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Frequency Assignments in SFH Networks § 1 Preface

§ 1 Preface

1.1 Introduction

This Master’s thesis contributes to analysis and improvements in the field of mobile
communication by providing a mathematical approach to optimize the quality of
frequency assignments in mobile communication networks.
The quality of said networks is determined by factors like signal strength, propaga-
tion and signal interference. Signal strength is evidently important when delivering
information over a distance, propagation describes the signal availability. For exam-
ple, a car-radio might fail to receive the signal from a station when the car enters
a tunnel. Signal interference occurs when the wavelengths of two or more signals
overlap. Staying with the car-radio example, such an overlap would mean that you
could hear a noisy combination of several radio stations at once (see section 1.3 for
a more detailed annotation). Since exhaustive research on all influencing topics is
beyond the scope of a Master’s thesis, this thesis concentrates on improvements of
signal quality in mobile networks by minimizing interference in a physically existing
network.

To be more precise, the focus lies on generating frequency assignments. The mo-
de of a network (soft constraint) is treated and not a networks outer organization
(e.g. transceiver positions - hard constraints). These frequency assignments shall be
determined as good as possible (which is specialized later on). Especially a mathe-
matically optimal planning method and not a generic/heuristical one shall be used.
Due to the high importance of GSM technology (the most used mobile commu-
nication standard – compare section 1.2 for more information), these analysis will
specialize on GSM networks. Nevertheless, some of these results may be applied to
other technologies for radio transmissions as well, since this work rather incorpora-
tes common radio transmission features than special technical GSM features. During
this thesis, generalizations are given, whenever possible.

Going into detail on frequency assignments, the classic model (where a single fre-
quency is assigned to a single carrier) is not treated, because it has already been
thoroughly researched by others (representative, one can mention [Eis01], where
exhaustive work on the classic frequency assignment problem is done). The focal
point of this approach will be the concept of slow frequency-hopping. This is an
assignment model, where multiple frequencies are assigned to a single carrier, as an
advancement of the classic model. This challenge is approached with the facilities
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Frequency Assignments in SFH Networks § 1 Preface

and resources of “mixed integer programming“, as a tool of choice. Mixed integer
programming is chosen, because it is one of the backbones of the author’s mathe-
matical education, as well as a key element of the chairs topics. Hereby, the most
important tool is provided by the concept of “column generation“ (a description is
given in section 4.1), which was used (among others) for obtaining the later pre-
sented results. In the course of this work, many aspects of [MT95], which performs
column generation to address a similar problem, are used.

Addressing readers with little or no experience on this subject, some of the technical
terms given above are introduced and explained later on.

Summing the structure of this thesis up, at first a short introduction into the func-
tionalities of mobile communication, with respect to GSM technologies and their
characteristics is given. Second, certain problems with capacity and quality restric-
tions of the GSM technology are pointed out and a possible solution in the form
of slow frequency-hopping is offered. This will serve as a motivation for the later
work. In the third section, the problem of finding the best frequency assignment for
a slow frequency hopping GSM network is aggregated into a mathematical model
and transported into the formalism of mixed integer programming. Consequential,
this model and it’s solutions are assessed and analyzed. This leads to the refinement
of splitting the model into two stages, thus enforcing the practical computability.
The first stage involves a column generation approach and is described in the secti-
ons four and five. In the sixth chapter, the second stage is presented. The following
section (7) gives an overview over the obtained results. Hereby, it is to mention, that
no “optimal“ assignment could be obtained. Nevertheless, the results are analyzed
and the reasons for that drawback as well as positive aspects of these approaches
are pointed out. The section concludes with an evaluation of the suitability of the
chosen means.
The thesis concluded with section eight, the appendix, where as well some back-
ground information and additional work is presented. Finally, an overview of the
used literature and some additional relevant work is given, in order to help the
reader integrate the information presented in this thesis.

12
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Emitter Receiver
Core Network

Antennas

Figure 1: Schematical Routing

1.2 Mobile Communication in GSM networks

“Global System for Mobile Communications“ (GSM) is a technical standard, which
specifies interfaces and settings for mobile communication. GSM was originally in-
troduced in the second generation of wireless communication technology. The GSM
standard is incorporated and built upon in the third and fourth generation of mobile
communication systems as well. It specifies, how two mobile partners communicate
via mobile devices, such as mobile phones or laptops, by organizing and standar-
dizing the process of communication within (typically) large scale infrastructures
like (public) telephone networks. Without giving to much technical details, figure 1
depicts how both partners communicate: the first participant uses radio transmis-
sion to communicate with the nearest network antenna, which forwards the call
via “physical“ transmission (copper or fiber wire) to the antenna closest to the se-
cond participant. This second antenna uses radio transmission again, to communi-
cate with the second participant. A mobile communication between two participants
will henceforth be referred to as a “mobile call“.

Until recently, the story of GSM has been a story of success and growth. The GSM
Association (see [Ass]) estimated that the technologies defined in GSM are used
in about 80% of the global mobile market. This market has more than 1.5 billion
users across more than 212 countries and territories and has been growing ever sin-
ce. In the second quarter of 2009, about 3 billion calls have been made with GSM
techniques within the GSM Association alone. However, there is a drawback to the
extensive use of GSM technology. GSM networks cannot grow (in the sence of ca-
pacity) indefinitely because they operate on a limited resource, namely the (finite)
frequency spectrum. In principle, each mobil call needs some separate space in this
spectrum, such that the amount of simultaneous calls at a certain location is limited.

13



Frequency Assignments in SFH Networks § 1 Preface

Figure 2: Typical Antenna

Resulting a highly efficient usage of this resource is recommended for large scale
networks.

To reiterate, every mobile call is passed to some antenna, which then forwards the
call. Since a call can take place everywhere in a given region equipped with a GSM
infrastructure, every spot within the region must have access to at least one antenna.
This obviously is the idealized way. Due to territorial issues, it might not be possible
to reach an antenna everywhere (e.g. below bridges no connection can be establis-
hed). Naturally, mobile communication companies try to establish a sufficient degree
of coverage and capacity, that is, they build more antennas or acquire additional fre-
quencies (if possible) for their network. Resulting, rooftop-mounted antennas (figure
2) are commonplace now, providing efficient positions for spreading radio signals. In
this context, the recent auction of additional frequencies for mobile communications
in Germany (see [Bun10] for more information) is to mention. High scored prices,
and the political charge to increase the coverage of high speed Internet with these
new frequencies emphasize both, the importance of the resource frequency and the
need for it’s sensible usage.

In a mathematical point of view, a region needs to be covered by transceiver sites
(with eventually more than one antenna - for increased capacity), so that an antenna
is reachable form every possible spot in this region. For that reason, a GSM network
can be described as (digital) cellular network, which will be an important characte-
ristic later on. Some sketch of this structure is given in figure 3. However, this sketch
is heavily simplified, in the following sense:
Clearly, the resolution of this model is far to low, there are to few cells, for covering
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whole Germany. In reality, it should be clear, that the different sites may not be dis-
joint, may not cover the whole region or may not be homogeneous in signal strength
and spreading. But in general, the figure provides an idea of this structure, especially
since this coverage model was in use (in the sense that planning was done with it),
in the beginning of mobile communication (see section 2.2.1 for more information of
frequency pattern reuse).
At this point, some necessary formalism in the context of this structure, is given. The
regional unit seen in figure 3 is called site. At one site, there may be multiple anten-
nas, which serve all calls of the whole site. Each of this antennas defines one sector.
For example, one antenna can form one sector (360◦ opening angel), three antennas
may form 3 sectors with an opening angle of 120◦ each. In each sector, the antenna
has certain number of transceivers, abbreviated TRX. Each of whom operates on it’s
own frequency and is responsible for the communication with the (mobile) partici-
pant. Herby, the management, which call is treated by which TRX is not important
here. Every TRX communicates in up to 8 different time slots, so it can handle up
to 8 different calls (on the same frequency) at the same time. Resulting, a communi-
cation is split into discrete time slots, that dignified, that the human ear is not able
to recognize it. Concerning this settings, especially the time frames, more details are
provided in chapter 2.
Again it holds, that matters are more complex then suggested here, but the general
idea is sufficient in this work. Repeating: The concept is, to “cover“ a certain area
with TRX, but due to territorial influences, the area covered by TRX has no hexago-
nal shape in reality (the shapes are mostly chaotic, they even need not be connected).
This is reasoned by territorial issues (e.g cement may prevent signal expansion), such
that the TRX have no uniform area, on which they can serve. Nevertheless, from a
theoretical point of view, the hexagonal forms are a useful model to do some rese-
arch on.

While the above mentioned characteristics shall give a rough overview on a networks
organisatorial structure, in the following it is commented on the “radio“ aspect of
this communication mean. Mobile communications can possible take place anywhe-
re. So they cannot be passed by some hardware like telephone cable (e.g. copper /
optical fiber). Therefore these calls are transmitted in the same way, like tv or radio
signals, namely in the radio spectrum.
This spectrum spans from zero (physical: extremely long wavelength) to 300 GHz.
It is divided into several parts due to the fact that many different users depend on
it: radio, television, radar, the military and GSM all have exclusive access to a uni-
que part of this spectrum. To date, it is impractical to use higher frequencies due to

15
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Site

Antennas

Figure 3: Cellular Structure

the fact that the earth’s electromagnetic radiation disrupts signals sent at this wave-
length, a technological restriction that may be overcome in the future.
Whereas the exact spectrum of a special purpose (e.g. emergency frequencies) might
differ among national borders, in Europe, GSM may generally be used within 880 to
915, 925 - 960 MHz (GSM 900) as well as within 1710 - 1785 and 1805 - 1880 MHz
(GSM 1800) (more detailed presented in [oSA09]). The GSM 900 spectrum compri-
ses 124 channels (uplink, outgoing data) between 890 - 915 MHz and 124 channels
(downlink, incoming data) between 935 - 960 MHz, each channel having a band-
width of 200 kHz. Each of these channels operates on eight time slots, such that
it can serve eight different calls at once. So, putting it in a nutshell, given the sa-
me position and the same time frame, a signal antenna in the GSM 900 spectrum
(with enough TRX for every channel) can sustain 992 different calls at the very most.
This number is very limited, even when adding the other GSM spectrum’s capabi-
lities as well. The conclusion is, that capacity enhancements can only be achieved
by increasing the number of antennas (and therefore the TRX operating on the same
frequency), thus leading to an “overcrowding“ of the frequency spectrum. This leads
to significant problems. For example, comparing to normal radio channels: Different
mobile calls, placed next to each other in the frequency spectrum (often observed
at borders of countries, for example with car radio) disturb each other / produce
atmospheric noise. Accordingly, given the history of GSM, which can be described
as an ever growing of demanded capacity, there arise some problems at this point.
These problems are: increasing the networks capacity correlates with the networks
transmission quality, which is carried out in the following section. At the end, thee
problems lead to the subject of this work: Given a network (with a certain capacity),
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how is it organized at best (by a frequency assignment), with respect to transmission
quality?

