0.0001.47stein270.0001.47stein270.0001.47stein270.0002.69stein450.00 <td>neos10</td> <td>28.96</td> <td>128</td> <td>107.30</td> <td>neos10</td> <td>6.09</td> <td>36</td> <td>10.86</td>	neos10	28.96	128	107.30	neos10	6.09	36	10.86
neos180.0024388.43neos180.0014435.86neos2146.987951040.25neos2127.08303383.11neos8100.0050.94neos8100.0060.54nug080.0020201.75nug080.0016381.38nw041.751235.92nw041.751235.91p003360.9728822.71p003369.181899.57p02010.00680.12p02010.00330.00p02821.15200.09p02820.1960.02p054825.412181.51p05488.191050.11p27569.445941.20p27564.044630.21prod10.0000.04prod10.00037.49qap102.24689550.41qap102.24670147.64qap102.21246530.20qnet1_029.6953488.03seymour7.76223074.51seymour0.0001.47stein270.0001.47stein270.0001.47stein450.0002.69stein450.0002.80typ?rat17.20158197.20sp?rar19.73143161.65stein270.0001.47stein270.00 <td>neos16</td> <td>9.52</td> <td>409</td> <td>3.25</td> <td>neos16</td> <td>9.52</td> <td>393</td> <td>4.37</td>	neos16	9.52	409	3.25	neos16	9.52	393	4.37
neos2146.987951040.25neos2127.08303383.11neos8100.0050.94neos8100.0060.54nug080.0020201.75nug080.0016381.38nw041.751235.92nw041.751235.91p003360.9728822.71p003369.181899.57p02010.00680.12p02010.00330.00p02821.15200.09p02820.1960.02p054825.412181.51p05488.191050.11p27569.445941.20p27564.044630.21prod10.0000.04prod10.00037.49qap102.24689550.41qap102.24670147.64qnet123.20521134.82qnet118.8116825.29qnet1.o22.1246530.20qnet1.o29.6953488.03seymour7.76223074.51seymour0.0001.47stein270.0001.47stein270.0001.47stein450.0002.69stein450.0002.80t17170.0438546.87t17170.0430624.39verschobenesverschobenesgeometrisches Mittel3.73	neos18	0.00	24	388.43	neos18	0.00	14	435.86
neos8100.0050.94neos8100.0060.54nug080.0020201.75nug080.0016381.38nw041.751235.92nw041.751235.91p003360.9728822.71p003369.181899.57p02010.00680.12p02010.00330.00p02821.15200.09p02820.1960.02p054825.412181.51p05488.191050.11p27569.445941.20p27564.044630.21prod10.0000.04prod10.00037.49qap102.24689550.41qap102.24670147.64qnet123.20521134.82qnet118.8116825.29qnet1.o22.1246530.20qnet1.o29.6953488.03seymour7.76223074.51seymour0.0001.47stein450.0002.69stein450.0002.80t17170.0438546.87t17170.0430624.39werschobenesgeometrisches Mittel3.73528.26#gap closed%100%33	neos21	46.98	795	1040.25	neos21	27.08	303	383.11
nug080.0020201.75nug080.0016381.38nw041.751235.92nw041.751235.91p003360.9728822.71p003369.181899.57p02010.00680.12p02010.00330.00p02821.15200.09p02820.1960.02p054825.412181.51p05488.191050.11p27569.445941.20p27564.044630.21prod10.0000.04prod10.0000potfold0.0039287.37profold0.00037.49qap102.24689550.41qap102.24670147.64qnet123.20521134.82qnet118.8116825.29gnet1_o22.1246530.20qnet1_o29.6953488.03seymour7.76223074.51seymour0.0001.47stein450.0001.47stein270.0001.47verschobenesgeometrisches Mittel3.73528.26#gap closed%100%3"gap closed%100%3348.2	neos8	100.00	5	0.94	neos8	100.00	6	0.54
nw041.751235.92nw041.751235.91p0033 60.97 28822.71p0033 69.18 1899.57p0201 0.00 68 0.12 p0201 0.00 33 0.00 p0282 1.15 20 0.09 p0282 0.19 6 0.02 p0548 25.41 218 1.51 p0548 8.19 105 0.11 p2756 9.44 594 1.20 p2756 4.04 463 0.21 prod1 0.00 0 0.04 prod1 0.00 0 0.01 protfold 0.00 39 287.37 protfold 0.00 0 37.49 qap10 2.24 6895 50.41 qap10 2.24 6701 47.64 qnet1 23.20 521 134.82 qnet1 18.81 168 25.29 qnet1_o 22.12 465 30.20 qnet1_o 29.69 534 88.03 seymour 7.76 22 3074.51 seymour 0.00 0 1.47 stein27 0.00 0 1.47 stein27 0.00 0 2.80 t1717 0.04 385 46.87 $t1717$ 0.04 306 24.39 werschobenesgeometrisches Mittel 3.73 52 8.26 #gap closed%100% 3 "werschobenes 3 "werschobenes 3	nug08	0.00	2020	1.75	nug08	0.00	1638	1.38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nw04	1.75	123	5.92	nw04	1.75	123	5.91
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p0033	60.97	288	22.71	p0033	69.18	189	9.57
P02821.15200.09p02820.1960.02p054825.412181.51p05488.191050.11p27569.445941.20p27564.044630.21prod10.0000.04prod10.0000.01protfold0.0039287.37protfold0.00037.49qap102.24689550.41qap102.24670147.64qnet123.20521134.82qnet118.8116825.29qnet1_o22.1246530.20qnet1_o29.6953488.03seymour7.76223074.51seymour0.000180.61sp97ar17.20158197.20sp97ar19.73143161.56stein450.0002.69stein450.0002.80t17170.0438546.87t17170.0430624.39verschobenesyerschobenesyerschobenesyerschobenes348.04100%3	p0201	0.00	68	0.12	p0201	0.00	33	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p0282	1.15	20	0.09	p0282	0.19	6	0.02
p27569.445941.20p27564.044630.21prod10.0000.04prod10.0000.01protfold0.0039287.37protfold0.00037.49qap102.24689550.41qap102.24670147.64qnet123.20521134.82qnet118.8116825.29qnet1_o22.1246530.20qnet1_o29.6953488.03seymour7.76223074.51seymour0.000180.61sp97ar17.20158197.20sp97ar19.73143161.56stein270.0001.47stein270.0002.80t17170.0438546.87t17170.0430624.39verschobenesyerschobenesyerschobenesyerschobenes24.393#gap closed%100%34.96709.11geometrisches Mittel3.73528.26	p0548	25.41	218	1.51	p0548	8.19	105	0.11
prod 1.00 0.00 0 0.01 1.00 0.01 prod1 0.00 0 0.04 prod1 0.00 0 0.01 protfold 0.00 39 287.37 protfold 0.00 0 37.49 qap10 2.24 6895 50.41 qap10 2.24 6701 47.64 qnet1 23.20 521 134.82 qnet1 18.81 168 25.29 qnet1_o 22.12 465 30.20 qnet1_o 29.69 534 88.03 seymour 7.76 22 3074.51 seymour 0.00 0 180.61 sp97ar 17.20 158 197.20 $sp97ar$ 19.73 143 161.56 stein27 0.00 0 1.47 stein27 0.00 0 1.47 stein45 0.00 0 2.69 stein45 0.00 0 2.80 t1717 0.04 385 46.87 $t1717$ 0.04 306 24.39 verschobenesverschobenesverschobenes $yerschobenes$ $yerschobenes$ $yerschobenes$ $yerschobenes$ geometrisches Mittel 4.96 70 9.11 $yerschobenes$ 3.73 52 8.26 #gap closed%100% 3 $yerschobenes$ $yerschobenes$ $yerschobenes$ $yerschobenes$	p2756	9 44	594	1.20	p2756	4.04	463	0.21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	prod1	0.00	0	0.04	prod1	0.00	0	0.01
protection 2.24 6895 50.11 90.101 90.010 2.24 6701 47.64 qap10 2.24 6895 50.41 qap10 2.24 6701 47.64 qnet1 23.20 521 134.82 qnet1 18.81 168 25.29 qnet1_o 22.12 465 30.20 qnet1_o 29.69 534 88.03 seymour 7.76 22 3074.51 seymour 0.00 0 180.61 sp97ar 17.20 158 197.20 $sp97ar$ 19.73 143 161.56 stein27 0.00 0 1.47 stein27 0.00 0 1.47 stein45 0.00 0 2.69 stein45 0.00 0 2.80 $t1717$ 0.04 385 46.87 $t1717$ 0.04 306 24.39 verschobenesverschobenes $verschobenes$ $verschobenes$ $senetrisches Mittel$ 3.73 52 8.26 #gap closed%100% 3 4.96 70 9.11 $geometrisches Mittel$ 3.73 52 8.26	protfold	0.00	39	287.37	protfold	0.00	Õ	37.49
InputInterventInterventInterventInterventInterventquet123.20521134.82quet118.8116825.29quet1_o22.1246530.20quet1_o29.6953488.03seymour7.76223074.51seymour0.000180.61sp97ar17.20158197.20sp97ar19.73143161.56stein270.0001.47stein270.0001.47stein450.0002.69stein450.0002.80t17170.0438546.87t17170.0430624.39verschobenesverschobenesyerschobenesyerschobenes117173.73528.26#gap closed%100%34gap closed%100%333333	gap10	2.24	6895	50.41	gap10	2.24	6701	47.64
quefitLeftLeftLeftLeftquefit_o22.12465 30.20 quefit_o29.69 534 88.03 seymour7.7622 3074.51 seymour 0.00 0 180.61 sp97ar17.20158 197.20 $sp97ar$ 19.73 143 161.56 stein270.0001.47stein27 0.00 0 1.47 stein450.0002.69stein45 0.00 0 2.80 $t1717$ 0.04 385 46.87 $t1717$ 0.04 306 24.39 verschobenesverschobenesyerschobenes $t1717$ 0.04 306 24.39 geometrisches Mittel 4.96 70 9.11 geometrisches Mittel 3.73 52 8.26 #gap closed%100% 3 #gap closed%100% 3 400 306 24.39	anet1	23.20	521	134.82	que 10	18.81	168	25.29
InitialInitialInitialInitialInitialseymour 7.76 22 3074.51 seymour 0.00 0 180.61 sp97ar 17.20 158 197.20 $sp97ar$ 19.73 143 161.56 stein27 0.00 0 1.47 stein27 0.00 0 1.47 stein45 0.00 0 2.69 stein45 0.00 0 2.80 $t1717$ 0.04 385 46.87 $t1717$ 0.04 306 24.39 verschobenesverschobenesverschobenes $verschobenes$ $semetrisches Mittel$ 3.73 52 8.26 #gap closed%100% 3 $#gap \ closed\%100\%$ 3 3 $semetrisches Mittel$ 3.73 52 8.26	anet1 o	22.12	465	30.20	anet1 o	29.69	534	88.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	sevmour	7.76	22	3074.51	sevmour	0.00	0	180.61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sp97ar	17.20	158	197.20	sp97ar	19.73	143	161.56
Introduction Introduction <t< td=""><td>stein27</td><td>0.00</td><td>0</td><td>1.47</td><td>stein27</td><td>0.00</td><td>0</td><td>1.47</td></t<>	stein27	0.00	0	1.47	stein27	0.00	0	1.47
11717 0.04 385 46.87 11717 0.04 306 24.39 verschobenes verschobenes verschobenes verschobenes verschobenes 3.73 52 8.26 #gap closed% ^{100%} 3 3 #gap closed% ^{100%} 3 52 8.26	stein45	0.00	0	2.69	stein45	0.00	0	2.80
verschobenesverschobenesgeometrisches Mittel 4.96 70 9.11 geometrisches Mittel 3.73 52 8.26 #gap closed% ^{100%} 3 #gap closed% ^{100%} 3	t1717	0.04	385	46.87	t1717	0.04	306	24.39
geometrisches Mittel4.96709.11geometrisches Mittel 3.73 528.26#gap closed%^{100\%}3#gap closed%^{100\%}3	verschobenes				verschobenes			
$#gap closed\%^{100\%} \qquad 3 \qquad \qquad #gap closed\%^{100\%} \qquad 3$	geometrisches Mittel	4.96	70	9.11	geometrisches Mittel	3.73	52	8.26
	#gap closed% ^{100%}	3			#gap closed% ^{100%}	3		

Tabelle E.37: Rechenstudie 4.3: HEURIP- Tabelle E.38: Rechenstudie 4.3: HEURIP-ZF5P0.1, $\mathcal{V}^{min} = 0.01$

ZF5P0.1, $V^{min} = 0.10$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	T _{sepa}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10teams	0.00	1	8.08	10teams	0.00	0	4.14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30:70:4_5:0_5:100	0.00	0	1453.85	30:70:4_5:0_5:100	0.00	0	366.47
air03 100.00 1 0.02 air03 100.00 1 0.01 air04 17.24 861 22.47 air04 9.05 454 8.47 air05 5.50 22.82 12.74 air05 11.29 1353 6.38 cap6000 0.73 4 0.03 cap6000 0.73 4 0.02 ds 0.06 1935 7.2.43 ds 0.06 1937 7.326 ciD76 6.23 255 1.51 ciD76 2.50 21 0.9 29.33 fiber 22.38 182 26.52 fiber 16.21 87 7.13 g2 1.29 2 0.00 12 1.29 2 0.01 inp 26.15 57 0.63 irp 69.82 72 0.79 lseu 50.96 342 11.80 lseu 1.49 9 0.02 markshare1 0.00 32 mana81 100.00 27 0.25 misc03 19.25 101 </td <td>30:70:4_5:0_95:98</td> <td>0.00</td> <td>9</td> <td>365.49</td> <td>30:70:4_5:0_95:98</td> <td>0.00</td> <td>5</td> <td>248.10</td>	30:70:4_5:0_95:98	0.00	9	365.49	30:70:4_5:0_95:98	0.00	5	248.10
air04 17.24 861 22.47 air04 9.05 4.44 8.47 air05 5.50 2382 12.74 air05 11.29 1353 6.38 cap6000 0.73 4 0.03 cap6000 0.73 4 0.02 ds 0.06 1935 72.43 ds 0.06 1931 73.26 cilD76 6.23 255 1.51 cilD76 2.50 2.01 0.40 fast0507 0.00 0 7.93 fast0507 1.70 8 29.33 fiber 2.2.38 182 26.52 fiber 1.62 2.9 0.01 harp2 0.00 24 0.01 harp2 0.00 12 0.05 ip 26.15 57 0.63 ip 69.82 7 0.70 lseu 50.96 342 11.80 lseu 1.49 9 0.02 mama81 100.00 24 1.32 manna81 100.00 27 0.26 markshare1 0.00	air03	100.00	1	0.02	air03	100.00	1	0.01
air05 5.50 2382 12.74 air05 11.29 1353 6.38 cap6000 0.73 4 0.03 cap6000 0.73 4 0.02 cs 0.06 1935 72.43 ds 0.06 1931 73.26 cilD76 6.23 255 1.51 eilD76 2.50 201 0.40 fast0507 0.00 0 7.93 fast0507 1.70 8 29.33 fiber 22.38 182 26.52 fiber 1.621 87 7.13 gl2 1.29 2 0.00 gl2 1.29 2 0.01 hap2 0.00 24 0.10 hap2 0.00 2 0.10 markshare1 0.00 342 11.80 Iseu 1.49 9 0.02 markshare2 0.00 22 0.01 markshare2 0.00 7 0.00 mico3 18.57 110 41.74 miso3 19.25 101 36.20 misc03 18.57	air04	17.24	861	22.47	air04	9.05	454	8.47
cap6000 0.73 4 0.03 cap6000 0.73 4 0.02 ds 0.06 1935 72.43 ds 0.06 1931 73.26 eiD76 6.23 255 1.51 eiD76 2.50 2.01 0.40 fast0507 0.00 0 7.93 fast0507 1.70 8 29.33 fiber 22.38 182 26.52 fiber 16.21 87 7.13 gt2 1.29 2 0.00 gt2 1.29 2 0.01 harp 26.15 57 0.63 irp 69.82 7.07 lseu 50.96 342 11.80 lseu 1.49 9 0.02 markshare1 0.00 12 noid0 markshare2 0.00 7 0.00 misc07 6.24 163 17.92 misc07 6.55 172 15.22 mod08 0.09 7 0.00 mar	air05	5.50	2382	12.74	air05	11.29	1353	6.38
ds 0.06 1935 72.43 ds 0.06 1931 73.26 eilD76 6.23 255 1.51 eilD76 2.50 201 0.40 fast0507 0.00 0 7.93 fast0507 1.70 8 29.31 fiber 22.38 182 26.52 fiber 16.21 87 7.13 gl2 1.29 2 0.00 gl2 1.29 2 0.01 harp2 0.00 24 0.10 harp2 0.00 12 0.05 irp 65.96 342 11.80 Iseu 1.49 9 0.02 mana81 100.00 342 1.32 mana81 10.00 2 0.00 markshare1 0.00 12 0.00 markshare2 0.00 7 0.00 misc07 6.24 163 17.92 misc07 6.55 172 15.22 mico 1.581 376	cap6000	0.73	4	0.03	cap6000	0.73	4	0.02
eilD76 6.23 255 1.51 eilD76 2.50 201 0.40 fast0507 0.00 0 7.93 fast0507 1.70 8 29.33 gt2 1.29 2 0.00 gt2 1.29 2 0.01 harp2 0.00 24 0.10 harp2 0.00 12 0.05 irp 26.15 57 0.65 irp 69.82 72 0.79 lscu 8.79 391 0.58 1152lav 7.98 240 2.79 markshare1 0.00 342 1.32 manna81 100.00 22 0.00 markshare2 0.00 22 0.00 markshare2 0.00 7 0.00 misc07 6.24 163 17.92 misc03 19.25 101 36.20 mitre 1.48 300 0.36 mitre 1.62 314 0.32 mod010 1.5.81 376 5.53 mod010 12.57 37 0.03 neos16 9.52 <td>ds</td> <td>0.06</td> <td>1935</td> <td>72.43</td> <td>ds</td> <td>0.06</td> <td>1931</td> <td>73.26</td>	ds	0.06	1935	72.43	ds	0.06	1931	73.26
fast0507 0.00 0 7.93 fast0507 1.70 8 29.33 fiber 2.3.8 182 26.52 fiber 16.21 87 7.13 gl2 1.29 2 0.00 gt2 1.29 2 0.01 harp2 0.00 24 0.10 harp2 0.00 12 0.05 irp 26.15 57 0.63 irp 69.82 72 0.79 lseu 50.96 342 11.80 lseu 1.49 9 0.02 manshare1 0.00 342 1.32 mana81 100.00 273 0.26 mirsc03 18.57 110 41.74 misc03 19.25 101 36.20 misc07 6.24 163 17.29 misc07 6.55 172 15.22 mire 1.48 300 0.36 mire 1.62 314 0.32 mod08 0.09 7 0.00 mod08 0.08 4.00 0.00 mod010 1.5.81 <	eilD76	6.23	255	1.51	eilD76	2.50	201	0.40
fiber 22.38 182 26.52 fiber 16.21 87 7.13 g2 1.29 2 0.00 g2 1.29 2 0.01 hap2 0.00 24 0.10 harp2 0.00 12 0.05 irp 26.15 57 0.63 irp 69.82 72 0.79 lscu 50.96 342 11.80 lscu 1.49 9 0.02 manna81 100.00 342 11.32 manna81 100.00 2 0.00 markshare1 0.00 22 0.01 markshare2 0.00 7 0.00 misc03 18.57 110 41.74 misc07 6.55 172 15.22 mire 1.48 300 0.36 mire 1.62 314 0.32 mod008 0.09 7 0.00 mod010 12.57 37 0.03 neos1 0.00 163 14.61<	fast0507	0.00	0	7.93	fast0507	1.70	8	29.33
gt2 1.29 2 0.00 gt2 1.29 2 0.01 harp2 0.00 24 0.10 harp2 0.00 12 0.05 li52 irp 69.82 72 0.79 li52 8.79 391 0.58 li52 7.98 2.40 2.79 lseu 50.96 3.42 11.80 lseu 1.49 9 0.02 markshare1 0.00 12 0.00 22 0.00 markshare2 0.00 2 0.00 misc03 18.57 110 41.74 misc03 19.25 101 36.20 misc07 6.24 163 17.92 misc07 6.55 172 15.22 mod08 0.09 7 0.00 mod08 0.08 4 0.00 modo10 15.81 376 5.53 mod10 12.57 37 0.33 neos16 9.52 388 4.27 neos16 9.52 375 3.35 ng08 0.00 1638 1.48	fiber	22.38	182	26.52	fiber	16.21	87	7.13
hap2 0.00 24 0.10 harp2 0.00 12 0.05 irp 26.15 57 0.63 irp 69.82 72 0.79 lseu 50.96 342 11.80 Iseu 1.49 9 0.02 manna81 100.00 342 1.32 manna81 100.00 273 0.26 markshare1 0.00 19 0.00 markshare2 0.00 2 0.00 mics03 18.57 110 41.74 misc07 6.55 172 15.22 mire 1.48 300 0.36 mitre 1.62 314 0.32 mod010 15.81 376 5.53 mod10 12.57 37 0.03 neos1 0.00 10 3.01 neos1 28.57 189 4.30 neos10 3.26 34 6.82 neos16 9.52 373 2.35 neos16 9.52 388	gt2	1.29	2	0.00	gt2	1.29	2	0.01
inp 26.15 57 0.63 inp 69.82 72 0.79 1152lav 8.79 391 0.58 1152lav 7.98 240 2.79 mansal 100.00 342 1.80 Iseu 1.49 9 0.02 markshare1 0.00 19 0.00 markshare2 0.00 2 0.00 misc03 18.57 110 41.74 misc03 19.25 101 36.20 misc07 6.24 163 17.92 misc07 6.55 172 15.22 mod08 0.09 7 0.00 mod008 0.08 4 0.00 mcosl 0.00 10 3.01 ncosl 28.57 189 4.30 ncosl6 9.52 388 4.27 ncosl 28.57 18.9 4.30 ncosl6 9.52 384 4.27 ncosl 5.56 36 67.9 ncosl6 9.52 384	harp2	0.00	24	0.10	harp2	0.00	12	0.05
1152lav 8.79 391 0.58 152lav 7.98 240 2.79 lscu 50.96 342 11.80 lseu 1.49 9 0.02 manna81 100.00 342 1.32 manna81 100.00 2 0.00 markshare1 0.00 22 0.01 markshare2 0.00 7 0.00 misc07 6.24 163 17.92 misc07 6.55 172 15.22 mitre 1.48 300 0.36 mitre 1.62 314 0.32 mod08 0.09 7 0.00 mod008 0.08 4 0.00 ncos1 0.00 10 3.01 neos10 12.57 37 0.3 ncos16 9.52 388 4.27 neos16 9.52 375 2.35 ncos18 0.00 15 346.21 neos18 0.00 16.37 1.38 ng08 0.00 1638 1.48 nug08 0.00 16.37 1.38 ng021 0	irp	26.15	57	0.63	irp	69.82	72	0.79
lseu 50.96 342 11.80 lseu 1.49 9 0.02 manna81 100.00 342 1.32 manna81 100.00 273 0.26 markshare1 0.00 19 0.00 markshare2 0.00 7 0.00 misc03 18.57 110 41.74 misc07 6.55 172 15.22 mitre 1.62 314 0.32 mod08 0.08 4 0.00 mod010 15.81 376 5.53 mod010 12.57 37 0.03 neos1 0.00 10 3.01 neos1 28.57 189 4.30 neos16 9.52 388 4.27 neos18 5.56 36 6.799 neos21 2.77 16 45.16 neos21 0.00 0 6.79 neos48 0.00 163 1.48 nug08 0.00 5.305 nug08 0.00 163 1.48	1152lav	8.79	391	0.58	1152lav	7.98	240	2.79
manna81 100.00 342 1.32 manna81 100.00 273 0.26 markshare1 0.00 19 0.00 markshare2 0.00 7 0.00 markshare2 0.00 22 0.01 markshare2 0.00 7 0.00 misc03 18.57 110 41.74 misc03 19.25 101 36.20 mire 1.48 300 0.36 mitre 1.62 314 0.32 mod008 0.09 7 0.00 mod088 0.08 4 0.00 mod010 15.81 376 5.53 mod010 12.57 37 0.03 neos1 0.00 10 3.01 neos1 28.57 189 4.30 neos16 9.52 388 4.27 neos16 9.52 375 2.35 neos21 2.07 16 45.16 neos21 0.00 0.677 neos8 100.00 1638	lseu	50.96	342	11.80	lseu	1.49	9	0.02
markshare10.00190.00markshare10.0020.00markshare20.00220.01markshare20.0070.00misc0318.5711041.74misc0319.2510136.20misc076.2416317.92misc076.5515.22mitre1.483000.36mitre1.623140.32mod0080.0970.00mod0080.0840.00mod1015.813765.53mod01012.57370.03neos10.00103.01neos128.571894.30neos169.523884.27neos169.523752.35neos180.0015346.21neos169.523752.35neos180.0016346.21neos169.523753.38neos8100.00100.64neos8100.0053.05nug080.0016381.48nug080.0016371.38nug042.301085.40nw041.811175.66p02010.000330.01p02010.0030.00p054820.231260.27p05487.84620.08profd0.00660.01profd0.00254.65qap102.24669947.23qap102.246699	manna81	100.00	342	1.32	manna81	100.00	273	0.26
markshare2 0.00 22 0.01 markshare2 0.00 7 0.00 misc03 18.57 110 41.74 misc03 19.25 101 36.20 misc07 6.24 163 17.92 misc07 6.55 172 15.22 mod08 0.09 7 0.00 mod008 0.08 4 0.00 mod010 15.81 376 5.53 mod010 12.57 37 0.03 neos1 0.00 10 3.01 neos1 28.57 189 4.30 neos16 9.52 388 4.27 neos16 9.52 375 2.35 neos18 0.00 15 346.21 neos12 0.00 0 6.79 neos8 100.00 10 6.44 neos12 0.00 6.67 9 neos8 100.00 16 4.42 neos14 neos12 0.00 6.79 neos4 0.00 16	markshare1	0.00	19	0.00	markshare1	0.00	2.2	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	markshare?	0.00	22	0.01	markshare?	0.00	- 7	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	misc03	18 57	110	41 74	misc03	19.25	101	36.20
mitter1.483000.36mitter1.52112112mod0080.0970.00mod0080.0840.00mod01015.813765.53mod01012.57370.03neos10.00103.01neos128.571894.30neos103.26346.82neos1021.744410.73neos169.523884.27neos169.523752.35neos180.0015346.21neos185.563667.99neos212.771645.16neos210.0006.07neos8100.00100.64neos8100.0053.05ng080.0016381.48nug080.0016371.38nw042.301085.40nw041.811175.66p003344.65550.59p003327.38290.03p02010.00330.01p02820.0720.00p054820.231260.27p05487.84620.88prof10.0000.00prof10.0000.00prof10.00660.01prof10d0.00254.65qnet115.9916641.09qnet112.3110826.67qnet10.23.5134950.84qnet1.o22.1911215.3	misc07	6.24	163	17.92	misc07	6 55	172	15 22
Inite1.003000.00mide1.023.140.02mod0080.0970.00mod0080.0840.00mod01015.813765.53mod01012.57370.03neos10.00103.01neos128.571894.30neos103.26346.82neos1021.744410.73neos169.523884.27neos169.523752.35neos180.0015346.21neos185.563667.99neos212.771645.16neos210.0006.07neos8100.00100.64neos8100.0053.05nug080.0016381.48nug080.0016371.38nug080.0016381.48nug080.0016371.38nug080.0016381.48nug080.0016371.38nug080.0016381.48nug080.0016371.38p02010.0030.01p02010.0030.00p02820.0720.00p02820.0720.00pot4820.231260.27p05487.84620.08prot10.0000.00prot61d0.00254.65qap102.24669947.23qap102.24669947.23<	mitre	1 48	300	0.36	mitre	1.62	314	0.32
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mod008	0.09	500	0.00	mod008	0.08	4	0.02
Inductor 15.81 57.0 55.35 inductor 12.57 12.57 189 4.30 neos1 3.26 34 6.82 neos1 28.57 189 4.30 neos16 9.52 388 4.27 neos16 9.52 375 2.35 neos18 0.00 15 346.21 neos18 5.56 36 67.99 neos8 100.00 10 0.64 neos8 100.00 5 3.05 nug08 0.00 1638 1.48 nug08 0.00 1637 1.38 nw04 2.30 108 5.40 nw04 1.81 117 5.66 p0033 44.65 55 0.59 p0033 27.38 29 0.03 p021 0.00 33 0.01 p0201 0.00 3 0.00 p0282 0.07 2 0.00 p0282 0.07 2 0.00 pot41 0.00 0 0.00 pot448 7.84 62 0.08 qnet1 <	mod010	15.81	376	5 53	mod010	12 57	37	0.00
Incosit 0.00 10 3.01 itcosit 26.37 10 4.30 neos10 3.26 34 6.82 neos10 21.74 444 10.73 neos16 9.52 388 4.27 neos16 9.52 375 2.35 neos18 0.00 15 346.21 neos18 5.56 36 67.99 neos8 100.00 10 0.64 neos8 100.00 5 3.05 nug08 0.00 1638 1.48 nug08 0.00 1637 1.38 nw04 2.30 108 5.40 nw04 1.81 117 5.66 p0033 44.65 55 0.59 p0033 27.38 29 0.03 p0201 0.00 33 0.01 p0202 0.07 2 0.00 p0548 20.23 126 0.27 p0548 7.84 62 0.08 prof1 0.00 0 0.00 prof1 0.00 0 0.00 potfold 0.00 <	neos1	0.00	10	3.01	neos1	28.57	180	4 30
Incosito 3.40 3.40 0.02 incosito 21.74 44 10.73 neosito 9.52 388 4.27 neosito 9.52 375 2.35 neosita 0.00 15 346.21 neosita 5.56 36 67.99 neosita 100.00 10 0.64 neosa 100.00 5 3.05 nug08 0.00 1638 1.48 nug08 0.00 1637 1.38 nu04 2.30 108 5.40 nw04 1.81 117 5.66 p0033 44.65 55 0.59 p0033 27.38 29 0.03 p0201 0.00 33 0.01 p0201 0.00 3 0.00 p0548 20.23 126 0.27 p0548 7.84 62 0.08 proti 0.00 0 0.00 proti 0.00 0 0.00 protid 0.00 6 60.01 protid 0.00 2.24 6699 47.68 qnet1 <td>neos10</td> <td>3.26</td> <td>34</td> <td>6.82</td> <td>neos10</td> <td>20.57</td> <td>10)</td> <td>10.73</td>	neos10	3.26	34	6.82	neos10	20.57	10)	10.73
Incosto 9.52 500 4.27 incosto 9.52 575 2.55 neos18 0.00 15 346.21 neos18 5.56 36 67.99 neos21 2.77 16 45.16 neos21 0.00 0 6.07 neos8 100.00 10 0.64 neos8 100.00 5 3.05 nug08 0.00 1638 1.48 nug08 0.00 1637 1.38 nv04 2.30 108 5.40 $nw04$ 1.81 117 5.66 p0033 44.65 55 0.59 $p0033$ 27.38 29 0.03 p0201 0.00 33 0.01 $p0221$ 0.00 3 0.00 $p0033$ 27.38 29 0.03 $p000$ $p00033$ 27.38 29 0.03 $p000$ $p00033$ 27.38 29 0.03 $p000$ $p00033$ 20.00 $p0033$ 27.38 29 0.03 $p0033$ $p021$ <td>neos16</td> <td>9.20</td> <td>399</td> <td>4.27</td> <td>neos16</td> <td>0.52</td> <td>375</td> <td>2 35</td>	neos16	9.20	399	4.27	neos16	0.52	375	2 35
neos150.0013340.11neos150.003007.99neos212.771645.16neos210.0006.07neos8100.00100.64neos8100.0053.05nug080.0016381.48nug080.0016371.38nw042.301085.40nw041.811175.66p003344.65550.59p003327.38290.03p02010.00330.01p02820.0720.00p054820.231260.27p05487.84620.08prod10.0000.00prod10.0000.00prod10.00660.01protfold0.00254.65qap102.24669947.23qap102.24669947.68qnet115.9916641.09qnet112.3110826.67qnet1_o23.5134950.84qnet1_o22.1911215.36seymour6.8122935.34seymour11.2227643.69sp97ar15.159883.31sp97ar17.218269.76stein270.00677.00stein270.0033.45t17170.0427319.20t17170.0425517.65verschobenesgeometrisches Mittel3.453.5634 </td <td>ncos10</td> <td>9.52</td> <td>15</td> <td>246.21</td> <td>neos10</td> <td>5.56</td> <td>26</td> <td>67.00</td>	ncos10	9.52	15	246.21	neos10	5.56	26	67.00
neos212.77104.7.10neos210.00000.00neos8100.00100.64neos8100.0053.05nug080.0016381.48nug080.0016371.38nw042.301085.40nw041.811175.66p003344.65550.59p003327.38290.03p02010.00330.01p02010.0030.00p02820.0720.00p02820.0720.00p054820.231260.27p05487.84620.08prod10.0000.00prod10.0000.00prod10.00660.01profold0.00254.65qap102.24669947.23qap102.24669947.68qnet115.9916641.09qnet112.3110826.67qnet1.o23.5134950.84qnet1.o22.1911215.36seymour6.8122935.34seymour11.2227643.69sp7ar15.159883.31sp7ar17.218269.76stein450.001713.33stein450.0033.45t17170.0427319.20t17170.0425517.65verschobenesgeometrisches Mittel3.42527.19	neos10	0.00	15	340.21 45.16	neos18	5.50	50	6.07
neose100.00100.04neose100.0033.03nug080.0016381.48nug080.0016371.38nw042.301085.40nw041.811175.66p003344.65550.59p003327.38290.03p02010.00330.01p02210.0030.00p02820.0720.00p02820.0720.00p054820.231260.27p05487.84620.08p27561.653000.14p27560.381190.05prod10.00660.01protfold0.00254.65qap102.24669947.23qap102.24669947.68qnet1_o23.5134950.84qnet1_o22.1911215.36seymour6.8122935.34seymour11.2227643.69sp97ar15.159883.31sp97ar17.218269.76stein270.00657.00stein270.00573.48stein450.001713.33stein450.0033.45t17170.0427319.20t17170.0425517.65verschobenesyerschobenesyerschobenesyerschobenesyerschobenesyerschobenesgeometrisches Mittel3.42527.19	neos21	100.00	10	45.10	neos21	100.00	5	2.05
Indgos0.0016531.45Indgos0.0016571.36nw042.301085.40nw041.811175.66p003344.65550.59p003327.38290.03p02010.00330.01p02820.0720.00p054820.231260.27p05487.84620.08p27561.653000.14p27560.381190.05prod10.0000.00prod10.00000.00protfold0.00660.01protfold0.00254.65qap102.24669947.23qap102.24669947.68qnet115.9916641.09qnet112.3110826.67qnet1_o23.5134950.84qnet1_o22.1911215.36seymour6.8122935.34seymour11.2227643.69sp97ar15.159883.31sp97ar17.218269.76stein270.00657.00stein270.00573.48stein450.001713.33stein450.0033.45t17170.0427319.20t17170.0425517.65verschobenesgeometrisches Mittel3.42527.19geometrisches Mittel3.56344.84#gap closed%100%<	neoso	100.00	1620	1.49	neoso	100.00	J 1627	5.05
nw042.301085.40nw041.811175.60p003344.65550.59p003327.38290.03p02010.00330.01p02010.0030.00p02820.0720.00p02820.0720.00p054820.231260.27p05487.84620.08p27561.653000.14p27560.381190.05prod10.0000.00prod10.0000.00protfold0.00660.01protfold0.00254.65qap102.24669947.23qap102.24669947.68qnet115.9916641.09qnet112.3110826.67qnet1.o23.5134950.84qnet1.o22.1911215.36seymour6.8122935.34seymour11.2227643.69sp7ar15.159883.31sp97ar17.218269.76stein270.00657.00stein270.00573.48verschobenesyerschobenesyerschobenesyerschobenesyerschobenes117170.0425517.65verschobenes34.84#gap closed%^{100%}334.844.84	nug08	0.00	1058	1.40 5.40	nug08	0.00	1057	1.56
p005344.65550.39p005327.38290.05p02010.00330.01p02010.0030.00p02820.0720.00p02820.0720.00p054820.231260.27p05487.84620.08p27561.653000.14p27560.381190.05prod10.0000.00prod10.0000.00protfold0.00660.01protfold0.00254.65qap102.24669947.23qap102.24669947.68qnet115.9916641.09qnet112.3110826.67qnet1_o23.5134950.84qnet1_o22.1911215.36seymour6.8122935.34seymour11.2227643.69sp97ar15.159883.31sp97ar17.218269.76stein270.00657.00stein270.00573.48stein450.001713.33stein450.0033.45t17170.0427319.20t17170.0425517.65verschobenesverschobenesverschobenes34.84484#gap closed%100%34.84#gap closed%100%34.84	nw04 	2.30	108	5.40	nw04 =0022	1.81	20	0.02
$p0201$ 0.00 33 0.01 $p0201$ 0.00 3 0.00 $p0282$ 0.07 2 0.00 $p0282$ 0.07 2 0.00 $p0548$ 20.23 126 0.27 $p0548$ 7.84 62 0.08 $p2756$ 1.65 300 0.14 $p2756$ 0.38 119 0.05 $prod1$ 0.00 0 0.00 $prod1$ 0.00 0 0.00 $protfold$ 0.00 6 60.01 $protfold$ 0.00 2 54.65 $qap10$ 2.24 6699 47.23 $qap10$ 2.24 6699 47.68 $qnet1$ 15.99 166 41.09 $qnet1$ 12.31 108 26.67 $qnet1_o$ 23.51 349 50.84 $qnet1_o$ 22.19 112 15.36 $seymour$ 6.81 22 935.34 $seymour$ 11.22 27 643.69 $sp97ar$ 15.15 98 83.31 $sp97ar$ 17.21 82 69.76 $stein27$ 0.00 65 7.00 $stein27$ 0.00 57 3.48 $t1717$ 0.04 273 19.20 $t1717$ 0.04 255 17.65 $verschobenes$ $verschobenes$ $verschobenes$ $verschobenes$ $seponetrisches Mittel$ 3.56 34 4.84 $#gap closed\%^{100\%}$ 3 $#gap closed\%^{100\%}$ 3 4.84	p0033	44.65	22	0.59	p0033	27.38	29	0.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p0201	0.00	33	0.01	p0201	0.00	3	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p0282	0.07	126	0.00	p0282	0.07	2	0.00
p2/2561.653000.14p2/260.381190.05prod10.0000.00prod10.0000.00protfold0.00660.01protfold0.00254.65qap102.24669947.23qap102.24669947.68qnet115.9916641.09qnet112.3110826.67qnet1_o23.5134950.84qnet1_o22.1911215.36seymour6.8122935.34seymour11.2227643.69sp97ar15.159883.31sp97ar17.218269.76stein270.00657.00stein270.00573.48stein450.001713.33stein450.0033.45t17170.0427319.20t17170.0425517.65verschobenesverschobenesverschobenes4.844.84#gap closed%100%34.84#gap closed%100%3	p0548	20.23	126	0.27	p0548	7.84	62	0.08
prod10.0000.00prod10.0000.00protfold0.00660.01protfold0.00254.65qap102.24669947.23qap102.24669947.68qnet115.9916641.09qnet112.3110826.67qnet1_o23.5134950.84qnet1_o22.1911215.36seymour6.8122935.34seymour11.2227643.69sp97ar15.159883.31sp97ar17.218269.76stein270.00657.00stein270.00573.48stein450.001713.33stein450.0033.45t17170.0427319.20t17170.0425517.65verschobenesverschobenesverschobenes4.844.84#gap closed%100%334.84	p2/56	1.65	300	0.14	p2756	0.38	119	0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	prod	0.00	0	0.00	prod	0.00	0	0.00
qap102.24669947.23qap102.24669947.68qnet115.9916641.09qnet112.3110826.67qnet1_o23.5134950.84qnet1_o22.1911215.36seymour6.8122935.34seymour11.2227643.69sp97ar15.159883.31sp97ar17.218269.76stein270.00657.00stein270.00573.48stein450.001713.33stein450.0033.45t17170.0427319.20t17170.0425517.65verschobenesverschobenesverschobenes4.844.84#gap closed%100%334.844.84	protfold	0.00	6	60.01	protfold	0.00	2	54.65
qnet115.9916641.09qnet112.3110826.67qnet1_o23.5134950.84qnet1_o22.1911215.36seymour6.8122935.34seymour11.2227643.69sp97ar15.159883.31sp97ar17.218269.76stein270.00657.00stein270.00573.48stein450.001713.33stein450.0033.45t17170.0427319.20t17170.0425517.65verschobenesverschobenesverschobenes4.84geometrisches Mittel3.42527.19geometrisches Mittel3.56344.84	qap10	2.24	6699	47.23	qap10	2.24	6699	47.68
qnet1_023.5134950.84qnet1_022.1911215.36seymour6.8122935.34seymour11.2227643.69sp97ar15.159883.31sp97ar17.218269.76stein270.00657.00stein270.00573.48stein450.001713.33stein450.0033.45t17170.0427319.20t17170.0425517.65verschobenesverschobenesverschobenes4.844.84#gap closed%100%334.84	qnet1	15.99	166	41.09	qnet1	12.31	108	26.67
seymour6.8122935.34seymour11.2227643.69 $sp97ar$ 15.159883.31 $sp97ar$ 17.218269.76 $stein27$ 0.00657.00stein270.00573.48 $stein45$ 0.001713.33stein450.0033.45 $t1717$ 0.0427319.20 $t1717$ 0.0425517.65verschobenesverschobenesverschobenes $verschobenes$ 4.84 $gap \ closed\%^{100\%}$ 334.84	qnet1_0	23.51	349	50.84	qnet1_0	22.19	112	15.36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	seymour	6.81	22	935.34	seymour	11.22	27	643.69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sp97ar	15.15	98	83.31	sp97ar	17.21	82	69.76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	stein27	0.00	65	7.00	stein27	0.00	57	3.48
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	stein45	0.00	17	13.33	stein45	0.00	3	3.45
verschobenesverschobenesgeometrisches Mittel 3.42 52 7.19 geometrisches Mittel 3.56 34 4.84 #gap closed%100% 3 #gap closed%100% 3	t1717	0.04	273	19.20	t1717	0.04	255	17.65
geometrisches Mittel 3.42 52 7.19 geometrisches Mittel 3.56 34 4.84 #gap closed% 100% 3 #gap closed% 100% 3	verschobenes				verschobenes			
$#gap closed\%^{100\%}$ 3 $#gap closed\%^{100\%}$ 3	geometrisches Mittel	3.42	52	7.19	geometrisches Mittel	3.56	34	4.84
	#gap closed% ^{100%}	3			#gap closed% ^{100%}	3		