1.3 Transmission quality in radio networks

As mentioned before, quality in radio network depends on many different factors.
At this point, some examples are more convenient, than a concrete definition of
transmission quality (which would lead to a rather technical point of view).
Most of this influencing factors do not only appear in GSM networks, but can be
found similarly in normal radio transmissions (e.g. car-radio), which may serve as a
parallel. As a first example, landscape (mountains, buildings etc.) can be mentioned.
While the selection of special frequencies might reduce the landscape’s effect (low
frequencies are physically better adapted for steep slopes like in street canyons, high
frequencies have a wider fade radius and are therefore better adapted for flat, thin
populated areas), the effect of the antenna’s position itself is far more important (an
antenna in a street canyon will be significant inferior to one on a skyscraper, con-
cerning it’s transmission range, though some street canyons might not be reached).
Frequency planning may reduce some of this effects but this correspondence is not
treated in this work, since influences of specific frequencies are very hard to forma-
lize. Another factor might be the strength of an emitted signal or just the number
of simultaneous calls at a certain time and place. These factors are surely important,
but are not treated in this paper directly.
The focal points of this work, are the influences addressed by the label: interfe-
rence. Interference or mutual signal/transmission disruption arises if (two or more)
transmissions are too close to each other in the frequency spectrum and (both) par-
ticipants can receive both transmissions. In most cases, it is sufficient to consider
interference caused by a channel difference of at most one (co- or adjacent chan-
nel interference). The bigger the differences within the spectrum, the smaller the
possible amount of disruption. Concerning practical issues, no noise is emitted by
a distance of more then two. If those conditions are met, both participants receive
noise (since the other transmission is not understandable, because of encryption)
from the other transmission. Typically, those interference structures are sparse, in
the sense, that only locally close calls can interfere another. For example a TRX in
Munich will probably not interfere a TRX in Berlin. A further example is given by
radio transmissions, again. If outer conditions are met (strong wind, or being at the
border of two or more sending stations), one might be able to receive “two channels
at the same time“, or in other words, has a lot of noise on one channel. One could say,
that the signal suffers from signal overlay (see figure 4 for example). Due to technical
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Area covered by TRX 1
Area covered by TRX 2
Area covered by TRX 3
Area covered by
multiple TRX

Area with signal overlay

Area with no signal available

Figure 4: TRX Serving Area

issues, transmission signals are only interpretable, if the signal to noise relation is
above a certain limit. Consequentially, the most important question, when installing
a (radio) network is: How can calls be placed in the available frequency spectrum, so
that their mutual interference is acceptable? In other words, since the TRX determi-
nes, where in the spectrum the call is placed: Which frequencies must be assigned
to which TRX, so that the transmission quality is the best? Here, the special site/cell
structure, mentioned above needs to be taken into account. Regarding the network’s
organization, this translates into: Which TRX potentially disturb each other to a si-
gnificant degree and may the use of a certain frequency at a special TRX prohibit
the use of that frequency on another TRX? Hereby, the potential disturbances are
aggregated into fixed interference values, arising if two TRX use similar frequencies,
such that dynamic structures like capacity utilization and fractional load disappear.
In figure 5, the interference relations of a frequency assignment (in this case kindly
provided by atesio - Berlin) is shown, as an example. The colors and thickness of
the links between the TRX indicate the induced interference. In most cases, it is not
possible to find an assignment with no interference induced (since the number of
TRX / the demanded capacity is far to big). So the aim is to minimize the total inter-
ference in an assignment, therefore reducing the average interference, which is the
standard approach (see [Eis01]) for frequency assignments. Another approach for
a “good transmission quality“ might be, to restrict the interference values of every
single TRX (or even incorporate dynamic structures like capacity utilization). Ne-
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vertheless, the first approach is chosen for the sake of comparability to other works.

Figure 5: Interference Relations

Therefore, the question, which will be the basis for the future work is: Ignoring all
other influences but interference, given all data about the available spectrum and all
potential interferences between two sites a well as all demanded amounts of frequen-
cies at the sites, how can the available frequencies be assigned optimally. Optimal in
the sense, that the overall existing interference between each pair of transmitters is
minimized. Herby interference is divided into co-channel and adjacent channel in-
terference. Co-channel interference describes the amount of disturbance, induced by
two transmitters, sending on the same frequency and adjacent-channel interference
is the amount of disturbance, induced by two transmitters, sending on neighboring
frequencies. Using this model, all other possible interferences of lower order (chan-
nel difference of two or more) are ignored for decreasing the problems complexity.
This problem is well known as the (classical) frequency assignment problem (FAP).
In the Appendix (chapter 8), a short description, which formalizes the FAP model
and explains the relation between the site/cell structure and the interference occur-
rence is given.

For the later work, it is assumed, that the reader is aware of the GSM structure
as well as of the characteristics of the FAP. Meaning he knows, which problems are
addressed with the FAP, why they are important and how they are related to the
GSM techniques and structures.
The information given up to now are the backbone for the future work. In the fol-
lowing, an enhancement (slow frequency hopping) for the GSM technology is des-
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cribed, leading to the central aim of this thesis: Developing optimal frequency assi-
gnments for slow frequency hopping GSM networks.

20
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§ 2 Slow Frequency Hopping

2.1 Intentions and Purposes

In the last section, some overview on (classic) radio communication, especially on
GMS architecture, was given. But as mentioned in the introduction, much effort has
been put into the classical frequency assignment problem, before (compare the bi-
bliography for example). At this point, the concept of slow frequency hopping is
introduced as an advancement (concerning capacity / speech quality) of the FAP
model. In the classical view, each transceiver operates on exactly one frequency, the
whole time. As a result, a network may have an acceptable total interference (which
is minimized by the FAP), or in other words it has a minimized average interference.
So there may be pairs of TRX with a very high interference and pairs with a very low
interference. While the high interference levels totally prevent mobile communicati-
on, the very lowest interference values do not offer an experienced gain in speech
quality towards an average case, such that the network’s quality is used inefficiently.
In slow frequency hopping networks, this should be changed: Every transceiver shall
change it’s frequency periodically. That is to say, a call is not handled on a single
channel anymore but alternates it’s frequency periodically. Resulting, speech quality
is averaged. While there may be still frames with high/low interference, the average
is a mixture of both and more important, neighboring time frames have probably
not the same interference levels. Consequential, sequential information loss is pre-
vented, such that average experienced speech quality is raised (single lost frames
can be reconstructed by error recognition techniques) - the peaks in both directions
are removed.
While a more detailed description is given in the following, note that many different
technical realizations (for example randoms versus cyclic hopping, for more infor-
mation see section 8.4) are possible, in general. Nevertheless, the following charac-
teristics were chosen, because they seemed reasonable and support a mixed integer
programming approach. Frequency hopping should be applied at random. That is,
in every time frame, the TRX choses it’s current frequency out of it’s assigned fre-
quencies equally distributed, at random. Resulting, and contrary to the classic FAP,
there is no definite interference amount at every time frame which can be minimi-
zed, but an expected value of interference (see section 3.1 for more details).
For a better visualization on channel hopping, some short explanation on the sen-
ding structure of an antenna is given: As mentioned above, each frequency consists
of a 200 kHz band of the radio spectrum. A TRX transmits it’s data in an eight -
frame time cycle. Every time slot is defined to consist of eight frames, each of length
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TRX 1

TRX 2

TRX 3

TRX 4

TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8 TF1 TF2
time[ms]

frequency[kHz]

7.5/13 0.396/13

200

BCCH

Figure 6: Sector/Frequency Diagram with SFH

7.5/13 ms, with breaks of 0.396/13 ms in between. In that way, a TRX may serve
up to 8 communications at the same time. If a TRX changes its frequency at every
frame, this is called “slow frequency hopping“ (SFH). For completeness sake, fast
frequency hopping has, opposed to slow frequency hopping, maximal 1 bit per hop.
Depending on the special size of a sector, there might be some special TRX / frames.
This is to say: The first TRX in a sector at the first time frame is called “broadcast
control channel“ (BCCH) and has to transmit cell organization information. So it is
permitted to change it’s frequency. Resulting, in a SFH network, no hopping is app-
lied to the BCCH carrier (TRX 1, time slot 1). With growing sector size (TRX amount)
there may be other channels, which behave the same, but they are not mentioned he-
re in detail. For visualizations sake, a sector / frequency diagram might look like in
figure 6.

In detail, the concept of slow frequency hopping should address the following
points:

• Signals are subject to fading. Fading is dependent on the local position of trans-
mitter and receiver as well as of the used frequency. For example, one fre-
quency might spread better through some material then another. While chan-
ging the net’s physical conditions is mostly not an option, the use of different
frequencies is an important influential factor. Because of this, the aim is to
spread the call (meaning to use several frequencies) in the frequency spectrum
(frequence diversity) for preventing sequential information loss (substantial fa-
ding on some frequencies / time slots, but not on all). Error recognition and
correction is relatively far advanced. As long as only single blocks (e.g. one
time period) are lost, this can be corrected, if more blocks are lost, quality
decreases (information is irrevisibly lost).

• In the classical FAP, signals are subject to continuous interference, thus, if in-
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terference occurs, there is sequential information loss, since both calls stay on
the same frequencies the whole time. So the risk of sequential information loss
(and therefore bad speech quality) is relatively high. Similar to above, the aim
is changing frequencies to get an averaged interference (interference diversity).
In frequency hopping networks, the two calls will iteratively change their fre-
quency. The aim is, to organize the hopping in the way, that calls may interfere
in one time slot, but probably not in the following, as well. So in total, the quali-
ty is averaged. Non interfering and interfering frequencies are mixed, therefore
sequential information loss is prevented. An important feature hereby: An ave-
rage speech quality is sufficient for communication, while the best possible
quality is not necessary (experienced quality does not increase in relation to
average quality) and the worse qualities totally prevent communication. As a
result, the averaging yields an improvement in experience quality, by cutting
of the peaks in both extremes.

The overall aim of this concept is, to improve signal (and therefore speech-) quali-
ty by (compared to FAP) introducing another aspect to frequency assignments (no
static frequency usage any longer). While the description above is sufficient for the
following work, additional information can be found in [ONS95]).
Note, that quality is tightly connected to capacity. High quality networks can sustain
additional traffic, while low quality networks may break down by additional users
(induced interference). In this thesis, optimal frequency assignments for this concept
shall be provided and at the same time, FAP as an origin of slow frequency hopping
should be emphasized. Resulting the slow frequency hopping model is developed
on the background of the FAP model, namely on the basis of co- and adjacent chan-
nel interference. Resulting, SFH should be examined with respect to FAP and may be
treated as some sort of generalization of FAP. While FAP provides the possibilities to
bear with interference, there is no direct way for including signal strength or signal
fading. As a consequence in this work’s approach signal fading (frequency diversi-
ty) is neglected and the mathematical model is build on the basis of the interference
diversity gain.

While a frequency assignment for slow frequency hopping networks is defined by
the information, which TRX should hop over which frequencies, a further important
question corresponds to the hopping type. There are some different possible solu-
tions, the most common are iterating (cyclic or at random) through the assigned
frequencies, which can be specified further, according to the random distribution, or
by some type of TRX offset, in cyclic hopping (see section 8.4 for more details on
slow frequency hoping concepts). Nevertheless, this thesis focuses on equally distri-
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buted random frequency hopping, mostly because it nicely fits into the context of
linear programs. Cyclic hopping, on the opposite, bears the difficulty to create the
hopping sequences at runtime (and evaluating their interference values). Further,
choosing between different sequences has not only a very big solution space, but
their influence on interference is very difficult to calculate in a linear programming.
Though an approach on these settings is invoked in [BVY05], for example (there in
the context of a simulated annealing algorithm).
Before the concrete (mathematical) model is introduced, some confinements on gene-
rality are given. Obviously, an optimal slow hopping frequency plan should contain
the information, which frequencies are assigned to which TRX. Further, the problem
could be described as: Given the amount of TRX, the available frequency spectrum
and the possible interference (co- and adjacent channel) relations. How many and
which frequencies need to be assigned to which TRX, such that the expected amount
of total interference is minimal in an equally distributed randomized frequency hop-
ping. Especially, this means that solving this problem with full generality implies,
that the amount of frequencies assigned to each TRX is not known at the beginning.
But since the concrete amount of channels per TRX influences the possible amount
of received and transmitted interference, this to complex, to be treated in a linear
model. Compare a linear program formulation in section 3.2 for more details: chan-
ging the amount of frequencies per TRX has a non linear influence on the objective
function. Consequential, for the sake of computability some restrictions on genera-
lity are made for the future work. While in the general problem, groups of TRX,
which have the same frequencies assigned, are implicitly formed, these are assumed
given at the beginning, together with the amount of frequencies assigned to them.