Tabelle E.39:	Rechenstu	udie 4	1.3:	HEURIP
	zf5p0.1,	\mathcal{V}^{min}	= 0.	20

P- Tabelle E.40: Rechenstudie 4.3: HEURIP-ZF5P0.1, $\mathcal{V}^{min} = 0.30$

Name	gap closed%	$\#\{0,\frac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0,\frac{1}{2}\}$	Tsepa
10teams	100.00	4	10.60	10teams	100.00	42	0.02
30:70:4_5:0_5:100	0.00	0	197.39	30:70:4_5:0_5:100	0.00	60	55.54
30:70:4 5:0 95:98	0.00	17	377.35	30:70:4 5:0 95:98	0.00	83	81.85
air03	100.00	2	0.01	air03	100.00	2	0.02
air04	13.82	748	9.90	air04	0.00	0	0.02
air05	7.06	562	2 74	air05	1 70	2	0.03
cap6000	0.00	0	0.00	cap6000	0.00	0	0.01
ds	0.06	1744	62.23	ds	0.00	1	0.33
eilD76	3.07	270	1.04	eilD76	0.00	0	0.00
fast0507	0.00	0	5 28	fast0507	0.00	0	0.06
fiber	14.85	68	0.45	fiber	8 36	8	0.00
at?	1 29	2	0.01	at?	1 29	2	0.00
barn?	0.00	0	0.01	gt2 harn?	0.00	0	0.00
im	33 31	13	0.00	im	30.45	11	0.00
11521av	55.51	43	6.61	11521av	0.00	11	0.13
loop	1.46	00 7	0.01	loou	0.00	5	0.00
monno 81	1.40	272	0.00	iscu monno ⁸¹	100.00	272	0.00
markahara 1	0.00	273	0.22	markahara 1	0.00	273	0.27
markshare1	0.00	0	0.00	markshare?	0.00	0	0.00
marksnare2	0.00	4	20.15	marksharez	0.00	1	0.00
misc03	19.37	95	29.15	misc03	11.50	73	0.00
misco/	0.09	148	/.10	miscu/	0.72	70	0.01
mitre	2.39	141	0.17	mitre	1.62	107	0.14
mod008	0.08	4	0.00	mod008	0.05	1	0.00
mod010	12.57	37	0.05	mod010	12.57	34	0.03
neosl	0.00	6/	2.02	neosi	0.00	117	0.04
neos10	0.41	11	0.59	neos10	16.41	50	0.06
neos16	9.52	442	0.26	neos16	0.00	1	0.01
neos18	11.11	98	41.95	neos18	22.22	700	1.84
neos21	11.40	39	113.81	neos21	5.41	13	0.03
neos8	100.00	12	0.17	neos8	57.14	10	0.01
nug08	0.00	1634	1.42	nug08	10.30	663	1.26
nw04	0.00	0	0.08	nw04	0.00	0	0.08
p0033	18.12	12	0.00	p0033	18.12	12	0.00
p0201	0.00	3	0.00	p0201	0.00	3	0.00
p0282	0.07	2	0.00	p0282	0.07	2	0.00
p0548	1.99	21	0.04	p0548	1.80	16	0.01
p2756	0.28	70	0.03	p2756	0.20	43	0.03
prod1	0.00	0	0.00	prod1	0.00	0	0.00
protfold	0.00	0	15.38	protfold	0.00	2	0.14
qap10	2.24	6693	47.19	qap10	0.07	8	2.98
qnet1	10.99	124	18.02	qnet1	2.44	14	0.00
qnet1_0	13.53	47	0.52	qnet1_0	12.31	19	0.01
seymour	9.24	20	86.54	seymour	16.05	57	0.80
sp97ar	20.28	61	30.83	sp97ar	19.07	68	0.41
stein27	0.00	0	0.00	stein27	0.00	0	0.00
stein45	0.00	0	0.00	stein45	0.00	0	0.00
t1717	0.04	188	13.63	t1717	0.01	1	0.35
verschobenes				verschobenes			
geometrisches Mittel	3.19	22	2.98	geometrisches Mittel	2.33	8	0.36
#gap closed% ^{100%}	4			#gap closed% ^{100%}	3		

Tabelle E.41:	Rechenst	udie	4.3:	HEURIP
	ZF5P0.1,	\mathcal{V}^{mir}	i = 0	.40

P- Tabelle E.42: Rechenstudie 4.3: HEURIP-ZF5P0.1, $\mathcal{V}^{min} = 0.50$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	0	0.01	10teams	0.00	0	0.01
30:70:4_5:0_5:100	0.00	0	88.14	30:70:4_5:0_5:100	0.00	0	80.18
30:70:4_5:0_95:98	0.00	1	107.72	30:70:4_5:0_95:98	0.00	1	97.95
air03	100.00	1	0.02	air03	100.00	1	0.03
air04	10.97	685	3.39	air04	9.00	313	1.45
air05	10.65	2294	11.46	air05	5.28	2666	14.60
cap6000	0.73	7	0.06	cap6000	0.73	7	0.03
ds	0.06	2330	93.86	ds	0.06	1970	75.46
eilD76	2.38	190	0.20	eilD76	2.22	199	0.19
fast0507	0.00	0	0.10	fast0507	0.00	0	0.10
fiber	28.17	115	0.01	fiber	20.77	81	0.02
gt2	1.29	3	0.01	gt2	1.29	3	0.00
harp2	0.00	11	0.01	harp2	0.00	11	0.00
irp	49.99	62	0.41	irp	49.99	59	0.39
1152lav	5.90	322	0.25	1152lav	8.74	352	0.30
lseu	0.91	8	0.00	lseu	0.91	8	0.00
manna81	93.23	248	0.23	manna81	93.23	248	0.23
markshare1	0.00	29	0.00	markshare1	0.00	21	0.00
markshare2	0.00	41	0.01	markshare2	0.00	22	0.00
misc03	0.00	0	0.00	misc03	0.00	0	0.00
misc07	0.72	70	0.00	misc07	0.72	70	0.01
mitre	0.94	404	0.67	mitre	0.94	353	0.45
mod008	0.29	19	0.00	mod008	0.14	10	0.00
mod010	39.06	555	0.00	mod010	39.06	551	0.40
neos1	0.00	5	0.03	neosl	0.00	5	0.02
neos10	0.00	0	0.01	neos10	0.00	0	0.02
neos16	9.52	384	0.28	neos16	9.52	380	0.36
neos18	0.00	0	0.82	neos18	0.00	0	0.82
neos21	0.00	0	0.02	neos21	0.00	0	0.01
neos8	0.00	0	0.01	neos8	0.00	Ő	0.02
nug08	0.00	2020	1.67	nug08	0.00	1638	1 46
nw04	1.75	123	6.17	nw04	1.75	123	6.05
n0033	44 29	39	0.17	n0033	18.12	125	0.00
p0201	0.00	33	0.00	p00000 p0201	0.00	33	0.00
p0282	0.00	2	0.00	p0201	0.00	2	0.00
p0548	5 58	102	0.00	p0548	2 57	65	0.01
p0540	6.72	528	0.01	p0340 p2756	3.98	449	0.01
prod1	0.00	0	0.20	prod1	0.00	0	0.10
protfold	0.00	0	0.00	protfold	0.00	0	0.00
aan10	2 24	6895	51.20	gan10	2 24	6701	49.78
anet1	0.00	0075	0.00	qup 10 anet1	0.00	0/01	0.01
anet1 o	11.91	43	0.02	anet1 o	11.91	43	0.01
sevmour	0.00	0	1 38	sevmour	0.00	0	1.04
sp97ar	0.00	2	0.10	sp97ar	0.00	2	0.09
stein27	0.00	0	0.00	stein27	0.00	0	0.00
stein45	0.00	0	0.00	stein45	0.00	0	0.00
t1717	0.03	378	21.06	t1717	0.03	296	16.18
verschobenes geometrisches Mittel #gap closed% ^{100%}	1.70 1	19	0.98	verschobenes geometrisches Mittel #gap closed% ^{100%}	1.54 1	17	0.92

Tabelle E.43:	Rechens	studie	4.3:	TRI
	SCHN,	$\mathcal{V}^{min} =$	0.01	

IV- Tabelle E.44: Rechenstudie 4.3: TRIV-SCHN, $\mathcal{V}^{min} = 0.10$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	0	0.01	10teams	0.00	0	0.01
30:70:4_5:0_5:100	0.00	0	79.46	30:70:4_5:0_5:100	0.00	0	62.48
30:70:4_5:0_95:98	0.00	1	93.77	30:70:4_5:0_95:98	0.00	1	76.68
air03	100.00	1	0.02	air03	100.00	1	0.01
air04	14.57	854	4.46	air04	9.05	454	2.05
air05	5.50	2382	13.25	air05	11.16	1321	6.28
cap6000	0.73	4	0.02	cap6000	0.73	4	0.02
ds	0.06	1935	73.95	ds	0.06	1931	73.49
eilD76	2.22	192	0.18	eilD76	2.22	186	0.19
fast0507	0.00	0	0.09	fast0507	0.00	0	0.08
fiber	20.77	77	0.00	fiber	14.85	61	0.01
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	9	0.01	harp2	0.00	9	0.01
irp	24.55	54	0.49	irp	67.62	53	0.45
1152lav	7.45	360	0.31	1152lav	5.35	226	0.16
lseu	0.92	9	0.00	lseu	1.46	7	0.00
manna81	93.23	248	0.24	manna81	100.00	273	0.24
markshare1	0.00	19	0.00	markshare1	0.00	2	0.00
markshare2	0.00	22	0.00	markshare2	0.00	7	0.01
misc03	0.00	0	0.00	misc03	3.02	35	0.00
misc07	0.72	70	0.01	misc07	0.72	70	0.00
mitre	1.48	300	0.40	mitre	1.62	314	0.33
mod008	0.09	7	0.00	mod008	0.08	4	0.00
mod010	15.63	375	0.23	mod010	9.69	28	0.04
neos1	0.00	5	0.01	neos1	14.29	137	0.03
neos10	0.00	0	0.01	neos10	0.00	0	0.00
neos16	9.52	367	0.18	neos16	9.52	367	0.11
neos18	0.00	0	0.93	neos18	0.00	0	0.41
neos21	0.00	0	0.01	neos21	0.00	0	0.01
neos8	0.00	0	0.01	neos8	0.00	0	0.00
nug08	0.00	1638	1.45	nug08	0.00	1637	1.42
nw04	2.30	108	5.58	nw04	1.81	117	5.66
p0033	18.12	16	0.00	p0033	18.24	18	0.00
p0201	0.00	33	0.00	p0201	0.00	3	0.00
p0282	0.07	2	0.00	p0282	0.07	2	0.00
p0548	3.71	65	0.01	p0548	2.26	24	0.01
p2756	1.65	293	0.12	p2756	0.38	113	0.06
prod1	0.00	0	0.01	prod1	0.00	0	0.00
protfold	0.00	0	0.23	protfold	0.00	0	0.31
qap10	2.24	6699	48.52	gap10	2.24	6699	48.33
qnet1	2.24	22	0.00	qnet1	6.93	47	0.01
qnet1_0	13.20	69	0.03	qnet1_o	12.89	23	0.01
seymour	0.00	0	0.75	seymour	0.00	0	0.41
sp97ar	0.00	2	0.08	sp97ar	1.22	5	0.13
stein27	0.00	42	0.00	stein27	0.00	42	0.00
stein45	0.00	0	0.01	stein45	0.00	0	0.00
t1717	0.03	264	14.03	t1717	0.04	250	14.49
verschobenes				verschobenes			
geometrisches Mittel	1.55	20	0.92	geometrisches Mittel	1.84	18	0.82
#gap closed% ^{100%}	1			#gap closed% ^{100%}	2		

SCHN, $\mathcal{V}^{min} = 0.20$

Tabelle E.45: Rechenstudie 4.3: TRIV- Tabelle E.46: Rechenstudie 4.3: TRIV-SCHN, $\mathcal{V}^{min} = 0.30$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	0	0.00	10teams	100.00	42	0.04
30:70:4_5:0_5:100	0.00	0	55.17	30:70:4_5:0_5:100	0.00	60	54.77
30:70:4_5:0_95:98	0.00	1	75.27	30:70:4_5:0_95:98	0.00	83	80.30
air03	100.00	2	0.03	air03	100.00	2	0.01
air04	13.82	748	3.57	air04	0.00	0	0.03
air05	7.06	562	2.76	air05	1.70	2	0.03
cap6000	0.00	0	0.01	cap6000	0.00	0	0.00
ds	0.06	1744	63.48	ds	0.00	1	0.32
eilD76	2.13	234	0.21	eilD76	0.00	0	0.00
fast0507	0.00	0	0.08	fast0507	0.00	0	0.07
fiber	14.26	41	0.01	fiber	8.36	8	0.00
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	0	0.00	harp2	0.00	0	0.00
im	33.31	43	0.49	im	30.45	11	0.12
1152lav	4 62	73	0.05	1152lav	0.00	0	0.00
lsen	1.46	7	0.00	lseu	0.21	5	0.00
manna81	100.00	273	0.25	manna81	100.00	273	0.25
markshare1	0.00	0	0.00	markshare1	0.00	0	0.00
markshare2	0.00	4	0.00	markshare2	0.00	1	0.00
misc03	3.02	35	0.00	misc03	11.56	73	0.01
misc07	0.72	70	0.00	misc07	0.72	70	0.02
mitre	2.39	139	0.14	mitre	1.62	107	0.15
mod008	0.08	4	0.00	mod008	0.05	1	0.00
mod010	9.69	28	0.06	mod010	12.57	34	0.03
neos1	0.00	30	0.01	neosl	0.00	117	0.04
neos10	0.41	2	0.01	neos10	16.41	50	0.07
neos16	9.52	438	0.08	neos16	0.00	1	0.01
neos18	11.11	89	0.89	neos18	22.22	700	1.87
neos21	0.00	0	0.02	neos21	5.41	13	0.04
neos8	57.14	10	0.01	neos8	57.14	10	0.02
nug08	0.00	1634	1.52	nug08	10.30	663	1.30
nw04	0.00	0	0.08	nw04	0.00	0	0.08
n0033	18.12	12	0.00	n0033	18.12	12	0.00
p0201	0.00	3	0.00	p0201	0.00	3	0.00
p0282	0.07	2	0.00	p0282	0.07	2	0.00
p0548	1.86	20	0.00	p0548	1.80	16	0.00
p2756	0.28	20 70	0.03	p0310 p2756	0.20	43	0.02
prod1	0.00	0	0.00	prod1	0.00	45 0	0.02
protfold	0.00	0	0.00	protfold	0.00	2	0.00
gap10	2.24	6693	48.27	gap10	0.07	8	3.02
anet1	4.86	31	0.02	qup 10 quet1	2.44	14	0.01
anet1 o	12.89	23	0.01	anet1 o	12.31	19	0.00
sevmour	0.00	0	0.19	sevmour	16.05	57	0.84
sp97ar	1.22	5	0.09	sp97ar	19.07	68	0.40
stein27	0.00	0	0.00	stein27	0.00	0	0.00
stein45	0.00	Ő	0.00	stein45	0.00	ő	0.00
t1717	0.03	179	9.57	t1717	0.01	1	0.36
verschobenes				verschobenes			
geometrisches Mittel	1.93	14	0.70	geometrisches Mittel	2.33	8	0.36
#gap closed%100%	2			#gap closed%100%	3		

Tabelle E.47:	Rechens	studie	4.3:	TRI
	SCHN,	\mathcal{V}^{min} =	= 0.40	

IV- Tabelle E.48: Rechenstudie 4.3: TRIV-SCHN, $\mathcal{V}^{min} = 0.50$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	0	0.01	10teams	0.00	0	0.00
30:70:4_5:0_5:100	0.00	0	83.44	30:70:4_5:0_5:100	0.00	0	78.06
30:70:4_5:0_95:98	0.00	1	95.55	30:70:4_5:0_95:98	0.00	1	90.94
air03	100.00	1	0.01	air03	100.00	1	0.01
air04	18.67	1034	5.15	air04	9.00	326	1.50
air05	6.16	2111	10.56	air05	5.55	2102	10.79
cap6000	0.73	7	0.06	cap6000	0.73	7	0.04
ds	0.06	2348	93.36	ds	0.06	1992	74.39
eilD76	4.69	1432	1.34	eilD76	4.50	997	0.96
fast0507	0.00	0	0.10	fast0507	0.00	0	0.10
fiber	29.41	138	0.02	fiber	21.50	86	0.01
gt2	1.29	3	0.00	gt2	1.29	3	0.00
harp2	0.00	27	0.01	harp2	0.00	20	0.00
irp	34.87	103	0.84	irp	68.39	197	1.62
1152lav	5.45	507	0.44	1152lav	5.96	485	0.40
lseu	1.62	15	0.01	lseu	1.55	14	0.01
manna81	100.00	326	0.28	manna81	100.00	326	0.25
markshare1	0.00	46	0.00	markshare1	0.00	43	0.00
markshare2	0.00	53	0.00	markshare2	0.00	30	0.00
misc03	0.00	0	0.00	misc03	0.00	0	0.00
misc07	0.72	70	0.00	misc07	0.00	70	0.01
mitre	6.51	875	1 32	mitre	3.00	612	0.75
mod008	0.26	19	0.00	mod008	0.21	16	0.00
mod010	15.81	190	0.00	mod010	16.75	259	0.00
neos1	0.00	170	0.14	neos1	0.00	237	0.10
neos10	0.00	0	0.01	neos10	0.00	,	0.01
neos16	9.52	300	0.02	neos16	0.00	154	0.02
neos18	0.00	0	0.20	neos18	0.00	 0	0.50
neos21	0.00	0	0.01	neos21	0.00	0	0.00
neos	0.00	0	0.01	neos8	0.00	0	0.01
nug08	0.00	2028	1.67	nuo08	0.00	1648	1 38
nw04	1.75	127	6.14	nug00	1.75	1040	6.14
n0033	1.75	127	0.14	n0033	33.13	40	0.14
p00000	44.29	47	0.00	p00000	0.00	40	0.00
p0201	0.00	43	0.00	p0201	0.00	33	0.00
p0282	0.30	19 57	0.01	p0282	2.06	4 94	0.01
p0348	5.50 8.45	540	0.01	p0348	5.90	04 501	0.01
p2750	8.4 <i>3</i>	549	0.15	p2/30	4.41	501	0.20
proul	0.00	0	0.00	proul	0.00	0	0.00
	0.00	6005	0.24	protioid	0.00	6711	47.09
qap10	2.24	0903	0.04	qap10	2.24	0/11	47.08
	9.71	4/	0.05	queti	9.03	40	0.01
qnet1_0	13.95	/4	0.01	qnet1_0	13.//	12	0.02
seymour	0.00	12	1.23	seymour	0.00	0	1.02
sp9/ar	1.51	13	0.18	sp9/ar	1.51	/	0.17
stein2/	0.00	0	0.00	stein2/	0.00	0	0.00
stein45	0.00	0	0.00	stein45	0.00	1004	0.00
11/1/	0.04	2119	155.28	t1/1/	0.04	1994	157.70
verschobenes				verschobenes			
geometrisches Mittel	1.98	27	1.12	geometrisches Mittel	1.86	25	1.05
#gap closed% ^{100%}	2			#gap closed% ^{100%}	2		

 $\mathcal{V}^{min} = 0.01$

Tabelle E.49: Rechenstudie 4.3: ENUM1, Tabelle E.50: Rechenstudie 4.3: ENUM1, $\mathcal{V}^{min} = 0.10$

Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa
10teams	0.00	0	0.01	10teams	0.00	0	0.00
30:70:4_5:0_5:100	0.00	0	67.83	30:70:4_5:0_5:100	0.00	0	62.58
30:70:4_5:0_95:98	0.00	1	87.27	30:70:4_5:0_95:98	0.00	1	73.33
air03	100.00	1	0.01	air03	100.00	1	0.02
air04	18.17	1135	5.78	air04	9.05	465	2.10
air05	5.60	1782	8.90	air05	11.41	1572	7.48
cap6000	0.73	4	0.03	cap6000	0.73	4	0.02
ds	0.06	1957	72.97	ds	0.06	1953	72.92
eilD76	4.50	971	0.94	eilD76	4.50	958	0.91
fast0507	0.00	0	0.09	fast0507	0.00	0	0.09
fiber	21.50	82	0.02	fiber	15.59	65	0.01
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	24	0.01	harp2	0.00	12	0.00
irp	69.06	482	4.75	irp	66.51	243	2.23
1152lav	10.66	568	0.53	1152lav	23.35	525	0.54
lsen	1.53	12	0.00	lseu	1 46	7	0.00
manna81	100.00	326	0.25	manna81	100.00	273	0.22
markshare1	0.00	20	0.00	markshare1	0.00	2/8	0.00
markshare?	0.00	20	0.00	markshare?	0.00	9	0.00
misc03	0.00	0	0.00	misc03	3.02	35	0.00
misc07	0.00	70	0.00	misc07	0.72	70	0.00
mitre	1.73	541	0.61	mitre	2 30	372	0.01
mod008	0.09	J+1 7	0.01	mod008	0.08	572 4	0.00
mod010	16.75	244	0.01	mod010	55 78	313	0.01
neos1	0.00		0.15	neos1	14 29	130	0.56
neos10	0.00	0	0.01	neos10	0.00	157	0.05
neos16	0.00	400	0.01	neos16	0.00	424	0.00
ncos10	9.52	409	0.14	neos10	9.52	424	0.10
neos18	0.00	0	0.95	neos18	0.00	0	0.43
neos21	0.00	0	0.01	neos21	0.00	0	0.01
neoso	0.00	1649	0.01	neoso	0.00	1647	0.00
nugoa	0.00	1048	1.44	nug08	0.00	1047	1.41
nw04	2.50	21	3.77	nw04 #0022	1.01	121	0.01
p0055	27.98	22	0.00	p0055	18.24	10	0.01
p0201	0.00	33	0.00	p0201	0.00	3	0.00
p0282	0.07	2	0.00	p0282	0.07	2	0.00
p0548	3.83	12	0.01	p0548	2.26	24	0.01
p2/56	1.64	280	0.07	p2/56	0.38	132	0.01
prod	0.00	0	0.00	prod	0.00	0	0.00
prottold	0.00	0	0.22	protfold	0.00	0	0.21
qap10	2.24	6709	47.28	qap10	2.24	6709	47.26
qnet1	8.52	53	0.03	qnetl	7.80	54	0.01
qnet1_o	14.17	100	0.02	qnet1_0	12.56	26	0.02
seymour	0.00	0	0.72	seymour	0.00	0	0.41
sp97ar	1.42	5	0.08	sp97ar	2.62	8	0.12
stein27	0.00	42	0.00	stein27	0.00	42	0.00
stein45	0.00	0	0.00	stein45	0.00	0	0.00
t1717	0.04	1648	125.40	t1717	0.10	1382	100.44
verschobenes geometrisches Mittel	1.84	25	1 08	verschobenes geometrisches Mittel	2 13	22	0.97
#gap closed% ^{100%}	2	23	1.00	#gap closed% ^{100%}	2.13	22	0.97

Tabelle E.51: Rechenstudie4.3: ENUM1, Tabelle E.52: Rechenstudie4.3: ENUM1, $\mathcal{V}^{min} = 0.20$ $\mathcal{V}^{min} = 0.30$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	0	0.00	10teams	100.00	42	0.01
30:70:4_5:0_5:100	0.00	0	48.79	30:70:4_5:0_5:100	0.00	60	51.53
30:70:4_5:0_95:98	0.00	1	65.46	30:70:4_5:0_95:98	0.00	83	76.94
air03	100.00	2	0.01	air03	100.00	2	0.02
air04	13.82	784	3.74	air04	0.00	0	0.02
air05	7.02	996	5.00	air05	1.70	2	0.04
cap6000	0.00	0	0.01	cap6000	0.00	0	0.01
ds	0.06	1767	63.10	ds	0.00	1	0.32
eilD76	2.89	580	0.53	eilD76	0.00	0	0.00
fast0507	0.00	0	0.07	fast0507	0.00	0	0.07
fiber	14.26	43	0.01	fiber	8.36	8	0.01
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	0	0.00	harp2	0.00	0	0.00
irp	62.68	153	1.65	irp	30.45	11	0.12
1152lav	6.10	90	0.07	1152lav	0.00	0	0.00
lseu	1.46	7	0.00	lseu	0.21	5	0.00
manna81	100.00	273	0.23	manna81	100.00	273	0.25
markshare1	0.00	0	0.00	markshare1	0.00	0	0.00
markshare?	0.00	4	0.00	markshare?	0.00	1	0.00
misc03	3.02	35	0.00	misc03	11.56	73	0.02
misc07	0.72	70	0.00	misc07	0.72	70	0.00
mitre	2 39	159	0.00	mitre	1.62	107	0.00
mod008	0.08	4	0.00	mod008	0.05	107	0.00
mod010	34.82	101	0.00	mod010	12 57	34	0.00
neos1	0.00	30	0.15	neos1	0.00	117	0.04
neos10	0.00	20	0.01	neos10	16.41	50	0.05
neos16	0.41	152	0.01	neos16	0.00	1	0.00
neos18	11.11	4JZ 80	0.05	neos18	22.22	700	1 77
neos21	0.00	0	0.00	neos21	5.41	13	0.03
neos21	57.14	10	0.02	neos21	57.14	10	0.03
nucle	0.00	1644	1.38	nucoso	10.30	663	1.25
nug00	0.00	1044	0.00	nugoo	0.00	003	0.09
n0022	18.12	12	0.09	n0022	18.12	12	0.08
p0035	10.12	12	0.00	p0033	10.12	12	0.00
p0201	0.00	2	0.00	p0201	0.00	3	0.00
p0282	0.07	20	0.00	p0282	0.07	16	0.00
p0548	1.80	20	0.00	p0548	1.80	10	0.01
p2750	0.28	/3	0.00	p2/56	0.20	43	0.02
prod	0.00	0	0.00	prod I	0.00	0	0.00
protioid	0.00	0	0.15	protioid	0.00	2	0.22
qap10	2.24	6/03	46.83	qap10	0.07	8	2.97
qnet1	4.86	31	0.01	qnet1	2.44	14	0.01
qnet1_o	12.89	25	0.01	qnet1_o	12.31	19	0.02
seymour	0.00	0	0.19	seymour	16.05	57	0.78
sp9/ar	3.73	12	0.14	sp9/ar	19.07	68	0.39
stein2/	0.00	0	0.00	stein2/	0.00	0	0.00
stein45	0.00	0	0.00	stein45	0.00	0	0.00
t1/1/	0.05	1065	11.23	ti/1/	0.01	1	0.35
verschobenes			-	verschobenes			_
geometrisches Mittel	2.12	16	0.82	geometrisches Mittel	2.33	8	0.35
#gap closed% ^{100%}	2			#gap closed% ^{100%}	3		

Tabelle E.53: Rechenstudie 4.3: ENUM1, Tabelle E.54: Rechenstudie 4.3: ENUM1, $\mathcal{V}^{min} = 0.40$