Though these restrictions limit the generality, they are somewhat justified by prac-
tical aspects. Having the cellular (cell/site) structure of GSM in mind, many data is
only available at site level and many settings may only be applied to the site as a
whole (and not to a special TRX). As a result, the above mentioned groups, as for-
med by all TRX of a site, is an assumption, which is reflects commonplace settings
for slow frequency hopping GSM networks. So, the mathematical restriction is indu-
ced by practice anyways.
Concerning the limitations on the amount of frequencies per STRX group, research
on that matters states (for example in [ONS95]), that the quality increase, achievable
through randomizing over more frequencies, decreases on the long run. That means,
most quality gain of slow frequency hopping can be achieved by assigning as few
as 3 or 4 more frequencies than inbound TRX to each group. Resulting, the gain of
leaving that amount of frequencies for each group variable is relatively small compa-
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red to the increased computational effort. Thus, assuming the number of demanded
frequencies per group given as the number of inbound STRX plus some constant
offset seems a reasonable trade of.
Note, that with both settings, some minimum co-channel interference is already de-
termined, namely the induced interference from each STRX (which could potentially
be relatively high, if the site structure from above was chosen). This amount should
be chosen as low as possible beforehand, but is not treated here in detail, since these
values will not influence the following optimization problems (concerning their ob-
jective value, this additional interference is just a constant offset).

For the following work, the central problem, which is the frequency assignment
problem for slow frequency hopping networks (FAPH), can be defined as: Given
the amount of TRX (Super TRX, STRX), which hop over the same frequencies, given
their potential co- and adjacent channel interference relations, the available frequen-
cy spectrum and the frequency demand (number of frequencies to hop over) of each
group (STRX). Which channels need to be assigned to which STRX, such that the
total expected interference is minimal. While a mathematical expression of this pro-
blem can be found in section 3.4, this is formulated as mixed integer program in
section 3.

2.2 Referential Work

Before presenting own approaches for obtaining frequency assignments in slow hop-
ping networks, referential work on this topic is presented in this section. As hinted
before, the telecommunication market is growing ever since. Resulting, this sector
is interesting for science as well, leading to more and more scientific results in that
matters, including research on slow frequency hopping. In the following section,
sources with different approaches to this topic are presented as an example. Nevert-
heless, these presentations are only able to show comparable methods (algorithms)
rather than numerical results. This is due to the fact, that slow frequency hopping
can be implemented in many different ways (e.g. like mentioned in section 8.4, ran-
dom hopping vs. cyclic hopping) and on different data (key questions are: how is the
gain of frequency hopping measured etc.). This is enforced by the fact, that no central
data sets are existing. All in all, different papers work on different scenarios, making
it hard to compare numerical values. Even when working on the same data (like
from fap.zib.de, the cost256 project), the effect of slow frequency hopping (e.g. the
modification of interference values) on the there presented (classical) FAP instances
is interpreted different in most cases. Resulting, the following remarks rather intro-
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Frequency
Pattern

Figure 7: Frequency Reuse (c=2)

duce alternative methods for obtaining slow frequency hopping assignments than
compare numerical results.

In general, similar to the classic frequency assignment problem, two different me-
thods for generating frequency assignments are used. The first method is called “fre-
quency reuse patterns“ and describes a generic way of spreading frequencies over
STRX. The second one concerns a dynamic, possibly optimal frequency assignment.
Since frequency reuse has not been introduced in this work yet, this is done in the
following. On the background of centering on optimal frequency assignments and
not on generic ones, the introduction and the presented results are only outlined
and not presented in detail.

2.2.1 Frequency Reuse

Having in mind, that GSM networks offer a cellular structure, frequency reuse de-
scribes the usage of a specific pattern of frequencies for covering all STRX, that
means, the frequencies are regularly reused (for a more detailed introduction, one
may consider the article [Lin]). Hereby, the cellular structure is mostly modeled as
a hexagonal structure, but other structures are possible, too. The main parameter,
influencing this concept is the (frequency) reuse distance c, which denotes the num-
ber of cells, which needs to lie between two cells (in the sense of the shortest way)
sharing the same frequency. In general, c > 1, since adjacent cells are normally not
allowed to share the same frequency. It applies, that the number of needed frequen-
cies is dependent on that parameter. Figure 7 shows an example of c = 2, forcing
a frequency pattern of three different frequencies. Note, that this can be applied on
frequency hopping networks as well (assign multiple frequencies).

Obviously, such a model is dependent on various influences. Key aspects hereby are
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(besides the above mentioned reuse distance) the way the cellular structure is de-
rived (hexagonal, differently sized cells in practical aspects, etc.), which pattern is
used exactly, or whether different patterns are used for certain part of the structure.
Much effort has been put into this, on various specifications. For example, in the
paper [KI01]: “Fundamentals of Dynamic Frequency Hopping in Cellular Systems“
a dynamic adaption of reuse patterns is analyzed. As another example, the paper
[Eea98]: “ Multiple reuse patterns for frequency planning in GSM networks“ focuses
on research on practical aspects and yields a frequency reuse factor of 7.5.

Though this concept is deployed in praxis and provided useful results, it is get-
ting outdated. In generic frequency assignments specific interference values cannot
be considered, it is only possible to have a low level of interference in general. The-
refore results are not comparable to optimal frequency assignments, with respect to
interference values. Nevertheless, one of it’s mayor advantages over optimal assi-
gnments lies in the relatively ease to generate a frequency assignment, compared to
the computational effort in the other case.

2.2.2 Optimal Assignments

The counterpart to frequency reuse patterns is the idea of creating dynamic optimal
(or optimized) frequency assignments. While frequency reuse offers a generic way
of creating assignments, local properties of single TRX (STRX), like specific interfe-
rence values, are ignored. On the other hand, using local data on STRX level creates
very huge amount of data, making calculations very difficult in a practical aspect.
Nevertheless, the quality gain when respecting this data is so promising, that this
effort is taken into account. Hereby, an optimal assignment is preferable, of course,
but appropriate approximations are often sufficient, if this optimum is not reachable.
Similar to frequency reuse, much effort has been put into this topic, before. Hereby,
a distinction can be made between approaches (heuristics), derived from the ori-
ginal FAP problem and the ones “newly“ introduced for slow frequency hopping.
For the first option, any source describing a mathematical approaches for obtaining
frequency assignments may be consulted, in this work, the PhD thesis [Eis01] is re-
commended. This thesis offers a broad overview on various mathematical heuristics,
creating not optimal, but good frequency assignments, most of them easily converti-
ble to frequency hopping conditions. Quality wise, the therefore generated solutions
have the same characteristics than in the classic FAP - fast, but not optimal (see sec-
tion 4.5, where some of these heuristics are incorporated into this work).
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Other work is directed mainly to slow frequency hopping. Here the most promi-
nent example (using very similar problem settings to our approach) is the paper
“Optimized planning of frequency hopping in cellular networks“ ([BVY05]). In this
paper, the problem is formulated as choosing a list of frequencies (to cycle through)
for every STRX. Due to the size of the problem, finding an optimal list of channels
to hop over for every STRX, this problem is not solved optimal. Instead, a solution
is presented, which uses a simulated annealing heuristic, achieving success in an
interference reduction at runtime.
A further interesting paper in this context bears the title “Assignment of Frequency
Lists in Frequency Hopping Networks“ ([MHS05]). There, the above mentioned pa-
per is expanded in various directions like pregeneration of the frequency lists before
assigning or modifying existing lists, showing improvement capabilities of this mea-
sures.

All in all, these papers show that a quality gain through optimized frequency assi-
gnments can be achieved towards the concepts of frequency reuse. Serving as some
sort of justification for the next section, where this approach is sustained and even
strengthened. There, it will be tried to obtain an optimal assignment, not by the use
of meta heuristics but by the use of integer programming.
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§ 3 A MIP approach

3.1 Problem Description and Input Data

In the current chapter, the problem of finding an optimal frequency assignment for a
“slow frequency hopping“ network is developed out of the classic FAP description.
Therefore the same input data is kept, as far as possible (see section 6.3 for more de-
tails). However, the aim is the same: Creating a feasible frequency assignment with
minimal inbound expected (total) interference. While a definition as optimization
problem can be found in 3.4, a mixed integer formulation for that problem is given
in this section. So at the beginning, constraints for forming a feasible assignment
and evaluating it’s quality are needed.
Repeating, for a slow frequency hopping frequency assignment, the following input
is needed: Similar to the classic FAP, the set of available frequencies, as well as the
number of TRX and their corresponding interference relations is needed, from which
the data on STRX level will be aggregated. Further, secondary information like local
blockings, and separation issues between these TRX can be given. Additional, and
not contained in the FAP model before, the following data needs to be specified.
It is known beforehand, which TRX have the same frequencies to hop over. These
groups are called STRX (super transceiver) in the future. In practical aspects, the-
se STRX are often formed according to the cell/ site structure, though this is not
necessary, in general. Further, it is assumed, that for every STRX I, the number of
needed channels kI ∈ N is known beforehand, too. So the actual goal is to choose
the specific frequencies, but not to build the concrete grouping (STRX) structure or
determine the corresponding number of needed frequencies. Hereby, for a further
understanding, the chapter before is referred. Using the given data on “TRX“ level,
these are aggregated on STRX level in the following way:
Interference relations (e.g. co-channel) are defined for TRXs v and w within STRXs I
and J (e.g. co(v,w)=...) and not directly for the STRX themselves. These are genera-
lized by means of probability distributions of expected (interference) values: Given
an equally distributed probability, that TRX v in STRX I gets frequency f at a certain
time slot t, the expected interference with another TRX w in STRX J can be calcu-
lated. So the sum over all expected values between all TRX combinations between
two STRX gives the total (expected) interference between these two STRX. This is
explained, by means of an example:
Given two STRX I and J, and two lists of assigned frequencies FLI and FLJ . Let |I|
denote the number of TRX in I and |FLI | = kI the number of frequencies the TRX in
I might hop on, analogue for J. Further, let yI,J denote the size of the intersection of
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FLI and FLJ . Given random and equally distributed frequency hopping in I and J,
in every time slot, the (co-channel) interference, which is imposed from a TRX v ∈ I
on a TRX w ∈ J is regarded. There is only one chance of co-channel interference, if
v uses a frequency which is in FLI and FLJ at the same time. This is the case with
likelihood yI,J/kI . So w needs to use the same frequence, which occurs with proba-
bility 1/k J . Then, a co-channel interference amount of co(v,w) is created. Following
this line of thought, the expected total co-channel interference, opposed from I on J
is given by:

co(I, J) := ∑
v∈I

∑
w∈J

yI,J

kI · k J
· co(v, w). (1)

While this value is formally an expected value of a probability distribution, it will
be denoted as the arising (continuous) interference value between the STRX I and J
for shortness sake.
Note, that both interference measures explicitly allow co(I, I) and ad(I, I) values
different to zero (because of the aggregation from TRX to STRX level). While the
induced co-channel interference is already determined by the STRX structure (see
section 2) and can be regarded as a constant offset therefore, the adjacent channel
interference has still to be determined. Though this does not change the computa-
tional aspects of the (future) models, it is mentioned here for completeness sake.

A similar construction is used for the adjacent channel interference (nI,J denotes
the number of neighboring channels from I in J):.

ad(I, J) := ∑
v∈I

∑
w∈J

nI,J

kI · k J
· ad(v, w). (2)

The secondary data can be aggregated in a similar manner: The FAP model provides
the possibility of separation constraints on TRX level. It is assumed that these cons-
traints are lifted on STRX level, so that every STRX I now has a parameter dI , which
represents the frequency separation within this STRX. Further, every pair of STRX I,
J has a parameter dI,J , which represents the separation requirements between these
two STRX (matches the separation requirements between all TRX v ∈ I and w ∈ J).
Obviously inner STRX separation is easily achievable by imposing the single, most
striking separation constraint between two TRX within one STRX on all TRX within
that STRX. Similar holds for separations between the STRX. In comparison to the old
FAP, this amplifies the old constraints and may therefore decrease the amount of fea-
sible solutions. In scenarios, where this method is too restrictive, one may consider a
different STRX structure or an omitting of any of those constraints. In this context, it
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might be interesting or necessary, to treat some single / special TRX as STRX (STRX
with exactly one inbound TRX). Especially, this applies to the BCCH carriers: Since
they spread broadcasting control information, they are not allowed to change their
frequency. So every BCCH carrier forms a single STRX, with the demand of exactly
one frequency, each.
In this context, local blocking constraints are mentioned, for completeness sake. In
the FAP model, it is possible to block frequencies on local TRX. Obviously a simi-
lar approach as above can be made to produce feasible assignments, with the same
drawbacks. In the following, the set of blocked frequencies for a STRX I is denoted
with BI .
Summing up, with some additional information (STRX structure, k[I] values) the
constraints for forming feasible frequency assignments can be derived from the clas-
sic FAP model. The mean by which these assignments are measured are (similar to
FAP) the expected total inbound (co- and adjacent channel) interference:

∑
I∈S

∑
J∈S

(co(I, J) + ad(I, J)) ,

whereas S denotes the set of STRX.

3.2 A mixed integer formulation

As mentioned above, the aim of this model, is to provide a feasible (optimal) fre-
quency assignment (given the input from above). Herby, the mathematical tools are
the ones, provided by mixed integer programming. So in this section, a mixed inte-
ger formulation, addressing the above mentioned problem is given.
At first, some notational issues (referring to the input data), for this section and
whole following work, are presented. Hereby, most notations are similar or equal as
in the standard FAP problem.

• S , for the set of all STRX.

• F, the set of all available frequencies.

• kI , the amount of (different) frequencies, demanded by STRX I.

• co(v, w) (ad(v, w)) potential co- (adjacent-) channel interference value between
TRX v and TRX w.

• dI , inner STRX (I) separation and dI,J for separation between the SRX I and J.

• BI for the set of frequencies locally not available at STRX I.
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Concerning the slow frequency hopping, frequency assignment problem, a formula-
tion as an integer program may be given, using the following variables:

xI, f ∈ {0, 1} ∀ I ∈ S , f ∈ F.

xI, f = 1 ⇔ frequency f is used at STRX I.

zI,J, f ∈ {0, 1} ∀ I, J ∈ S , f ∈ F.

zI,J, f = 1 ⇔ Frequency f is used at both STRX I and J

⇔ xI, f = xJ, f = 1.

bI,J, f ∈ {0, 1, 2} ∀ I, J ∈ S , f ∈ F.

bI,J, f = x ⇔ x adjacent channels of frequency f from STRX I in STRX J

⇔ bI,J, f =


0 if xI, f = 0

1 if xI, f = 1, (xJ, f−1 xor xJ, f+1) = 1

2 if xI, f = xJ, f−1 = xJ, f+1 = 1

.

yI,J, ∈ Z+ ∀ I, J ∈ S .

yI,J = x ⇔ x equal channels from STRX I in STRX J
⇔ yI,J = ∑

f∈F
zI,J, f .

nI,J, ∈ Z+ ∀ I, J ∈ S .

nI,J = x ⇔ x adjacent channels from STRX I in STRX J
⇔ nI,J = ∑

f∈F
bI,J, f .

This leads to the following objective function (with the notations above):

Min : ∑
I∈S

∑
J∈S

∑
v∈I

∑
w∈J

∑
f∈F[

zI,J, f · (
1
kI

1
k J
) · co(v, w) + bI,J, f · (

1
kI

1
k J
) · ad(v, w)

]
.

By the (optional) constraints

∑
f∈F

zI,J, f = yI,J ∀ I, J ∈ S ,

∑
f∈F

bI,J, f = nI,J ∀ I, J ∈ S ,
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this is is equivalent to

Minimize : ∑
I∈S

∑
J∈S

yI,J · co(I, J) + nI,J · ad(I, J),

Where is : co(I, J) :=
∑v∈I ∑w∈J co(v, w)

kIk J
(3)

and : ad(I, J) :=
∑v∈I ∑w∈J ad(v, w)

kIk J
. (4)

The corresponding constraints are the following: at first, allot every STRX it’s corre-
sponding number of frequencies:

∑
f∈F

xI, f = kI ∀ I ∈ S .

Further, count the amount of equal frequencies in each two STRX:

zI,J, f + 1 ≥ xI, f + xJ, f ∀ I, J ∈ S , f ∈ F,

∑
f∈F

zI,J, f = yI,J ∀ I, J ∈ S .

Here, the conditions

zI,J, f ≤ xI, f and zI,J, f ≤ xJ, f ∀ I, J ∈ S , f ∈ F

are not necessary, because of z’s (positive) objective function’s coefficient and the
“urge“ to minimize. Similarly, the number of adjacent channels for each pair of two
STRX is counted:

bI,J, f ≥ 2(xI, f − 1) + xJ, f−1 + xJ, f+1 ∀ I, J ∈ S , f ∈ F,

∑
f∈F

bI,J, f = nI,J ∀ I, J ∈ S .

Similarly as above, the conditions

bI,J, f ≤ xI, f and bI,J, f ≤ xJ, f−1 + xJ, f+1 ∀ I, J ∈ S , f ∈ F

on b are not necessary, again. At last, some separation constraints:

xI, f1 + xI, f2 ≤ 1 ∀ I ∈ S , f1, f2 ∈ F, | f1 − f2| ≤ dI , (5)

xI, f1 + xJ, f2 ≤ 1 ∀ I, J ∈ S , f1, f2 ∈ F, | f1 − f2| ≤ dI,J , (6)

xI, f ≤ 0 ∀ I ∈ S , f ∈ BI .

Where the first conditions represent separations between the TRXs of one STRX
(inner STRX separation), the second separations between TRX of two different STRX
(outer STRX separation) and the third some local (in relation of a STRX) blocked
frequencies. In the later context, this model is referred to as [FAPSFH].
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3.3 Computational aspects

In this section, the model given above is analyzed from a practical / computational
point of view. As a first advantage the formulation itself is to mention. It is very
straight forward, in the sense of an easy to gasp approach: Assign enough frequen-
cies and calculate the interference by the means of penalty variables (if two STRX
have a frequency in common, a certain penalty has to be paid). Nevertheless, the
problem is purely integer, with no continuous variables at all. Although this is not
bad in general, it mostly leads to excessive branching during the solving process,
opposed to continuous variables, which can be addressed (locally) optimal rather
easily, in all stages of the solution, by the simplex algorithm.
An additional disadvantage is the huge amount of variables used by this formula-
tion. Variables in the order of O (|S| · |S| · |F|) are used, as well as constraints in
the same order. Given a realistic problem size, of 500 STRX and 75 frequencies, this
number is about as high as 18 million. At this point, problems concerning memory
usage arise as early as in the problem’s initialization. Even though the problem has
two major advantages /characteristics (symmetry and a certain “sparse“ structure),
which can be exploited, concerning runtime this size is still significantly big and
problematic.
Nevertheless, these characteristics are shortly outlined in the following: At first, the
formulation’s symmetry is to mention. If there is potential interference (both STRX
transmit on the same or on neighboring frequencies, though the interference value
/ penalty might be equal to zero) between STRX I and J, the (potential) interference
between J and I arises as well. By defining

co({I, J}) := co(I, J) + co(J, I),

it is sufficient to treat sets of two STRX {I, J} and not pairs (I, J). Thus effectively
reduces the problem’s size by a factor of two (exchanging ordered tuples with two
elementary sets).
The second characteristic is the sparse structure of the (interference) relations bet-
ween the STRX. This property is typically for FAP problems and therefore inherited
by slow frequency hopping assignment problems: With growing problems size (in
the sense of rising amounts of STRX), normally the scale of the area covered by this
STRX rises as well. Giving a sufficient large area, most STRX (the inbound TRX) can
not disturb each other. Since the signals are fading by distance, interference relations
can only take place on a local neighborhood. So most objective’s function coefficient
of the variables y or n will be equal to zero, so that these can be ignored (in a com-
putational point of view: they need not be created).
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A further, and by far more important disadvantage (than the pure size) lies in the
(integer) formulation, with penalty variables, in the structure of x = y = 1 ⇔ z = 1
(or similar) itself. Concerning the solution process of such a LP, the linear relaxation
of a problem is solved, it is then branched for integrality and the process is repeated
again (as is shortly described in section 8.2). In this process, the linear relaxation
provides (dual) bounds on the solution, in general. In MIPs containing the above
structure and especially in the [FAPHSFH] model, the following problem arises: Sin-
ce a minimization problem is regarded, the solution process will obviously try to
avoid the penalty variables and still fulfill the requirements for a feasible solution.
The penalty values are only taken into account, when certain variables (the xI, f ) are
used with a degree, strictly higher then 0.5. But this is easily avoidable, since the
requirements (assigning kI frequencies to STRX I) can be fulfilled by small fractio-
nal values on all frequencies. For example, xI, f = 1/kI is possible in most cases –
ignoring separation and blocking constraints, for the sake of simplicity here. The
same holds true, in general, too, since there are mostly only few of these constraints.
Resulting no penalty has to be paid at all. So the relaxation will always give a dual
bound of zero, which is of no worth at all (obviously the theoretically best solution
can not induce less than zero interference). As a consequence, one could argue, that
the solution process emphasizes on a total enumeration of the possible integer so-
lutions, rather than on the usage of the simplex method (in the sense of solving the
linear relaxation).
Another problem lies in the model’s symmetry. This is not to be mixed up with the
symmetry mentioned above. While the one above is an advantage in the problem’s
initialization (e.g. no need for creating the symmetric variables) and it’s memory
usage, the other influences the branch and bound process of the solution in the fol-
lowing way:
A solution (a feasible assignment) is symmetric in the way, that there are various
other assignments possible, with the same interference values. As above, ignoring
separation and blocking constraints as well as the adjacent channel interference, this
is evident (gaining another solution by a one to one mapping on the frequencies).
However, the same holds true, with these constraints as well, though to a lesser ex-
tend. This does not only apply to the final, integer solution, but to solutions of the
linear relaxation as well. So a branching, for example on a xI, f variable, yields to
an equivalent solution, with the old value of xI, f on another variable xI, f ( f 6= f ).
Resulting, the branch and bound procedure will cycle on equivalent solutions for
some time, not improving the solution quality at all. In the worst case (with the set-
tings from above) there are exponentially many solutions (there are 2|S| mappings
possible) to be cut away, so the time consumption might be significant. A further
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drawback, besides this inefficient branching, is that the great number of equivalent
solutions prevents an effective pruning in the branching process. Equivalent solu-
tions cannot be cut away (since they are not worse then the comparing solutions),
forcing a great amount of comparisons between (integer) solutions and therefore
bringing the whole solving process closer towards a complete enumeration of the
integer solution, slowing its runtime considerably. So all in all, this symmetry leads
to a highly inefficient branching and pruning, therefore severely slowing the process
down.
Summing it up, this model can be described as very intuitive, but with a bad sol-
ving behavior. Since the model, respectively the FAPH problem has it’s origin in FAP
and therefore in graph coloring, some similar approach, with similar analysis can be
found in [MT95].
For evaluating this formulation in practical aspects and for emphasizing the pro-
blem’s origin in FAP, the test scenarios have been taken from fap.zib.de. Referring
to these scenarios (whose adaption to SFH is explained with more details in section
5.2, as well as the used soft- and hardware) the following results have been obtained:
At first, the small test scenario “tiny“ shows that this approach can provide feasible
frequency plans, in this small case (7 STRX, 13 frequencies) within seconds. Other,
more realistic sized problems like “k“ (264, 50) and “siemens1“ (506, 75) show that
this approach is not helpful at all. While the initial (root) LP itself takes about 8− 9
Gigabytes (resulting, not much space for the branch and bound process is left – at
least on usual in-trade PCs) the solution is of no worth at all. As shown above, the
dual bound stays at zero and no primal bound (feasible solution) is found at all.
Concerning even bigger scenarios like “Bradford-0-eplus“ (1886, 75) this gets even
worse in the point, that the problem could not be initialized (on a machine with 14
gigabyte working space) at all.