 $\mathcal{V}^{min} = 0.50$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
307-04.5:0.5:100 0.00 0 80.88 307.04.5:0.5:100 0.00 0 78.42 307.04.5:0.95:98 0.00 1 0.01 air03 100.00 1 0.02 air04 18.67 1034 5.09 air04 9.00 326 1.57 air05 6.16 2111 10.53 air05 5.55 2102 10.69 cap6000 0.73 7 0.06 cap6000 0.73 7 0.06 capf000 0.05 2348 94.34 ds 0.06 192 74.07 ellD76 4.69 11432 1.35 eilD76 4.60 0.00 74.07 fiber 2.941 1138 0.03 fiber 2.150 86 0.00 30 0.00 gr2 1.22 3 0.00 gr2 0.00 327 0.26 mana81 100.00 327 0.26 stard 1.62 1.61 1.61 1.55 <td>10teams</td> <td>0.00</td> <td>0</td> <td>0.01</td> <td>10teams</td> <td>0.00</td> <td>0</td> <td>0.01</td>	10teams	0.00	0	0.01	10teams	0.00	0	0.01
307:04-5:0.95:98 0.00 1 92:62 307:04-5:0.95:98 0.00 1 94:72 air03 100.00 1 0.01 air03 100.00 1 0.02 air04 18:67 1034 5.09 air05 5.55 2102 10.66 cap6000 0.73 7 0.06 cap6000 0.73 7 0.04 capf000 0.03 7 0.06 cap6000 0.73 7 0.04 cilD76 4.69 1432 1.35 cilD76 4.50 997 0.99 fastD507 0.00 0 0.01 fastD507 0.00 21.59 86 0.00 fastD507 0.04 lszu 1.51 1.29 3 0.00 21.59 86 0.00 21.59 30.00 21.59 30.00 21.59 30.00 30 0.00 30 0.00 30 0.00 30 0.00 30 0.00 30 0.00	30:70:4_5:0_5:100	0.00	0	80.88	30:70:4_5:0_5:100	0.00	0	78.62
air03 100.00 1 0.01 air03 100.00 1 0.02 air04 18.67 1034 5.09 air04 9.00 326 1.57 air05 6.16 2111 10.53 air05 5.55 210 0.69 cap6000 0.73 7 0.06 cap6000 0.73 7 0.01 cilD76 4.69 1432 1.35 cilD76 4.50 997 74.07 fab0507 0.00 0 0.10 fast0507 0.00 22 1.29 3 0.00 gt2 1.29 3 0.00 gt2 1.29 3 0.02 ipp 34.87 103 0.86 irp 68.39 197 1.64 lscu 1.62 1.5 0.01 harp 1.00 326 0.00 markshare1 0.00 326 markshare2 0.00 326 0.00 misc03 0.00	30:70:4_5:0_95:98	0.00	1	92.62	30:70:4_5:0_95:98	0.00	1	94.27
air04 18.67 1034 5.09 air04 9.00 326 1.57 air05 6.16 2111 10.53 air05 5.55 2102 10.69 cap6000 0.73 7 0.06 cap6000 0.73 7 0.04 ds 0.06 2.348 94.34 ds 0.00 1992 74.07 filD76 4.69 1432 1.35 cilD76 4.50 997 0.99 fast0507 0.00 0 0.10 fast0507 0.00 22 1.29 3 0.00 gt2 1.29 3 0.00 gt2 1.29 3 0.00 pir 34.87 103 0.86 irp 68.39 107 1.60 lseu 1.62 15 0.01 lseu 1.55 14 0.00 mama81 100.00 3 0.00 markshare1 0.00 3 0.00 0.00 maisc07 </td <td>air03</td> <td>100.00</td> <td>1</td> <td>0.01</td> <td>air03</td> <td>100.00</td> <td>1</td> <td>0.02</td>	air03	100.00	1	0.01	air03	100.00	1	0.02
air05 6.16 2111 10.53 air05 5.55 2102 10.69 cap6000 0.73 7 0.06 cap6000 0.73 7 0.04 ds 0.06 1232 1.35 cilD76 4.50 997 0.99 fat0507 0.00 0 0.10 fast0507 0.00 0 0.10 fiber 2.9.41 138 0.03 fiber 2.1.50 86 0.00 gt2 1.29 3 0.00 gt2 1.29 3 0.00 gtats 1.62 15 0.01 karp 5.96 485 0.43 lseu 1.62 15 0.01 lseu 1.55 1.4 0.00 markshare1 0.00 327 0.26 mannal 100.00 327 0.29 mics03 0.00 0 0.00 markshare2 0.00 30 0.00 misc03 0.00 0 0.00 misc07 0.72 70 0.00 mod010 15.81 <t< td=""><td>air04</td><td>18.67</td><td>1034</td><td>5.09</td><td>air04</td><td>9.00</td><td>326</td><td>1.57</td></t<>	air04	18.67	1034	5.09	air04	9.00	326	1.57
cap6000 0.73 7 0.06 cap6000 0.73 7 0.04 ds 0.06 2348 94.34 ds 0.06 0192 74.07 filD76 4.69 1432 1.35 cillD76 4.50 997 0.99 fiber 29.41 138 0.00 gt2 1.29 3 0.00 gt2 1.29 3 0.00 harp2 0.00 27 0.01 harp2 0.00 23 0.02 ip 34.87 103 0.86 irp 68.39 197 1.66 lseu 1.62 15 0.01 lseu 1.55 14 0.00 mannalt 100.00 327 0.26 mannalt 100.00 327 0.26 markshare1 0.00 46 0.00 markshare2 0.00 30 0.00 misc03 0.00 0 0.00 misc03 0.00 0 0.00 misc07 0.72 70 0.00 misc07 0.72 70 0.00 mod08 0.26 19 0.00 mod010 16.75 259 0.77 mod010 15.81 190 0.12 mod10 16.75 259 0.77 mod011 0.52 999 0.25 neos18 0.00 0 0.01 neos16 9.52 454 0.23 neos18 0.00 0.02 neos18 0.00 0.01 neos16 9.52 454 0.23 no01	air05	6.16	2111	10.53	air05	5.55	2102	10.69
ds 0.06 2348 94.34 ds 0.06 1992 74.07 eiD76 4.69 1432 1.35 eiD76 4.50 997 0.99 fast0507 0.00 0 0.10 fast0507 0.00 0 0.10 fiber 29.41 138 0.03 fiber 21.50 86 0.00 gl2 1.29 3 0.00 gl2 1.29 3 0.00 ipp 34.87 103 0.86 irp 68.39 197 1.60 11S2lav 5.45 5.57 0.44 1152lav 5.96 44.85 0.43 seu 1.62 15 0.01 lseu 1.55 14 0.00 markshare1 0.00 46 0.00 markshare2 0.00 30 0.00 misc03 0.00 0.00 misc03 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00	cap6000	0.73	7	0.06	cap6000	0.73	7	0.04
eilD76 4.69 1432 1.35 eilD76 4.50 997 0.99 fast0507 0.00 0 0.10 fast0507 0.00 0 0.10 fiber 29.41 138 0.03 fiber 21.59 3 0.00 gt2 1.29 3 0.00 gt2 1.29 3 0.00 pm 34.87 103 0.86 irp 68.39 197 1.60 lseu 1.62 15 0.01 lseu 1.55 14 0.00 manna81 100.00 327 0.26 manna81 100.00 43 0.00 markshare1 0.00 46 0.00 markshare2 0.00 30 0.00 misc03 0.00 0 0.00 misc03 0.00 0 0.00 misc07 0.72 70 0.00 misc03 0.00 0 0.00 mod010 15.81 190 0.12 mod018 0.21 17 0.00 ncos16 9.52 <td< td=""><td>ds</td><td>0.06</td><td>2348</td><td>94.34</td><td>ds</td><td>0.06</td><td>1992</td><td>74.07</td></td<>	ds	0.06	2348	94.34	ds	0.06	1992	74.07
fast0507 0.00 0 0.10 fast0507 0.00 0 0.10 fiber 29.41 138 0.03 fiber 21.50 86 0.00 harp2 0.00 27 0.01 harp2 0.00 23 0.02 irp 34.87 103 0.86 irp 68.39 197 1.60 lseu 1.62 15 0.01 lseu 1.55 14 0.00 markshare1 0.00 327 0.26 manna81 100.00 327 0.20 markshare2 0.00 53 0.00 markshare1 0.00 43 0.00 misc03 0.00 0 0.00 misc07 0.72 70 0.00 misc07 0.72 70 0.00 misc07 0.72 70 0.00 mod008 0.26 19 0.00 mod08 0.21 17 0.00 neos1 0.00 7 0.22 neos1 0.00 7 0.02 neos10 0.00 <	eilD76	4.69	1432	1.35	eilD76	4.50	997	0.99
fiber 29.41 138 0.03 fiber 21.50 86 0.00 g2 1.29 3 0.00 gt2 1.29 3 0.00 hap2 0.00 27 0.01 harp2 0.00 23 0.02 irp 34.87 103 0.86 irp 68.39 197 1.60 1152lav 5.45 507 0.44 1152lav 5.96 485 0.43 lseu 1.62 15 0.01 lseu 1.55 14 0.00 markshare1 0.00 46 0.00 markshare2 0.00 30 0.00 markshare2 0.00 0.00 markshare2 0.00 30 0.00	fast0507	0.00	0	0.10	fast0507	0.00	0	0.10
gl2 1.29 3 0.00 gl2 1.29 3 0.00 harp2 0.00 27 0.01 harp2 0.00 23 0.02 ip 34.87 103 0.86 ip 68.39 197 1.60 1152lav 5.45 507 0.44 1152lav 5.96 485 0.43 seu 1.62 15 0.01 lseu 1.55 14 0.00 mana81 100.00 327 0.26 manna81 10.00 32 0.26 markshare1 0.00 46 0.00 markshare2 0.00 30 0.00 misc03 0.00 0 0.00 misc03 0.00 0 0.00 misc04 0.72 70 0.00 misc03 0.00 0 0.00 mod008 0.26 19 0.00 mod008 0.21 17 0.00 mcos1 0.00 0 0.22 neos1 0.00 0 0.01 neos18 0.00 0	fiber	29.41	138	0.03	fiber	21.50	86	0.00
harp2 0.00 27 0.01 harp2 0.00 23 0.02 irp 34.87 103 0.86 irp 68.39 197 1.60 1152lav 5.45 507 0.44 1152lav 5.96 485 0.43 Iseu 1.62 15 0.01 lseu 1.55 14 0.00 markshare1 0.00 46 0.00 markshare2 0.00 30 0.00 markshare2 0.00 0.00 markshare2 0.00 30 0.00 markshare2 0.00	gt2	1.29	3	0.00	gt2	1.29	3	0.00
irp34.871030.86irp68.391971.601152lav5.455070.441152lav5.964850.43lseu1.62150.01lseu1.55140.00manna81100.003270.26manna81100.003270.29markshare10.00460.00markshare10.00430.00markshare20.00530.00markshare20.00300.00misc030.0000.00misc030.0000.00misc070.72700.00misc030.0000.00mod080.26190.00mod0080.21170.00mod1015.811900.12mod01016.752590.17neos10.0070.02neos10.0070.00neos169.523990.25neos160.9524540.23neos180.0000.02neos210.0000.01neos80.000.022neos210.0000.01nug080.0020281.67nug080.0000.03nug080.0020281.67nug080.0000.00prof10.0000.00prof10.0000.00prof10.0000.0000.0000.00pro	harp2	0.00	27	0.01	harp2	0.00	23	0.02
1152lav 5.45 507 0.44 1152lav 5.96 485 0.43 lseu 1.62 15 0.01 lseu 1.55 14 0.00 manna81 100.00 327 0.26 manna81 100.00 327 0.29 markshare1 0.00 46 0.00 markshare2 0.00 30 0.00 misc03 0.00 0 0.00 misc07 0.72 70 0.00 misc07 0.72 70 0.00 misc07 0.72 70 0.00 mod010 15.81 190 0.00 mod010 16.75 259 0.17 ncos1 0.00 7 0.02 neos1 0.00 7 0.00 neos10 0.00 0 0.22 neos16 9.52 454 0.23 ncos18 0.00 0 0.22 neos21 0.00 0.00 no01 ncos8 0.00 0 0.22 neos8 0.00 0.01 neos8 0.00 0.01 no01 <td>irp</td> <td>34.87</td> <td>103</td> <td>0.86</td> <td>irp</td> <td>68.39</td> <td>197</td> <td>1.60</td>	irp	34.87	103	0.86	irp	68.39	197	1.60
Iseu 1.62 15 0.01 Iseu 1.55 14 0.00 manna81 100.00 327 0.26 manna81rel 0.00 33 0.00 markshare1 0.00 46 0.00 markshare2 0.00 33 0.00 markshare2 0.00 53 0.00 mixchshare2 0.00 30 0.00 misc03 0.00 0 0.00 misc03 0.00 0 0.00 mixe 3.00 615 0.75 mod008 0.21 17 0.00 mod010 15.81 190 0.12 mod010 16.75 259 0.17 neos1 0.00 7 0.00 neos1 0.00 7 0.00 neos18 0.00 0 0.22 neos16 9.52 454 0.23 neos18 0.00 0 0.02 neos21 0.00 0 0.01 nu08 0.00 0.02 neos18 0.00 0 0.01 nu08 0.00 0.02	1152lav	5.45	507	0.44	1152lav	5.96	485	0.43
mana81100.003270.26mana81100.003270.29markshare10.00460.00markshare10.00430.00markshare20.00530.00markshare20.00300.00misc030.0000.00misc030.0000.00misc070.72700.00misc070.72700.00mod080.26190.00mod080.21170.00mod01015.811900.12mod01016.752590.17ncos10.0070.02ncos10.0070.02ncos169.523990.25ncos169.524540.23ncos180.0000.02ncos180.0000.01ncos80.0000.02ncos180.0000.01nug080.0020281.67nug080.0016481.40nug080.0020281.67nug080.00330.00p2010.00450.00p02210.00330.00p27568.455490.24p27564.445720.20profid0.0000.24profold0.0000.03p7568.455490.24p27564.445720.00profid0.0000.24profold0.0000.00 </td <td>lsen</td> <td>1.62</td> <td>15</td> <td>0.01</td> <td>lsen</td> <td>1.55</td> <td>14</td> <td>0.00</td>	lsen	1.62	15	0.01	lsen	1.55	14	0.00
narkshare10.00460.00markshare10.00430.00markshare20.00530.00markshare20.00300.00misc030.0000.00misc030.0000.00misc070.72700.00misc070.72700.00mitre6.518751.28mitre3.006150.75mod0080.26190.00mod0080.21170.00mod1015.811900.12mod1016.752590.17mcos10.0070.02neos10.0070.00neos100.0000.25neos100.0000.01neos180.0000.83neos180.0000.01neos210.0000.02neos210.0000.01neos80.0000.02neos80.0000.01nug080.0020281.67nug080.0016481.40p023344.29470.01p003333.13400.01p02440.50190.00p02420.1940.00p02450.50190.00p02420.1940.00p02483.36570.02p05483.96850.00prof10d0.0000.24prof10d0.0000.33 <td< td=""><td>manna81</td><td>100.00</td><td>327</td><td>0.26</td><td>manna81</td><td>100.00</td><td>327</td><td>0.29</td></td<>	manna81	100.00	327	0.26	manna81	100.00	327	0.29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	markshare1	0.00	46	0.00	markshare1	0.00	43	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	markshare?	0.00	53	0.00	markshare?	0.00	30	0.00
Initial 0.00 0.00 initial 0.00 <td>misc03</td> <td>0.00</td> <td>0</td> <td>0.00</td> <td>misc03</td> <td>0.00</td> <td>0</td> <td>0.00</td>	misc03	0.00	0	0.00	misc03	0.00	0	0.00
Index 0.12 10 0.00 miller 0.02 10 0.00 mitre 6.51 875 1.28 mitre 3.00 615 0.75 mod008 0.26 19 0.00 mod008 0.21 17 0.00 mod010 15.81 190 0.12 mod010 16.75 259 0.17 neos1 0.00 7 0.02 neos10 0.00 7 0.00 neos10 0.00 0 0.02 neos16 9.52 454 0.23 neos18 0.00 0 0.22 neos18 0.00 0 0.01 neos21 0.00 0 0.02 neos21 0.00 0 0.01 nug08 0.00 2028 1.67 nug08 0.00 0.01 nug08 0.00 2028 1.67 nug08 0.00 0.01 nug08 0.00 45 0.00 $p0211$ 0.00 33 0.00 $p0232$ 0.50 19 0.00 $p0282$ 0.19 4 0.00 $p2756$ 8.45 549 0.24 $p2756$ 4.44 572 0.20 $prod1$ 0.00 0 0.24 $protold$ 0.00 0 0.30 $qap10$ 2.24 6905 4.43 $qap10$ 2.24 6711 47.36 $qnet1_{0}$ 13.95 74 0.00 $qret1_{0}$ 13.77 72 0.00 $sp7ar$ 1.51 1	misc07	0.00	70	0.00	misc07	0.00	70	0.00
nulc 0.51 0.53 1.20 nulc 3.00 0.53 0.75 mod008 0.26 19 0.00 mod008 0.21 17 0.00 mod010 15.81 190 0.12 mod010 16.75 259 0.17 ncos1 0.00 7 0.02 ncos1 0.00 7 0.00 ncos16 9.52 399 0.25 ncos16 9.52 454 0.23 ncos18 0.00 0 0.83 ncos18 0.00 0 0.83 ncos21 0.00 0 0.02 ncos8 0.00 0 0.01 nug08 0.00 2028 1.67 nug08 0.00 1648 1.40 nw04 1.75 127 6.16 0.02 ncos8 0.00 1648 1.40 nw04 1.75 127 6.23 nw04 1.75 127 6.16 p0033 44.29 47 0.01 p0033 33.13 40 0.01 p0282 0.50 19 0.00 p0282 0.19 4 0.00 p0548 3.36 57 0.22 $p756$ 4.44 572 0.20 prod1 0.00 0 0.24 profold 0.00 0 0.00 profold 0.00 0 0.24 profold 0.00 0 0.30 qnet1 5.40 44 0.01 qnet1 7.38 59 0.01 qnet1 5.40 40.00 <td< td=""><td>mitre</td><td>6.51</td><td>875</td><td>1.28</td><td>mitre</td><td>3.00</td><td>615</td><td>0.00</td></td<>	mitre	6.51	875	1.28	mitre	3.00	615	0.00
Inductors 0.20 19 0.00 inductors 0.21 11 0.00 mod010 15.81 190 0.12 mod010 16.75 259 0.17 neos1 0.00 7 0.02 neos1 0.00 7 0.00 neos16 9.52 399 0.25 neos16 9.52 454 0.23 neos18 0.00 0 0.83 neos18 0.00 0 0.81 neos21 0.00 0 0.02 neos21 0.00 0 0.01 nug08 0.00 2028 1.67 nug08 0.00 1648 1.40 nv04 1.75 127 6.23 nv04 1.75 127 6.16 p0201 0.00 45 0.00 p0201 0.00 33 0.00 p0282 0.50 19 0.00 p0248 3.36 57 0.02 p0548 3.96 85 0.00 prod1 0.00 0 0.24 p2756 4.44 572 0.20 <td>mod008</td> <td>0.26</td> <td>10</td> <td>0.00</td> <td>mod008</td> <td>0.21</td> <td>17</td> <td>0.75</td>	mod008	0.26	10	0.00	mod008	0.21	17	0.75
Industrie 13.61	mod010	15.81	100	0.00	mod010	16.75	250	0.00
neosi0.000.000.00neosi0.000.000.00neosi0.000.00neosi0.000.000.01neosi0.0000.83neosi80.0000.81neos210.0000.02neos0.0000.01neos80.0000.02neos0.0000.01neos80.0020281.67nug080.0016481.40nw041.751276.23nw041.751276.16p003344.29470.01p003333.13400.01p02010.00450.00p02820.1940.00p02820.50190.00p02820.1940.00prod10.0000.00prod10.0000.00prod10.0000.02prod10.0000.33qet15.40440.01qet17.38590.01qet15.40440.01qet17.38590.01seymour0.0000.00stein270.0000.00stein270.0000.00stein270.0000.00tein450.0000.00stein450.0000.00tein450.0000.00stein450.0000.00tein450.000 </td <td>neos1</td> <td>0.00</td> <td>190</td> <td>0.12</td> <td>neos1</td> <td>0.00</td> <td>239</td> <td>0.17</td>	neos1	0.00	190	0.12	neos1	0.00	239	0.17
Incositio0.0000.02incositio0.0000.01neositi9.523990.25neositi0.0000.83neositi0.0000.83neositi0.0000.81neositi0.0000.02neositi0.0000.01neositi0.0000.02neositi0.0000.01neositi0.0000.02neositi0.0000.01neositi0.0000.02neositi0.0000.01neositi0.0000.02neositi0.0000.01nug080.000.0020281.67nug080.0016481.40nv041.751276.23nw041.751276.16p003344.29470.01p003333.13400.01p02010.00450.00p02820.1940.00p02820.50190.00p02820.1940.00p05483.36570.02p05483.96850.00prod10.0000.24protoid0.0000.30qap102.24690549.43qap102.24671147.36qnet15.40440.01qnet17.38590.01qnet1.o13.95740.00qnet1.o13.77720.	neos10	0.00	,	0.02	neos10	0.00	0	0.00
Incos10 $y.y2yy2<$	neos16	0.00	300	0.02	neos16	0.00	154	0.01
Incos15 0.00 0 0.05 0.05 0.00 0 0.01 neos21 0.00 0 0.02 neos21 0.00 0 0.01 nug08 0.00 2028 1.67 nug08 0.00 1648 1.40 nw04 1.75 127 6.23 nw04 1.75 127 6.16 $p0033$ 44.29 47 0.01 $p0033$ 33.13 40 0.01 $p0201$ 0.00 45 0.00 $p0221$ 0.00 33 0.00 $p0282$ 0.50 19 0.00 $p0282$ 0.19 4 0.00 $p0548$ 3.36 57 0.02 $p0548$ 3.96 85 0.00 $p2756$ 8.45 549 0.24 $p2756$ 4.44 572 0.20 $prod1$ 0.00 0 0.24 $proto1d$ 0.00 0 0.30 $qap10$ 2.24 6905 49.43 $qap10$ 2.24 6711 47.36 $qnet1$ 5.40 44 0.01 $qnet1$ 7.38 59 0.01 $qnet1_o$ 13.95 74 0.00 $qnet1_o$ 13.77 72 0.00 $seymour$ 0.00 0 0.00 $stein27$ 0.00 0 0.00 $tin45$ 0.00 0 0.00 $stein45$ 0.00 0 0.00 $tin45$ 0.00 0 0.00 $stein45$ 0.00 0 0.00 <td>neos18</td> <td>9.52</td> <td>399</td> <td>0.23</td> <td>neos18</td> <td>9.52</td> <td>4,54</td> <td>0.23</td>	neos18	9.52	399	0.23	neos18	9.52	4,54	0.23
Incost 10.0000.02neost 10.0000.01neost 80.0000.02neost 80.0000.01nug080.0020281.67nug080.0016481.40nw041.751276.23nw041.751276.16p003344.29470.01p003333.13400.01p02010.00450.00p02210.00330.00p05483.36570.02p05483.96850.00p27568.455490.24p27564.445720.20prod10.0000.00prod10.0000.00profold0.0000.24profold0.0000.30qap102.24690549.43qap102.24671147.36qnet15.40440.01qnet17.38590.01qnet1_o13.95740.00qnet1_o13.77720.00seymour0.0000.00stein270.0000.01stein270.0000.00stein450.0000.00ttr1770.042119154.83t17170.041994154.82verschobenesyerschobenesyerschobenesyerschobenesyerschobenes144.251.05verschobenesyerschobenester 100%147.10 <td< td=""><td>neos21</td><td>0.00</td><td>0</td><td>0.83</td><td>neos21</td><td>0.00</td><td>0</td><td>0.01</td></td<>	neos21	0.00	0	0.83	neos21	0.00	0	0.01
netos0.0000.02netos0.000.0000.01nug080.0020281.67nug080.0016481.40nw041.751276.23nw041.751276.16p003344.29470.01p003333.13400.01p02010.00450.00p02010.00330.00p02820.50190.00p02820.1940.00p05483.36570.02p05483.96850.00p27568.455490.24p27564.445720.20prod10.0000.00prod10.0000.00protfold0.0000.24protfold0.0000.30qap102.24690549.43qap102.24671147.36qnet15.40440.01qnet17.38590.01qnet1.o13.95740.00qnet1.o13.77720.00seymour0.0000.00stein270.0000.01stein450.0000.00stein270.0000.00ttrint1.51130.19sp97ar1.5170.16stein450.0000.00stein450.0000.00ttrint0.042119154.83t17170.041994154.82<	neos21	0.00	0	0.02	neos21	0.00	0	0.01
Indgos 0.00 2023 1.07 1003 0.00 1043 1.40 nw04 1.75 127 6.23 $nw04$ 1.75 127 6.16 p0033 44.29 47 0.01 $p0033$ 33.13 40 0.01 $p0201$ 0.00 45 0.00 $p0201$ 0.00 33 0.00 $p0282$ 0.50 19 0.00 $p0282$ 0.19 4 0.00 $p0548$ 3.36 57 0.02 $p0548$ 3.96 85 0.00 $p2756$ 8.45 549 0.24 $p2756$ 4.44 572 0.20 prod1 0.00 0 0.00 prod1 0.00 0 0.00 protfold 0.00 0 0.24 protfold 0.00 0 0.00 qap10 2.24 6905 49.43 qap10 2.24 6711 47.36 qnet1 5.40 44 0.01 qnet1 7.38 59 0.01 qnet1.o 13.95 74 0.00 qnet1.o 13.77 72 0.00 seymour 0.00 0 0.00 stein27 0.00 0 0.01 stein45 0.00 0 0.00 stein45 0.00 0 0.00 $t1717$ 0.04 2119 154.83 $t1717$ 0.04 1994 154.82 verschobenesgeometrisches Mittel 1.84 25 1.05 $tot trischobenes$ $tot $	nucos	0.00	2028	1.67	nucle	0.00	1649	1.40
11004 1.73 127 0.25 1004 1.73 127 0.16 $p0033$ 44.29 47 0.01 $p0033$ 33.13 40 0.01 $p0201$ 0.00 45 0.00 $p0201$ 0.00 33 0.00 $p0282$ 0.50 19 0.00 $p0282$ 0.19 4 0.00 $p0548$ 3.36 57 0.02 $p0548$ 3.96 85 0.00 $p2756$ 8.45 549 0.24 $p2756$ 4.44 572 0.20 $prod1$ 0.00 0 0.00 $prod1$ 0.00 0 0.00 $protfold$ 0.00 0 0.24 $protfold$ 0.00 0 0.00 $qap10$ 2.24 6905 49.43 $qap10$ 2.24 6711 47.36 $qnet1$ 5.40 44 0.01 $qnet1$ 7.38 59 0.01 $qnet1_o$ 13.95 74 0.00 $qnet1_o$ 13.77 72 0.00 $seymour$ 0.00 0 1.25 $seymour$ 0.00 0 1.51 $qnet1_o$ 13.95 74 0.00 $qnet1_o$ 1.51 7 0.6 $stein27$ 0.00 0 0.00 $stein27$ 0.00 0 0.00 $ttrin27$ 0.04 2119 154.83 $t1717$ 0.04 1994 154.82 $verschobenes$ $verschobenes$ $verschobenes$ $verschobenes$ <	nug0o	0.00	1020	6.02	nug0o	0.00	1040	6.16
$p0033$ 44.29 47 0.01 $p0033$ 33.13 40 0.01 $p0201$ 0.00 45 0.00 $p0201$ 0.00 33 0.00 $p0282$ 0.50 19 0.00 $p0282$ 0.19 4 0.00 $p0548$ 3.36 57 0.02 $p0548$ 3.96 85 0.00 $p2756$ 8.45 549 0.24 $p2756$ 4.44 572 0.20 $prod1$ 0.00 0 0.00 $prod1$ 0.00 0 0.00 $protfold$ 0.00 0 0.24 $protfold$ 0.00 0 0.00 $qap10$ 2.24 6905 49.43 $qap10$ 2.24 6711 47.36 $qnet1$ 5.40 44 0.01 $qnet1$ 7.38 59 0.01 $qnet1_o$ 13.95 74 0.00 $qnet1_o$ 13.77 72 0.00 $seymour$ 0.00 0 1.25 $seymour$ 0.00 0 1.05 $sp97ar$ 1.51 13 0.19 $sp97ar$ 1.51 7 0.16 $stein45$ 0.00 0 0.00 $stein27$ 0.00 0 0.00 $t1717$ 0.04 2119 154.83 $t1717$ 0.04 1994 154.82 $verschobenes$ $verschobenes$ $verschobenes$ $verschobenes$ 0.00 0.02	nw04	1.73	127	0.25	nw04 n0022	1.73	127	0.10
$p0201$ 0.00 4.5 0.00 $p0201$ 0.00 3.3 0.00 $p0282$ 0.50 19 0.00 $p0282$ 0.19 4 0.00 $p0548$ 3.36 57 0.02 $p0548$ 3.96 85 0.00 $p2756$ 8.45 549 0.24 $p2756$ 4.44 572 0.20 $prod1$ 0.00 0 0.00 $prod1$ 0.00 0 0.00 $protfold$ 0.00 0 0.24 $protfold$ 0.00 0 0.30 $qap10$ 2.24 6905 49.43 $qap10$ 2.24 6711 47.36 $qnet1$ 5.40 44 0.01 $qnet1$ 7.38 59 0.01 $qnet1_o$ 13.95 74 0.00 $qnet1_o$ 13.77 72 0.00 $seymour$ 0.00 0 1.25 $seymour$ 0.00 0 1.55 $sp97ar$ 1.51 13 0.19 $sp97ar$ 1.51 7 0.16 $stein45$ 0.00 0 0.00 $stein27$ 0.00 0 0.00 $t1717$ 0.04 2119 154.83 $t1717$ 0.04 1994 154.82 $verschobenes$ $verschobenes$ $verschobenes$ $verschobenes$ 0.00 0.00	p0035	44.29	4/	0.01	p0033	55.15	40	0.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p0201	0.00	45	0.00	p0201	0.00	35	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p0282	0.50	19	0.00	p0282	0.19	4	0.00
$p2756$ 8.45 549 0.24 $p2756$ 4.44 572 0.20 prod1 0.00 0 0.00 prod1 0.00 0 0.00 protfold 0.00 0 0.24 ppotfold 0.00 0 0.00 qap10 2.24 6905 49.43 qap10 2.24 6711 47.36 qnet1 5.40 44 0.01 qnet1 7.38 59 0.01 qnet1_0 13.95 74 0.00 qnet1_0 13.77 72 0.00 seymour 0.00 0 1.25 seymour 0.00 0 1.51 sp97ar 1.51 13 0.19 $sp97ar$ 1.51 7 0.16 stein27 0.00 0 0.00 stein45 0.00 0 0.00 $t1717$ 0.04 2119 154.83 $t1717$ 0.04 1994 154.82 verschobenes geometrisches Mittel 1.95 <td< td=""><td>p0548</td><td>3.30</td><td>57</td><td>0.02</td><td>p0548</td><td>3.96</td><td>85</td><td>0.00</td></td<>	p0548	3.30	57	0.02	p0548	3.96	85	0.00
prod1 0.00 0 0.00 prod1 0.00 0 0.00 protold 0.00 0 0.24 protold 0.00 0 0.00 qap10 2.24 6905 49.43 qap10 2.24 6711 47.36 qnet1 5.40 44 0.01 qnet1 7.38 59 0.01 qnet1_0 13.95 74 0.00 qnet1_0 13.77 72 0.00 seymour 0.00 0 1.25 seymour 0.00 0 1.05 sp97ar 1.51 13 0.19 sp97ar 1.51 7 0.16 stein27 0.00 0 0.00 stein27 0.00 0 0.01 stein45 0.00 0 0.00 stein45 0.00 0 0.00 t1717 0.04 2119 154.83 $t1717$ 0.04 1994 154.82 verschobenesgeometrisches Mittel 1.84 25 1.05	p2/56	8.45	549	0.24	p2756	4.44	572	0.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	prod	0.00	0	0.00	prod	0.00	0	0.00
qap102.24690549.43qap102.24 6711 47.36 qnet15.40440.01qnet17.38590.01qnet1_o13.95740.00qnet1_o13.77720.00seymour0.0001.25seymour0.0001.05sp97ar1.51130.19sp97ar1.5170.16stein270.0000.00stein270.0000.01stein450.0000.00stein450.0000.00t17170.042119154.83t17170.041994154.82verschobenesverschobenesverschobenesverschobenes0.010.04u1.95271.12geometrisches Mittel1.84251.05	protfold	0.00	0	0.24	protfold	0.00	0	0.30
qnet1 5.40 44 0.01 qnet1 7.38 59 0.01 qnet1_o 13.95 74 0.00 qnet1_o 13.77 72 0.00 seymour 0.00 0 1.25 seymour 0.00 0 1.05 sp97ar 1.51 13 0.19 $sp97ar$ 1.51 7 0.16 stein27 0.00 0 0.00 stein27 0.00 0 0.01 stein45 0.00 0 0.00 stein45 0.00 0 0.00 t1717 0.04 2119 154.83 $t1717$ 0.04 1994 154.82 verschobenes verschobenes verschobenes verschobenes $verschobenes$ $verschobenes$ $verschobenes$	qap10	2.24	6905	49.43	qap10	2.24	6/11	47.36
qnet1_o 13.95 74 0.00 qnet1_o 13.77 72 0.00 seymour 0.00 0 1.25 seymour 0.00 0 1.05 sp97ar 1.51 13 0.19 sp97ar 1.51 7 0.16 stein27 0.00 0 0.00 stein27 0.00 0 0.01 stein45 0.00 0 0.00 stein45 0.00 0 0.00 t1717 0.04 2119 154.83 t1717 0.04 1994 154.82 verschobenes verschobenes verschobenes verschobenes verschobenes 2	qnetl	5.40	44	0.01	qnet1	7.38	59	0.01
seymour 0.00 0 1.25 seymour 0.00 0 1.05 sp97ar 1.51 13 0.19 sp97ar 1.51 7 0.16 stein27 0.00 0 0.00 stein27 0.00 0 0.01 stein45 0.00 0 0.00 stein45 0.00 0 0.00 t1717 0.04 2119 154.83 t1717 0.04 1994 154.82 verschobenes	qnet1_o	13.95	74	0.00	qnet1_0	13.77	72	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	seymour	0.00	0	1.25	seymour	0.00	0	1.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sp97ar	1.51	13	0.19	sp97ar	1.51	7	0.16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	stein27	0.00	0	0.00	stein27	0.00	0	0.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	stein45	0.00	0	0.00	stein45	0.00	0	0.00
verschobenes verschobenes geometrisches Mittel 1.95 27 1.12 geometrisches Mittel 1.84 25 1.05	t1717	0.04	2119	154.83	t1717	0.04	1994	154.82
geometrisches Mittel 1.95 27 1.12 geometrisches Mittel 1.84 25 1.05	verschobenes		-		verschobenes			
	geometrisches Mittel	1.95	27	1.12	geometrisches Mittel	1.84	25	1.05
#gap closed $%$ 2 $#gap closed$ $%$ 2	#gap closed% ^{100%}	2		. =	#gap closed% ^{100%}	2	-	