Though this formulation seems to be of little practical use, there are several wor-
karounds (for increasing it’s computability) possible. For example, there are some
general or generic ways, to shrink a model’s size. At first, the problem size itself may
be taken care of, with some sort of preprocessing. This implies ignoring interference
values below a certain bound or eliminating STRX without connection/relation to
any other STRX (interference value of zero, no separation requirements – these can
be assigned separately, since they do not influence the assignment of other STRX.),
for example. This can be interpreted as focusing on the essential data. Nevertheless,
there is no formal proof of optimality possible any longer and enforcing computabi-
lity by ignoring enough interferences may omit so much data, that the result is not
useful for practical applications any longer.
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Another improvement might be made by adding cuts / feasible inequalities. While
in theory, the existence of helpful cuts is evident (for example with the Gomorry
procedure), no specific cuts can be presented in this practical case. Though the sepa-
ration constraints (5 and 6) may produce some nice “stable set“- shaped cuts, these
are surely not enough (since there are to few separation constraints in realistic in-
stances) to obtain a significant speed-up for the complete model.
At last, the solution process (especially the problems with the LP relaxation, men-
tioned above) might be improved by concepts like separation of feasible inequalities
and column generation (see section 8.2 for more information). Nevertheless, a fur-
ther discussion on that matters is delayed to the end of this section. Before that, a
short complexity analysis of the FAPH problem ([FAPHSFH] formulation) is given,
for completeness sake.

3.4 Problem Hardness

Concluding this chapter, a short description of the “hardness“ of the FAPH problem,
in terms of complexity analysis is given. Hereby, a basic knowledge of the theory of
complexity classes or of the complexity of algorithms is assumed, so that this section
will rather give some results than a whole overview on complexity analysis, defini-
tions and other results. A short introduction on this matter is given in section 8.1,
nevertheless.
Obviously, the linear relaxation of [FAPHSFH] is in P, since the variables and cons-
traints are “polynomial sized“ (in O(|S| · |S| · |F|)). On the other hand, the com-
binatorial (not relaxated) variant is NP-complete. This is induced by the evolution
of FAPH from FAP and therefore graph coloring, which are both NP complete pro-
blems, as well. More details, concerning the NP-completeness of FAP, can be derived
from [Eis01], where this matters are shown by a reduction from the minimum edge
deletion k-partion problem. In the following, a formal proof of the NP-completeness
of FAPH is given. Hereby, the optimization problems are treated, rather than the cor-
responding decision variants (which would ask, whether a solution below a certain
value exists).

As mentioned above, this prove is given by a reduction of FAP to FAPH. Since both
problems have only been introduced as mixed integer programs (which is formally
not sufficient; for example, a minimum spanning tree can be formulated as MIP as
well, though it is not NP-complete), in the following, both problems are redefined.
Hereby, the definition of FAP is taken from [Eis01]:
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The input of the FAP problem consists of a seven-tuple (carrier network)

N := (V, E, F, {Bv}v∈V , d, co, ad).

Hereby, G = (V, E) is a graph, with a vertex for every TRX. The edges are defined by
the three functions d, co and ad, giving to each edge the corresponding separation,
and the co-channel and adjacent channel interference (greater or equal than zero). F
denotes the set of available frequencies (positive integers) and Bv denotes the set of
blocked frequencies for every TRX.
A feasible solution (frequency assignment) for such a carrier network is a function

y : V → F,

such that

y(v) ∈ F \ Bv ∀ v ∈ V,

|y(v)− y(w)| ≥ d(vw) ∀ (v, w) ∈ E.

Then the FAP can be formulated as: given a carrier Network, the problem

min
y

: ∑
(v,w)∈E

y(v)=y(w)

co(v, w) + ∑
(v,w)∈E

|y(v)−y(w)|=1

ad(v, w)

for a feasible solution y, is called the frequency assignment problem (FAP).

The input for the FAPH problem is, very similar to the input of the FAP problem, a
nine-tuple (STRX graph):

M := (S , E, F, {BI}I∈S , kI , d1, d2, co, ad).

Hereby, the graph (S , E) is formed by the STRX (nodes) and the edges give relations
between these STRX (within the same notation, co and ad for interferences and d1
for inner and d2 for outer STRX separations). Blockings are now defined for every
STRX and the new parameter kI denotes how many frequencies have to be assigned
to every node/STRX I. F denotes the available frequency spectrum. As above, a
feasible solution (a feasible assignment) is a function

y2 : S → 2|F|,

mapping each vertex to a set of frequencies, such that

|y2(I)| = kI ∀ I ∈ S ,

y2(I) ⊆ F \ BI ∀ I ∈ S ,

| f1 − f2| ≥ d1(I) ∀ I ∈ S , f1, f2 ∈ y2(I) with f1 6= f2,

| f1 − f2| ≥ d2(I, J) ∀ (I, J) ∈ E, f1 ∈ y(I), f2 ∈ y2(J).
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Then, a definition of FAPH is analogous: Given a STRX graph, the problem

min
y2

: ∑
(I,J)∈E

∑
y2(I)

y2(I)∈y2(J)

1 · co(I, J) + ∑
I J∈E

∑
y2(I):

y2(J)+1∈y2(J)
y2(I)−1∈y2(J)

1 · ad(I, J)

for a feasible solution y2, is called the frequency assignment problem for slow fre-
quency hopping networks (FAPH).

While FAP is stated to be in NP, with [Eis01], it is formally left to show, that FAPH
is in NP as well. Referring to section 8.1, it is sufficient, that a solution of FAPH can
be validated within polynomial time. Since a solution can be calculated from the
underlying graph, which is polynomial in the amount of STRX, this is an obvious
consequence. For proving the NP-completeness from FAPH, the reduction from FAP
to FAPH is still to show. With these two definitions above, a reduction r from FAP to
FAPH can be given in the following way:

r : N → M
N 7→

(
V, E, F, {Bv}v∈V , 1, 0, d, co, ad

)
.

Obviously, r is in P, as a composition of constant and identity functions. With this
reduction, the FAP problem can be treated as an instance of the FAPH problem. Re-
sulting, since FAP is NP-complete, FAPH must be NP-complete as well (FAPH is at
least as hard as FAP).

In addition, a (not necessarily polynomial) reduction the other way around, is possi-
ble, too. Given a FAPH instance, the transformation works the following way: Every
node I (STRX) in FAPH, is substituted by kI different nodes v1, ..., vkv . For every edge
between these nodes, (vj, vj) (i 6= j, 0 < i, j ≤ kI) it holds, that co(vi, vj) = ad(vi, vj) =

0 and d(vi, vj) = d1(I). The edges (vi, wj), with 0 < i ≤ kI and 0 < j ≤ k J have the
weights co(vi, wj) = co(I, J), ad(vi, wj) = ad(I, J), and d(vi, wj) = d2(I, J). For every
other possible edge, all three weights are equal to zero. The resulting graph can ser-
ve as an input for FAP, solving the corresponding FAPH instance.
Nevertheless, this reduction is formally not in P. Denoting k := maxI {kI}, the new
graph has nodes in the order of k times the previous nodes (|S|) and edges in the
order of |S|2 · k2

, which is not polynomial in the FAPH description size. While k
is mathematically unbounded, in practical applications, this value can be bounded
by the number of frequencies in the frequency spectrum (which is constant over
all instances). So for the subclass of realistic sized problems, there is a polynomial
transformation in the other direction as well.
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All in all, it holds, that

• FAP is reducible to FAPH, FAPH is at least as hard as FAP and therefore NP
complete.

• Restricted to practically sized instances, FAPH is reducible to FAP. Both, FAPH
and FAP, are equivalently difficult (hard).

• Since FAPH is NP-hard, this may be seen as a reasoning or justification for
the bad solution behavior of [FAPHSFH]. The other case, a very good solution
behavior of straight forward formulation would have been astonishing.

Nevertheless, keeping in mind, that though both problems have very similar graph
representations, FAPH instances and FAP instances differ in their meanings. While
the FAP produces a frequency assignment and the calculated interference can theo-
retically be measured at every moment in the physical network, the FAPH solution
produces a frequency assignment, which interference is an expected value. While
the FAP problem is fitted directly into a graph (nodes to TRX), the FAPH problem is
generally more abstract.

In the next section, ending this chapter, some conclusion of the MIP approach is
drawn, regarding both, the computational results and the theoretical hardness, pro-
ven in this section.

3.5 Reducing complexity: Decomposition in a two stage problem

As can be derived from section 3.3, the [FAPHSFH] model fails in practical aspects,
in a computational point of view. Since the only information provided by this ap-
proach was a dual bound of zero for realistic sized instances (which is a trivial
information), no further progress in the solution (like feasible bounds) could be ma-
de, at all. Resulting, the question for the following work is, whether this approach
can be improved, with sensible effort, to produce some non trivial results (like feasi-
ble upper or lower bounds). Hereby, the aim mentioned in the preface persists: The
FAPH problem should be solved by linear programming and not by the means of
(polynomial time) approximations (heuristics).
Though some improving concepts have been mentioned at the end of section 3.3, a
reasonable potent improvement seems to be hard to achieve. The formulation, consis-
ting of penalty values (e.g x = y = 1⇒ z = 1), shows a (too) bad solution behavior
in general and offers (too) little possibilities to work with, concerning improvements
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by valid inequalities. Hereby, having in mind that this problem is NP-hard, it might
be necessary to refine this problem for an easier approach, in the sense of, being
more prone to a computational evaluation (e.g. having a structure, that yields faster
results in the linear relaxation).

The here proposed refinement is the decomposition of the problem into two main
stages / sub problems, therefore reducing the problem’s complexity. Since co-channel
interference can be interpreted as of higher order (concerning the interference va-
lues) than adjacent channel interference, it seems reasonable to split this computati-
on into two steps.
Resulting, in the first stage, co-channel interference is addressed (and in the latter
adjacent channel interference). Hereby, it is exploited that co-channel interference
can be treated without the knowledge of the specific frequency shared by various
STRX (it is sufficient to know, that STRX share a frequency, the interference amount
is not dependent on the specific frequency). So, an assignment can be “prepared“,
such that the co-channel interference is already completely determined (for the who-
le assignment) after the first step. In other words, it is determined which groups of
STRX share a frequency among each other (e.g. a result of step one might be: the
STRX {1, 4, 5, 8} have one frequency in common).
In the second step, this assignment is “finished“, with respect to adjacent channel
interference. That is, the groups of STRX sharing the same frequency determined in
step one, get the specific frequency assigned (e.g. all the above mentioned STRX get
frequency 3 assigned). So the whole assignment has as total interference the sum of
the co-channel interference determined in step one plus the adjacent channel inter-
ference of step two.
Without going into detail yet, both models are easier to solve (in a computational
point of view), than the [FAPHSFH] model itself, though both problems will be NP-
hard as well.
Nevertheless, this decomposition forces some concessions to optimality. Without pre-
senting the particular models here, the combined solution of the two models is not
globally optimal (for the FAPH problem) any longer. Since an assignment is chosen
optimal to co-channel interference (primary) and only secondary optimized to ad-
jacent channel interference, it needs not be optimal for the combined interference
any longer (the combined optimal assignment needs not be optimal restricted to
co-channel interference). Further, the structure of both problems forces to drop ad-
ditional constraints like separation and local blockings (or reducing them to the most
important constraints, at last). Both restrictions are reasoned by the particular LP for-
mulations, given and commented in the later work. Nevertheless, these concessions
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seem reasonable for gaining more insightful results.
A further gain of the reformulation into two stages lies in the implementability of
modern solution concepts like column generation or cutting planes algorithms. Both
are used for accessing larger problems (both stages will be very large problems,
still), from a computational point of view and both could not be embedded in the
[FAPHSFH] model before.

In the following chapter (4), the first (stage) problem is given, describing the co-
channel interference. Hereby, a column generation approach is made, since the size
of the first stage problem will still be very large (exponentially many variables).
This is complemented by section 3.3, where computational results and statistics are
presented. In chapter 6, the final results are processed towards adjacent channel
interference and in the preceding chapter, a final evaluation is given.
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§ 4 The first Stage

4.1 Column Generation in General

Before going into detail with the first stage problem, the mean of choice – column
generation (or often referred to as „pricing“, especially in the context of “branch and
price“) is outlined here. Nevertheless, elementary knowledge on the solution algo-
rithms of linear programs is assumed in the following. Therefore, basic knowledge
on linear programming is provided in the appendix (section 8.2) or can be obtained
in nearly every operations research lecture, e.g. in [HL09] or in the standard work
[Chv83]. Readers who are sufficiently experienced in this context may skip this sub-
section and continue with the application of this concept. For an easily accessible
example, the paper [MT95], can be mentioned, which shows a column generation
approach to graph coloring. More theoretical descriptions on that matters are given
by [LD05], in the book [DDS05] respectively.
Given a linear program (LP)

min cT · x
s.t. A · x ≤ b,

x ≥ 0.

with A ∈ Rm×n, x, c ∈ Rn and b ∈ Rm, the standardized way of solving LPs is to
apply one of the various simplex algorithms (in most cases, ellipsoid method’s run
times are not comparable). Hereby, the solution process can be described as an ite-
rated calculation on the constraint matrix A of the LP. In this matrix, every variable
xi (i = 1, ..., n) in the LP corresponds to a specific column. Resulting, without going
into detail with the solution algorithms, increasing amounts of variables lead to an
increasing runtime, in general (simplex algorithm have an exponential time comple-
xity in theory). Further, storing a complete matrix for maybe hundreds of thousands
variables takes a significant amount of memory.
Bringing the overall aim to mind, the simplex’s purpose is, to produce an optimal
basis solution. Especially, this means, that given a starting basis (= a feasible soluti-
on), the algorithm iterates through various other bases (in the following denoted as
“sequence“) until it terminates at an optimal one. For many problems it holds, that
these bases contain a very small amount of columns (variables with value not equal
to zero), each. This is, compared to the amount of available variables in general. No-
te, that a basis can be described as a regular sub matrix of the columns of A, so that
an upper bound of the basis variables is the row amount of A (including slack va-
riables, which are not contained in the x vector). Here, the knapsack problem could
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be mentioned as an example. Given a relatively small capacity and relatively many
items with high weight, every possible solution will only consist of very few items.
Resulting, in each computational step, just a small subset of the constraint matrix
(columns) needs to be known (and stored in memory). So if one is able (which is the
crucial point of column generation) to recognize and create the necessary columns /
variables for the next basis solution at runtime, without knowing the complete cons-
traint matrix, considerable computational effort can be saved. At least compared to
the standard simplex algorithm, which uses computations on the whole constraint
matrix to determine the next basis solution. Hereby, an important aspect is, that in
many linear programs, the columns of the constraint matrix correspond to combi-
natorial objects (for example stable sets). Resulting, these columns (in the example,
the characteristic vector of such a stable set) can be created at runtime. The matrix
A needs not be stored beforehand (for a lookup of these columns), but can be com-
puted if needed. So the question is, which of all variables improve the basis. This is
commented on, in the course of this section.
All in all, just a small subset of the variables is treated explicitly in each step, or
in other words: for the solution process, the knowledge of the above mentioned se-
quence of basis columns is sufficient. So there is no need to do calculations on the
complete constraint matrix (or even store it completely), if knowing this sequence.
Just the actual basis needs to be stored in memory. This, however, is a very theoreti-
cal point of view. As presented here, the knowledge of this sequence is needed be-
forehand, which is clearly not trivial for most problems. So without this knowledge,
calculations on the whole constraint matrix are needed to recognize the next basis.
Nevertheless, a customized run of the simplex algorithm (using only that sequence
of variables) may save considerable amounts of time and memory. In a practical
point of view, this approach is helpful for problems, which are too huge to compute
in “one run“, with the positive aspect of generating primal solutions (bounds) in
each step.

The resulting approach of just identifying the needed / helpful variables and perfor-
ming the solution process on just these columns is called column generation. This is
shaped in the following way: giving a starting basis (a feasible solution for the LP),
it is checked, whether an improving solution (e.g. a solution with a better objective
value) exists. If there exists one, by exchanging one (or more) basic columns, switch
to that solution and start again. If there exists none, the solution is already optimal.
Solving the LP by this procedure can be regarded as repeatedly finding improving
variables (leading to an improved solution) or proving that none exists. This can be
visualized as in figure 8. Since there are only finitely many different bases existing,
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Figure 8: Schematic Column Generation Diagram

this process terminates in finite time. The key element of this procedure is the reco-
gnition of improving variables. This can be done, by the means of reduced costs. A
variable improves the current solution if it has negative reduced costs (for a mini-
mization problem). Note, that the following remarks apply similar to maximization
problems, as well. Recall, that a variable’s j reduced cost rj is computed via

rj = cj − (Aty)j,

whereas y denotes the dual variables’ solution vector (which is computed at very low
costs during each Simplex step) and cj is the variable’s objective functions coefficient.
Hereby, the number rj denotes, how much the objective value of the current base
solution improves per unit added of the variable j. Accordingly, the solution space
is iteratively scanned for variables with negative rj for recognizing the improving
variables. Since an exhaustive search for every variable is too costly regarding a huge
number of variables, a more purposeful way of finding one variable with negative
reduced cost, can be formulated as a minimization problem:

min
j∈J

: cj − (Aty)j. (7)

Hereby J denotes the set of all variables / columns. Note, that in the context of
iteratively improving the current solution, this problem either gives an improving
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variable (the argmin) or proves, that no improving variable exists (minimum is grea-
ter or equal than zero). Nevertheless, for an improvement a variable with negative
reduced costs is sufficient, the explicit solution of (7) is not necessary. Interestingly,
this problem can be formulated as an (integer) program itself, very often. In the
literature (and in the following text), this is often referred to as pricing problem.
Consequential in a column generation approach, the solution process is formally di-
vided into the master (original LP) and the sub (pricing) problem.
The concept of (negative) reduced costs has a very special characteristic. A variable
with negative reduced costs will improve the current solution (if it is used in the
next base solution). Nevertheless, there is no mean known to forecast ,which (if mo-
re than one variable is found) variable will lead to the fastest improvement in the
long run. A faster improvement at the first pricing steps may enforce more pricing
steps in total, compared to choosing variables with barely negative reduced costs in
the beginning. Further, a variable with negative reduced costs may not have reduced
costs in the next basis solution. So there is always a trade off between finding more
than one variable (for a potentially faster improvement in the long run or a higher
improvement in the current step) and a bigger time consumption.
Nevertheless, since only one variable with negative reduced costs is needed (not ne-
cessarily the optimum of (7)), this problem can be treated with fast heuristics, very
often. On the other hand, evaluating the optimum of (7) as greater or equal than
zero proves that no improving variable exists (the solution is optimal). So the reco-
gnition of improving variables can entirely be handled by examining this problem.
In practical aspects, it is mostly tried to find a variable with heuristics and if none
was found, a formal evaluation of (7) follows.
The main difference between a “normal“ simplex run and a column generation step
is, that the simplex calculates the reduced costs for all variables (calculation on the
whole constraint matrix), while the column generation focuses on finding one varia-
ble with negative reduced costs (calculation on a few columns only). Nevertheless,
this gain is paid for, by the need to solve another, possibly hard problem.
Summing up, column generation allows to treat a linear program with a huge cons-
traint matrix on very small space (only the current basis needs to be stored, the
simplex operates only on the old and new basis variables), thus enhancing compu-
tability. This is paid for, by some drawbacks. At first, one must be able to compute
(Aty)j detached of the knowledge of the whole matrix A for every variable. At se-
cond, while this process converges to the optimum in theory, the correspondence

OPT = ( SEP = ) PRICE

(optimization = separation = pricing) states (for example in [GLS95]), that solving
the original problem is as hard as finding an improving variable (or a valid cutting
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plane). Hence, this concept cannot reduce the problems theoretical difficulty/com-
plexity (it just enhances computability, in the sense of bypassing memory restricti-
ons).
As mentioned above, every variable with negative reduced costs improves the cur-
rent solution, but it is not known, how to calculate the shortest/fastest sequence
leading to the optimum. A variable with negative reduced costs very close to zero
might be better than the argmin of (7) or vice versa. In practical issues, this is ad-
dressed by generating sufficiently many variables with negative reduced costs and
hoping for the best. Nevertheless many positive practical experiences have been ma-
de, e.g. in [MT95].

This concept is made for linear programming. Using it in integer programs (on the
linear relaxation) needs to be done carefully, since branching in the original problem
may lead to further inequalities, which may disturb the (generic) computation of (7),
since it introduces new dual variables (so every node in the branching tree would
have a different pricing problem). At a side note: a nice way of dealing with the abo-
ve mentioned problem is shown in the graph coloring example [MT95]. Branching is
realized in a modification of the (input) data (in this case a modification of the un-
derlying graph) and not with additional explicit constraints. Nevertheless, this way
of treating mixed integer problems is called “branch and price“ and is increasingly
used in research, mainly for huge problems, instead of a “branch and bound“ ap-
proach. Similar problems occur when using feasible inequalities: generically adding
them might cause the same problems with the pricing problem.
In general, it is to mention, that column generation might be seen as the dual / com-
plementary expression of generating valid inequalities (column generation versus
row generation). Additional information and the theoretical background of column
generation can be found in [LD05], for example.

In the following section, a formulation for the first stage of the FAPH problem is
introduced, which will allow a column generation approach more easily than the
old [FAPHSFH] model. Hereby, it is focused on a column generation approach on
the linear relaxation. A possibly following branching for integer solutions is left out
(compare section 6.3).