Tabelle E.55: Rechenstudie4.3: ENUM2, Tabelle E.56: Rechenstudie4.3: ENUM2, $\mathcal{V}^{min} = 0.01$ $\mathcal{V}^{min} = 0.10$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	0	0.00	10teams	0.00	0	0.00
30:70:4_5:0_5:100	0.00	0	72.85	30:70:4_5:0_5:100	0.00	0	64.35
30:70:4_5:0_95:98	0.00	1	86.84	30:70:4_5:0_95:98	0.00	1	76.56
air03	100.00	1	0.01	air03	100.00	1	0.01
air04	18.17	1135	5.74	air04	9.05	465	2.04
air05	5.60	1782	9.11	air05	11.41	1572	7.54
cap6000	0.73	4	0.03	cap6000	0.73	4	0.03
ds	0.06	1957	74.41	ds	0.06	1953	73.01
eilD76	4.50	971	0.91	eilD76	4.50	958	0.92
fast0507	0.00	0	0.09	fast0507	0.00	0	0.08
fiber	21.50	82	0.02	fiber	15.59	65	0.00
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	26	0.01	harp2	0.00	13	0.00
irp	72.92	996	8.27	irp	90.14	267	2.53
1152lav	10.66	568	0.53	1152lav	23.35	526	0.53
lsen	1.53	13	0.00	lseu	1 46	8	0.00
manna81	100.00	327	0.00	manna81	100.00	273	0.00
markshare1	0.00	21	0.00	markshare1	0.00	213	0.00
markshare?	0.00	20	0.00	markshare?	0.00	9	0.00
misc03	0.00	20	0.00	misc03	3.02	35	0.00
misc07	0.00	70	0.00	misc07	0.72	70	0.01
mitre	2.13	549	0.01	mitre	2.14	530	0.00
mod008	2.13	J+9 7	0.03	mod008	2.14	1	0.45
mod010	16 75	244	0.00	mod010	55 78	212	0.00
neosl	0.00	244	0.10	neos1	14 20	1/1	0.52
neos10	0.00	0	0.02	neos10	14.29	141	0.00
neos16	0.00	422	0.01	neos10	0.00	405	0.00
neos19	9.32	423	0.15		9.52	403	0.15
neos18	0.00	0	0.01		0.00	0	0.41
neos21	0.00	0	0.02	1100821	0.00	0	0.01
neoso	0.00	1649	0.00	neosa	0.00	1647	0.01
nugos	0.00	1048	1.40	nug08	0.00	104/	1.41
nw04	2.30	114	5.68	nw04	1.81	121	5.91
p0033	29.58	42	0.01	p0033	18.24	14	0.01
p0201	0.00	33	0.00	p0201	0.00	3	0.00
p0282	0.07	2	0.00	p0282	0.07	2	0.00
p0548	3.83	74	0.00	p0548	2.26	24	0.00
p2756	1.81	820	0.17	p2756	0.38	142	0.04
prod1	0.00	0	0.00	prod1	0.00	0	0.00
protfold	0.00	0	0.26	protfold	0.00	0	0.22
qap10	2.24	6709	46.84	qap10	2.24	6709	46.94
qnet1	10.17	73	0.04	qnet1	8.09	59	0.02
qnet1_0	14.17	101	0.01	qnet1_0	12.56	27	0.02
seymour	0.00	0	0.71	seymour	0.00	0	0.41
sp97ar	1.42	5	0.08	sp97ar	5.00	19	0.23
stein27	0.00	42	0.00	stein27	0.00	42	0.00
stein45	0.00	0	0.00	stein45	0.00	0	0.00
t1717	0.04	1648	126.49	t1717	0.10	1382	100.64
verschobenes				verschobenes			
geometrisches Mittel	1 87	27	1 1 1	geometrisches Mittel	2 18	23	0.98
#gan closed% 100%	1.07	21	1.11	#gap closed%100%	2.10	23	0.90
"sup crosed 10	2			"sup crosed 10	2		

Tabelle E.57: Rechenstudie 4.3: ENUM2, Tabelle E.58: Rechenstudie 4.3: ENUM2, $\mathcal{V}^{min} = 0.20$

 $\mathcal{V}^{min} = 0.30$
Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	0	0.01	10teams	100.00	42	0.03
30:70:4_5:0_5:100	0.00	0	49.47	30:70:4_5:0_5:100	0.00	60	51.95
30:70:4_5:0_95:98	0.00	2	80.42	30:70:4_5:0_95:98	0.00	83	79.74
air03	100.00	2	0.02	air03	100.00	2	0.02
air04	13.82	784	3.61	air04	0.00	0	0.02
air05	7.02	996	4.89	air05	1.70	2	0.04
cap6000	0.00	0	0.00	cap6000	0.00	0	0.01
ds	0.06	1767	62.91	ds	0.00	1	0.31
eilD76	2.89	580	0.48	eilD76	0.00	0	0.00
fast0507	0.00	0	0.07	fast0507	0.00	0	0.07
fiber	14.26	44	0.02	fiber	8.36	8	0.01
ot?	1.29	2	0.00	ot?	1.29	2	0.00
harp2	0.00	0	0.00	harp2	0.00	0	0.00
im	43.72	53	0.36	im	30.45	11	0.12
1152lav	6.19	111	0.12	1152lav	0.00	0	0.00
lsen	1 46	7	0.00	lseu	0.21	5	0.00
manna81	100.00	273	0.00	manna81	100.00	273	0.00
markshare1	0.00	2/5	0.00	markshare1	0.00	2,9	0.00
markshare?	0.00	4	0.00	markshare?	0.00	1	0.00
misc03	4.02	36	0.00	misc03	11.56	73	0.00
misc07	0.72	70	0.01	misc07	0.72	70	0.01
mitre	2 30	258	0.00	mitre	1.62	107	0.01
mod008	2.39	258	0.22	mod008	0.05	107	0.15
mod010	45.03	117	0.00	mod010	12.57	34	0.01
neos1	45.05	30	0.14	neosl	0.00	117	0.03
neos10	0.00	20	0.01	neos10	16.41	50	0.04
neos16	0.41	424	0.01	neos16	0.00	1	0.10
neos18	9.52	424 80	0.04	neos18	0.00	700	1.02
neos21	0.00	09	0.97	neos21	5.41	12	1.62
neos21	57.14	10	0.02	neos21	57.14	13	0.01
neoso	57.14	1644	0.00	neoso	37.14	10	0.02
nug08	0.00	1044	1.41	nug08	10.50	003	1.20
nw04 	0.00	12	0.09	nw04 =0022	0.00	12	0.08
p0035	18.12	12	0.00	p0033	18.12	12	0.00
p0201	0.00	3	0.00	p0201	0.00	3	0.00
p0282	0.07	2	0.00	p0282	0.07	2	0.00
p0548	1.86	20	0.00	p0548	1.80	16	0.00
p2/56	0.28	74	0.02	p2756	0.20	43	0.00
prod	0.00	0	0.00	prod	0.00	0	0.00
protfold	0.00	0	0.16	protfold	0.00	2	0.15
qap10	2.24	6703	46.67	qap10	0.07	8	3.00
qnet1	4.86	31	0.01	qnet1	2.44	14	0.01
qnet1_o	12.89	25	0.01	qnet1_0	12.31	19	0.00
seymour	0.00	0	0.19	seymour	16.05	57	0.74
sp97ar	11.87	31	0.23	sp97ar	19.07	68	0.39
stein27	0.00	0	0.00	stein27	0.00	0	0.00
stein45	0.00	0	0.00	stein45	0.00	0	0.00
t1717	0.05	1065	77.50	t1717	0.01	1	0.35
verschobenes				verschobenes			
geometrisches Mittel	2.20	16	0.81	geometrisches Mittel	2.33	8	0.35
#gap closed% ^{100%}	2			#gap closed% ^{100%}	3		

Tabelle E.59: Rechenstudie	4.3:	ENUM2,
$\mathcal{V}^{min} = 0.40$		

Tabelle E.60: Rechenstudie 4.3: ENUM2, $\mathcal{V}^{min} = 0.50$

Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa
10teams	100.00	1500	1.11	10teams	100.00	1545	1.09
30:70:4_5:0_5:100	11.11	3000	821.01	30:70:4_5:0_5:100	7.41	3000	806.53
30:70:4_5:0_95:98	0.00	3000	672.60	30:70:4_5:0_95:98	0.00	3000	653.88
air03	100.00	36	0.15	air03	100.00	37	0.15
air04	21.08	4088	24.67	air04	21.44	2912	17.31
air05	5.76	1693	8.38	air05	5.55	2103	10.63
cap6000	0.73	7	0.06	cap6000	0.73	7	0.05
ds	0.06	2348	93.10	ds	0.06	1992	74.25
eilD76	3.58	1551	1.56	eilD76	3.31	1148	1.20
fast0507	0.72	2465	95.00	fast0507	0.41	2143	80.06
fiber	31.15	4112	0.67	fiber	21.59	132	0.03
ot?	1 29	3	0.00	ot?	1 29	3	0.01
harn?	0.00	46	0.02	harn?	0.00	35	0.00
im j	83.80	2234	22 70	irn	94.03	2264	25.38
1152lav	28 53	3013	4 28	1152lav	27.44	1883	1.90
lseu	55.83	A646	0.31	lsen	46.10	1005	0.10
manna 81	100.00	351	0.31	manna81	100.00	351	0.10
markshare1	0.00	17	0.01	markshare1	0.00	45	0.20
markshare?	0.00		0.00	markshare?	0.00	3/	0.00
markshare2	28.41	12605	1.84	misc03	23.63	2670	0.01
misc07	10.78	11260	2.04	misc07	25.05	25590	5 33
mitre	83 75	13585	2.04	mitre	60.57	25590	7 41
mod008	14.27	1236	9.05	mod008	0.21	10	0.02
mod010	14.27	097	0.23	mod010	0.21	2110	2 71
noutro	20.78	2475	1.72	noutro	94.17	1122	0.46
neos10	71.43 59.77	10224	22.56	neos10	0.00 82.07	24056	28.80
neos10	38.77	2217	25.50	neos10	83.07 0.52	24030	28.60
neos10	9.32	0000	207.65		9.52	4500	0.92
neos18	44.44	9000	207.03		22.22	4300	94.20
neos21	22.20	40/40	20.09	neos21	21.84	30525	15.29
neosa	100.00	213	0.29	neosa	100.00	213	0.21
nugus	0.00	2028	1.04	nug08	0.00	1050	1.41
nw04	1.75	129	0.31	nw04	1.75	129	6.27
p0033	55.76	148	0.01	p0033	44.41	142	0.01
p0201	0.00	122	0.01	p0201	0.00	33	0.00
p0282	1.15	41	0.00	p0282	0.19	6	0.01
p0548	32.65	1848	0.15	p0548	10.01	435	0.03
p2756	4.30	537	0.12	p2756	4.24	525	0.18
prod	0.00	0	0.00	prod	0.00	0	0.00
protfold	0.00	3000	15.92	protfold	1.13	4500	14.86
qap10	2.24	6905	49.38	qap10	2.24	6/11	47.80
qnet1	24.06	10174	4.81	qnet1	15.31	3817	1.71
qnet1_o	23.81	8388	3.37	qnet1_0	21.83	4148	1.36
seymour	42.33	23500	502.01	seymour	38.51	17000	247.96
sp97ar	33.77	11250	116.83	sp97ar	30.89	10829	124.10
stein27	0.00	406	0.02	stein27	0.00	393	0.01
stein45	0.00	930	0.09	stein45	0.00	891	0.08
t1717	0.05	1832	138.18	t1717	0.05	2076	156.94
verschobenes				verschobenes			
geometrisches Mittel	8.29	1068	4.99	geometrisches Mittel	6.62	713	4.31
#gap closed% ^{100%}	4			#gap closed% ^{100%}	4		

GAUSS, $\mathcal{V}^{min} = 0.01$

 Tabelle E.61: Rechenstudie
 4.3:
 ERW Tabelle E.62: Rechenstudie
 4.3:
 ERW
GAUSS, $\mathcal{V}^{min} = 0.10$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	100.00	1275	0.84	10teams	100.00	982	0.63
30:70:4_5:0_5:100	16.67	3000	437.13	30:70:4_5:0_5:100	20.63	3000	378.54
30:70:4_5:0_95:98	0.00	3000	661.17	30:70:4_5:0_95:98	0.00	3000	365.15
air03	100.00	23	0.09	air03	100.00	15	0.07
air04	18.11	1933	11.36	air04	16.05	1976	10.74
air05	7.44	2293	12.31	air05	11.04	1366	6.32
cap6000	0.73	4	0.02	cap6000	0.73	4	0.02
ds	0.06	1957	72.84	ds	0.06	1953	73.21
eilD76	3.22	858	0.84	eilD76	3.21	810	0.77
fast0507	0.30	1775	62.00	fast0507	0.47	1444	51.58
fiber	21.59	112	0.01	fiber	15.59	73	0.01
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	25	0.00	harp2	0.00	23	0.01
irp	62.81	1759	14.22	irp	83.84	1777	22.25
1152lav	29.71	2422	2.65	1152lav	35.30	1766	1.83
lseu	18.59	2844	0.17	lseu	1.49	10	0.01
manna81	100.00	351	0.31	manna81	100.00	273	0.22
markshare1	0.00	21	0.01	markshare1	0.00	2	0.00
markshare2	0.00	22	0.00	markshare2	0.00	9	0.00
misc03	27.28	8846	1.17	misc03	22.59	4299	0.35
misc07	8.93	6165	0.86	misc07	7.11	4248	0.49
mitre	15.63	2929	2.12	mitre	2.50	431	0.69
mod008	0.09		0.00	mod008	0.08	4	0.00
mod010	90.00	1531	1.51	mod010	79.92	505	0.57
neos1	71.43	3804	2.06	neos1	0.00	211	0.07
neos10	63.50	16642	18.41	neos10	41.71	2805	2.87
neos16	9.52	2500	0.80	neos16	9.52	1436	0.30
neos18	33.33	6000	93.51	neos18	18.52	4000	39.72
neos21	23.72	36155	19.63	neos21	24.43	29567	14 46
neos8	100.00	226	0.20	neos8	100.00	200	0.18
nug08	0.00	1650	1.50	nug08	0.00	1649	1 40
nw04	2 30	116	5.82	nw04	1.81	123	6.03
n0033	66.36	614	0.04	n0033	27 37	39	0.03
p0201	0.00	33	0.00	p0201	0.00	3	0.00
p0201	0.00	2	0.00	p0201	0.00	2	0.00
p0202	20.91	256	0.01	p0548	7 33	03	0.01
p0348	1.64	201	0.02	p0546	0.38	144	0.01
prod1	0.00	291	0.09	p2750 prod1	0.00	0	0.04
protfold	0.00	3000	0.00	protfold	3.80	12657	20.00
app10	2.24	6700	7.4J	gap10	2.24	6700	47.20
qup10	16.03	4260	2.02	qup10	11.00	352	-7.20
quet1 o	10.03	3180	0.00	quet1 o	20.37	661	0.00
ener of the second	11.03	10500	185 70	queti _0	42.24	26000	108 57
sp97ar	31.07	7578	82.01	sp97ar	42.24	5733	61 75
stein27	0.00	280	0.00	stein 27	0.00	2755	01.75
stein45	0.00	630	0.00	stein45	0.00	503	0.00
t1717	0.00	1626	118 0/	t1717	0.00	1520	100 70
	0.05	1020	110.94		0.05	1529	107.79
verschobenes				verschobenes			
geometrisches Mittel	6.99	604	3.75	geometrisches Mittel	5.45	313	2.91
#gap closed% ^{100%}	4			#gap closed% ^{100%}	4		

GAUSS, $\mathcal{V}^{min} = 0.20$

Tabelle E.63: Rechenstudie4.3:ERW-Tabelle E.64: Rechenstudie4.3:ERW-GAUSS, $\mathcal{V}^{min} = 0.30$

Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa
10teams	100.00	383	0.28	10teams	100.00	42	0.02
30:70:4_5:0_5:100	2.78	3000	289.44	30:70:4_5:0_5:100	0.00	60	51.60
30:70:4_5:0_95:98	0.00	2990	209.51	30:70:4_5:0_95:98	0.00	83	76.92
air03	100.00	2	0.02	air03	100.00	2	0.02
air04	18.29	2469	13.87	air04	0.00	0	0.02
air05	8.80	1298	6.80	air05	1.70	2	0.03
cap6000	0.00	0	0.00	cap6000	0.00	0	0.01
ds	0.06	1767	62.95	ds	0.00	1	0.32
eilD76	3.36	1074	1.06	eilD76	0.00	0	0.00
fast0507	0.41	748	26.62	fast0507	0.00	0	0.07
fiber	14.38	75	0.00	fiber	8.36	8	0.01
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	0	0.00	harp2	0.00	0	0.00
irp	49.65	129	1.19	irp	30.45	11	0.13
1152lav	7.80	159	0.12	1152lav	0.00	0	0.00
lseu	1.46	7	0.00	lseu	0.21	5	0.00
manna81	100.00	273	0.24	manna81	100.00	273	0.22
markshare1	0.00	0	0.00	markshare1	0.00	0	0.00
markshare2	0.00	4	0.00	markshare2	0.00	1	0.00
misc03	21.44	4272	0.37	misc03	11.56	73	0.00
misc07	7.96	1569	0.20	misc07	0.72	70	0.00
mitre	2 39	223	0.20	mitre	1.62	107	0.00
mod008	0.08	4	0.00	mod008	0.05	107	0.00
mod010	40.51	198	0.00	mod010	12 57	34	0.06
neos1	0.00	155	0.07	neos1	0.00	117	0.00
neos10	33.56	899	0.92	neos10	16.41	50	0.05
neos16	9.52	924	0.02	neos16	0.00	1	0.00
neos18	15.19	3797	25.02	neos18	22.22	700	1 78
neos21	16.99	26215	15 21	neos21	5 41	13	0.03
neos8	100.00	20213	0.08	neos8	57.14	10	0.05
nug08	0.00	1646	1 39	nuo08	10.30	663	1 23
nug00	0.00	0+01	0.08	nug00	0.00	005	0.00
n0033	18.12	12	0.00	n0033	18.12	12	0.00
p00000	0.00	12	0.00	p00000	0.00	12	0.00
p0201	0.00	2	0.00	p0201	0.00	2	0.00
p0282	1.00	21	0.00	p0282	1.80	16	0.00
p0548	1.99	21	0.00	p0348	0.20	10	0.00
p2750	0.28	/4	0.03	p2750	0.20	43	0.01
prou i	0.00	2202	6.10	prout	0.00	0	0.00
gen10	0.00	6702	46 72	protioid	0.00	2	2 12
qap10	2.24	120	40.72	qap10	0.07	0 14	0.01
quett o	1.92	625	0.05	quet1	2.44	14	0.01
	15.05	12226	20.86	quet 1_0	12.31	19	0.01
seymour an07an	34.12	15250	29.80	seymour an07an	10.03	57	0.75
sp7/al	22.22	015	4.30	spy/al stoin27	19.07	00	0.43
stein27	0.00	0	0.00	stein27	0.00	0	0.00
t1717	0.00	1114	79.89	t1717	0.00	1	0.00
verschobenes				verschobenes			
geometrisches Mittel	4.10	115	1.88	geometrisches Mittel	2.33	8	0.35
#gap closed% ^{100%}	4			#gap closed% ^{100%}	3		

GAUSS, $\mathcal{V}^{min} = 0.40$

 Tabelle E.65: Rechenstudie
 4.3:
 ERW Tabelle E.66: Rechenstudie
 4.3:
 ERW
GAUSS, $\mathcal{V}^{min} = 0.50$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	0	4.77	10teams	0.00	6	9.98
30:70:4_5:0_5:100	0.00	0	266.75	30:70:4_5:0_5:100	0.00	0	229.01
30:70:4_5:0_95:98	0.00	77	301.69	30:70:4_5:0_95:98	0.00	101	201.28
air03	100.00	1	0.02	air03	100.00	1	0.03
air04	21.89	2249	27.06	air04	9.00	326	13.72
air05	6.16	2111	10.91	air05	5.55	2102	10.79
cap6000	0.73	7	0.04	cap6000	0.73	7	0.05
ds	0.06	2348	95.14	ds	0.06	1992	76.35
eilD76	4.69	1432	1.34	eilD76	4.50	997	1.01
fast0507	0.00	3	20.10	fast0507	0.00	0	10.14
fiber	31.02	421	38.35	fiber	21.59	113	1.28
gt2	1.29	3	0.00	gt2	1.29	3	0.00
harp2	0.00	27	0.06	harp2	0.00	34	0.04
im	34.87	103	0.90	im	76.71	1093	17.10
1152lav	5.45	507	0.42	1152lav	5.96	485	0.43
lsen	61.06	2459	67.08	lsen	46.90	149	1.95
manna81	100.00	327	0.26	manna81	100.00	327	0.27
markshare1	0.00	46	0.00	markshare1	0.00	43	0.00
markshare?	0.00	53	0.00	markshare?	0.00	30	0.00
misc03	22.01	930	175.64	misc03	20.71	390	53 34
misc07	22.01	693	47.83	misc07	1 19	550	12 17
mitre	6.78	876	1 37	mitre	3.00	615	0.77
mod008	0.78	10	0.00	mod008	0.21	17	0.77
mod010	16.20	201	4.78	mod010	16.75	260	2.00
neos1	10.73	201	4.78	neos1	0.00	209	2.20
neos10	10.00	601	12.15	neos1	12.00	20	2.00
neos16	19.70	410	6 25	neos10	0.52	260	0.25
	9.32	410	0.55		9.52	434	67.20
neos18	0.00	0 1516	40.39	neos18	0.00	2212	425.92
neos21	39.22	1510	030.75	neos21	39.54	2212	425.85
neoso	100.00	33	1.74	neosa	100.00	33	1.5/
nugus	0.00	2028	1./3	nugus	0.00	1648	1.46
nw04	1.75	127	6.44	nw04	1.75	127	6.40
p0033	65.79	278	3.68	p0033	44.12	57	0.09
p0201	0.00	55	0.08	p0201	0.00	33	0.00
p0282	0.50	19	0.02	p0282	0.19	4	0.00
p0548	17.02	121	0.21	p0548	17.13	127	0.06
p2756	9.54	570	0.35	p2756	4.53	590	0.28
prod1	0.00	0	0.05	prod1	0.00	0	0.03
protfold	0.00	19	131.44	protfold	0.00	30	90.84
qap10	2.24	6905	52.29	qap10	2.24	6711	48.53
qnet1	15.56	484	170.36	qnet1	12.69	273	17.88
qnet1_0	34.10	1133	136.40	qnet1_0	19.81	637	94.65
seymour	0.00	0	56.24	seymour	0.00	0	47.38
sp97ar	6.22	53	31.40	sp97ar	5.80	32	30.66
stein27	0.00	252	4.35	stein27	0.00	181	5.67
stein45	0.00	73	15.16	stein45	0.00	62	15.67
t1717	0.04	2119	158.09	t1717	0.04	1994	158.70
verschobenes				verschobenes			
geometrisches Mittel	3.86	109	8.53	geometrisches Mittel	3.43	87	5.95
#gap closed% ^{100%}	3			#gap closed% ^{100%}	3		

Tabelle E.67: Rechenstudie 4.3: ENUM2- Tabelle E.68: Rechenstudie 4.3: ENUM2-HEURIPZF1, $\mathcal{V}^{min} = 0.01$

HEURIPZF1, $\mathcal{V}^{min} = 0.10$

Name	gap closed%	$\#\{0,\frac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0,\frac{1}{2}\}$	Tsepa
10teams	0.00	0	4.70	10teams	0.00	0	3.93
30:70:4_5:0_5:100	0.00	0	216.48	30:70:4_5:0_5:100	0.00	0	200.63
30:70:4 5:0 95:98	0.00	30	176.95	30:70:4 5:0 95:98	0.00	55	132.85
air03	100.00	1	0.02	air03	100.00	1	0.01
air04	18.17	1135	16.41	air04	9.05	465	9.38
air05	5.60	1782	9 40	air05	11 41	1572	7.84
cap6000	0.73	4	0.02	cap6000	0.73	4	0.03
ds	0.06	1957	74.75	ds	0.06	1953	74.63
eilD76	4.50	971	0.95	eilD76	4.50	958	0.95
fast0507	0.00	0	7.46	fast0507	0.00	0	10.32
fiber	21.59	95	1.84	fiber	15.98	97	8.69
gt2	1.29	2	0.01	gt2	1.29	2	0.00
harp?	0.00	26	0.04	harp2	0.00	13	0.05
im	72.92	996	8 51	im	90.14	267	2.60
1152lav	10.66	568	0.51	1152lav	23.35	526	0.50
lseu	4.81	153	6.01	lseu	1.49	9	0.02
manna81	100.00	327	0.29	manna81	100.00	273	0.26
markshare1	0.00	21	0.00	markshare1	0.00	2	0.00
markshare2	0.00	20	0.00	markshare2	0.00	9	0.00
misc03	0.00	26	0.18	misc03	16.81	134	25.64
misc07	2.01	519	30.98	misc07	0.72	98	1.95
mitre	2.13	549	0.64	mitre	2.14	539	0.44
mod008	0.09	7	0.01	mod008	0.08	4	0.00
mod010	29.11	336	12.62	mod010	55.78	313	3 32
neos1	0.00	58	2 74	neos1	14 29	141	1.68
neos10	0.00	7	0.58	neos10	0.00	6	0.41
neos16	9.52	424	0.36	neos16	9.52	405	0.13
neos18	0.00	8	53.62	neos18	0.00	6	30.67
neos21	29.52	1239	208.59	neos21	16.69	1122	143.12
neos8	0.00	9	0.77	neos8	100.00	6	0.33
nug08	0.00	1648	1.43	nug08	0.00	1647	1.42
nw04	2 30	114	5.84	nw04	1.81	121	6.03
n0033	31.65	45	0.14	n0033	18 24	121	0.05
p0201	0.00	33	0.00	p0201	0.00	3	0.01
p0282	0.00	2	0.00	p0201	0.00	2	0.00
p0548	11.09	126	0.00	p0202	2.61	28	0.00
p0546	1.82	820	0.14	p0546 p2756	0.38	142	0.03
prod1	0.00	02)	0.04	prod1	0.00	142	0.04
protfold	0.00	0	26.30	protfold	0.00	0	23.65
gan10	2 24	6709	48.00	gan10	2 24	6709	49.23
qup10 quet1	12.24	127	18 28	qup 10 quet 1	10.40	86	7.44
anet1 o	16.40	390	49.76	quet1 o	17.10	214	47.18
sevmour	2 13	270	57.11	sevmour	0.00	214	33.13
sp97ar	3 22	22	19.27	sn97ar	6.00	28	9 38
stein27	0.00	80	3 30	stein27	0.00	20 65	2.50
stein45	0.00	120	9.60	stein45	0.00	124	0.09
t1717	0.00	1648	129.22	t1717	0.00	1382	101 58
	0.04	10-10	127.22		0.10	1502	101.50
verschobenes				verschobenes			
geometrisches Mittel	2.43	61	4.80	geometrisches Mittel	2.92	41	3.90
#gap closed% ^{100%}	2			#gap closed% ^{100%}	3		

Tabelle E.69: Rechenstudie 4.3: ENUM2- Tabelle E.70: Rechenstudie 4.3: ENUM2-HEURIPZF1, $\mathcal{V}^{min} = 0.20$

HEURIPZF1, $\mathcal{V}^{min} = 0.30$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	0.00	0	4.34	10teams	100.00	42	0.03
30:70:4_5:0_5:100	0.00	0	198.12	30:70:4_5:0_5:100	0.00	60	54.75
30:70:4_5:0_95:98	0.00	9	239.88	30:70:4_5:0_95:98	0.00	83	80.58
air03	100.00	2	0.02	air03	100.00	2	0.01
air04	13.82	784	13.90	air04	0.00	0	0.02
air05	7.02	996	5.13	air05	1.70	2	0.03
cap6000	0.00	0	0.00	cap6000	0.00	0	0.00
ds	0.06	1767	64.79	ds	0.00	1	0.32
eilD76	2.89	580	0.57	eilD76	0.00	0	0.01
fast0507	0.00	0	8.56	fast0507	0.00	0	0.06
fiber	14.57	71	3.44	fiber	8.36	8	0.00
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	0	0.00	harp2	0.00	0	0.00
irp	49.97	101	6.76	irp	30.45	11	0.13
1152lav	6.19	111	3.26	1152lav	0.00	0	0.00
lseu	1.46	7	0.00	lseu	0.21	5	0.00
manna81	100.00	273	0.30	manna81	100.00	273	0.22
markshare1	0.00	0	0.00	markshare1	0.00	0	0.00
markshare2	0.00	4	0.00	markshare2	0.00	1	0.00
misc03	15.83	70	8.21	misc03	11.56	73	0.01
misc07	0.72	117	1.71	misc07	0.72	70	0.01
mitre	2 39	258	0.23	mitre	1.62	107	0.13
mod008	0.08	4	0.00	mod008	0.05	107	0.00
mod010	47.38	128	2 21	mod010	12 57	34	0.04
neos1	0.00	52	0.17	neos1	0.00	117	0.04
neos10	0.00	17	0.63	neos10	16.41	50	0.08
neos16	9.52	445	2.12	neos16	0.00	1	0.00
neos18	11.11	80	0.75	neos18	22.22	700	1.88
neos21	15.56	442	61.05	neos21	5 41	13	0.03
neos8	100.00	20	01.05	neos	57.14	10	0.02
nug08	0.00	1644	1.41	nuc030	10.30	663	1.28
nw04	0.00	1044	0.00	nw04	0.00	005	0.08
n0033	18.12	12	0.09	n0033	18.12	12	0.08
p00000	0.00	12	0.01	p0055	0.00	12	0.00
p0201	0.00	3	0.00	p0201	0.00	3	0.00
p0282	1.00	2	0.00	p0282	1.80	16	0.00
p0348	1.99	22	0.03	p0348	1.80	10	0.00
p2/30	0.28	/4	0.02	p2/30	0.20	43	0.01
prod I	0.00	0	0.00	prod I	0.00	0	0.00
protiola	0.00	(702	21.79	protioid	0.00	2	0.14
qapio	2.24	6703	48.72	qapio	0.07	8	5.18
qnet1	/.21	60	9.25	qnet1	2.44	14	0.00
qnet1_o	12.89	25	0.15	qnet1_0	12.31	19	0.00
seymour	0.00	0	22.01	seymour	16.05	57	0.78
sp9/ar	11.87	31	4.69	sp9/ar	19.07	68	0.38
stein27	0.00	0	0.00	stein2/	0.00	0	0.00
stein45	0.00	0	0.00	stein45	0.00	0	0.00
t1/17	0.05	1065	77.87	t1/17	0.01	1	0.35
verschobenes	2.57	22	2 77	verschobenes	2.22	0	0.25
#gap closed% ^{100%}	2.57	22	2.11	#gap closed% ^{100%}	2.33	8	0.35

Tabelle E.71: Rechenstudie 4.3: ENUM2- Tabelle E.72: Rechenstudie 4.3: ENUM2-HEURIPZF1, $\mathcal{V}^{min} = 0.40$

HEURIPZF1, $\mathcal{V}^{min} = 0.50$

Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa
10teams	100.00	1756	1.41	10teams	100.00	1354	0.93
30:70:4_5:0_5:100	4.76	976	430.30	30:70:4_5:0_5:100	4.76	2037	537.00
30:70:4_5:0_95:98	0.00	1346	362.01	30:70:4_5:0_95:98	0.00	1708	415.31
air03	100.00	1	0.01	air03	100.00	1	0.02
air04	18.81	1613	8.62	air04	20.07	2597	15.70
air05	6.16	2111	10.64	air05	5 55	2102	10.84
cap6000	0.73	7	0.04	cap6000	0.73	2102	0.05
ds	0.06	2348	94.92	ds	0.06	1992	77.22
eilD76	4.69	1432	1.48	eilD76	4.50	997	0.97
fast0507	0.42	2603	106.30	fast0507	0.84	2204	84.48
fiber	31.76	5657	1.16	fiber	23.44	2457	0.50
gt2	1.29	3	0.00	gt2	1.29	3	0.00
harp2	0.00	27	0.01	harp2	0.00	32	0.01
irp	34.87	103	0.97	irp	93.16	1339	14.10
1152lav	5.45	507	0.51	1152lav	5.96	485	0.41
lseu	57.25	2142	0.10	lseu	57.22	1444	0.08
manna81	100.00	327	0.29	manna81	100.00	327	0.25
markshare1	0.00	46	0.00	markshare1	0.00	43	0.00
markshare2	0.00	53	0.00	markshare2	0.00	30	0.00
misc03	32.39	12429	1.62	misc03	32.72	14229	1.63
misc07	11.75	32763	9.17	misc07	11.16	17238	3.39
mitre	6.51	878	1.33	mitre	3.00	615	0.76
mod008	0.26	19	0.00	mod008	0.21	17	0.01
mod010	19.11	328	0.00	mod010	18 32	330	0.01
neos1	0.00	449	0.22	neos1	0.00	572	0.20
neos10	70.94	22879	29.09	neos10	63.94	22050	27.93
neos16	9.52	795	0.37	neos16	9.52	454	0.24
neos18	11.11	2503	57.11	neos18	14.81	4001	88.42
neos21	21.20	84663	54 71	neos21	20.58	37242	29.53
neos8	100.00	221	0.26	neos8	100.00	214	0.21
nug08	0.00	2028	1 72	nug08	0.00	1648	1.50
nw04	1.75	127	6 33	nw04	1.75	127	6.27
n0033	66 71	596	0.03	n0033	44.12	104	0.27
p0201	0.00	90	0.00	p00000	0.00	33	0.01
p0282	1.15	33	0.00	p0201	0.00	4	0.00
p0548	23.45	155	0.03	p0548	20.75	214	0.01
p0540	8 56	571	0.03	p0540	4.44	572	0.00
prod1	0.00	0	0.24	prod1	0.00	0	0.21
protfold	1.51	4501	16.00	protfold	2.60	6502	18.86
gap10	2.24	6905	51 38	app10	2.09	6711	18.00
qup10 quet1	19.44	8317	3 05	qup 10 anet1	2.24	5334	2 45
quet1 o	28.61	7384	3.02	quet1 o	36.61	6222	2.45
entrour	43.65	38500	873.40	queti _0	30.61	15500	2.10
sp07ar	45.05	6453	60.32	sp07ar	30.60	15500	/3.30
stein?7	29.03	222	00.32	sp) / al stein 27	0.09	4005	45.50
stein/5	0.00	1022	0.02	stein/15	0.00	404	0.02
t1717	0.00	2110	159.73	f1717	0.00	930 1994	159.18
	0.04	2117	137.13		0.04	1774	1.57.10
verschobenes				verschobenes			
geometrisches Mittel	6.15	640	4.00	geometrisches Mittel	6.05	559	3.80
#gap closed% ^{100%}	4			#gap closed% ^{100%}	4		

Tabelle E.73: Rechenstudie 4.3: ENUM2- Tabelle E.74: Rechenstudie 4.3: ENUM2-ERWGAUSS, $\mathcal{V}^{min} = 0.01$

ERWGAUSS, $\mathcal{V}^{min} = 0.10$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	100.00	1086	0.79	10teams	100.00	1032	0.74
30:70:4_5:0_5:100	16.67	2501	514.91	30:70:4_5:0_5:100	0.00	1485	272.76
30:70:4_5:0_95:98	0.00	1161	246.91	30:70:4_5:0_95:98	0.00	2074	283.77
air03	100.00	1	0.01	air03	100.00	1	0.02
air04	18.40	1709	9.40	air04	15.86	1371	7.37
air05	5.60	1782	9.37	air05	11.41	1572	7.83
cap6000	0.73	4	0.02	cap6000	0.73	4	0.03
ds	0.06	1957	74.84	ds	0.06	1953	74.57
eilD76	4.50	971	0.95	eilD76	4.50	958	0.93
fast0507	0.79	1849	72.90	fast0507	0.45	1434	53.82
fiber	21.59	111	0.01	fiber	15.68	82	0.00
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	26	0.01	harp2	0.00	13	0.01
irp	72.92	996	8.24	irp	90.14	267	2.66
1152lav	10.66	568	0.53	1152lav	23.35	526	0.58
lseu	32.68	208	0.03	lseu	1.49	9	0.00
manna81	100.00	327	0.27	manna81	100.00	273	0.24
markshare1	0.00	21	0.01	markshare1	0.00	2	0.00
markshare?	0.00	20	0.01	markshare?	0.00	9	0.00
misc03	22 77	8592	1.05	misc03	23.13	5825	0.57
misc07	10.10	8502	1.05	misc07	10.68	7230	1 13
mitre	2 13	549	0.62	mitre	2 14	539	0.45
mod008	0.09	54) 7	0.02	mod008	0.08	4	0.00
mod010	17.54	304	0.00	mod010	70.26	/05	0.00
neos1	0.00	523	0.24	neos1	35.71	768	0.38
neos10	66.21	1/830	17.25	neos10	41.43	3877	4.07
neos16	0.21	606	0.17	neos16	41.43	405	4.07
ncos10	28.02	12500	162.57	neos10	9.52	1507	16 71
neos18	20.27	22806	16.77	neos18	14.01	24676	10.71
neos21	100.00	52600	10.77	neos21	100.00	20	10.04
neoso	100.00	02 1649	0.08	neoso	100.00	39 1647	0.05
nug08	0.00	1048	1.47	nug08	0.00	1047	1.4/
nw04 	2.30	114	5.95	nw04 =0022	1.81	121	0.10
p0033	47.42	224	0.02	p0033	27.37	21	0.01
p0201	0.00	33	0.00	p0201	0.00	3	0.00
p0282	0.07	147	0.00	p0282	0.07	2	0.00
p0548	19.45	14/	0.05	p0548	7.41	/4	0.01
p2/56	1.81	820	0.20	p2756	0.38	142	0.03
prod	0.00	0	0.01	prod	0.00	0	0.00
protfold	1.32	6509	17.02	protfold	1.32	3319	8.99
qap10	2.24	6709	48.82	qap10	2.24	6709	48.85
qnet1	17.16	2115	0.92	qnet1	11.75	161	0.04
qnet1_o	22.15	2087	0.62	qnet1_0	24.18	3039	1.04
seymour	40.77	16500	162.98	seymour	39.36	30010	131.77
sp97ar	31.18	6064	64.93	sp97ar	27.79	6235	71.31
stein27	0.00	287	0.00	stein27	0.00	233	0.00
stein45	0.00	580	0.04	stein45	0.00	548	0.03
t1717	0.04	1648	128.23	t1717	0.10	1382	101.90
verschobenes				verschobenes			
geometrisches Mittel	5.92	421	3.26	geometrisches Mittel	5.41	257	2.65
$\#gap\ closed\%^{100\%}$	4			#gap closed% ^{100%}	4		

Tabelle E.75: Rechenstudie 4.3: ENUM2- Tabelle E.76: Rechenstudie 4.3: ENUM2-ERWGAUSS, $\mathcal{V}^{min} = 0.20$

ERWGAUSS, $\mathcal{V}^{min} = 0.30$

Name	gap closed%	$\#\{0,\frac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \frac{1}{2}\}$	Tsepa
10teams	100.00	422	0.29	10teams	100.00	42	0.03
30:70:4_5:0_5:100	11.11	2505	383.50	30:70:4_5:0_5:100	0.00	60	56.99
30:70:4 5:0 95:98	0.00	1066	177.40	30:70:4 5:0 95:98	0.00	83	77.92
air03	100.00	2	0.02	air03	100.00	2	0.03
air04	16.75	1572	9.07	air04	0.00	0	0.03
air05	7.02	996	5.15	air05	1.70	2	0.03
cap6000	0.00	0	0.00	cap6000	0.00	0	0.01
ds	0.06	1767	65.20	ds	0.00	1	0.32
eilD76	2.89	580	0.53	eilD76	0.00	0	0.00
fast0507	3.43	1779	71.33	fast0507	0.00	0	0.07
fiber	14.52	67	0.03	fiber	8.36	8	0.01
ot?	1.29	2	0.00	ot?	1.29	2	0.00
harp2	0.00	0	0.00	harp2	0.00	0	0.00
im	58.11	216	2.15	im	30.45	11	0.13
1152lav	16.65	216	0.26	1152lav	0.00	0	0.00
lseu	1 46	-10	0.00	lsen	0.21	5	0.00
manna81	100.00	273	0.00	manna81	100.00	273	0.00
markshare1	0.00	2,5	0.00	markshare1	0.00	2,9	0.00
markshare?	0.00	4	0.00	markshare?	0.00	1	0.00
misc03	19.68	3423	0.00	misc03	11.56	73	0.00
misc07	7.08	2104	0.26	misc07	0.72	70	0.01
mitre	2 30	2104	0.20	mitre	1.62	107	0.00
mod008	0.08	250	0.25	mod008	0.05	107	0.00
mod010	82.20	404	0.00	mod010	12.57	34	0.00
neos1	0.00	102	0.49	neos1	0.00	117	0.07
neos10	15.22	60	0.00	neos10	16.41	50	0.07
neos16	0.52	556	0.05	neos16	0.00	50	0.07
neos18	11.11	325	8.38	neos18	22.00	700	1.01
neos21	20.31	26486	16.11	neos21	5 41	13	0.01
neos21	100.00	20480	0.06	neos21	57.14	10	0.01
nucle	100.00	1644	1.45	nucle	10.20	663	1.20
nug08	0.00	1044	0.11	nug0o	10.30	003	1.50
nw04 #0022	18.12	12	0.11	nw04 #0022	0.00	12	0.08
p0055	18.12	12	0.00	p0055	16.12	12	0.00
p0201	0.00	3	0.00	p0201	0.00	3	0.00
p0282	0.07	2	0.00	p0282	0.07	16	0.00
p0548	1.99	21	0.01	p0548	1.80	10	0.00
p2/56	0.28	/4	0.01	p2/56	0.20	43	0.00
prod	0.00	0	0.00	prod	0.00	0	0.00
protfold	0.00	2627	7.00	protfold	0.00	2	0.14
qap10	2.24	6703	48.27	qap10	0.07	8	3.02
qnetl	7.31	77	0.02	qnet1	2.44	14	0.00
qnet1_o	13.07	28	0.00	qnet1_0	12.31	19	0.01
seymour	29.17	5978	14.55	seymour	16.05	57	0.77
sp9/ar	25.65	1834	20.45	sp9/ar	19.07	68	0.42
stein27	0.00	0	0.00	stein27	0.00	0	0.00
stein45	0.00	0	0.00	stein45	0.00	0	0.00
t1717	0.05	1065	78.17	t1717	0.01	1	0.35
verschobenes				verschobenes			
geometrisches Mittel	4.35	95	1.88	geometrisches Mittel	2.33	8	0.36
#gap closed% ^{100%}	4			#gap closed% ^{100%}	3		

Tabelle E.77: Rechenstudie 4.3: ENUM2- Tabelle E.78: Rechenstudie 4.3: ENUM2-ERWGAUSS, $\mathcal{V}^{min} = 0.40$

ERWGAUSS, $\mathcal{V}^{min} = 0.50$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	T_{sepa}	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	100.00	1500	1.18	10teams	100.00	1545	1.09
30:70:4_5:0_5:100	7.41	1005	555.32	30:70:4_5:0_5:100	11.11	2501	850.13
30:70:4_5:0_95:98	0.00	1756	436.66	30:70:4_5:0_95:98	0.00	616	149.70
air03	100.00	1	0.01	air03	100.00	1	0.01
air04	18.67	2783	15.15	air04	17.95	1391	7.52
air05	10.65	2294	11.60	air05	5.28	2666	14.78
cap6000	0.73	7	0.07	cap6000	0.73	7	0.04
ds	0.06	2330	94.58	ds	0.06	1970	76.76
eilD76	3.45	1306	1.39	eilD76	2.96	683	0.77
fast0507	0.72	2465	97.37	fast0507	0.41	2143	83.19
fiber	30.84	2971	0.54	fiber	21.59	129	0.01
gt2	1.29	3	0.00	gt2	1.29	3	0.00
harp2	0.00	32	0.00	harp2	0.00	26	0.01
irp	96.42	1315	15.22	irp	86.27	206	1.83
1152lav	18.84	649	0.61	1152lav	26.58	1498	1.67
lseu	52.82	3174	0.15	lseu	51.69	3196	0.25
manna81	100.00	273	1.18	manna81	100.00	273	1.15
markshare1	0.00	29	0.01	markshare1	0.00	21	0.01
markshare2	0.00	41	0.00	markshare2	0.00	22	0.00
misc03	28.41	12605	1.85	misc03	23.63	2679	0.23
misc07	10.78	11262	2.00	misc07	11.47	25590	5.37
mitre	0.94	404	0.66	mitre	0.94	353	0.48
mod008	0.82	58	0.02	mod008	0.21	16	0.00
mod010	48.17	684	0.54	mod010	85.70	1422	1.40
neos1	0.00	573	0.25	neos1	0.00	415	0.19
neos10	58.77	19334	24.20	neos10	76.95	26796	33.60
neos16	9.52	1118	0.52	neos16	9.52	1015	0.49
neos18	44.44	9002	200.18	neos18	44.44	17501	275.20
neos21	22.20	46740	27.55	neos21	21.84	36523	15.83
neos8	100.00	213	0.22	neos8	100.00	213	0.21
nug08	0.00	2020	1.81	nug08	0.00	1638	1.43
nw04	1.75	123	6.06	nw04	1.75	123	6.04
p0033	53.77	419	0.02	p0033	53.76	142	0.01
p0201	0.00	102	0.00	p0201	0.00	33	0.00
p0282	1.15	29	0.01	p0282	0.19	4	0.01
p0548	28.82	205	0.02	p0548	7.83	242	0.02
p2756	9 44	200 597	0.30	p2756	4.02	477	0.20
prod1	0.00	0	0.00	prod1	0.00	0	0.00
protfold	0.00	3000	16.34	protfold	1.13	4500	15.05
aan10	2 24	6895	51.65	gap10	2 24	6701	48.84
anet1	24.06	10174	4 88	qup 10 anet1	19.44	9093	4 71
anet1 o	32.13	18223	8 76	quet1 o	34.28	10423	3 99
sevmour	42 33	23500	512.25	sevmour	38.51	17000	256.20
sp97ar	32.99	9528	98.15	sn97ar	33.58	10187	110.77
stein27	0.00	406	0.00	stein27	0.00	393	0.01
stein45	0.00	930	0.00	stein45	0.00	801	0.01
t1717	0.05	1830	141.62	t1717	0.05	2074	161.52
verschobenes				verschobenes			
geometrisches Mittel	6.66	697	4.38	geometrisches Mittel	6.27	532	3.88
#gap closed% ^{100%}	4			#gap closed% ^{100%}	4		

Tabelle E.79: Rechenstudie 4.3: TRIV- Tabelle E.80: Rechenstudie 4.3: TRIV-SCHNERWGAUSS,

SCHNERWGAUSS, $\mathcal{V}^{min} = 0.10$

 $\mathcal{V}^{min} = 0.01$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	100.00	1275	0.90	10teams	100.00	982	0.65
30:70:4_5:0_5:100	25.93	2064	476.03	30:70:4_5:0_5:100	16.67	2032	351.59
30:70:4_5:0_95:98	0.00	1667	279.37	30:70:4_5:0_95:98	0.00	1629	236.23
air03	100.00	1	0.02	air03	100.00	1	0.02
air04	18.31	1619	9.49	air04	14.16	1306	7.11
air05	5.50	2382	13.20	air05	11.26	1380	6.63
cap6000	0.73	4	0.03	cap6000	0.73	4	0.03
ds	0.06	1935	74.73	ds	0.06	1931	74.20
eilD76	2.95	658	0.68	eilD76	2.92	718	0.76
fast0507	0.30	1775	63.17	fast0507	0.47	1444	52.74
fiber	21.59	108	0.01	fiber	15.59	71	0.00
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	21	0.00	harp2	0.00	22	0.02
irp	71.94	1689	17.93	irp	96.27	885	6.89
1152lav	34.44	3763	4.03	1152lav	32.87	1019	1.15
lseu	12.04	1889	0.14	lseu	1.49	8	0.01
manna81	100.00	273	1.19	manna81	100.00	273	0.25
markshare1	0.00	19	0.01	markshare1	0.00	2	0.00
markshare2	0.00	22	0.01	markshare2	0.00	7	0.00
misc03	27.28	8846	1.23	misc03	22.59	4299	0.32
misc07	8.93	6165	0.93	misc07	7.11	4248	0.54
mitre	1.48	300	0.39	mitre	1.62	314	0.34
mod008	0.09	7	0.00	mod008	0.08	4	0.00
mod010	17.54	428	0.36	mod010	12.57	35	0.05
neos1	0.00	452	0.17	neos1	57.14	1691	0.76
neos10	63.50	16642	18.87	neos10	41.71	2805	3.05
neos16	9.52	754	0.30	neos16	9.52	511	0.13
neos18	33.33	5003	82.36	neos18	48.15	15385	143.96
neos21	23.72	36155	19.89	neos21	24.43	29567	14.96
neos8	100.00	226	0.21	neos8	100.00	200	0.18
nug08	0.00	1638	1.44	nug08	0.00	1637	1.46
nw04	2.30	108	5.43	nw04	1.81	117	5.72
p0033	97.68	1299	0.05	p0033	27.38	29	0.00
p0201	0.00	33	0.00	p0201	0.00	3	0.00
p0282	0.07	2	0.01	p0282	0.07	2	0.00
p0548	7.54	128	0.02	p0548	7.33	81	0.02
p2756	1.65	301	0.10	p2756	0.38	119	0.06
prod1	0.00	0	0.00	prod1	0.00	0	0.00
protfold	0.00	3000	9.87	protfold	3.80	12657	30.18
gap10	2 24	6699	48.45	gap10	2 24	6699	48 57
anet1	17.87	6271	3 11	qup 10 anet 1	9.04	165	0.03
anet1 o	20.41	2056	0.65	quet1 o	14 70	114	0.01
sevmour	41.42	19500	189.27	sevmour	43.21	20003	91 99
sn97ar	31.29	4612	42 71	sn97ar	28.19	3693	38.04
stein27	0.00	280	0.01	stein27	0.00	236	0.01
stein45	0.00	639	0.04	stein45	0.00	593	0.04
t1717	0.04	1384	101.35	t1717	0.05	1029	73.42
verschobenes				verschobenes			
geometrisches Mittel	5.70	466	3.43	geometrisches Mittel	5.74	251	2.73
#gap closed%100%	4			#gap closed%100%	4		

Tabelle E.81: Rechenstudie 4.3: TRIV- Tabelle E.82: Rechenstudie 4.3: TRIV-SCHNERWGAUSS, $\mathcal{V}^{min} = 0.20$

SCHNERWGAUSS, $\mathcal{V}^{min} = 0.30$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	100.00	383	0.33	10teams	100.00	42	0.06
30:70:4_5:0_5:100	2.78	2502	285.05	30:70:4_5:0_5:100	0.00	60	56.11
30:70:4_5:0_95:98	0.00	1488	191.65	30:70:4_5:0_95:98	0.00	83	78.74
air03	100.00	2	0.02	air03	100.00	2	0.02
air04	16.66	1256	6.73	air04	0.00	0	0.02
air05	7.06	562	2.87	air05	1.70	2	0.05
cap6000	0.00	0	0.00	cap6000	0.00	0	0.00
ds	0.06	1744	63.61	ds	0.00	1	0.32
eilD76	2.90	1101	1.29	eilD76	0.00	0	0.00
fast0507	0.41	748	27.49	fast0507	0.00	0	0.06
fiber	14.38	72	0.01	fiber	8.36	8	0.00
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	0	0.00	harp2	0.00	0	0.00
irp	33.31	43	0.46	irp	30.45	11	0.13
1152lav	7.04	78	0.07	1152lav	0.00	0	0.00
lseu	1.46	7	0.00	lseu	0.21	5	0.00
manna81	100.00	273	0.23	manna81	100.00	273	0.27
markshare1	0.00	0	0.00	markshare1	0.00	0	0.00
markshare2	0.00	4	0.00	markshare2	0.00	1	0.00
misc03	22.22	6363	0.71	misc03	11.56	73	0.00
misc07	4.66	190	0.02	misc07	0.72	70	0.01
mitre	2.39	147	0.16	mitre	1.62	107	0.14
mod008	0.08	4	0.00	mod008	0.05	1	0.00
mod010	12.57	35	0.05	mod010	12.57	34	0.05
neos1	0.00	213	0.07	neos1	0.00	117	0.06
neos10	23.91	164	0.20	neos10	16.41	50	0.06
neos16	9.52	529	0.07	neos16	0.00	1	0.02
neos18	22.22	969	24.59	neos18	22.22	700	1.88
neos21	16.99	26215	15.37	neos21	5 41	13	0.01
neos8	100.00	71	0.06	neos8	57.14	10	0.01
nug08	0.00	1634	1.45	nug08	10.30	663	1.24
nw04	0.00	0	0.08	nw04	0.00	0	0.08
n0033	18.12	12	0.00	n0033	18.12	12	0.00
p0201	0.00	3	0.00	p0201	0.00	3	0.00
p0282	0.00	2	0.00	p0201	0.00	2	0.00
p0548	1 99	21	0.00	p0202	1.80	16	0.00
p0340	0.28	70	0.01	p0540 p2756	0.20	43	0.00
prod1	0.00	,0	0.00	pz750 prod1	0.00	45	0.00
protfold	0.00	2393	6.00	protfold	0.00	2	0.00
app10	2.24	6603	17 80	gap10	0.00	2	3.07
qup10	10.87	165	0.08	qap10 anet1	2.44	14	0.03
quet1 o	18.01	052	0.00	quet1 o	12.31	14	0.05
seymour	32.16	1100/	27.17	seymour	16.05	19 57	0.00
sp07ar	17.22	206	1 23	sp07ar	10.05	68	0.79
sp/a stein27	0.00	200	0.00	stein 27	19.07	00	0.45
stein/5	0.00	0	0.00	stein/5	0.00	0	0.00
t1717	0.00	1112	82.44	t1717	0.00	1	0.00
verschobenes				verschobenes			
geometrisches Mittel	3.87	89	1.70	geometrisches Mittel	2.33	8	0.36
#gap closed% ^{100%}	4			#gap closed% ^{100%}	3		

Tabelle E.83: Rechenstudie 4.3: TRIV- Tabelle E.84: Rechenstudie 4.3: TRIV-SCHNERWGAUSS,

SCHNERWGAUSS, $\mathcal{V}^{min} = 0.50$

 $\mathcal{V}^{min} = 0.40$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	100.00	1500	1.16	10teams	100.00	1545	1.11
30:70:4_5:0_5:100	11.11	3000	833.66	30:70:4_5:0_5:100	7.41	3000	832.73
30:70:4_5:0_95:98	0.00	3000	693.67	30:70:4_5:0_95:98	0.00	3000	656.71
air03	100.00	36	0.15	air03	100.00	37	0.15
air04	21.08	4082	25.30	air04	21.44	2909	18.15
air05	5.76	1676	8.58	air05	5.55	2083	10.60
cap6000	0.73	7	0.05	cap6000	0.73	7	0.05
ds	0.06	2340	94.60	ds	0.06	1982	75.86
eilD76	3.58	1546	1.64	eilD76	3.31	1144	1.19
fast0507	0.72	2465	95.12	fast0507	0.41	2143	81.50
fiber	31.15	4105	0.71	fiber	21.59	130	0.02
gt2	1.29	3	0.00	gt2	1.29	3	0.00
harp2	0.00	39	0.02	harp2	0.00	29	0.02
im	83.80	2228	23.40	im	94.03	2258	25.70
1152lav	28.53	3905	4.29	1152lav	27.44	1876	1.95
lseu	55.83	4646	0.29	lseu	46.10	1925	0.14
manna81	100.00	273	0.25	manna81	100.00	273	0.27
markshare1	0.00	42	0.00	markshare1	0.00	40	0.00
markshare2	0.00	51	0.01	markshare2	0.00	28	0.00
misc03	28.41	12605	2.08	misc03	23.63	2679	0.25
misc07	10.78	11262	1.97	misc07	11.47	25590	5.47
mitre	58.36	10171	7.24	mitre	68.83	6976	5.69
mod008	14.27	1231	0.24	mod008	0.21	17	0.00
mod010	26.78	978	0.98	mod010	94.17	3086	3 47
neos1	71.43	3475	1.85	neos1	0.00	1123	0.48
neos10	58 77	19334	24.32	neos10	83.07	24056	29.54
neos16	9.52	3861	1.56	neos16	9.52	2787	1.02
neos18	44 44	9000	212.94	neos18	22.22	4500	97.10
neos21	22.20	46740	27 58	neos21	21.84	36523	15 72
neos8	100.00	213	0.21	neos8	100.00	213	0.21
nug08	0.00	2024	1.68	nug08	0.00	1645	1 41
nug00	1.75	127	6.37	nug00	1.75	1045	6.31
n0033	53.76	147	0.01	n0033	44.41	127	0.01
p00000	0.00	147	0.01	p00000	0.00	33	0.00
p0201	1.15	33	0.01	p0201	0.00	35	0.01
p0282	32.65	1844	0.01	p0282	10.01	426	0.00
p0548	4 20	514	0.23	p0548	4.24	420 510	0.05
p2750	4.30	0	0.17	p2750	4.24	512	0.23
prout	0.00	2000	16.54	prout	0.00	4500	15 22
gap10	0.00	6001	51.18	gap10	1.13	4300 6707	13.33
qap10	2.24	10174	1 97	qap10	2.24	2017	40.47
quet1 o	24.00	7201	4.07	quet1 o	21.83	/133	1.79
	32.44 42.22	22500	2.33		21.03	17000	255.55
seymour sp07ar	42.33	25500	110.97	seymour sp07or	20.90	1/000	233.33
sp97ar	33.77	11230	0.01	sp97ar	50.89	10829	129.32
stein/5	0.00	400	0.01	stein/5	0.00	273	0.02
stelli4J +1717	0.00	930	0.07	stell143	0.00	891	150.42
	0.05	1831	142.33		0.05	2073	139.43
verschobenes				verschobenes			
geometrisches Mittel	8.28	1040	5.02	geometrisches Mittel	6.64	688	4.35
#gap closed% ^{100%}	4			#gap closed% ^{100%}	4		

Tabelle E.85: Rechenstudie 4.3: NURERW- Tabelle E.86: Rechenstudie 4.3: NURERW-GAUSS, $\mathcal{V}^{min} = 0.01$

GAUSS, $\mathcal{V}^{min} = 0.10$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	100.00	1275	0.88	10teams	100.00	982	0.69
30:70:4_5:0_5:100	16.67	3000	448.05	30:70:4_5:0_5:100	20.63	3000	383.30
30:70:4_5:0_95:98	0.00	3000	682.24	30:70:4_5:0_95:98	0.00	3000	356.49
air03	100.00	23	0.10	air03	100.00	15	0.08
air04	18.11	1928	11.81	air04	16.05	1963	10.88
air05	7.44	2275	12.90	air05	11.04	1352	6.37
cap6000	0.73	4	0.03	cap6000	0.73	4	0.01
ds	0.06	1947	75.56	ds	0.06	1943	74.19
eilD76	3.22	854	0.94	eilD76	3.21	806	0.85
fast0507	0.30	1775	63.42	fast0507	0.47	1444	53.99
fiber	21.59	109	0.02	fiber	15.59	71	0.02
gt2	1.29	2	0.00	gt2	1.29	2	0.00
harp2	0.00	23	0.00	harp2	0.00	22	0.00
irp	62.81	1756	14.80	im	83.84	1775	22.76
1152lav	29.71	2415	2.68	1152lav	35.30	1752	1.90
lsen	18 59	2844	0.24	lsen	1 49	10	0.00
manna81	100.00	273	0.21	manna81	100.00	273	0.00
markshare1	0.00	18	0.00	markshare1	0.00	2/3	0.00
markshare?	0.00	20	0.00	markshare?	0.00	8	0.00
misc03	27.28	8846	1.12	misc03	22.50	1200	0.01
misc07	8.93	6165	0.89	misc07	7 11	4248	0.40
mitre	15.63	2850	2.10	mitre	2 50	4240	0.55
mod008	0.00	2039	2.10	mod008	2.50	420	0.71
mod010	0.09	1514	1.61	mod010	70.02	402	0.00
neos1	90.00 71.43	3804	2.04	neos1	0.00	208	0.49
neos10	62 50	16642	10.02	neos1	41.71	206	2.04
neos16	05.50	2500	19.03	neos16	41./1	2005	0.21
	9.52	2300	0.04	neos10	9.52	4000	40.91
neos18	22.22	26155	94.98		18.32	20567	40.81
neos21	25.72	30133	20.54	1100821	24.45	29307	15.05
neosa	100.00	220	0.23	neosa	100.00	200	0.19
nug08	0.00	1645	1.44	nug08	0.00	1644	1.42
nw04	2.30	113	5.76	nw04	1.81	121	5.98
p0033	66.36	606	0.03	p0033	27.37	30	0.00
p0201	0.00	33	0.00	p0201	0.00	3	0.00
p0282	0.07	2	0.00	p0282	0.07	2	0.00
p0548	20.91	243	0.01	p0548	7.33	89	0.03
p2756	1.64	285	0.09	p2756	0.38	124	0.04
prod1	0.00	0	0.00	prod1	0.00	0	0.00
protfold	0.00	3000	9.86	protfold	3.80	12657	30.51
qap10	2.24	6705	47.99	qap10	2.24	6705	48.89
qnet1	16.03	4258	2.07	qnet1	11.00	348	0.09
qnet1_0	19.10	2172	0.63	qnet1_0	20.37	659	0.12
seymour	41.42	19500	190.00	seymour	42.24	26000	112.85
sp97ar	31.97	7578	82.45	sp97ar	30.34	5733	63.15
stein27	0.00	280	0.00	stein27	0.00	236	0.00
stein45	0.00	639	0.05	stein45	0.00	593	0.05
t1717	0.05	1625	120.07	t1717	0.05	1528	113.31
verschobenes				verschobenes			<u> </u>
geometrisches Mittel	6.99	589	3.79	geometrisches Mittel	5.45	309	2.95
#gap closed% ^{100%}	4			#gap closed% ^{100%}	4		

Tabelle E.87: Rechenstudie 4.3: NURERW- Tabelle E.88: Rechenstudie 4.3: NURERW-GAUSS, $\mathcal{V}^{min} = 0.20$

GAUSS, $\mathcal{V}^{min} = 0.30$

Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa	Name	gap closed%	$\#\{0, \tfrac{1}{2}\}$	Tsepa
10teams	100.00	383	0.29	10teams	100.00	42	0.03
30:70:4_5:0_5:100	2.78	3000	298.65	30:70:4_5:0_5:100	0.00	60	54.32
30:70:4_5:0_95:98	0.00	2990	210.93	30:70:4_5:0_95:98	0.00	83	77.57
air03	100.00	2	0.02	air03	100.00	2	0.02
air04	18.29	2459	14.07	air04	0.00	0	0.03
air05	8.80	1275	6.97	air05	1.70	2	0.04
cap6000	0.00	0	0.00	cap6000	0.00	0	0.00
ds	0.06	1756	64.88	ds	0.00	1	0.33
eilD76	3.36	1070	1.08	eilD76	0.00	0	0.01
fast0507	0.41	748	27.63	fast0507	0.00	0	0.06
fiber	14.38	74	0.00	fiber	8.36	8	0.00
ot?	1 29	2	0.00	ot?	1 29	2	0.00
harp?	0.00	0	0.00	harn2	0.00	0	0.00
im	49.65	126	1.20	irn	30.45	11	0.13
11521av	7.80	153	0.15	1152lav	0.00	0	0.00
leen	1.00	7	0.00	lseu	0.00	5	0.00
manna81	100.00	273	0.00	manna 81	100.00	273	0.00
markshare1	0.00	275	0.20	markshare1	0.00	275	0.24
markshare?	0.00	4	0.00	markshare?	0.00	1	0.00
misc03	21.44	4271	0.00	markshare2	11.56	73	0.00
misc07	7.06	1567	0.42	misc07	0.72	75	0.00
mitro	2.20	222	0.21	mitro	1.62	107	0.00
mod008	2.39	223	0.24	mod008	1.02	107	0.15
mod010	0.08	102	0.00	mod010	12.57	24	0.00
niou010	40.31	193	0.25	niou010	12.37	117	0.05
	0.00	133	0.09		16.41	50	0.04
	33.30	899	0.94	neos10	10.41	50	0.08
neosio	9.52	924	0.15	neos16	0.00	1	0.01
neosis	15.19	3/9/	25.04	neos18	ZZ.ZZ 5.41	/00	1.8/
neos21	10.99	20215	15.08	neos21	5.41	13	0.03
neosa	100.00	/1	0.06	neosa	57.14	10	0.01
nug08	0.00	1641	1.42	nug08	10.30	663	1.27
nw04	0.00	0	0.08	nw04	0.00	0	0.08
p0033	18.12	12	0.00	p0033	18.12	12	0.00
p0201	0.00	3	0.00	p0201	0.00	3	0.00
p0282	0.07	2	0.00	p0282	0.07	2	0.00
p0548	1.99	21	0.00	p0548	1.80	16	0.01
p2756	0.28	70	0.02	p2756	0.20	43	0.03
prod1	0.00	0	0.00	prod1	0.00	0	0.00
protfold	0.00	2393	6.03	protfold	0.00	2	0.15
qap10	2.24	6699	48.74	qap10	0.07	8	3.01
qnet1	7.92	120	0.05	qnet1	2.44	14	0.01
qnet1_0	13.19	31	0.00	qnet1_0	12.31	19	0.00
seymour	34.12	13236	30.51	seymour	16.05	57	0.78
sp97ar	22.22	615	4.43	sp97ar	19.07	68	0.42
stein27	0.00	0	0.00	stein27	0.00	0	0.00
stein45	0.00	0	0.00	stein45	0.00	0	0.00
t1717	0.05	1113	81.74	t1717	0.01	1	0.41
verschobenes				verschobenes			
geometrisches Mittel	4.09	108	1.90	geometrisches Mittel	2.33	8	0.36
#gap closed% ^{100%}	4			#gap closed% ^{100%}	3		

Tabelle E.89: Rechenstudie 4.3: NURERW- Tabelle E.90: Rechenstudie 4.3: NURERW-GAUSS, $\mathcal{V}^{min} = 0.40$

GAUSS, $\mathcal{V}^{min} = 0.50$

Anhang F

Details zur Rechenstudie 4.4: Wirksamkeit im Branch&Cut-Verfahren

Name	n	I(n)	t	I(t)	gap _{rel} %	$I(gap_{rel}\%)$
10teams	24631	1.00	233.04	1.00	0.00	1.00
30:70:4_5:0_5:100	495	1.00	563.01	1.00	0.00	1.00
30:70:4_5:0_95:100	16	1.00	423.19	1.00	0.00	1.00
30:70:4_5:0_95:98	89	1.00	433.34	1.00	0.00	1.00
acc-0	1	1.00	1.62	1.00	0.00	1.00
acc-1	1	1.00	4.97	1.00	0.00	1.00
acc-2	87	1.00	82.55	1.00	0.00	1.00
acc-3	405	1.00	659.97	1.00	0.00	1.00
acc-4	537	1.00	902.11	1.00	0.00	1.00
acc-5	5735	1.00	2103.47	1.00	0.00	1.00
acc-6	2904	1.00	1001.30	1.00	0.00	1.00
air03	1	1.00	17.49	1.00	0.00	1.00
air04	336	1.00	84.17	1.00	0.00	1.00
air05	316	1.00	50.67	1.00	0.00	1.00
cap6000	17045	1.00	111.83	1.00	0.00	1.00
disctom	1	1.00	6.05	1.00	0.00	1.00
eilD76	12189	1.00	70.05	1.00	0.00	1.00
enigma	1488	1.00	0.80	1.00	0.00	1.00
fast0507	1638	1.00	1434 88	1.00	0.00	1.00
fiber	26402	1.00	44 70	1.00	0.00	1.00
ot?	128	1.00	0.10	1.00	0.00	1.00
im	120	1.00	25.44	1.00	0.00	1.00
1152lav	77	1.00	4 33	1.00	0.00	1.00
lseu	5132	1.00	1.95	1.00	0.00	1.00
misc03	122	1.00	0.73	1.00	0.00	1.00
misc07	47221	1.00	59.70	1.00	0.00	1.00
mitre	47221	1.00	38.90	1.00	0.00	1.00
mod008	3841	1.00	2 65	1.00	0.00	1.00
mod010	21	1.00	2.05	1.00	0.00	1.00
neos1	7080	1.00	69.44	1.00	0.00	1.00
neos10	000	1.00	165.86	1.00	0.00	1.00
neos18	24023	1.00	328.02	1.00	0.00	1.00
neos21	1521	1.00	32 0.02	1.00	0.00	1.00
neos	3	1.00	150.67	1.00	0.00	1.00
nuo	1	1.00	26.71	1.00	0.00	1.00
nug08	11	1.00	20.71 56.71	1.00	0.00	1.00
n0033	1/3	1.00	0.06	1.00	0.00	1.00
p00000 p0201	143	1.00	0.66	1.00	0.00	1.00
p0201	130	1.00	0.00	1.00	0.00	1.00
p0282	8162	1.00	7.68	1.00	0.00	1.00
p0548	560567	1.00	1444-11	1.00	0.00	1.00
pz750 prod1	26017	1.00	34.07	1.00	0.00	1.00
gen10	20017	1.00	122.52	1.00	0.00	1.00
qap10	116	1.00	2 29	1.00	0.00	1.00
quett o	500	1.00	2.20	1.00	0.00	1.00
etein 27	J90 1101	1.00	2.99	1.00	0.00	1.00
stein45	5381/	1.00	35 / 8	1.00	0.00	1.00
	55014	1.00	55.40	1.00	0.00	1.00
verschobenes						
geometrisches Mittel	880.58		53.43		0.00	