4.2 Reformulated model

In this section, a formulation of the above presented first stage of the FAPH pro-
blem, on the background of developing a column generation accessible model, is
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given. Hereby, due to the similarity of FAPH towards the classical frequency assi-
gnment problems (FAP) and therefore graph coloring, this approach is inspired by
[MT95], since a similar approach is invoked there.
Due to the above presented splitting into two problems, the aspect of adjacent chan-
nel interference is totally left out, as well as the aspect of separation constraints and
local blockings. Resulting, adjacent channel interference is addressed with a separa-
te, second stage optimization problem, which is presented later on in chapter (6). As
a first step, a frequency assignment problem, minimizing total co-channel interfe-
rence is outlined, and in the second step, this frequency plan is finished with respect
to adjacent channel interference.

This first stage problem is a restricted FAPH problem and in the following deno-
ted with FAPHRES. While a formal (mathematical) definition is given in section 4.3,
this problem can be described as: Given the set of STRX and their demanded fre-
quencies, the set of available frequencies and the potential co-channel interferences.
Which feasible frequency assignment minimizes the total co-channel interference.
Resulting, in the following MIP formulation (a formal prove that this is a formula-
tion for FAPHRES can be found in section 4.3), there is only one type of variables,
any longer. For every subset T ⊆ S , the (integer) variable

xT ∈ Z+

denotes, whether all STRX in T share xT frequencies (in the final assignment). Ob-
viously these are exponentially many variables (2|S|, in the order of all possible
subsets of STRX), which is the reason for a column generation approach. Then, the
whole problem can be formulated as:

min : ∑
T⊆S

co(T) · xT (8)

with constraints:

∑
T⊆S
I∈T

xT = k[I] ∀ I ∈ S (9)

∑
T⊆S

xT = |F| (10)

Hereby, the notation of the preceding chapters is maintained. That is:

• For all I ∈ S , k[I] denotes the amount of frequencies, which STRX I needs to
have.
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• |F| is the amount of available frequencies.

• co(T) gives the amount of co-channel interference, induced by the STRX in
T ⊆ S .

Exactly spoken, the co-channel interference of a set T ⊆ S is (derived from the
definition of interference on STRX level, see equation 3) defined by

co(T) := ∑
I∈T

∑
J∈T

co(I, J)

= ∑
I∈T

∑
J∈T

∑
v∈I

∑
w∈J

(
1
kI
· 1

k J
) · co(v, w).

Note, that though the notations of induced co-channel interference are very similar
for sets, STRX and TRX, it should be clear by the actual context, which measure
is meant. In the following, this model is referred to with [FAPHCG], in contrast to
the first model, [FAPHSFH]. Note, that in the constraints (9) and (10) the demanded
equality may be changed into greater or equal (“≥“) and lesser or equal (“≤“), re-
spectively. Since this is a minimization problem and more assigned frequencies (at
last in not degenerated scenarios) induce more interference, the constraints will be
fulfilled with equality anyways. Similar for constraint (10), fewer available frequen-
cies will induce more interference. Resulting the maximum number of frequencies
will be used, such that (10) will be fulfilled with equality, too.
For completeness sake, some short explanations are given, showing that the interfe-
rence measure of (co-channel) interference in the old model and in the new model
are equivalent (concerning their integer solutions). Starting with a fixed frequency
assignment and the total interference in the old model, it follows that

∑
I∈S

∑
J∈S

co(I, J)yI,J = ∑
I∈S

∑
J∈S

(
∑
v∈I

∑
w∈J

∑
f∈F

[
zI,J, f · (

1
kI

1
k J
) · co(v, w)

])

= ∑
f∈F

(
∑
I∈S

∑
J∈S

[
zI,J, f · co(I, J)

])
= ∑

f∈F
co(Tf ).

Here Tf denotes the set of all STRX which have frequency f in common (given an
assignment/result of the model [FAPHSFH]):

Tf :=
{

I ∈ S | xI, f = 1
}

.
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It follows, that

∑
f∈F

co(Tf ) = ∑
T⊆S

co(T) · xT.

The last equality holds, by equation 10. So both models measure the occurring (co-
channel) interference in an equivalent way. Resulting, the input can be treated with
both models with comparable results.

Before going into detail concerning the solution process, a short example for vi-
sualizing this model functionality, is presented. Given three STRX, with a demand
of 2, 3 and 5 frequencies respectively, and 7 available frequencies in total, this leads
to the following equations:

x{1} + x{1,2} + x{1,3} + x{1,2,3} = 2

x{2} + x{1,2} + x{2,3} + x{1,2,3} = 3

x{3} + x{1,3} + x{2,3} + x{1,2,3} = 5

x{1} ++x{2} + x{3} + x{1,2} + x{1,3} + x{2,3} + x{1,2,3} = 7

With a feasible solution of

x{1} = 2 x{2,3} = 3 x{3} = 2

xT = 0 ∀ T ⊆ S , T /∈ {{1} , {3} , {2, 3}} .

In this context, the conditions (9) provide enough frequencies for every STRX and the
condition (10) limits the amount of used frequencies to the available ones. Hereby,
repeating that the whole problem is detached of the explicit frequencies. It calcula-
tes the arising interference via groups of STRX sharing a (not determined) frequency,
only. This results in the following facts: Out of every frequency assignment, the sets
containing the STRX transmitting on the same frequency are constructed easily, but
the other way is not unique (the assignment, resulting of the solution of the above
problem, is not unique). In the above example, STRX 1 could have the frequencies
1 and 2 assigned, as well as the frequencies 5 and 7. This is the same phenomena,
which leads to the bad branching behavior in the old FAPH model [FPHSFH] (see
section 3.3), the symmetry of frequency assignments (though this symmetry is les-
sened, when respecting adjacent channel interference). On the one hand, this is a
positive aspect, since it gives the opportunity to assign the specific frequencies in a
second stage optimization (choose the best of the symmetric assignments, with re-
spect to minimal adjacent channel interference). On the other hand, this is the reason,
why adjacent channel interference can not be incooperated in this model in the first
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stage: Adjacent channel interference is dependent on the sequence of the assigned
frequencies, which is not resolved in this model. As a consequence, this model can
create an optimal frequency assignment (which is not uniquely determined) with
respect to co-channel interference, but no globally optimal assignment (respecting
co- and adjacent channel interference). Bearing in mind, that the first model failed
in a computational aspect, this may be a sensible trade off between solvability and
optimality.

In the version above, this model has no separation and blocking constraints incor-
porated. This is reasoned in the formulation itself. As mentioned above, it is only
calculated, which STRX share a frequency, but the exact frequency is not determined.
But most of these (additional) conditions (like blockings and separations bigger than
one) can only be treated, when assigning specific frequencies, as e.g. in the second
stage problem (6.2). Nevertheless, having in mind that a final frequency assignment
will assign frequencies to already fixed variables / sets xT, a later processment to-
wards this constraints may need some special treatment in the first stage (here), too.
Explicitly, imposing dI,J values bigger than zero prohibits the usage of variables xT
with I and J in T:

dI,J > 0⇒ xT = 0 ∀ T ⊆ S , I, J ∈ T.

Resulting, some of these constraints (like outer STRX separation of the value one)
could be incorporated in this model by restricting the corresponding variable usage.
A similar discussion about further secondary constraints (though they are not trea-
ted in general) can be found in section 6.2.

As a conclusion and identifying similar LP structures, this problem can be described
as a minimal weighted (objective function) set partitioning (10) problem with mini-
mum (node) levels (9). In the next section, before the column generation approach
is introduced in detail and the specific pricing problem for the [FAPHCG] model is
announced (section 4.4), the complexity of FAPHRES is analyzed and compared to
the old formulation.

4.3 Complexity Analysis and a comparison to [FAPHSFH]

Since the FAPHRES problem ([FAPHCG] formulation) is closely connected to the
FAPH problem ([FAPHSFH] formulation), the FAPHRES problem is NP-complete,
as well. Nevertheless, FAPHRES as standalone problem, is a severely simplified ver-
sion of the FAPH problem, namely adjacent channel interference is omitted, as well
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as local blockings and separation issues. Accordingly, a formal prove is given in the
following (for a short introduction on complexity analysis, section 8.1 is referred to,
again).

For completeness sake, the FAPHRES problem is formally defined here, again (com-
pare the section before for a spoken definition). Analogous to the FAPH problem,
the (restricted) input can be described as a six-tuple (or a “restricted STRX graph“)

Q := (S , E, F, kI , co),

with the same notations as in section 3.4. Similar, a feasible solution (a feasible assi-
gnment) for such a tuple is a function

y3 : S → 2|F|,

mapping each vertex to a set of frequencies, such that

|y3(I)| = kI ∀I ∈ S .

Then, FAPHRES is defined by: Given a restricted STRX graph, the problem

min
y3

: ∑
(I,J)∈E

∑
y(I)

y(I)∈y(J)

1 · co(I, J)

for a feasible solution y3, is called the restricted frequency assignment problem for
slow frequency hopping networks (FAPHRES).

By the above definition, the [FAPHCG] model is a formulation of the FAPHRES pro-
blem, a very restricted subclass of the FAPH problem. Note, that hereby a straight
forward representation of a node’s assignment with variables of the form xI, f is not
chosen, but a formulation denoting which nodes sharing an assignment (similar to
the different possible graph coloring models).

This can be derived from the following line of thoughts: Given a solution of the
FAPHRES, the sets of STRX sharing a frequency can be obtained easily. These sets
can be interpreted as a solution for [FAPHCG] (8) (these sets form the variables xT,
with the amount of shared frequencies as solution value). Since only |F| frequen-
cies have been chosen, constraint 10 holds, and |y3(I)| = kI , this solution is feasible.
If this solution was not optimal for [FPHCG], this would lead to a contradiction.
Namely, assumed that a solution with strictly lower objective value is existing, from
that solution, a solution for FAPHRES could be obtained by assigning to every set
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xT frequencies, not assigned to other sets before (that is possible, since [10] holds).
As both models measure the interference equivalently (see the section above), this
would be the mentioned contradiction. Resulting, the [FAPHCG] problem is a for-
mulation of FAPHRES.
Though FAPHRES is a simplification of FAPH, it is still NP-complete. In the follo-
wing, this is shown, by the same reduction as from the minimum edge deletion k-
partion problem to FAP, cited in section 3.4 from [Eis01] (where the NP-completeness
of this problem is shown as well). For completeness sake, the definition of the NP-
complete “minimum edge k-partitition problem“ is repeated here:
An instance of the minimum edge deletion k-partitition problem consists (MEDKP)
of a Graph G = (V, E), a weighting w : E→ Z+ of the edges, and a positive integer
k ≤ |V|. The objective is to find a partitition of V into at most k disjoint sets V1, ..., Vp
such that

z :=
p

∑
l=1

∑
(i,j)∈E
i,j∈Vl

wij

is minimized.

As mentioned above, the reduction showing NP-completeness will be MEDKP →
FAPHRES, similar to the MEDKP→ FAP reduction in [Eis01]. This reduction can be
described via

(V, E, w, k) 7→ (V, E, {1, .., k} , 1, w) .

Hereby, the graph partitions and the frequency assignments correspond to each
other, such that the FAPHRES problem is NP-complete, as well.