Tabelle F.1: Rechenstudie 4.4: (Referenz-Testlauf zur Bestimmung der Verbesserungsfaktoren) SCIP Standard ohne Separierung [einfache Instanzen]

Name	п	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
10teams	538	1.00	39.66	1.00	0.00	1.00
30:70:4_5:0_5:100	285	1.00	1108.06	1.00	0.00	1.00
30:70:4_5:0_95:100	42	1.00	693.64	1.00	0.00	1.00
30:70:4_5:0_95:98	184	1.00	403.26	1.00	0.00	1.00
acc-0	1	1.00	17.79	1.00	0.00	1.00
acc-1	115	1.00	90.38	1.00	0.00	1.00
acc-2	1	1.00	44.12	1.00	0.00	1.00
acc-3	115	1.00	255.27	1.00	0.00	1.00
acc-4	418	1.00	711.91	1.00	0.00	1.00
acc-5	2322	1.00	873.84	1.00	0.00	1.00
acc-6	280	1.00	172.65	1.00	0.00	1.00
air03	4	1.00	22.89	1.00	0.00	1.00
air04	258	1.00	208.39	1.00	0.00	1.00
air05	342	1.00	89.86	1.00	0.00	1.00
cap6000	3065	1.00	8.88	1.00	0.00	1.00
disctom	1	1.00	92.00	1.00	0.00	1.00
eilD76	9	1.00	84.83	1.00	0.00	1.00
enigma	1593	1.00	0.83	1.00	0.00	1.00
fast0507	1445	1.00	760.21	1.00	0.00	1.00
fiber	10	1.00	1.67	1.00	0.00	1.00
gt2	2	1.00	0.12	1.00	0.00	1.00
irp	10	1.00	55.57	1.00	0.00	1.00
1152lav	24	1.00	3.64	1.00	0.00	1.00
lseu	81	1.00	0.27	1.00	0.00	1.00
manna81	2	1.00	5.43	1.00	0.00	1.00
misc03	60	1.00	1.41	1.00	0.00	1.00
misc07	25256	1.00	39.39	1.00	0.00	1.00
mitre	10	1.00	61.10	1.00	0.00	1.00
mod008	267	1.00	0.62	1.00	0.00	1.00
mod010	1	1.00	2.03	1.00	0.00	1.00
neos1	14	1.00	20.42	1.00	0.00	1.00
neos10	5	1.00	251.04	1.00	0.00	1.00
neos18	16403	1.00	201.03	1.00	0.00	1.00
neos21	1796	1.00	44.67	1.00	0.00	1.00
neos8	1	1.00	151.87	1.00	0.00	1.00
nug08	1	1.00	489.04	1.00	0.00	1.00
nw04	5	1.00	76.86	1.00	0.00	1.00
p0033	1	1.00	0.04	1.00	0.00	1.00
p0201	141	1.00	1.91	1.00	0.00	1.00
p0282	19	1.00	0.93	1.00	0.00	1.00
p0548	8	1.00	0.62	1.00	0.00	1.00
p2756	37	1.00	4.38	1.00	0.00	1.00
prod1	25439	1.00	43.35	1.00	0.00	1.00
qap10	4	1.00	658.13	1.00	0.00	1.00
qnet1	43	1.00	6.46	1.00	0.00	1.00
qnet1_o	66	1.00	6.58	1.00	0.00	1.00
stein27	4449	1.00	1.86	1.00	0.00	1.00
stein45	55371	1.00	38.76	1.00	0.00	1.00
verschobenes	241.05		40.17		0.00	
geometrisches Mittel	241.95		48.17		0.00	

Tabelle F.2: Rechenstudie 4.4: (Referenz-Testlauf zur Bestimmung der Verschlechterungsfaktoren) SCIP Standard [einfache Instanzen]

Name	n	I(n)	t	I(t)	$gap_{rel}\%$	$I(gap_{rel}\%)$
ds	429	TL	3600.00	TL	79.18	1.00
manna81	342302	TL	3600.00	TL	0.96	1.00
neos16	1471481	TL	3600.00	TL	2.67	1.00
protfold	8185	TL	3600.00	TL	23.33	1.00
seymour	31387	TL	3600.00	TL	2.78	1.00
sp97ar	14563	TL	3600.00	TL	1.40	1.00
t1717	596	TL	3600.00	TL	30.15	1.00
verschobenes						
geometrisches Mittel					7.76	

Tabelle F.3: Rechenstudie 4.4: (Referenz-Testlauf zur Bestimmung der Verbesserungsfaktoren) SCIP Standard ohne Separierung [schwere Instanzen]

Name	n	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	$gap_{rel}\%$	$\mathcal{D}(gap_{rel}\%)$
ds	405	TL	3600.00	TL	79.36	1.00
neos16	1202594	TL	3600.00	TL	3.30	1.00
protfold	4998	TL	3600.00	TL	22.76	1.00
seymour	21818	TL	3600.00	TL	2.10	1.00
sp97ar	15633	TL	3600.00	TL	1.32	1.00
t1717	360	TL	3600.00	TL	29.90	1.00
verschobenes						
geometrisches Mittel					10.05	

Tabelle F.4: Rechenstudie 4.4: (Referenz-Testlauf zur Bestimmung der Verschlechterungsfaktoren) SCIP Standard [schwere Instanzen]

Name	п	I(n)	t	I(t)	gap _{rel} %	$I(gap_{rel}\%)$
10teams	387	63.65	18.42	12.65	0.00	1.00
30:70:4_5:0_5:100	28	17.68	1035.38	0.54	0.00	1.00
30:70:4_5:0_95:100	186	0.09	1428.44	0.30	0.00	1.00
30:70:4_5:0_95:98	196	0.45	824.41	0.53	0.00	1.00
acc-0	1	1.00	12.15	0.13	0.00	1.00
acc-1	1	1.00	23.70	0.21	0.00	1.00
acc-2	57	1.53	131.74	0.63	0.00	1.00
acc-3	482	0.84	885.25	0.75	0.00	1.00
acc-4	346	1.55	619.51	1.46	0.00	1.00
acc-5	2481	2.31	1358.64	1.55	0.00	1.00
acc-6	35	82.97	102.49	9.77	0.00	1.00
air03	1	1.00	6.87	2.55	0.00	1.00
air04	458	0.73	239.69	0.35	0.00	1.00
air05	394	0.80	99.28	0.51	0.00	1.00
cap6000	14949	1.14	115.93	0.96	0.00	1.00
disctom	1	1.00	20.55	0.29	0.00	1.00
eilD76	6175	1.97	72.39	0.97	0.00	1.00
enigma	1418	1.05	0.67	1.00	0.00	1.00
fast0507	1	ML	144.95	ML	1.04	0.97
fiber	3060	8.63	14.54	3.07	0.00	1.00
gt2	176	0.73	0.13	1.00	0.00	1.00
irp	11	1.55	64.36	0.40	0.00	1.00
1152lav	45	1.71	15.24	0.28	0.00	1.00
lseu	1488	3.45	1.70	1.15	0.00	1.00
misc03	25	4.88	4.79	0.21	0.00	1.00
misc07	42022	1.12	82.00	0.73	0.00	1.00
mitre	1	41.00	71.20	0.55	0.00	1.00
mod008	4869	0.79	4.67	0.57	0.00	1.00
mod010	5	4.20	3.98	0.65	0.00	1.00
neos1	1	7080.00	5.87	11.83	0.00	1.00
neos10	7	1.29	213.74	0.78	0.00	1.00
neos18	57104	0.42	969.38	0.34	0.00	1.00
neos21	1241	1.23	103.43	0.31	0.00	1.00
neos8	1	3.00	148.11	1.02	0.00	1.00
nug08	1	1.00	54.77	0.49	0.00	1.00
nw04	3	3.67	137.63	0.41	0.00	1.00
p0033	50	2.86	0.07	1.00	0.00	1.00
p0201	107	1.40	0.63	1.00	0.00	1.00
p0282	125	1.02	0.32	1.00	0.00	1.00
p0548	1909	4.28	4.33	1.77	0.00	1.00
p2756	196220	2.90	540.11	2.67	0.00	1.00
prod1	26017	1.00	34.31	0.99	0.00	1.00
qap10	5	0.60	315.68	0.39	0.00	1.00
qnet1	207	0.56	18.10	0.19	0.00	1.00
qnet1_0	298	2.01	12.91	0.23	0.00	1.00
stein27	4286	1.05	1.76	0.98	0.00	1.00
stein45	51862	1.04	37.79	0.94	0.00	1.00
verschobenes	500.00				~ ~~	
geometrisches Mittel	522.90		57.79		0.00	

Tabelle F.5: Rechenstudie 4.4: Verbesserungsfaktoren für ERWGAUSS mit den Parametern $F = +, \mathcal{V}^{min} = 0.01$

Name	n	I(n)	t	I(t)	gap _{rel} %	I(gap _{rel} %)
10teams	380	64.82	17.35	13.43	0.00	1.00
30:70:4_5:0_5:100	515	0.96	1793.52	0.31	0.00	1.00
30:70:4_5:0_95:100	16	1.00	1728.42	0.24	0.00	1.00
30:70:4_5:0_95:98	16	5.56	1271.92	0.34	0.00	1.00
acc-0	1	1.00	15.98	0.10	0.00	1.00
acc-1	1	1.00	41.79	0.12	0.00	1.00
acc-2	94	0.93	183.04	0.45	0.00	1.00
acc-3	193	2.10	643.03	1.03	0.00	1.00
acc-4	1064	0.50	2390.19	0.38	0.00	1.00
acc-5	3120	1.84	2105.49	1.00	0.00	1.00
acc-6	870	3.34	578.60	1.73	0.00	1.00
air03	1	1.00	41.69	0.42	0.00	1.00
air04	336	1.00	118.46	0.71	0.00	1.00
air05	316	1.00	72.70	0.70	0.00	1.00
cap6000	17045	1.00	139.47	0.80	0.00	1.00
disctom	1	1.00	11.46	0.53	0.00	1.00
eilD76	12189	1.00	70.16	1.00	0.00	1.00
enigma	1488	1.00	0.82	1.00	0.00	1.00
fast0507	1638	1.00	1461.27	0.98	0.00	1.00
fiber	26402	1.00	45.21	0.99	0.00	1.00
gt2	128	1.00	0.12	1.00	0.00	1.00
irp	18	0.94	16.68	1.53	0.00	1.00
1152lav	95	0.81	6.18	0.70	0.00	1.00
lseu	5132	1.00	1.94	1.01	0.00	1.00
misc03	41	2.98	2.94	0.34	0.00	1.00
misc07	27597	1.71	54.26	1.10	0.00	1.00
mitre	41	1.00	168.24	0.23	0.00	1.00
mod008	3841	1.00	2.59	1.02	0.00	1.00
mod010	6	3.50	2.74	0.95	0.00	1.00
neos1	1	7080.00	7.44	9.33	0.00	1.00
neos10	5	1.80	229.60	0.72	0.00	1.00
neos18	59643	0.40	1327.84	0.25	0.00	1.00
neos21	1356	1.12	45.29	0.72	0.00	1.00
neos8	1	3.00	148.22	1.02	0.00	1.00
nug08	5	0.20	36.35	0.73	0.00	1.00
nw04	11	1.00	57.33	0.99	0.00	1.00
p0033	143	1.00	0.05	1.00	0.00	1.00
p0201	119	1.26	0.70	1.00	0.00	1.00
p0282	127	1.00	0.25	1.00	0.00	1.00
p0548	8162	1.00	7.62	1.01	0.00	1.00
p2756	569567	1.00	1452.92	0.99	0.00	1.00
prod1	26017	1.00	34.06	1.00	0.00	1.00
qap10	3	1.00	125.49	0.98	0.00	1.00
qnet1	248	0.47	4.59	0.74	0.00	1.00
qnet1_0	218	2.74	2.53	1.18	0.00	1.00
stein27	4286	1.05	1.81	0.96	0.00	1.00
stein45	51862	1.04	37.17	0.95	0.00	1.00
verschobenes	(75.10		(5.04		0.00	
geometrisches Mittel	675.12		65.84		0.00	

Tabelle F.6: Rechenstudie 4.4: Verbesserungsfaktoren für ERWGAUSS mit den Parametern $F = -, \mathcal{V}^{min} = 0.01$

Name	п	I(n)	t	I(t)	gap _{rel} %	$I(gap_{rel}\%)$
10teams	232	106.17	16.79	13.88	0.00	1.00
30:70:4_5:0_5:100	209	2.37	592.12	0.95	0.00	1.00
30:70:4_5:0_95:100	151	0.11	538.01	0.79	0.00	1.00
30:70:4_5:0_95:98	16	5.56	549.49	0.79	0.00	1.00
acc-0	1	1.00	8.66	0.19	0.00	1.00
acc-1	1	1.00	17.24	0.29	0.00	1.00
acc-2	103	0.84	117.85	0.70	0.00	1.00
acc-3	106	3.82	304.77	2.17	0.00	1.00
acc-4	1237	0.43	1866.80	0.48	0.00	1.00
acc-5	1025	5.60	582.53	3.61	0.00	1.00
acc-6	2822	1.03	1082.01	0.93	0.00	1.00
air03	1	1.00	6.97	2.51	0.00	1.00
air04	1138	0.30	238.83	0.35	0.00	1.00
air05	497	0.64	92.15	0.55	0.00	1.00
cap6000	14949	1.14	115.90	0.96	0.00	1.00
disctom	5392	0.00	748.83	0.01	0.00	1.00
eilD76	10755	1.13	88.99	0.79	0.00	1.00
enigma	914	1.63	0.49	1.00	0.00	1.00
fast0507	1503	1.09	1511.21	0.95	0.00	1.00
fiber	17503	1.51	29.56	1.51	0.00	1.00
gt2	81	1.58	0.08	1.00	0.00	1.00
irp	3	5.67	90.54	0.28	0.00	1.00
1152lav	47	1.64	12.56	0.34	0.00	1.00
lseu	6984	0.73	2.50	0.78	0.00	1.00
misc03	49	2.49	2.36	0.42	0.00	1.00
misc07	51647	0.91	82.57	0.72	0.00	1.00
mitre	49	0.84	116.94	0.33	0.00	1.00
mod008	7241	0.53	4.51	0.59	0.00	1.00
mod010	7	3.00	4.41	0.59	0.00	1.00
neos1	5217	1.36	62.91	1.10	0.00	1.00
neos10	6	1.50	179.11	0.93	0.00	1.00
neos18	14238	1.69	250.94	1.31	0.00	1.00
neos21	1476	1.03	73.02	0.44	0.00	1.00
neos8	1	3.00	149.23	1.01	0.00	1.00
nug08	5	0.20	36.31	0.74	0.00	1.00
nw04	7	1.57	266.44	0.21	0.00	1.00
p0033	65	2.20	0.06	1.00	0.00	1.00
p0201	119	1.26	0.79	1.00	0.00	1.00
p0282	127	1.00	0.28	1.00	0.00	1.00
p0548	2653	3.08	4.56	1.68	0.00	1.00
p2756	179775	3.17	453.79	3.18	0.00	1.00
prod1	26017	1.00	34.22	1.00	0.00	1.00
qap10	5	0.60	316.20	0.39	0.00	1.00
qnet1	234	0.50	6.34	0.53	0.00	1.00
qnet1_0	536	1.12	6.37	0.47	0.00	1.00
stein27	4378	1.03	1.91	0.91	0.00	1.00
stein45	54405	0.99	41.84	0.85	0.00	1.00
verschobenes						
geometrisches Mittel	771.63		66.29		0.00	

Tabelle F.7: Rechenstudie 4.4: Verbesserungsfaktoren für ERWGAUSS mit den Parametern $F = +, \mathcal{V}^{min} = 0.30$

Name	n	I(n)	t	I(t)	gap _{rel} %	$I(gap_{rel}\%)$
10teams	232	106.17	16.53	14.10	0.00	1.00
30:70:4_5:0_5:100	176	2.81	684.58	0.82	0.00	1.00
30:70:4_5:0_95:100	16	1.00	514.76	0.82	0.00	1.00
30:70:4_5:0_95:98	53	1.68	438.09	0.99	0.00	1.00
acc-0	1	1.00	7.60	0.21	0.00	1.00
acc-1	88	0.01	54.78	0.09	0.00	1.00
acc-2	97	0.90	127.70	0.65	0.00	1.00
acc-3	1114	0.36	1451.17	0.45	0.00	1.00
acc-4	443	1.21	942.75	0.96	0.00	1.00
acc-5	1025	5.60	578.09	3.64	0.00	1.00
acc-6	2822	1.03	1084.45	0.92	0.00	1.00
air03	1	1.00	23.91	0.73	0.00	1.00
air04	336	1.00	85.35	0.99	0.00	1.00
air05	316	1.00	51.33	0.99	0.00	1.00
cap6000	17045	1.00	111.28	1.00	0.00	1.00
disctom	1	1.00	6.63	0.91	0.00	1.00
eilD76	12189	1.00	69.98	1.00	0.00	1.00
enigma	1488	1.00	0.70	1.00	0.00	1.00
fast0507	1638	1.00	1439.61	1.00	0.00	1.00
fiber	26402	1.00	45.18	0.99	0.00	1.00
gt2	128	1.00	0.12	1.00	0.00	1.00
irp	18	0.94	15.87	1.60	0.00	1.00
1152lav	95	0.81	6.09	0.71	0.00	1.00
lseu	5132	1.00	1.90	1.03	0.00	1.00
misc03	49	2.49	1.88	0.53	0.00	1.00
misc07	50710	0.93	83.03	0.72	0.00	1.00
mitre	41	1.00	99.28	0.39	0.00	1.00
mod008	3841	1.00	2.62	1.01	0.00	1.00
mod010	8	2.62	2.33	1.11	0.00	1.00
neos1	5217	1.36	62.77	1.11	0.00	1.00
neos10	6	1.50	177.31	0.94	0.00	1.00
neos18	14238	1.69	244.40	1.34	0.00	1.00
neos21	1533	0.99	44.95	0.72	0.00	1.00
neos8	1	3.00	147.95	1.02	0.00	1.00
nug08	5	0.20	35.55	0.75	0.00	1.00
nw04	11	1.00	57.31	0.99	0.00	1.00
p0033	143	1.00	0.05	1.00	0.00	1.00
p0201	119	1.26	0.70	1.00	0.00	1.00
p0282	127	1.00	0.26	1.00	0.00	1.00
p0548	8162	1.00	7.47	1.03	0.00	1.00
p2756	569567	1.00	1435.69	1.01	0.00	1.00
prod1	26017	1.00	34.05	1.00	0.00	1.00
qap10	3	1.00	125.15	0.98	0.00	1.00
qnet1	206	0.56	4.20	0.80	0.00	1.00
qnet1_0	304	1.97	2.83	1.06	0.00	1.00
stein27	4378	1.03	1.69	1.02	0.00	1.00
stein45	54405	0.99	39.63	0.90	0.00	1.00
verschobenes	742 50		55 61		0.00	
geometrisches Mittel	143.32		33.04		0.00	

Tabelle F.8: Rechenstudie 4.4: Verbesserungsfaktoren für ERWGAUSS mit den Parametern F = -, $\mathcal{V}^{min} = 0.30$

Name	п	I(n)	t	I(t)	gap _{rel} %	$I(gap_{rel}\%)$
10teams	55	447.84	12.73	18.31	0.00	1.00
30:70:4_5:0_5:100	146	3.39	852.44	0.66	0.00	1.00
30:70:4_5:0_95:100	16	1.00	691.89	0.61	0.00	1.00
30:70:4_5:0_95:98	28	3.18	882.78	0.49	0.00	1.00
acc-0	1	1.00	8.14	0.20	0.00	1.00
acc-1	84	0.01	61.65	0.08	0.00	1.00
acc-2	1	87.00	22.39	3.69	0.00	1.00
acc-3	1194	0.34	1719.32	0.38	0.00	1.00
acc-4	578	0.93	745.12	1.21	0.00	1.00
acc-5	1738	3.30	926.05	2.27	0.00	1.00
acc-6	704	4.12	304.61	3.29	0.00	1.00
air03	1	1.00	20.69	0.85	0.00	1.00
air04	336	1.00	85.48	0.98	0.00	1.00
air05	316	1.00	52.00	0.97	0.00	1.00
cap6000	17045	1.00	109.57	1.02	0.00	1.00
disctom	1	1.00	7.54	0.80	0.00	1.00
eilD76	12189	1.00	70.19	1.00	0.00	1.00
enigma	1488	1.00	0.67	1.00	0.00	1.00
fast0507	1638	1.00	1445.76	0.99	0.00	1.00
fiber	26402	1.00	44.66	1.00	0.00	1.00
gt2	128	1.00	0.11	1.00	0.00	1.00
irp	18	0.94	16.33	1.56	0.00	1.00
1152lav	95	0.81	6.28	0.69	0.00	1.00
lseu	5132	1.00	1.89	1.03	0.00	1.00
misc03	37	3.30	1.68	0.60	0.00	1.00
misc07	71078	0.66	116.08	0.51	0.00	1.00
mitre	41	1.00	110.99	0.35	0.00	1.00
mod008	3841	1.00	2.64	1.00	0.00	1.00
mod010	6	3.50	2.67	0.97	0.00	1.00
neos1	1	7080.00	6.41	10.83	0.00	1.00
neos10	8	1.12	176.33	0.94	0.00	1.00
neos18	41315	0.58	809.47	0.41	0.00	1.00
neos21	1754	0.87	58.27	0.56	0.00	1.00
neos8	1	3.00	150.62	1.00	0.00	1.00
nug08	5	0.20	37.17	0.72	0.00	1.00
nw04	11	1.00	59.78	0.95	0.00	1.00
p0033	143	1.00	0.06	1.00	0.00	1.00
p0201	119	1.26	0.69	1.00	0.00	1.00
p0282	127	1.00	0.26	1.00	0.00	1.00
p0548	8162	1.00	8.02	0.96	0.00	1.00
p2756	569567	1.00	1464.51	0.99	0.00	1.00
prod1	26017	1.00	34.28	0.99	0.00	1.00
qap10	3	1.00	127.65	0.96	0.00	1.00
qnet1	157	0.74	4.03	0.84	0.00	1.00
qnet1_0	307	1.95	2.93	1.02	0.00	1.00
stein27	3951	1.14	1.59	1.09	0.00	1.00
stein45	48740	1.10	37.75	0.94	0.00	1.00
verschobenes	655 01		54 (2)		0.00	
geometrisches Mittel	033.84		34.03		0.00	

Tabelle F.9: Rechenstudie 4.4: Verbesserungsfaktoren für ERWGAUSS mit den Parametern F = -, $\mathcal{V}^{min} = 0.20$

Name	n	I(n)	t	I(t)	gap _{rel} %	$I(gap_{rel}\%)$
10teams	371	66.39	19.70	11.83	0.00	1.00
30:70:4_5:0_5:100	553	0.90	486.50	1.16	0.00	1.00
30:70:4_5:0_95:100	28	0.57	491.80	0.86	0.00	1.00
30:70:4_5:0_95:98	16	5.56	381.82	1.13	0.00	1.00
acc-0	1	1.00	6.64	0.24	0.00	1.00
acc-1	84	0.01	42.64	0.12	0.00	1.00
acc-2	104	0.84	125.27	0.66	0.00	1.00
acc-3	80	5.06	205.98	3.20	0.00	1.00
acc-4	1715	0.31	2246.08	0.40	0.00	1.00
acc-5	3151	1.82	1412.08	1.49	0.00	1.00
acc-6	281	10.33	190.88	5.25	0.00	1.00
air03	1	1.00	18.98	0.92	0.00	1.00
air04	336	1.00	85.40	0.99	0.00	1.00
air05	316	1.00	51.25	0.99	0.00	1.00
cap6000	17045	1.00	110.10	1.02	0.00	1.00
disctom	1	1.00	6.26	0.97	0.00	1.00
eilD76	12189	1.00	70.31	1.00	0.00	1.00
enigma	1488	1.00	0.68	1.00	0.00	1.00
fast0507	1638	1.00	1443.91	0.99	0.00	1.00
fiber	26402	1.00	45.05	0.99	0.00	1.00
gt2	128	1.00	0.12	1.00	0.00	1.00
irp	18	0.94	15.95	1.59	0.00	1.00
1152lav	95	0.81	6.05	0.72	0.00	1.00
lseu	5132	1.00	1.94	1.01	0.00	1.00
misc03	69	1.77	1.43	0.70	0.00	1.00
misc07	21654	2.18	37.32	1.60	0.00	1.00
mitre	41	1.00	74.03	0.53	0.00	1.00
mod008	3841	1.00	2.65	1.00	0.00	1.00
mod010	8	2.62	2.35	1.10	0.00	1.00
neos1	2265	3.13	36.11	1.92	0.00	1.00
neos10	7	1.29	172.25	0.96	0.00	1.00
neos18	28863	0.83	459.77	0.71	0.00	1.00
neos21	1640	0.93	41.85	0.78	0.00	1.00
neos8	1	3.00	148.24	1.02	0.00	1.00
nug08	5	0.20	35.87	0.74	0.00	1.00
nw04	11	1.00	57.09	0.99	0.00	1.00
p0033	143	1.00	0.06	1.00	0.00	1.00
p0201	119	1.26	0.71	1.00	0.00	1.00
p0282	127	1.00	0.28	1.00	0.00	1.00
p0548	8162	1.00	7.77	0.99	0.00	1.00
p2756	569567	1.00	1448.13	1.00	0.00	1.00
prod1	26017	1.00	34.18	1.00	0.00	1.00
qap10	3	1.00	183.95	0.67	0.00	1.00
qnet1	137	0.85	5.12	0.66	0.00	1.00
qnet1_0	299	2.00	3.62	0.83	0.00	1.00
stein27	4494	1.00	2.56	0.68	0.00	1.00
stein45	53814	1.00	51.64	0.69	0.00	1.00
verschobenes			5 4 04		0.00	
geometrisches Mittel	/14.56		51.81		0.00	

Tabelle F.10: Rechenstudie 4.4: Verbesserungsfaktoren für ERWGAUSS mit den Parametern F = -, $\mathcal{V}^{min} = 0.40$

Name	п	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
10teams	1016	0.53	41.81	0.95	0.00	1.00
30:70:4_5:0_5:100	135	2.11	1808.64	0.61	0.00	1.00
30:70:4_5:0_95:100	16	2.62	1603.64	0.43	0.00	1.00
30:70:4_5:0_95:98	1	184.00	894.14	0.45	0.00	1.00
acc-0	1	1.00	23.07	0.77	0.00	1.00
acc-1	1	115.00	44.55	2.03	0.00	1.00
acc-2	53	0.02	168.57	0.26	0.00	1.00
acc-3	247	0.47	456.61	0.56	0.00	1.00
acc-4	73	5.73	300.76	2.37	0.00	1.00
acc-5	709	3.28	473.88	1.84	0.00	1.00
acc-6	457	0.61	264.15	0.65	0.00	1.00
air03	1	4.00	11.57	1.98	0.00	1.00
air04	6	43.00	313.64	0.66	0.00	1.00
air05	255	1.34	187.97	0.48	0.00	1.00
cap6000	1581	1.94	9.12	0.97	0.00	1.00
disctom	1	1.00	115.30	0.80	0.00	1.00
eilD76	3	3.00	458.10	0.19	0.00	1.00
enigma	926	1.72	0.68	1.00	0.00	1.00
fast0507	1	ML	342.53	ML	1.04	0.97
fiber	14	0.71	10.15	0.16	0.00	1.00
gt2	1	2.00	0.14	1.00	0.00	1.00
irp	0	TL	3600.00	TL	-	-
1152lav	24	1.00	19.96	0.18	0.00	1.00
lseu	304	0.27	1.03	0.97	0.00	1.00
manna81	1	2.00	4.12	1.32	0.00	1.00
misc03	40	1.50	3.94	0.36	0.00	1.00
misc07	55157	0.46	99.65	0.40	0.00	1.00
mitre	5	2.00	56.57	1.08	0.00	1.00
mod008	195	1.37	0.54	1.00	0.00	1.00
mod010	1	1.00	2.05	0.99	0.00	1.00
neos1	1	14.00	7.73	2.64	0.00	1.00
neos10	5	1.00	597.51	0.42	0.00	1.00
neos18	7195	2.28	242.17	0.83	0.00	1.00
neos21	941	1.91	100.31	0.45	0.00	1.00
neos8	1	1.00	150.96	1.01	0.00	1.00
nug08	1	1.00	1104.91	0.44	0.00	1.00
nw04	7	0.71	926.67	0.08	0.00	1.00
p0033	1	1.00	0.04	1.00	0.00	1.00
p0201	5	28.20	4.03	0.47	0.00	1.00
p0282	5	3.80	2.19	0.46	0.00	1.00
p0548	1	8.00	0.50	1.00	0.00	1.00
p2756	63	0.59	5.41	0.81	0.00	1.00
prod1	25439	1.00	42.99	1.01	0.00	1.00
qap10	1	4.00	3050.49	0.22	0.00	1.00
qnet1	26	1.65	17.18	0.38	0.00	1.00
qnet1_o	22	3.00	13.53	0.49	0.00	1.00
stein27	4333	1.03	1.79	1.04	0.00	1.00
stein45	48979	1.13	37.12	1.04	0.00	1.00
verschobenes	100					
geometrisches Mittel	189.55		64.60		0.00	

Tabelle F.11: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = +, prio = -500, $\mathcal{V}^{min} = 0.01$

Name	n	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
10teams	1016	0.53	41.93	0.95	0.00	1.00
30:70:4_5:0_5:100	135	2.11	1810.00	0.61	0.00	1.00
30:70:4_5:0_95:100	16	2.62	1525.98	0.45	0.00	1.00
30:70:4_5:0_95:98	29	6.34	946.69	0.43	0.00	1.00
acc-0	1	1.00	23.36	0.76	0.00	1.00
acc-1	1	115.00	44.58	2.03	0.00	1.00
acc-2	108	0.01	140.15	0.31	0.00	1.00
acc-3	247	0.47	459.17	0.56	0.00	1.00
acc-4	73	5.73	300.87	2.37	0.00	1.00
acc-5	709	3.28	480.22	1.82	0.00	1.00
acc-6	457	0.61	265.48	0.65	0.00	1.00
air03	1	4.00	11.49	1.99	0.00	1.00
air04	6	43.00	315.25	0.66	0.00	1.00
air05	255	1.34	186.57	0.48	0.00	1.00
cap6000	1581	1.94	9.37	0.95	0.00	1.00
disctom	1	1.00	115.47	0.80	0.00	1.00
eilD76	3	3.00	451.98	0.19	0.00	1.00
enigma	926	1.72	0.69	1.00	0.00	1.00
fast0507	1	ML	360.06	ML	1.04	0.97
fiber	18	0.56	11.75	0.14	0.00	1.00
gt2	1	2.00	0.10	1.00	0.00	1.00
irp	0	TL	3600.00	TL	_	_
1152lav	24	1.00	19.17	0.19	0.00	1.00
lseu	304	0.27	1.02	0.98	0.00	1.00
manna81	1	2.00	4.19	1.30	0.00	1.00
misc03	40	1.50	3.95	0.36	0.00	1.00
misc07	55157	0.46	99.23	0.40	0.00	1.00
mitre	5	2.00	57.22	1.07	0.00	1.00
mod008	195	1.37	0.56	1.00	0.00	1.00
mod010	1	1.00	2.16	0.94	0.00	1.00
neos1	1	14.00	9.60	2.13	0.00	1.00
neos10	5	1.00	724.83	0.35	0.00	1.00
neos18	15162	1.08	303.19	0.66	0.00	1.00
neos21	1332	1.35	98.15	0.46	0.00	1.00
neos8	1	1.00	151.38	1.00	0.00	1.00
nug08	1	1.00	1088.34	0.45	0.00	1.00
nw04	8	0.62	959.82	0.08	0.00	1.00
p0033	1	1.00	0.04	1.00	0.00	1.00
p0201	5	28.20	4.00	0.48	0.00	1.00
p0282	5	3.80	2.21	0.45	0.00	1.00
p0548	1	8.00	0.50	1.00	0.00	1.00
p2756	47	0.79	5.10	0.86	0.00	1.00
prod1	25439	1.00	43.24	1.00	0.00	1.00
gap10	1	4.00	3205.23	0.21	0.00	1.00
anet1	26	1.65	17.40	0.37	0.00	1.00
anet1 o	20	3.00	13.42	0.49	0.00	1.00
stein27	4333	1.03	1.77	1.05	0.00	1.00
stein45	48979	1.13	37.96	1.02	0.00	1.00
verschobenes						
geometrisches Mittel	199.46		65.41		0.00	

Tabelle F.12: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = +, prio = -1500, $\mathcal{V}^{min} = 0.01$

Name	п	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
10teams	1016	0.53	41.27	0.96	0.00	1.00
30:70:4_5:0_5:100	51	5.59	1449.59	0.76	0.00	1.00
30:70:4_5:0_95:100	22	1.91	1444.32	0.48	0.00	1.00
30:70:4_5:0_95:98	16	11.50	1061.96	0.38	0.00	1.00
acc-0	1	1.00	30.59	0.58	0.00	1.00
acc-1	1	115.00	44.18	2.05	0.00	1.00
acc-2	108	0.01	138.86	0.32	0.00	1.00
acc-3	247	0.47	529.24	0.48	0.00	1.00
acc-4	527	0.79	1052.60	0.68	0.00	1.00
acc-5	709	3.28	474.38	1.84	0.00	1.00
acc-6	457	0.61	261.13	0.66	0.00	1.00
air03	1	4.00	11.50	1.99	0.00	1.00
air04	6	43.00	309.51	0.67	0.00	1.00
air05	187	1.83	184.17	0.49	0.00	1.00
cap6000	1581	1.94	9.14	0.97	0.00	1.00
disctom	1	1.00	114.52	0.80	0.00	1.00
eilD76	3	3.00	452.67	0.19	0.00	1.00
enigma	926	1.72	0.69	1.00	0.00	1.00
fast0507	1	ML	379.11	ML	1.04	0.97
fiber	15	0.67	6.15	0.27	0.00	1.00
gt2	1	2.00	0.11	1.00	0.00	1.00
irp	0	TL	3600.00	TL	-	-
1152lav	24	1.00	19.52	0.19	0.00	1.00
lseu	304	0.27	1.06	0.94	0.00	1.00
manna81	1	2.00	4.13	1.31	0.00	1.00
misc03	40	1.50	3.96	0.36	0.00	1.00
misc07	30391	0.83	76.88	0.51	0.00	1.00
mitre	4	2.50	56.71	1.08	0.00	1.00
mod008	195	1.37	0.56	1.00	0.00	1.00
mod010	1	1.00	2.12	0.96	0.00	1.00
neos1	1	14.00	9.82	2.08	0.00	1.00
neos10	3	1.67	757.07	0.33	0.00	1.00
neos18	9724	1.69	205.06	0.98	0.00	1.00
neos21	1332	1.35	98.23	0.45	0.00	1.00
neos8	1	1.00	151.07	1.01	0.00	1.00
nug08	1	1.00	1079.33	0.45	0.00	1.00
nw04	8	0.62	943.45	0.08	0.00	1.00
p0033	1	1.00	0.03	1.00	0.00	1.00
p0201	5	28.20	4.00	0.48	0.00	1.00
p0282	5	3.80	2.32	0.43	0.00	1.00
p0548	1	8.00	0.53	1.00	0.00	1.00
p2756	106	0.35	5.85	0.75	0.00	1.00
prod1	25439	1.00	42.99	1.01	0.00	1.00
qap10	1	4.00	3040.90	0.22	0.00	1.00
qnet1	26	1.65	17.28	0.37	0.00	1.00
qnet1_0	22	3.00	13.49	0.49	0.00	1.00
stein27	4333	1.03	1.82	1.02	0.00	1.00
stein45	48979	1.13	38.74	1.00	0.00	1.00
verschobenes						
geometrisches Mittel	198.33		66.15		0.00	

Tabelle F.13: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = +, prio = -3500, $\mathcal{V}^{min} = 0.01$

Name	n	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
10teams	1016	0.53	41.70	0.95	0.00	1.00
30:70:4_5:0_5:100	51	5.59	1449.93	0.76	0.00	1.00
30:70:4_5:0_95:100	22	1.91	1404.84	0.49	0.00	1.00
30:70:4_5:0_95:98	16	11.50	1073.34	0.38	0.00	1.00
acc-0	1	1.00	22.02	0.81	0.00	1.00
acc-1	1	115.00	44.03	2.05	0.00	1.00
acc-2	108	0.01	138.99	0.32	0.00	1.00
acc-3	1185	0.10	1696.48	0.15	0.00	1.00
acc-4	2302	0.18	2337.73	0.30	0.00	1.00
acc-5	1332	1.74	789.57	1.11	0.00	1.00
acc-6	997	0.28	453.11	0.38	0.00	1.00
air03	1	4.00	11.33	2.02	0.00	1.00
air04	6	43.00	308.68	0.68	0.00	1.00
air05	187	1.83	182.13	0.49	0.00	1.00
cap6000	1566	1.96	9.04	0.98	0.00	1.00
disctom	1	1.00	114.53	0.80	0.00	1.00
eilD76	6	1.50	389.67	0.22	0.00	1.00
enigma	926	1.72	0.66	1.00	0.00	1.00
fast0507	17	ML	644.14	ML	0.98	1.00
fiber	16	0.62	10.84	0.15	0.00	1.00
gt2	1	2.00	0.11	1.00	0.00	1.00
irp	0	TL	3600.00	TL	-	
1152lav	24	1.00	18.79	0.19	0.00	1.00
lseu	304	0.27	1.02	0.98	0.00	1.00
manna81	1	2.00	4.16	1.31	0.00	1.00
misc03	40	1.50	3.97	0.36	0.00	1.00
misc07	30391	0.83	75 58	0.50	0.00	1.00
mitre	6	1.67	57.73	1.06	0.00	1.00
mod008	195	1.37	0.54	1.00	0.00	1.00
mod010	1	1.00	2.05	0.99	0.00	1.00
neos1	1	14.00	7.60	2.69	0.00	1.00
neos10	7	0.71	385 74	0.65	0.00	1.00
neos18	21766	0.75	452.19	0.05	0.00	1.00
neos21	1332	1 35	97.68	0.44	0.00	1.00
neos21	1352	1.00	150.01	1.01	0.00	1.00
nucle	1	1.00	1038 10	0.47	0.00	1.00
nug00	12	0.42	003.45	0.00	0.00	1.00
n0033	12	1.00	0.03	1.00	0.00	1.00
p00000	1	28.20	4.00	0.48	0.00	1.00
p0201	5	28.20	4.00	0.46	0.00	1.00
p0282	1	S.80	2.21	1.00	0.00	1.00
p0348	201	8.00 0.12	0.30	1.00	0.00	1.00
p2730	25420	0.12	7.50	0.00	0.00	1.00
prod I	25459	1.00	42.98	1.01	0.00	1.00
qapio	1	4.00	3034.04	0.22	0.00	1.00
queti anati a	20	1.05	17.24	0.37	0.00	1.00
	4222	5.00	14.22	0.40	0.00	1.00
stein27	4355	1.03	1.79	1.04	0.00	1.00
stein45	48979	1.13	38.86	1.00	0.00	1.00
verschobenes						
geometrisches Mittel	236.14		70.89		0.00	

Tabelle F.14: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = +, prio = -5500, $\mathcal{V}^{min} = 0.01$

Name	п	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
10teams	286	1.88	42.41	0.94	0.00	1.00
30:70:4_5:0_5:100	27	10.56	1234.17	0.90	0.00	1.00
30:70:4_5:0_95:100	16	2.62	1495.42	0.46	0.00	1.00
30:70:4_5:0_95:98	67	2.75	1803.47	0.22	0.00	1.00
acc-0	1	1.00	23.50	0.76	0.00	1.00
acc-1	1	115.00	41.93	2.16	0.00	1.00
acc-2	127	0.01	159.19	0.28	0.00	1.00
acc-3	169	0.68	650.15	0.39	0.00	1.00
acc-4	539	0.78	1171.34	0.61	0.00	1.00
acc-5	3713	0.63	1569.27	0.56	0.00	1.00
acc-6	371	0.75	236.53	0.73	0.00	1.00
air03	1	4.00	33.73	0.68	0.00	1.00
air04	58	4.45	269.67	0.77	0.00	1.00
air05	342	1.00	100.43	0.89	0.00	1.00
cap6000	3065	1.00	8.70	1.02	0.00	1.00
disctom	1	1.00	93.30	0.99	0.00	1.00
eilD76	3	3.00	162.99	0.52	0.00	1.00
enigma	1593	1.00	0.84	1.00	0.00	1.00
fast0507	1445	1.00	783.63	0.97	0.00	1.00
fiber	14	0.71	1.87	0.89	0.00	1.00
gt2	141	0.01	0.28	1.00	0.00	1.00
irp	9	1.11	65.60	0.85	0.00	1.00
1152lav	32	0.75	6.57	0.55	0.00	1.00
lseu	81	1.00	0.31	1.00	0.00	1.00
manna81	1	2.00	4.26	1.27	0.00	1.00
misc03	19	3.16	2.02	0.70	0.00	1.00
misc07	43888	0.58	80.48	0.49	0.00	1.00
mitre	13	0.77	57.94	1.05	0.00	1.00
mod008	267	1.00	0.65	1.00	0.00	1.00
mod010	1	1.00	2.07	0.98	0.00	1.00
neos1	1	14.00	10.71	1.91	0.00	1.00
neos10	8	0.62	706.27	0.36	0.00	1.00
neos18	10592	1.55	331.18	0.61	0.00	1.00
neos21	1747	1.03	54.49	0.82	0.00	1.00
neos8	1	1.00	152.99	0.99	0.00	1.00
nug08	2	0.50	235.60	2.08	0.00	1.00
nw04	5	1.00	81.05	0.95	0.00	1.00
p0033	1	1.00	0.04	1.00	0.00	1.00
p0201	105	1.34	2.87	0.67	0.00	1.00
p0282	46	0.41	1.07	0.93	0.00	1.00
p0548	8	1.00	0.64	1.00	0.00	1.00
p2756	37	1.00	4.52	0.97	0.00	1.00
prod1	25439	1.00	43.57	0.99	0.00	1.00
qap10	4	1.00	754.97	0.87	0.00	1.00
qnet1	38	1.13	6.20	1.04	0.00	1.00
qnet1_o	98	0.67	6.55	1.00	0.00	1.00
stein27	4333	1.03	1.72	1.08	0.00	1.00
stein45	48979	1.13	37.77	1.03	0.00	1.00
verschobenes						
geometrisches Mittel	232.27		59.21		0.00	

Tabelle F.15: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = -, prio = -1500, $\mathcal{V}^{min} = 0.01$

Name	n	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
10teams	406	1.33	40.27	0.98	0.00	1.00
30:70:4_5:0_5:100	104	2.74	748.35	1.48	0.00	1.00
30:70:4_5:0_95:100	28	1.50	1069.79	0.65	0.00	1.00
30:70:4_5:0_95:98	42	4.38	887.60	0.45	0.00	1.00
acc-0	1	1.00	18.48	0.96	0.00	1.00
acc-1	1	115.00	35.86	2.52	0.00	1.00
acc-2	95	0.01	167.29	0.26	0.00	1.00
acc-3	203	0.57	381.66	0.67	0.00	1.00
acc-4	836	0.50	955.99	0.74	0.00	1.00
acc-5	579	4.01	435.40	2.01	0.00	1.00
acc-6	95	2.95	146.82	1.18	0.00	1.00
air03	1	4.00	9.04	2.53	0.00	1.00
air04	191	1.35	287.18	0.73	0.00	1.00
air05	286	1.20	212.53	0.42	0.00	1.00
cap6000	1638	1.87	8.41	1.06	0.00	1.00
disctom	1	1.00	95.29	0.97	0.00	1.00
eilD76	3	3.00	233.11	0.36	0.00	1.00
enigma	2110	0.75	1.14	0.88	0.00	1.00
fast0507	1428	1.01	1983.95	0.38	0.00	1.00
fiber	17	0.59	7.81	0.21	0.00	1.00
gt2	2	1.00	0.10	1.00	0.00	1.00
irp	7	1.43	121.70	0.46	0.00	1.00
1152lav	26	0.92	12.23	0.30	0.00	1.00
lseu	277	0.29	0.59	1.00	0.00	1.00
manna81	1	2.00	4.19	1.30	0.00	1.00
misc03	79	0.76	4.33	0.33	0.00	1.00
misc07	27008	0.94	56.55	0.70	0.00	1.00
mitre	10	1.00	65.06	0.94	0.00	1.00
mod008	9	29.67	0.38	1.00	0.00	1.00
mod010	1	1.00	2.04	1.00	0.00	1.00
neos1	1	14.00	6.44	3.17	0.00	1.00
neos10	7	0.71	385.54	0.65	0.00	1.00
neos18	25083	0.65	446.99	0.45	0.00	1.00
neos21	1210	1.48	76.70	0.58	0.00	1.00
neos8	1	1.00	151.64	1.00	0.00	1.00
nug08	1	1.00	890.98	0.55	0.00	1.00
nw04	10	0.50	176.16	0.44	0.00	1.00
p0033	1	1.00	0.04	1.00	0.00	1.00
p0201	9	15.67	6.85	0.28	0.00	1.00
p0282	5	3.80	1.06	0.94	0.00	1.00
p0548	1	8.00	0.49	1.00	0.00	1.00
p2756	29	1.28	4.94	0.89	0.00	1.00
prod1	25439	1.00	43.09	1.01	0.00	1.00
gap10	1	TL	3600.00	TL	0.24	1.00
anet1	8	5.38	5.53	1.17	0.00	1.00
anet1 o	35	1.89	9.30	0.71	0.00	1.00
stein27	3773	1.18	1.54	1.21	0.00	1.00
stein45	52576	1.05	40.36	0.96	0.00	1.00
verschobenes						
geometrisches Mittel	211.67		56.27		0.00	

Tabelle F.16: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = +, prio = -500, $\mathcal{V}^{min} = 0.30$

Name	п	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
10teams	406	1.33	40.77	0.97	0.00	1.00
30:70:4_5:0_5:100	206	1.38	1142.50	0.97	0.00	1.00
30:70:4_5:0_95:100	16	2.62	833.89	0.83	0.00	1.00
30:70:4_5:0_95:98	16	11.50	768.32	0.52	0.00	1.00
acc-0	1	1.00	19.17	0.93	0.00	1.00
acc-1	1	115.00	35.71	2.53	0.00	1.00
acc-2	1	1.00	44.31	1.00	0.00	1.00
acc-3	203	0.57	379.79	0.67	0.00	1.00
acc-4	836	0.50	952.36	0.75	0.00	1.00
acc-5	579	4.01	437.61	2.00	0.00	1.00
acc-6	95	2.95	146.29	1.18	0.00	1.00
air03	1	4.00	30.49	0.75	0.00	1.00
air04	47	5.49	266.48	0.78	0.00	1.00
air05	342	1.00	94.41	0.95	0.00	1.00
cap6000	3065	1.00	8.63	1.03	0.00	1.00
disctom	1	1.00	89.42	1.03	0.00	1.00
eilD76	3	3.00	151.33	0.56	0.00	1.00
enigma	1593	1.00	0.83	1.00	0.00	1.00
fast0507	1445	1.00	767.21	0.99	0.00	1.00
fiber	15	0.67	2.05	0.81	0.00	1.00
gt2	141	0.01	0.30	1.00	0.00	1.00
irp	9	1.11	61.53	0.90	0.00	1.00
1152lav	41	0.59	4.84	0.75	0.00	1.00
lseu	81	1.00	0.28	1.00	0.00	1.00
manna81	1	2.00	4.24	1.28	0.00	1.00
misc03	233	0.26	3.19	0.44	0.00	1.00
misc07	37755	0.67	68.67	0.57	0.00	1.00
mitre	10	1.00	61.90	0.99	0.00	1.00
mod008	267	1.00	0.65	1.00	0.00	1.00
mod010	1	1.00	2.05	0.99	0.00	1.00
neos1	1	14.00	6.60	3.09	0.00	1.00
neos10	7	0.71	553.55	0.45	0.00	1.00
neos18	9462	1.73	215.50	0.93	0.00	1.00
neos21	1984	0.91	56.93	0.78	0.00	1.00
neos8	1	1.00	150.76	1.01	0.00	1.00
nug08	1	1.00	449.06	1.09	0.00	1.00
nw04	5	1.00	80.10	0.96	0.00	1.00
p0033	1	1.00	0.04	1.00	0.00	1.00
p0201	38	3.71	1.62	1.18	0.00	1.00
p0282	52	0.37	1.03	0.97	0.00	1.00
p0548	8	1.00	0.63	1.00	0.00	1.00
p2756	37	1.00	4.49	0.98	0.00	1.00
prod1	25439	1.00	42.98	1.01	0.00	1.00
qap10	4	1.00	750.51	0.88	0.00	1.00
qnet1	27	1.59	5.98	1.08	0.00	1.00
qnet1_0	116	0.57	6.47	1.02	0.00	1.00
stein27	3773	1.18	1.60	1.16	0.00	1.00
stein45	52576	1.05	40.92	0.95	0.00	1.00
verschobenes						
geometrisches Mittel	220.69		50.91		0.00	

Tabelle F.17: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = -, prio = -500, $\mathcal{V}^{min} = 0.30$

Name	n	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
10teams	179	3.01	55.01	0.72	0.00	1.00
30:70:4_5:0_5:100	94	3.03	842.97	1.31	0.00	1.00
30:70:4_5:0_95:100	16	2.62	911.64	0.76	0.00	1.00
30:70:4_5:0_95:98	29	6.34	909.94	0.44	0.00	1.00
acc-0	1	1.00	19.05	0.93	0.00	1.00
acc-1	118	0.97	105.43	0.86	0.00	1.00
acc-2	108	0.01	165.76	0.27	0.00	1.00
acc-3	351	0.33	881.04	0.29	0.00	1.00
acc-4	1945	0.21	2688.07	0.26	0.00	1.00
acc-5	4316	0.54	1380.01	0.63	0.00	1.00
acc-6	105	2.67	149.43	1.16	0.00	1.00
air03	1	4.00	32.46	0.71	0.00	1.00
air04	200	1.29	358.08	0.58	0.00	1.00
air05	342	1.00	95.63	0.94	0.00	1.00
cap6000	3065	1.00	8.57	1.04	0.00	1.00
disctom	1	1.00	111.63	0.82	0.00	1.00
eilD76	3	3.00	151.59	0.56	0.00	1.00
enigma	1593	1.00	0.94	1.00	0.00	1.00
fast0507	1445	1.00	771.24	0.99	0.00	1.00
fiber	15	0.67	1.93	0.87	0.00	1.00
gt2	141	0.01	0.30	1.00	0.00	1.00
irp	9	1.11	62.68	0.89	0.00	1.00
1152lav	41	0.59	4.89	0.74	0.00	1.00
lseu	81	1.00	0.29	1.00	0.00	1.00
manna81	1	2.00	4.19	1.30	0.00	1.00
misc03	31	1.94	2.27	0.62	0.00	1.00
misc07	51484	0.49	100.89	0.39	0.00	1.00
mitre	13	0.77	55.74	1.10	0.00	1.00
mod008	267	1.00	0.65	1.00	0.00	1.00
mod010	1	1.00	2.08	0.98	0.00	1.00
neos1	1	14.00	8.36	2.44	0.00	1.00
neos10	7	0.71	441.94	0.57	0.00	1.00
neos18	5593	2.93	184.73	1.09	0.00	1.00
neos21	1295	1.39	46.32	0.96	0.00	1.00
neos8	1	1.00	151.76	1.00	0.00	1.00
nug08	1	1.00	447.99	1.09	0.00	1.00
nw04	5	1.00	79.88	0.96	0.00	1.00
p0033	1	1.00	0.03	1.00	0.00	1.00
p0201	9	15.67	1.75	1.09	0.00	1.00
p0282	59	0.32	1.03	0.97	0.00	1.00
p0548	8	1.00	0.62	1.00	0.00	1.00
p2756	37	1.00	4.60	0.95	0.00	1.00
prod1	25439	1.00	43.32	1.00	0.00	1.00
gap10	4	1.00	738.40	0.89	0.00	1.00
anet1	50	0.86	7.15	0.90	0.00	1.00
anet1_o	43	1.53	5.76	1.14	0.00	1.00
stein27	3773	1.18	1.63	1.14	0.00	1.00
stein45	50636	1.09	39.46	0.98	0.00	1.00
verschobenes						
geometrisches Mittel	236.93		58.49		0.00	

Tabelle F.18: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = -, prio = -500, $\mathcal{V}^{min} = 0.20$

Name	п	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
10teams	1076	0.50	103.41	0.38	0.00	1.00
30:70:4_5:0_5:100	101	2.82	737.34	1.50	0.00	1.00
30:70:4_5:0_95:100	28	1.50	830.75	0.83	0.00	1.00
30:70:4_5:0_95:98	16	11.50	1055.78	0.38	0.00	1.00
acc-0	1	1.00	19.94	0.89	0.00	1.00
acc-1	1	115.00	36.71	2.46	0.00	1.00
acc-2	106	0.01	165.21	0.27	0.00	1.00
acc-3	746	0.15	1083.91	0.24	0.00	1.00
acc-4	2742	TL	3600.00	TL	0.00	1.00
acc-5	3403	0.68	1456.37	0.60	0.00	1.00
acc-6	1610	0.17	743.49	0.23	0.00	1.00
air03	1	4.00	30.18	0.76	0.00	1.00
air04	8	32.25	195.28	1.07	0.00	1.00
air05	342	1.00	93.64	0.96	0.00	1.00
cap6000	3065	1.00	8.68	1.02	0.00	1.00
disctom	1	1.00	88.27	1.04	0.00	1.00
eilD76	3	3.00	147.92	0.57	0.00	1.00
enigma	1593	1.00	0.83	1.00	0.00	1.00
fast0507	1445	1.00	764.17	0.99	0.00	1.00
fiber	10	1.00	1.71	0.98	0.00	1.00
gt2	2	1.00	0.11	1.00	0.00	1.00
irp	9	1.11	60.57	0.92	0.00	1.00
1152lav	23	1.04	4.05	0.90	0.00	1.00
lseu	81	1.00	0.27	1.00	0.00	1.00
manna81	1	2.00	4.06	1.34	0.00	1.00
misc03	21	2.86	2.05	0.69	0.00	1.00
misc07	32470	0.78	64.72	0.61	0.00	1.00
mitre	10	1.00	62.09	0.98	0.00	1.00
mod008	267	1.00	0.64	1.00	0.00	1.00
mod010	1	1.00	2.18	0.93	0.00	1.00
neos1	1	14.00	9.13	2.24	0.00	1.00
neos10	8	0.62	450.06	0.56	0.00	1.00
neos18	14765	1.11	286.68	0.70	0.00	1.00
neos21	1122	1.60	46.08	0.97	0.00	1.00
neos8	1	1.00	149.94	1.01	0.00	1.00
nug08	2	0.50	209.05	2.34	0.00	1.00
nw04	5	1.00	79.11	0.97	0.00	1.00
p0033	1	1.00	0.04	1.00	0.00	1.00
p0201	15	9.40	1.78	1.07	0.00	1.00
p0282	10	1.90	0.96	1.00	0.00	1.00
p0548	8	1.00	0.61	1.00	0.00	1.00
p2756	37	1.00	4.50	0.97	0.00	1.00
prod1	25439	1.00	43.05	1.01	0.00	1.00
qap10	4	1.00	738.19	0.89	0.00	1.00
qnet1	43	1.00	6.52	0.99	0.00	1.00
qnet1_0	68	0.97	5.83	1.13	0.00	1.00
stein27	3896	1.14	1.57	1.18	0.00	1.00
stein45	55371	1.00	40.10	0.97	0.00	1.00
verschobenes						
geometrisches Mittel	233.65		52.98		0.00	

Tabelle F.19: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = -, prio = -500, $\mathcal{V}^{min} = 0.40$

Name	п	I(n)	t	I(t)	gap _{rel} %	$I(gap_{rel}\%)$
ds	429	TL	3600.00	TL	79.18	1.00
manna81	342302	TL	3600.00	TL	0.96	1.00
neos16	1471481	TL	3600.00	TL	2.67	1.00
protfold	8185	TL	3600.00	TL	23.33	1.00
seymour	31387	TL	3600.00	TL	2.78	1.00
sp97ar	14563	TL	3600.00	TL	1.40	1.00
t1717	596	TL	3600.00	TL	30.15	1.00
verschobenes						
geometrisches Mittel					7.76	

Tabelle F.20: Rechenstudie 4.4: Verbesserungsfaktoren für ERWGAUSS mit den Parametern F = +, $\mathcal{V}^{min} = 0.01$

Name	n	I(n)	t	I(t)	gap _{rel} %	$I(gap_{rel}\%)$
ds	414	TL	3600.00	TL	79.22	1.00
manna81	1	342302.00	1.90	1894.74	0.00	1.00
neos16	1479559	TL	3600.00	TL	3.06	0.87
protfold	4597	TL	3600.00	TL	26.07	0.90
seymour	18038	TL	3600.00	TL	1.64	1.69
sp97ar	17576	TL	3600.00	TL	1.38	1.01
t1717	594	TL	3600.00	TL	30.15	1.00
verschobenes						
geometrisches Mittel					6.78	

Tabelle F.21: Rechenstudie 4.4: Verbesserungsfaktoren für ERWGAUSS mit den Parametern F = -, $\mathcal{V}^{min} = 0.01$

Name	п	I(n)	t	I(t)	gap _{rel} %	$I(gap_{rel}\%)$
ds	485	TL	3600.00	TL	79.34	1.00
manna81	1	342302.00	1.86	1935.48	0.00	1.00
neos16	1442160	TL	3600.00	TL	3.32	0.80
protfold	5578	TL	3600.00	TL	28.33	0.82
seymour	17008	TL	3600.00	TL	1.74	1.60
sp97ar	11463	TL	3600.00	TL	1.03	1.36
t1717	350	TL	3600.00	TL	30.12	1.00
verschobenes						
geometrisches Mittel					6.80	

Tabelle F.22: Rechenstudie 4.4: Verbesserungsfaktoren für ERWGAUSS mit den Parametern F = +, $\mathcal{V}^{min} = 0.30$
Name	n	I(n)	t	I(t)	gap _{rel} %	$I(gap_{rel}\%)$
ds	429	TL	3600.00	TL	79.18	1.00
manna81	1	342302.00	1.85	1945.95	0.00	1.00
neos16	1455913	TL	3600.00	TL	3.32	0.80
protfold	5355	TL	3600.00	TL	27.05	0.86
seymour	17156	TL	3600.00	TL	1.58	1.76
sp97ar	16737	TL	3600.00	TL	1.29	1.08
t1717	596	TL	3600.00	TL	30.15	1.00
verschobenes					(02	
geometrisches Mittel					6.82	

Tabelle F.23: Rechenstudie 4.4: Verbesserungsfaktoren für ERWGAUSS mit den Parametern F = -, $\mathcal{V}^{min} = 0.30$

Name	п	I(n)	t	I(t)	gap _{rel} %	$I(gap_{rel}\%)$
ds	429	TL	3600.00	TL	79.18	1.00
manna81	1	342302.00	1.88	1914.89	0.00	1.00
neos16	1507175	TL	3600.00	TL	3.11	0.86
protfold	2936	TL	3600.00	TL	22.38	1.04
seymour	14895	TL	3600.00	TL	1.75	1.59
sp97ar	12415	TL	3600.00	TL	1.31	1.07
t1717	592	TL	3600.00	TL	30.15	1.00
verschobenes						
geometrisches Mittel					6.64	

Tabelle F.24: Rechenstudie 4.4: Verbesserungsfaktoren für ERWGAUSS mit den Parametern F = -, $\mathcal{V}^{min} = 0.20$

Name	п	I(n)	t	I(t)	gap _{rel} %	$I(gap_{rel}\%)$
ds	429	TL	3600.00	TL	79.18	1.00
manna81	1	342302.00	1.87	1925.13	0.00	1.00
neos16	1470447	TL	3600.00	TL	3.11	0.86
protfold	3124	TL	3600.00	TL	25.00	0.93
seymour	19675	TL	3600.00	TL	2.01	1.38
sp97ar	15471	TL	3600.00	TL	1.34	1.04
t1717	439	TL	3600.00	TL	30.15	1.00
verschobenes					6.00	
geometrisches Mittel					6.88	

Tabelle F.25: Rechenstudie 4.4: Verbesserungsfaktoren für ERWGAUSS mit den Parametern F = -, $\mathcal{V}^{min} = 0.40$

Name	n	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
ds	1	ML	519.10	ML	79.74	1.00
neos16	1118771	TL	3600.00	TL	3.17	1.04
protfold	4480	TL	3600.00	TL	23.97	0.95
seymour	11309	TL	3600.00	TL	1.85	1.13
sp97ar	6373	ML	3363.43	ML	0.96	1.32
t1717	0	TL	3600.00	TL	-	-
verschobenes						
geometrisches Mittel					5.67	

Tabelle F.26: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = +, prio = -500, $\mathcal{V}^{min} = 0.01$

Name	n	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
ds	1	ML	544.91	ML	79.74	1.00
neos16	1189281	TL	3600.00	TL	3.11	1.06
protfold	4406	TL	3600.00	TL	23.97	0.95
seymour	15451	TL	3600.00	TL	1.70	1.24
sp97ar	6373	ML	3362.13	ML	0.96	1.32
t1717	0	TL	3600.00	TL	-	-
verschobenes						
geometrisches Mittel					5.52	

Tabelle F.27: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = +, prio = -1500, $V^{min} = 0.01$

Name	n	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
ds	1	ML	570.42	ML	79.74	1.00
neos16	1087517	TL	3600.00	TL	3.31	1.00
protfold	4480	TL	3600.00	TL	23.97	0.95
seymour	18927	TL	3600.00	TL	1.87	1.12
sp97ar	6373	ML	3365.58	ML	0.96	1.32
t1717	0	TL	3600.00	TL	-	-
verschobenes						
geometrisches Mittel					5.76	

Tabelle F.28: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = +, prio = -3500, $\mathcal{V}^{min} = 0.01$

Name	n	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
ds	25	ML	888.27	ML	79.59	1.00
neos16	1124087	TL	3600.00	TL	2.87	1.15
protfold	4503	TL	3600.00	TL	23.97	0.95
seymour	15660	TL	3600.00	TL	1.69	1.24
sp97ar	6373	ML	3353.36	ML	0.96	1.32
t1717	0	TL	3600.00	TL	-	-
verschobenes						
geometrisches Mittel					5.38	

Tabelle F.29: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = +, prio = -5500, $\mathcal{V}^{min} = 0.01$

Name	n	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
ds	389	TL	3600.00	TL	79.39	1.00
neos16	1204347	TL	3600.00	TL	2.89	1.14
protfold	3547	TL	3600.00	TL	25.98	0.88
seymour	11464	TL	3600.00	TL	1.67	1.26
sp97ar	11479	TL	3600.00	TL	1.33	0.99
t1717	333	TL	3600.00	TL	29.90	1.00
verschobenes geometrisches Mittel					9.84	

Tabelle F.30: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = -, prio = -1500, $\mathcal{V}^{min} = 0.01$

Name	n	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
ds	293	TL	3600.00	TL	79.03	1.00
neos16	1152349	TL	3600.00	TL	2.89	1.14
protfold	4329	TL	3600.00	TL	24.18	0.94
seymour	15297	TL	3600.00	TL	1.88	1.11
sp97ar	5915	TL	3600.00	TL	1.07	1.22
t1717	1	ML	1361.00	ML	30.09	0.99
verschobenes					7.50	
verschobenes geometrisches Mittel					7.59	

Tabelle F.31: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = +, prio = -500, $\mathcal{V}^{min} = 0.30$

Name	n	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
ds	393	TL	3600.00	TL	79.39	1.00
neos16	1172085	TL	3600.00	TL	2.89	1.14
protfold	4411	TL	3600.00	TL	25.47	0.89
seymour	15161	TL	3600.00	TL	1.74	1.20
sp97ar	17053	TL	3600.00	TL	1.34	0.98
t1717	348	TL	3600.00	TL	29.90	1.00
verschobenes						
geometrisches Mittel					9.86	

Tabelle F.32: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = -, prio = -500, $\mathcal{V}^{min} = 0.30$

Name	n	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
ds	393	TL	3600.00	TL	79.39	1.00
neos16	1068614	TL	3600.00	TL	3.11	1.06
protfold	3527	TL	3600.00	TL	24.31	0.94
seymour	16847	TL	3600.00	TL	1.69	1.24
sp97ar	11418	TL	3600.00	TL	1.34	0.98
t1717	348	TL	3600.00	TL	29.90	1.00
verschobenes						
geometrisches Mittel					9.85	

Tabelle F.33: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = -, prio = -500, $\mathcal{V}^{min} = 0.20$

Name	n	$\mathcal{D}(n)$	t	$\mathcal{D}(t)$	gap _{rel} %	$\mathcal{D}(gap_{rel}\%)$
ds	395	TL	3600.00	TL	79.37	1.00
neos16	1202294	TL	3600.00	TL	3.11	1.06
protfold	2111	TL	3600.00	TL	25.55	0.89
seymour	17226	TL	3600.00	TL	1.94	1.08
sp97ar	24232	TL	3600.00	TL	1.31	1.00
t1717	348	TL	3600.00	TL	29.90	1.00
verschobenes						
geometrisches Mittel					10.07	

Tabelle F.34: Rechenstudie 4.4: Verschlechterungsfaktoren für ERWGAUSS mit den Parametern F = -, prio = -500, $\mathcal{V}^{min} = 0.40$

Verwendete Notation

$\vec{0}$	Nullvektor geeigneter Dimension
0	Nullmatrix geeigneter Dimension
ī	Einsvektor geeigneter Dimension
1	Einsmatrix geeigneter Dimension
Ā	Kurzschreibweise für A mod 2 für eine Koeffizientenmatrix A
\bar{b}	Kurzschreibweise für $b \mod 2$ für einen Rechte-Seite-Vektor b
$\mathscr{C}(Q,d)$	der zu (Q,d) gehörige binäre Clutter
Ι	Zeilenindexmenge eines linearen Ungleichungssystems (A, b)
J	Spaltenindexmenge der Matrix A eines linearen Ungleichungssystems (A, b)
т	Anzahl Zeilen des Systems (A, b)
n	Anzahl Spalten des Systems (A, b)
M_{i} .	<i>i</i> -te Zeile einer Matrix <i>M</i>
$M_{\cdot j}$	<i>j</i> -te Spalte einer Matrix <i>M</i>
P(A,b)	Menge der zulässigen Lösungen des linearen Ungleichungssystems $Ax \leq b$
$P^{(k)}$	Kurzschreibweise für $P(S^{(k)})$
$P_{1/2}^{(k)}$	Kurzschreibweise für $P(S_{1/2}^{(k)})$
$S^{(k)}$	k-ter Chvátal-Abschluss eines linearen Ungleichungssystems S
$S_{1/2}^{(k)}$	<i>k</i> -ter $\{0, \frac{1}{2}\}$ -Abschluss eines linearen Ungleichungssystems <i>S</i>
$\mathcal{V}(u, x^*)$	Verletzung eines $\{0, \frac{1}{2}\}$ -Schnittes (mit Gewichtsvektor <i>u</i>) bzgl. <i>x</i> [*]
\mathcal{V}^{min}	geforderte Mindestverletzung an einen $\{0, \frac{1}{2}\}$ -Schnitt
<i>x</i> *	(gebrochene) Optimallösung der betrachteten LP-Relaxierung

Algorithmenverzeichnis

1	ENTFERNENULLSPALTEN (\bar{A}, \bar{b})	43
2	ENTFERNENULLZEILEN $(\overline{A}, \overline{b})$	43
3	ENTFERNESPALTENSINGLETONS $(\bar{A}, \bar{b}, s, x^*)$	44
4	IgnoriereVariablenMitLsgNull (\bar{A}, \bar{b}, x^*)	44
5	IGNORIERE VARIABLEN MITLSG VAR SCHRANKE $(\bar{A}, \bar{b}, x^*, lb, ub)$	45
6	FasseIdentischeSpaltenZusammen (\bar{A}, \bar{b}, x^*)	46
7	EntferneIdentischeZeilen (\bar{A}, \bar{b}, s)	46
8	ENTFERNEZEILENMITZUGROSSEMSCHLUPF (\bar{A}, \bar{b}, s)	47
9	ENTFERNESYSTEMOHNEUNGERADERECHTESEITE (\bar{A}, \bar{b})	47
10	ENTFERNENICHTKOMBINIERBAREZEILEN (\bar{A}, \bar{b}, s)	48
11	ZerlegeInTeilprobleme (\bar{A}, \bar{b})	50
12	ModifizierteGaussEliminationMod2 (\bar{A} , \bar{b} , s , x^* , I , J)	54
13	SepariereTrivialeSchnitte	56
14	HEURENTFERNEZEILENMITZUGROSSEMSCHLUPF ($\bar{A}, \bar{b}, s, \mathcal{V}^{min}$)	56
15	HEURENTFERNENICHTKOMBINIERBAREZEILEN ($\bar{A}, \bar{b}, s, \mathcal{V}^{min}$)	57
16	HEURIGNORIEREVARIABLENMITKLEINERLSG ($\overline{A}, \overline{b}, x^*, \delta, \mathcal{V}^{min}$)	58
17	PREPROCESSING	63
18	SEPARIERESCHNITTEMITTELSHILFSIP	66
19	SepariereMaximalVerletzteSchnitte	67
20	SepariereSchnitteMatrixMax2EProZeile	68
21	BesitztMatrixMax2EinträgeProZeile?	69

22	SEPARIERESCHNITTEMATRIXMAX2EProSpalte	70
23	BESITZTMATRIXMAX2EINTRÄGEPROSPALTE?	71
24	HeurSepariereSchnitteEnumeriereZeilenkomb	73
25	HEURSEPARIERESCHNITTEERWGAUSSELIMINATION	75

Abbildungsverzeichnis

1.1	Branch&Bound-Verfahren	7
1.2	Beispielhafte Darstellung von P_{IP} , P_{LP} und einer verletzten Schnittebene	9
1.3	Allgemeiner Separierungsalgorithmus	9
1.4	Branch&Cut-Verfahren	10
2.1	Geometrische Darstellung eines $\{0,\frac{1}{2}\}\text{-}Schnittes$ anhand eines Beispiels $\ .$.	22
2.2	Spezialfall: Bestimmung eines minimalen Kreises zur Lösung des $\{0, \frac{1}{2}\}$ -SEP	32
2.3	Bestimmung eines minimalen Kreises durch Bestimmung eines kürzesten Weges	33
2.4	Spezialfall: Bestimmung eines minimalen (graphentheoretischen) Schnittes zur Lösung des $\{0, \frac{1}{2}\}$ -SEP	35
2.5	Beispiel einer EPT-Matrix: Baum mit markierten Pfaden	36
2.6	Übersicht bekannter polynomieller Spezialfälle des $\{0, \frac{1}{2}\}$ -SEP	38
3.1	Abfolge der einzelnen Module innerhalb des Preprocessing-Algorithmus	61
3.2	$Preprocessing-Modul \ M4\delta \ \ \ldots $	62

Tabellenverzeichnis

3.1	Übersicht der einzelnen Reduktionen	59
3.2	Übersicht der einzelnen Separierungsalgorithmen	77
4.1	Standard-Separierungsalgorithmen in SCIP	82
4.2	Übersicht der in der Rechenstudie untersuchten Preprocessing-Varianten	87
4.3	Ergebnisse der Rechenstudie 4.2: Verringerung der Größe des Systems (\bar{A},\bar{b})	87
4.4	Ergebnisse der Rechenstudie 4.2: Analyse der Struktur von \overline{A}	89
4.5	Ergebnisse der Rechenstudie 4.2: Beschleunigung der exakten Separierung durch Preprocessing	90
4.6	Ergebnisse der Rechenstudie 4.3: Exakte Separierung	93
4.7	Ergebnisse der Rechenstudie 4.3: Heuristische Separierung: Verringerung der Ganzzahligkeitslücke	94
4.8	Ergebnisse der Rechenstudie 4.3: Heuristische Separierung: Vollständige Schließung der Ganzzahligkeitslücke	95
4.9	Ergebnisse der Rechenstudie 4.3: Heuristische Separierung: Anzahl separierter Schnitte	97
4.10	Ergebnisse der Rechenstudie 4.3: Heuristische Separierung: Gesamtseparierungsdauer	98
4.11	Ergebnisse der Rechenstudie 4.4: Verbesserungsfaktoren (einfach)	103
4.12	Ergebnisse der Rechenstudie 4.4: Verbesserungsfaktoren (schwer)	103
4.13	Ergebnisse der Rechenstudie 4.4: Verschlechterungsfaktoren (einfach)	105
4.14	Ergebnisse der Rechenstudie 4.4: Verschlechterungsfaktoren (schwer)	106
A.1	Übersicht der betrachteten ganzzahligen Probleminstanzen	114

A.2	Übersicht aller in den Rechenstudien betrachteten ganzzahligen Problemin- stanzen: Lösbarkeit mittels SCIP	115
B .1	Rechenstudie 4.2: kein Preprocessing	118
B.2	Rechenstudie 4.2: PREPROCESSING I	118
B.3	Rechenstudie 4.2: PREPROCESSING II	119
B.4	Rechenstudie 4.2: PREPROCESSING III	119
B.5	Rechenstudie 4.2: PREPROCESSING IV	120
B.6	Rechenstudie 4.2: PREPROCESSING V	120
B.7	Rechenstudie 4.2: PREPROCESSING VI	121
B.8	Rechenstudie 4.2: PREPROCESSING VII	121
B.9	Rechenstudie 4.2: PREPROCESSING VIII	122
B.10	Rechenstudie 4.2: PREPROCESSING IX	122
B.11	Rechenstudie 4.2: PREPROCESSING X	123
C.1	Rechenstudie 4.2: kein Preprocessing	126
C.2	Rechenstudie 4.2: PREPROCESSING I	127
C.3	Rechenstudie 4.2: PREPROCESSING II	128
C.4	Rechenstudie 4.2: PREPROCESSING III	129
C.5	Rechenstudie 4.2: PREPROCESSING IV	130
C.6	Rechenstudie 4.2: PREPROCESSING V	131
C.7	Rechenstudie 4.2: PREPROCESSING VI	132
C.8	Rechenstudie 4.2: PREPROCESSING VII	133
C.9	Rechenstudie 4.2: PREPROCESSING VIII	134
C.10	Rechenstudie 4.2: PREPROCESSING IX	135
C.11	Rechenstudie 4.2: PREPROCESSING X	136
D.1	Rechenstudie 4.2: kein Preprocessing	138
D.2	Rechenstudie 4.2: PREPROCESSING I (Module: M1)	138
D.3	Rechenstudie 4.2: PREPROCESSING II (Module: M2 M3)	139

D.4	Rechenstudie 4.2: PREPROCESSING III (Module: M4)	139
D.5	Rechenstudie 4.2: PREPROCESSING V (Module: M6)	140
D.6	Rechenstudie 4.2: PREPROCESSING VI (Module: M1 M2 M3)	140
D.7	Rechenstudie 4.2: PREPROCESSING VII (Module: M1 M2 M3 M5)	141
D.8	Rechenstudie 4.2: PREPROCESSING VIII (Module: M1 M2 M3 M5 M6)	141
D.9	Rechenstudie 4.2: PREPROCESSING IX (Module: M1 M2 M3 M4 M5)	142
D.10	Rechenstudie 4.2: PREPROCESSING X (Module: M1 M2 M3 M4 M5 M6) .	142
E.1	Rechenstudie 4.3: EXAKTIPZF1, $\mathcal{V}^{min} = 0.01$	144
E.2	Rechenstudie 4.3: EXAKTIPZF3, $\mathcal{V}^{min} = 0.01$	144
E.3	Rechenstudie 4.3: EXAKTIPZF4, $\mathcal{V}^{min} = 0.01$	145
E.4	Rechenstudie 4.3: EXAKTIPZF5P0.001, $\mathcal{V}^{min} = 0.01$	145
E.5	Rechenstudie 4.3: EXAKTIPZF5P0.01, $\mathcal{V}^{min} = 0.01 \dots \dots \dots \dots$	146
E.6	Rechenstudie 4.3: EXAKTIPZF5P0.1, $\mathcal{V}^{min} = 0.01$	146
E.7	Rechenstudie 4.3: HEURIPZF1, $\mathcal{V}^{min} = 0.01$	147
E.8	Rechenstudie 4.3: HEURIPZF1, $\mathcal{V}^{min} = 0.10$	147
E.9	Rechenstudie 4.3: HEURIPZF1, $\mathcal{V}^{min} = 0.20$	148
E.10	Rechenstudie 4.3: HEURIPZF1, $\mathcal{V}^{min} = 0.30$	148
E.11	Rechenstudie 4.3: HEURIPZF1, $\mathcal{V}^{min} = 0.40$	149
E.12	Rechenstudie 4.3: HEURIPZF1, $\mathcal{V}^{min} = 0.50$	149
E.13	Rechenstudie 4.3: HEURIPZF3, $\mathcal{V}^{min} = 0.01$	150
E.14	Rechenstudie 4.3: HEURIPZF3, $\mathcal{V}^{min} = 0.10$	150
E.15	Rechenstudie 4.3: HEURIPZF3, $\mathcal{V}^{min} = 0.20$	151
E.16	Rechenstudie 4.3: HEURIPZF3, $\mathcal{V}^{min} = 0.30$	151
E.17	Rechenstudie 4.3: HEURIPZF3, $\mathcal{V}^{min} = 0.40$	152
E.18	Rechenstudie 4.3: HEURIPZF3, $\mathcal{V}^{min} = 0.50$	152
E.19	Rechenstudie 4.3: HEURIPZF4, $\mathcal{V}^{min} = 0.01$	153
E.20	Rechenstudie 4.3: HEURIPZF4, $\mathcal{V}^{min} = 0.10$	153
E.21	Rechenstudie 4.3: HEURIPZF4, $\mathcal{V}^{min} = 0.20$	154

E.22	Rechenstudie 4.3: HEURIPZF4, $\mathcal{V}^{min} = 0.30$	154
E.23	Rechenstudie 4.3: HEURIPZF4, $\mathcal{V}^{min} = 0.40$	155
E.24	Rechenstudie 4.3: HEURIPZF4, $\mathcal{V}^{min} = 0.50$	155
E.25	Rechenstudie 4.3: HEURIPZF5P0.001, $\mathcal{V}^{min} = 0.01 \dots \dots \dots \dots$	156
E.26	Rechenstudie 4.3: HEURIPZF5P0.001, $\mathcal{V}^{min} = 0.10 \dots \dots \dots \dots$	156
E.27	Rechenstudie 4.3: HEURIPZF5P0.001, $\mathcal{V}^{min} = 0.20 \dots \dots \dots \dots$	157
E.28	Rechenstudie 4.3: HEURIPZF5P0.001, $\mathcal{V}^{min} = 0.30$	157
E.29	Rechenstudie 4.3: HEURIPZF5P0.001, $\mathcal{V}^{min} = 0.40$	158
E.30	Rechenstudie 4.3: HEURIPZF5P0.001, $\mathcal{V}^{min} = 0.50 \dots \dots \dots \dots$	158
E.31	Rechenstudie 4.3: HEURIPZF5P0.01, $\mathcal{V}^{min} = 0.01 \dots \dots \dots \dots$	159
E.32	Rechenstudie 4.3: HEURIPZF5P0.01, $\mathcal{V}^{min} = 0.10 \dots \dots \dots \dots$	159
E.33	Rechenstudie 4.3: HEURIPZF5P0.01, $\mathcal{V}^{min} = 0.20 \dots \dots \dots \dots$	160
E.34	Rechenstudie 4.3: HEURIPZF5P0.01, $\mathcal{V}^{min} = 0.30 \dots \dots \dots \dots$	160
E.35	Rechenstudie 4.3: HEURIPZF5P0.01, $\mathcal{V}^{min} = 0.40 \dots \dots \dots \dots$	161
E.36	Rechenstudie 4.3: HEURIPZF5P0.01, $\mathcal{V}^{min} = 0.50 \dots \dots \dots \dots$	161
E.37	Rechenstudie 4.3: HEURIPZF5P0.1, $\mathcal{V}^{min} = 0.01$	162
E.38	Rechenstudie 4.3: HEURIPZF5P0.1, $\mathcal{V}^{min} = 0.10$	162
E.39	Rechenstudie 4.3: HEURIPZF5P0.1, $\mathcal{V}^{min} = 0.20$	163
E.40	Rechenstudie 4.3: HEURIPZF5P0.1, $\mathcal{V}^{min} = 0.30$	163
E.41	Rechenstudie 4.3: HEURIPZF5P0.1, $\mathcal{V}^{min} = 0.40$	164
E.42	Rechenstudie 4.3: HEURIPZF5P0.1, $\mathcal{V}^{min} = 0.50$	164
E.43	Rechenstudie 4.3: TRIVSCHN, $\mathcal{V}^{min} = 0.01$	165
E.44	Rechenstudie 4.3: TRIVSCHN, $\mathcal{V}^{min} = 0.10$	165
E.45	Rechenstudie 4.3: TRIVSCHN, $\mathcal{V}^{min} = 0.20$	166
E.46	Rechenstudie 4.3: TRIVSCHN, $\mathcal{V}^{min} = 0.30$	166
E.47	Rechenstudie 4.3: TRIVSCHN, $\mathcal{V}^{min} = 0.40$	167
E.48	Rechenstudie 4.3: TRIVSCHN, $\mathcal{V}^{min} = 0.50$	167
E.49	Rechenstudie 4.3: ENUM1, $\mathcal{V}^{min} = 0.01$	168

E.50	Rechenstudie 4.3: ENUM1, $\mathcal{V}^{min} = 0.10$	168
E.51	Rechenstudie 4.3: ENUM1, $\mathcal{V}^{min} = 0.20$	169
E.52	Rechenstudie 4.3: ENUM1, $\mathcal{V}^{min} = 0.30$	169
E.53	Rechenstudie 4.3: ENUM1, $\mathcal{V}^{min} = 0.40$	170
E.54	Rechenstudie 4.3: ENUM1, $\mathcal{V}^{min} = 0.50$	170
E.55	Rechenstudie 4.3: ENUM2, $\mathcal{V}^{min} = 0.01$	171
E.56	Rechenstudie 4.3: ENUM2, $\mathcal{V}^{min} = 0.10$	171
E.57	Rechenstudie 4.3: ENUM2, $\mathcal{V}^{min} = 0.20$	172
E.58	Rechenstudie 4.3: ENUM2, $\mathcal{V}^{min} = 0.30$	172
E.59	Rechenstudie 4.3: ENUM2, $\mathcal{V}^{min} = 0.40$	173
E.60	Rechenstudie 4.3: ENUM2, $\mathcal{V}^{min} = 0.50$	173
E.61	Rechenstudie 4.3: ERWGAUSS, $\mathcal{V}^{min} = 0.01$	174
E.62	Rechenstudie 4.3: ERWGAUSS, $\mathcal{V}^{min} = 0.10$	174
E.63	Rechenstudie 4.3: ERWGAUSS, $\mathcal{V}^{min} = 0.20$	175
E.64	Rechenstudie 4.3: ERWGAUSS, $\mathcal{V}^{min} = 0.30$	175
E.65	Rechenstudie 4.3: ERWGAUSS, $\mathcal{V}^{min} = 0.40$	176
E.66	Rechenstudie 4.3: ERWGAUSS, $\mathcal{V}^{min} = 0.50$	176
E.67	Rechenstudie 4.3: ENUM2HEURIPZF1, $\mathcal{V}^{min} = 0.01$	177
E.68	Rechenstudie 4.3: ENUM2HEURIPZF1, $\mathcal{V}^{min} = 0.10$	177
E.69	Rechenstudie 4.3: ENUM2HEURIPZF1, $\mathcal{V}^{min} = 0.20$	178
E.70	Rechenstudie 4.3: ENUM2HEURIPZF1, $\mathcal{V}^{min} = 0.30$	178
E.71	Rechenstudie 4.3: ENUM2HEURIPZF1, $\mathcal{V}^{min} = 0.40$	179
E.72	Rechenstudie 4.3: ENUM2HEURIPZF1, $\mathcal{V}^{min} = 0.50$	179
E.73	Rechenstudie 4.3: ENUM2ERWGAUSS, $\mathcal{V}^{min} = 0.01$	180
E.74	Rechenstudie 4.3: ENUM2ERWGAUSS, $\mathcal{V}^{min} = 0.10$	180
E.75	Rechenstudie 4.3: ENUM2ERWGAUSS, $\mathcal{V}^{min} = 0.20$	181
E.76	Rechenstudie 4.3: ENUM2ERWGAUSS, $\mathcal{V}^{min} = 0.30$	181
E.77	Rechenstudie 4.3: ENUM2ERWGAUSS, $\mathcal{V}^{min} = 0.40$	182

Rechenstudie 4.3: ENUM2ERWGAUSS, $\mathcal{V}^{min} = 0.50$	182
Rechenstudie 4.3: TRIVSCHNERWGAUSS, $\mathcal{V}^{min} = 0.01$	183
Rechenstudie 4.3: TRIVSCHNERWGAUSS, $\mathcal{V}^{min} = 0.10$	183
Rechenstudie 4.3: TRIVSCHNERWGAUSS, $\mathcal{V}^{min} = 0.20$	184
Rechenstudie 4.3: TRIVSCHNERWGAUSS, $\mathcal{V}^{min} = 0.30$	184
Rechenstudie 4.3: TRIVSCHNERWGAUSS, $\mathcal{V}^{min} = 0.40$	185
Rechenstudie 4.3: TRIVSCHNERWGAUSS, $\mathcal{V}^{min} = 0.50$	185
Rechenstudie 4.3: NURERWGAUSS, $\mathcal{V}^{min} = 0.01$	186
Rechenstudie 4.3: NURERWGAUSS, $\mathcal{V}^{min} = 0.10$	186
Rechenstudie 4.3: NURERWGAUSS, $V^{min} = 0.20$	187
Rechenstudie 4.3: NURERWGAUSS, $V^{min} = 0.30$	187
Rechenstudie 4.3: NURERWGAUSS, $\mathcal{V}^{min} = 0.40$	188
Rechenstudie 4.3: NURERWGAUSS, $\mathcal{V}^{min} = 0.50$	188
Rechenstudie 4.4: (Referenz-Test I einfach) SCIP Standard ohne Separierung	190
Rechenstudie 4.4: (Referenz-Test II einfach) SCIP Standard	191
Rechenstudie 4.4: (Referenz-Test I schwer) SCIP Standard ohne Separierung	192
Rechenstudie 4.4: (Referenz-Test II schwer) SCIP Standard	192
Rechenstudie 4.4: (Verbesserung) $F = +, \mathcal{V}^{min} = 0.01 \dots \dots \dots \dots$	193
Rechenstudie 4.4: (Verbesserung) $F = -, \mathcal{V}^{min} = 0.01 \dots \dots \dots$	194
Rechenstudie 4.4: (Verbesserung) $F = +$, $\mathcal{V}^{min} = 0.30$	195
Rechenstudie 4.4: (Verbesserung) $F = -$, $\mathcal{V}^{min} = 0.30$	196
Rechenstudie 4.4: (Verbesserung) $F = -$, $\mathcal{V}^{min} = 0.20$	197
Rechenstudie 4.4: (Verbesserung) $F = -$, $\mathcal{V}^{min} = 0.40$	198
Rechenstudie 4.4: (Verschlechterung) $F = +, prio = -500, V^{min} = 0.01$.	199
Rechenstudie 4.4: (Verschlechterung) $F = +, prio = -1500, \mathcal{V}^{min} = 0.01$.	200
Rechenstudie 4.4: (Verschlechterung) $F = +, prio = -3500, V^{min} = 0.01$.	201
Rechenstudie 4.4: (Verschlechterung) $F = +, prio = -5500, \mathcal{V}^{min} = 0.01$.	202
Rechenstudie 4.4: (Verschlechterung) $F = -$, $prio = -1500$, $\mathcal{V}^{min} = 0.01$.	203
	Rechenstudie 4.3: ENUM2ERWGAUSS, $\mathcal{Y}^{min} = 0.50$ Rechenstudie 4.3: TRIVSCHNERWGAUSS, $\mathcal{Y}^{min} = 0.01$

F.16	Rechenstudie 4.4: (Verschlechterung) $F = +, prio = -500, \mathcal{V}^{min} = 0.30$.	204
F.17	Rechenstudie 4.4: (Verschlechterung) $F = -$, $prio = -500$, $\mathcal{V}^{min} = 0.30$.	205
F.18	Rechenstudie 4.4: (Verschlechterung) $F = -$, $prio = -500$, $\mathcal{V}^{min} = 0.20$.	206
F.19	Rechenstudie 4.4: (Verschlechterung) $F = -$, $prio = -500$, $\mathcal{V}^{min} = 0.40$.	207
F.20	Rechenstudie 4.4: (Verbesserung) $F = +, \mathcal{V}^{min} = 0.01 \dots \dots \dots$	208
F.21	Rechenstudie 4.4: (Verbesserung) $F = -, \mathcal{V}^{min} = 0.01 \dots \dots \dots$	208
F.22	Rechenstudie 4.4: (Verbesserung) $F = +, \mathcal{V}^{min} = 0.30$	208
F.23	Rechenstudie 4.4: (Verbesserung) $F = -, \mathcal{V}^{min} = 0.30$	209
F.24	Rechenstudie 4.4: (Verbesserung) $F = -, \mathcal{V}^{min} = 0.20$	209
F.25	Rechenstudie 4.4: (Verbesserung) $F = -, \mathcal{V}^{min} = 0.40$	209
F.26	Rechenstudie 4.4: (Verschlechterung) $F = +, prio = -500, \mathcal{V}^{min} = 0.01$.	210
F.27	Rechenstudie 4.4: (Verschlechterung) $F = +, prio = -1500, \mathcal{V}^{min} = 0.01$.	210
F.28	Rechenstudie 4.4: (Verschlechterung) $F = +, prio = -3500, \mathcal{V}^{min} = 0.01$.	210
F.29	Rechenstudie 4.4: (Verschlechterung) $F = +$, $prio = -5500$, $\mathcal{V}^{min} = 0.01$.	211
F.30	Rechenstudie 4.4: (Verschlechterung) $F = -$, $prio = -1500$, $\mathcal{V}^{min} = 0.01$.	211
F.31	Rechenstudie 4.4: (Verschlechterung) $F = +, prio = -500, \mathcal{V}^{min} = 0.30$.	211
F.32	Rechenstudie 4.4: (Verschlechterung) $F = -, prio = -500, V^{min} = 0.30$.	212
F.33	Rechenstudie 4.4: (Verschlechterung) $F = -$, $prio = -500$, $\mathcal{V}^{min} = 0.20$.	212
F.34	Rechenstudie 4.4: (Verschlechterung) $F = -$, $prio = -500$, $\mathcal{V}^{min} = 0.40$.	212

225

Literaturverzeichnis

- ACHTERBERG, T. : SCIP a framework to integrate Constraint and Mixed Integer Programming / Konrad-Zuse-Zentrum f
 ür Informationstechnik Berlin. 2004 (04-19). – Forschungsbericht
- [2] ACHTERBERG, T. : *Constraint Integer Programming*, Technische Universität Berlin, Diss., 2007
- [3] ACHTERBERG, T.; BERTHOLD, T.; KOCH, T.; MARTIN, A.; WOLTER, K.: SCIP (Solving Constraint Integer Programs). 2007. http://scip.zib.de/
- [4] ACHTERBERG, T.; KOCH, T.; MARTIN, A.: MIPLIB 2003. In: Oper. Res. Lett. 34 (2006), Nr. 4, S. 361–372. – http://miplib.zib.de
- [5] ANDREELLO, G.; CAPRARA, A.; FISCHETTI, M.: *Embedding Cuts in a Branch&Cut Framework: a Computational Study with* $\{0, \frac{1}{2}\}$ -*Cuts.* – eingereicht bei INFORMS Journal on Computing, 2006. Akzeptiert und noch nicht veröffentlicht.
- [6] BERTHOLD, T. : *Primal Heuristics for Mixed Integer Programs*, Technische Universität Berlin, Diplomarbeit, September 2006
- [7] BIXBY, R. E.; CERIA, S.; MCZEAL, C. M.; SAVELSBERGH, M. W. P.: MIPLIB 3.0. - http://www.caam.rice.edu/~bixby/miplib.html
- [8] BIXBY, R. E.; FENELON, M.; GU, Z.; ROTHBERG, E.; WUNDERLING, R.: Mixed-Integer Programming: A Progress Report. In: GRÖTSCHEL, M. (Hrsg.): *The Sharpest Cut - The Impact of Manfred Padberg and His Work*. SIAM, 2004, S. 309–325
- [9] BONAMI, P.; CORNUÉJOLS, G.; DASH, S.; FISCHETTI, M.; LODI, A.: Projected Chvátal-Gomory cuts for mixed integer linear programs. In: *Mathematical Programming* (2006). – online veröffentlicht:
- [10] BORNDÖRFER, R. : Aspects of Set Packing, Partitioning, and Covering. Aachen : Shaker Verlag, 1998. – ISBN 3–8265–4351–3. – Ph.D. thesis, Technische Universität Berlin

- [11] CAPRARA, A.; FISCHETTI, M.: {0,1/2}-Chvátal-Gomory cuts. In: Mathematical Programming 74 (1996), S. 221–235
- [12] CAPRARA, A.; FISCHETTI, M.: Odd Cut-Sets, Odd Cycles, and 0, 1/2 Chvátal-Gomory Cuts. In: *Ricerca Operativa* 26 (1996), S. 51–80
- [13] CAPRARA, A.; FISCHETTI, M.; LETCHFORD, A. N.: On the separation of maximally violated mod-k cuts. In: *Mathematical Programming* 87 (2000), S. 37–56
- [14] CAPRARA, A.; LETCHFORD, A. N.: On the separation of split cuts and related inequalities. (2003)
- [15] CHVÁTAL, V.: Edmonds polytopes and weakly Hamiltonian graphs. In: *Mathematical Programming* 5 (1973), Dezember, Nr. 1, S. 29–40
- [16] CORNUÉJOLS, G. ; NEMHAUSER, G. L. ; WOLSEY, L. A.: The uncapacitated facility location problem. In: MIRCHANDANI, P. B. (Hrsg.) ; FRANCIS, R. L. (Hrsg.): *Discrete Location Theory*. Wiley, 1990, S. 119–171
- [17] CORNUÉJOLS, G. : Revival of the Gomory cuts in the 1990's. In: Annals of Operations Research 149 (2007), Februar, Nr. 1, S. 63–66
- [18] CORNUÉJOLS, G.; LI, Y.: Elementary closures for integer programs. In: Oper. Res. Lett. 28 (2001), Nr. 1, S. 1–8
- [19] DAKIN, R. J.: A tree-search algorithm for mixed integer programming problems. In: *Computer Journal* 8 (1965), Nr. 3, S. 250–255
- [20] DANTZIG, G. B.; FULKERSON, D. R.: Minimizing the number of tankers to meet a fixed schedule. In: *Naval Research Logistics Quarterly* 1 (1954), S. 217–222
- [21] DANTZIG, G. B.; FULKERSON, D. R.: Notes on Linear Programming: Part XV Minimizing the Number of Carriers to Meet a Fixed Schedule. Santa Monica, California : The RAND Corporation, 1954 (Research Memorandum)
- [22] DANTZIG, G. B.: Maximization of a linear function of variables subject to linear inequalities. In: Activity Analysis of Production and Allocation. New York, N. Y. : John Wiley & Sons Inc., 1951 (Cowles Commission Monograph No. 13), S. 339–347
- [23] DIJKSTRA, E. W.: A note on two problems in connexion with graphs. In: Numerische Mathematik 1 (1959), S. 269–271
- [24] EDMONDS, J. : Maximum matching and a polyhedron with 0,1-vertices. In: *Journal* of Research National Bureau of Standards Section B 69 (1965), S. 67–72
- [25] EDMONDS, J. : An Introduction to Matching / University of Michigan. Ann Arbor, 1967. Notes of Engineering Summer Conference

- [26] EDMONDS, J.; JOHNSON, E. L.: Matching: a well-solved class of integer linear programs. In: GUY, R. K. (Hrsg.); HANANI, H. (Hrsg.); SAUER, N. (Hrsg.): Combinatorial Structures and Their Applications. New York : Gordon and Breach, 1970, S. 80–92
- [27] FISCHETTI, M.; LODI, A.: Optimizing over the First Chvàtal Closure. In: *Mathema-tical Programming* 110 (2007), Juni, Nr. 1, S. 3–20
- [28] FREDMAN, M. L. ; TARJAN, R. E.: Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms. In: FOCS, 1984, S. 338–346
- [29] FREDMAN, M. L.; TARJAN, R. E.: Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms. In: J. ACM 34 (1987), Nr. 3, S. 596–615
- [30] GAREY, M. R.; JOHNSON, D. S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. – ISBN 0–7167–1044–7
- [31] GENTILE, C.; VENTURA, P.; WEISMANTEL, R.: Mod-2 Cuts Generation Yields the Convex Hull of Bounded Integer Feasible Sets. In: *SIAM Journal on Discrete Mathematics* 20 (2006), Nr. 4, S. 913–919
- [32] GERARDS, A. M. H. ; SCHRIJVER, A. : Matrices with the Edmonds-Johnson Property. In: *Combinatorica* 6 (1986), Nr. 4, S. 365–379
- [33] GOMORY, R. E.: Outline of an algorithm for integer solutions to linear programs. In: Bulletin of the American Mathematical Society 64 (1958), S. 275–278
- [34] GOMORY, R. E.: An Algorithm for Integer Solutions to Linear Programs. In: GRAVES, R. L. (Hrsg.); WOLFE, P. (Hrsg.): *Recent Advances in Mathematical Programming*. New York : McGraw-Hill, 1963, S. 269–302
- [35] GRÖTSCHEL, M.: Graphen- und Netzwerkalgorithmen (ADM I). http://www. zib.de/groetschel/teaching/materials.html. Version: 2003. – Skript zur gleichnamigen Vorlesung im SoSe 2003 an der TU Berlin
- [36] GRÖTSCHEL, M. ; PADBERG, M. W.: On the symmetric traveling salesman problem I: inequalities. In: *Mathematical Programming* 16 (1979), S. 265–280
- [37] GRÖTSCHEL, M.; PADBERG, M. W.: On the symmetric traveling salesman problem II: lifting theorems and facets. In: *Mathematical Programming* 16 (1979), S. 281–302
- [38] GRÖTSCHEL, M.; JÜNGER, M.; REINELT, G.: Facets of the linear ordering polytope. In: *Mathematical Programming* 33 (1985), Nr. 1, S. 43–60
- [39] GRÖTSCHEL, M.; LOVÁSZ, L.; SCHRIJVER, A.: The ellipsoid method and its consequences in combinatorial optimization. In: *Combinatorica* 1 (1981), Nr. 2, S. 169–197

- [40] GRÖTSCHEL, M.; LOVÁSZ, L.; SCHRIJVER, A.: Algorithms and Combinatorics. Bd. 2: Geometric Algorithms and Combinatorial Optimization. Springer, 1988. – ISBN 3–540–13624–X, 0–387–13624–X (U.S.)
- [41] GRÖTSCHEL, M.; WAKABAYASHI, Y.: Facets of the clique partitioning polytope. In: Mathematical Programming, Series A 47 (1990), Nr. 3, S. 367–387
- [42] ILOG: CPLEX version 10.1. 2006. http://www.ilog.com/products/ cplex
- [43] JÜNGER, M.; REINELT, G.; THIENEL, S.: Practical Problem Solving with Cutting Plane Algorithms in Combinatorial Optimization. In: COOK, W. (Hrsg.); LOVÁSZ, L. (Hrsg.); SEYMOURS, P. (Hrsg.): *Combinatorial Optimization* Bd. 20. American Mathematical Society, 1995, S. 111–152. – ISBN 0-8218-0239-9
- [44] KOSTER, A. M. C. A.; ZYMOLKA, A.: Stable Multi-Sets. In: Mathematical Methods of Operations Research 56 (2002), Nr. 1, 45–65. http://link.springer.de/ link/service/journals/00186/bibs/2056001/205600%45.htm
- [45] KOSTER, A. M. C. A.; ZYMOLKA, A.: On cycles and the stable multi-set polytope. In: *Discrete Optimization* 2 (2005), Nr. 3, S. 241–255
- [46] KOSTER, A. M. C. A. ; ZYMOLKA, A. ; KUTSCHKA, M. : Algorithms to separate $\{0, \frac{1}{2}\}$ -Chvátal-Gomory cuts. In: Algorithms ESA 2007: 15th Annual European Symposium, Eilat, Israel, October 8-10, 2007, Proceedings Bd. 4698, Springer, 2007 (Lecture Notes in Computer Science), S. 693–704
- [47] LAND, A. H.; DOIG, A. G.: An automatic method for solving discrete programming problems. In: *Econometrica* 28 (1960), S. 493–520
- [48] LETCHFORD, A. N.: Binary Clutter Inequalities for Integer Programs. In: Mathematical Programming 98 (2003), September, Nr. 1, S. 201–221
- [49] LETCHFORD, A. N.; REINELT, G.; THEIS, D. O.: A Faster Exact Separation Algorithm for Blossom Inequalities. In: *IPCO*, 2004, S. 196–205
- [50] MITTELMANN, H.: Benchmarks for Optimization Software. http://plato. asu.edu/bench.html
- [51] NADDEF, D.; RINALDI, G.: The symmetric traveling salesman polytope: New facets from the graphical relaxation / IASI-CNR. Rome, 1988 (248). Technical Report
- [52] NEMHAUSER, G. L.; WOLSEY, L. A.: Integer and combinatorial optimization. New York, NY, USA : Wiley-Interscience, 1988. – ISBN 0–471–82819–X
- [53] PADBERG, M.; RAO, M. R.: Odd Minimum Cut-Sets and b-Matchings. In: Mathematics of Operations Research 7 (1982), Nr. 1, S. 67–80

- [54] PADBERG, M.; RINALDI, G.: Optimization of a 532-city symmetric traveling salesman problem by branch and cut. In: *Operations Research Letters* 6 (1987), März, Nr. 1, S. 1–7
- [55] PADBERG, M.; RINALDI, G.: A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems. In: SIAM Review 33 (1991), Nr. 1, 60-100. http://link.aip.org/link/?SIR/33/60/1
- [56] PULLEYBLANK, W. R.: Faces of Matching Polyhedra. Waterloo, Ontario, Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Diss., 1973
- [57] SCHRIJVER, A.: On cutting planes. In: Annals of Discrete Mathematics Bd. 9. North-Holland, 1980, S. 291–296
- [58] SCHRIJVER, A.: Theory of linear and integer programming. Wiley, New York, 1986.
 ISBN 0-471-90854-1
- [59] SCHRIJVER, A.: Combinatorial Optimization Polyhedra and Efficiency. Springer-Verlag, 2003 (Algorithms and Combinatorics 24). – ISBN 3-540-44389-4
- [60] WOLTER, K. : Implementation of Cutting Plane Separators for Mixed Integer Programs, Technische Universität Berlin, Diplomarbeit, Dezember 2006
- [61] WUNDERLING, R. : Paralleler und Objektorientierter Simplex-Algorithmus / Konrad-Zuse-Zentrum für Informationstechnik Berlin. 1996 (TR 96-09). – technical report
- [62] WUNDERLING, R.; BLEY, A.; ACHTERBERG, T.; KOCH, T.; HILLER, B.; ORLOW-SKI, S.; TUCHSCHERER, A.: SoPlex 1.3.1. – http://soplex.zib.de

Die selbstständige und eigenhändige Anfertigung dieser Arbeit versichere ich an Eides statt.

Berlin, den 15. August 2007