Since both, FAPHSFH and FAPHRES are equally hard, the question arises, why
the [FAPHCG] model is preferable to the [FAPHSFH] model. The reason is, that
the [FAPHSFH] model is limited to the features, treated in [FAPHCG] as well, in
the following. This means, adjacent channel interference and separations/blockings
are left out. Even with these restrictions, the problems with the computability (with
the linear relaxation) mentioned in section 3.3, persist (without showing this in de-
tails here, though). On the other hand, the [FAPHCG] model will show a significant
improvement, there. Hereby it is to mention, that both formulations (their linear re-
laxations, respectively) are compared by their solution values and not in the sense
of polyeder theory (the one solution polyeder is contained in the other and therefore
the first formulation is better or vise versa). In the following, an example is given,
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which underlines the superiority of the [FAPHCG] formulation. Though this is an
example, only, the characteristics can be generalized for all (not degenerated) input
instances. In the [FAPHSFH] model, a fractional solution will always induce an ob-
jective value of zero. Contrary, in the [FAPH] problem, every chosen set T will most
likely produce some interference, it is not possible to fulfill constraints 9 without
inducing interference.
To compare both models’ linear relaxation and emphazising the above statement,
the following example can be regarded:

S = {1, 2, 3} , kI = 1 ∀ I ∈ S ,

F = {1, 2} , co(I, J) = 1 ∀ I, J ∈ S
⇒ co({1, 2, 3}) = 6.

Obviously, every integer solution will induce an interference value strictly above zero
(at least two STRX will interfere each other), the minimal induced interference of an
frequency assignment is exactly one), since the number of available frequencies is
too low to give every STRX it’s own frequency. Nevertheless, both models relaxations
will produce more or less helpful/sensible results in approximating these “integer
interference“ level.
The [FAPHSFH] model will choose every frequency at every node with value 0.5,
namely

xI, f =
1
2

∀ I ∈ S , f ∈ F.

Resulting, the penalty values need not be above zero for all pairs (I, J) of STRX,
namely

zI,J, f = 0 ∀ f ∈ F ⇔ yI,J = 0.

Leading to a[FAPHSFH] solution (for the linear relaxation) of value zero.

On the other hand, the [FAPHCG] model will produce a solution for the relaxati-
on, which is a better approximation (in this example, it is even the solution for the
optimal integer solution). The only possibility of having an objective value of zero
would be, to exclusively choose one-elementary sets for every STRX (assign every
STRX a different frequency), which is not possible (three needed frequencies). Wi-
thout using too much formalism, the best solution will use as many one-elementary
sets as possible, completing the assignment with sets inducing interference. For ex-
ample, an (optimal, by a tedious calculation with the simplex algorithm) solution is
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given by

x{2,1} = x{3} = 1

x{1} = x{2} =x{2,3} = x{1,3} = x{1,2,3} = 0.

This solution (for the linear relaxation) induces an interference value of 1, and is
already the optimal (integer) solution as the one of [FAPHSFH]. Though an optimal
solution for the integer problem cannot be expected of the linear relaxation of [FA-
PHCG] in general, the solution of the linear relaxation from [FAPHCG] is always
better than the one of [FPAHSFH]. As soon as variables / sets are introduced into
[FAPHCG] (with a value of above zero, even if this is very close to zero), they will
have induced interference of above zero (with a very high probability) and therefore
forcing the solution value away from zero. Contrary, in the [FAPHSFH] model, va-
riables may be used (e.g. the xI, f variables) without changing the objective function),
confining the solution of [FAPHCG] and [FAPHSFH]. Even within the settings of a
column generation approach, this result remains true (in the context of the linear re-
laxation, column generation can be regarded as solving on a subset of all variables).
Therefore, the change from [FAPHSFH] towards [FAPHCG] is justified, (at least)
concerning the sensibility (quality of the approximation) of solutions of the linear
relaxation.

4.4 Pricing in Detail

As mentioned earlier, the [FAPHCG] model is built by relatively few inequalities
(in the order of the amount of STRX) but exponentially many variables (one for
every possible subset of S). On the other hand, in every feasible (integer) basis
solution, just a very small part is not equal to zero (see constraint (10), at most |F|).
As mentioned in the abstract about column generation in general, this can be seen
as a classic setting for a (branch and) price approach. In the following, the constraint
matrix of [FAPHCG] is denoted with A, thus it holds, that

A ∈ R|S|+1×2|S| .

At the beginning of the pricing algorithm, a feasible basis solution is easily obtained,
with the variable / set containing all STRX (hereby, no degeneration in the input da-
ta, like less available frequencies than demanded frequencies is assumed). Clearly,
this solution is “bad“ in the sense, that it will produce the maximum amount of
interference possible. Other methods for producing better or more appropriate solu-
tions are presented in section 4.5.
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Then, according to section 4.1, the pricing problem of [FAPHCG] can be formulated
as

min
T⊆S

co(T)− (χT)
t · y− y0.

Giving a short explanation: a variable (a subset T of S) is searched, with minimal
costs. The costs are build up from the set’s original objective function’s coefficient,
which is it’s induced co-channel interference and the product of the corresponding
column of the matrix At and the vector of the constraint’s dual values. During this
work, this is often referred to as “a STRX corresponding dual value“. Since every
STRX corresponds to exactly one constraint, this constraint’s dual value in the cur-
rent LP relaxation is meant and therefore well defined. Having a closer look at A,
it appears, that for every set T, the corresponding column in At is it’s characteristic
vector χT, attached with a “one“ at the end (from the last constraint (10)). The vec-
tor of the constraint’s duals can be divided into two parts, y ∈ R|S| (from (9)) and
y0 ∈ R (from (10)). Consequential the last entry from the duals can be detached for
every set T, in the calculation of the objectives value, since it is a constant offset in
every pricing step.
Since y0 is constant, a mixed integer formulation of the pricing problem [FAPHCG-
PRICE], giving an optimal subset T, is given by

min : ∑
I∈S

∑
J∈S

co(I, J) · zI,J − ∑
I∈S

xI · yI

subto : zI,J ≥ xI + xJ − 1 ∀ I, J ∈ S ,

zI,J ∈ {0, 1} ∀ I, J ∈ S ,

xI ∈ {0, 1} ∀ I ∈ S .

Here, xI denotes whether STRX I is in the solution set T and the zI,J are needed to
calculate the induced interference of the current set. The value of y0 is left out, since
it is a constant offset. Resulting, the outcome for the pricing problem is strictly lower
then y0, if a improving variable exists and greater or equal to y0 if the solution is
already optimal.
It is remarkable, that the structure of this problem (the constraints) is closely related
to the original [FAPHSFH] problem (similar usage of penalty variables). Neverthe-
less, it is a lot smaller, since the z variables are not dependent on the specific frequen-
cy any longer (and the adjacent channel interference settings are ruled out). Another
fact, which makes up for a big difference in runtime is, that the mixed integer pro-
gram does not need to be solved to optimality in most cases. As presented in the
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section about column generation, one variable with reduced cost is already enough.
This opens up the door for (a) fast heuristics further (b) limits the branch and bound
process of the pricing problem to finding a feasible solution with corresponding ob-
jective value (no need for a total processment of the complete branch and bound tree
in most cases). Nevertheless, in cases, where the explicit pricing problem has to be
solved, because heuristics have not been successful, this is possible (contrary to the
[FAPHSFH] model), but very slow. This means, the pricing problem as standalone
is solvable, but problems with memory usage could still arise, when solving in a
column generation process (since column generation may use significant amounts of
memory as well, such that the combined memory claims may be to big).
Furthermore it is repeated, that the pricing problem is in NP and especially not in P,
since it holds that it is equally hard as it’s corresponding master problem (“optimi-
zation=pricing“, [GLS95]). So improving variables might be found easily (heuristics),
but an explicit solution of the pricing problem remains theoretically hard (we will
come back to this in the section about dual bounds of the current solution of the
linear relaxation, 5.3).

In the next three subsections some improving work on the solving / pricing pro-
cess is presented. At first, explanations on generating good starting solutions are
given. In the second section, some heuristics are presented, exploiting the fact that
the pricing problem is seldomly needed to be solved optimally and so, speeding up
the solution process significantly. In the third section, comments are made, on va-
rious problems, which arising, when the new (outpriced) variables are embedded.

4.5 Starting heuristics

As mentioned above, obtaining a feasible starting solution is quiet easy (with one
variable/set containing all STRX), but with the drawback of a very bad objective
value. Since the runtime of column generation cannot be forecasted, there is no defi-
nitive answer, which starting solution is better, concerning the runtime of the whole
solving process. Nevertheless, starting with a solution closer to the optimal seems
quiet logical. At least, with a better starting solution, all following solutions have a
certain minimum “quality“ (maximum level of interference), which may be desired
in practical aspects.
Obviously it holds, that the more time is invested, the better (starting) solutions can
be obtained. In this attempt, a starting solution is obtained with a polynomial time
starting heuristic (which is called DSATUR). This refers to a method, originally inspi-
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red by a graph-coloring heuristic and later adapted to FAP (for example in [Eis01]),
which can be applied here, too. The basic concept is, to assign frequencies dynami-
cally, in the order of the STRX “difficulty“. This is meant in the following way: It
is checked, which STRX is the currently hardest to assign (hardest, by the means of
highest inducing interference, which is explained in detail, later) and which would
be the best channels to assign to it. These channels are allocated to the STRX and the
process is repeated until every STRX is assigned (hereby assigning frequencies may
change the difficulty of assigning other STRX, as well as it influences the frequency
choices of other STRX). Resulting, a complete frequency assignment is created by a
dynamic sequence. So, this heuristic belongs to the class of starting / construction
heuristics.res to a method, originally inspired by a graph-coloring heuristic and later
adapted to FAP (for example in [Eis01]), which can be applied here, too. The basic
concept is, to assign frequencies dynamically, in the order of the STRX “difficulty“.
This is meant in the following way: It is checked, which STRX is the currently hardest
to assign (hardest, by the means of highest inducing interference, which is explained
in detail, later) and which would be the best channels to assign to it. These channels
are allocated to the STRX and the process is repeated until every STRX is assigned
(hereby assigning frequencies may change the difficulty of assigning other STRX,
as well as it influences the frequency choices of other STRX). Resulting, a complete
frequency assignment is created by a dynamic sequence. So, this heuristic belongs
to the class of starting / construction heuristics.

Going into detail (having a computational implementation in mind), the whole al-
gorithm operates on a cost-matrix

A := a(I, f ) ∈ R|S|×|F|

(not to be confounded with the constraint matrix of the [FAPHCG] problem). This
matrix gives the (co-channel) interference it would cost, to assign frequency f to
STRX I in the current (partial) assignment. Hereby, if an assignment is created se-
quentially, a partial assignment is an assignment, in which not all STRX are comple-
tely assigned. Interference values in this partial assignment are the induced interfe-
rence values of this assignment. Mathematically:

a(I, f ) := ∑
J∈PA,

J has f assigned

co(I, J) ∀ I ∈ S , f ∈ F,

whereas PA denotes the maximal (partial) assignment, meaning the maximal subset
of all STRX, whose STRX have been assigned at least partially (at least one frequency
assigned to every STRX). Further, a cost vector is needed, which stores the sum of the
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interferences c(I), potentially induced by STRX I in the current assignment (which is
the measure of “hardness“ for assigning a specific STRX). This is defined as the sum
over all frequencies of the current costs of that frequency - STRX combination:

c(I) := ∑
f∈F

a( f , I).

All in all, the heuristic consists of repeatedly assigning STRX and updating the cost-
matrix and vector, until the assignment is complete. For clearness sake, the algorithm
is outlined in pseudo code in the following section.

The DSATUR heuristic allows to generate solutions, which are not trivially impro-
vable. Note, that DSATUR, as presented here, generates a frequency assignment in
the notation of the [FAPHSFH] model, from which the description in the way of
[FAPHCG] can be obtained easily (compare section 4.3). Nevertheless, this heuristic
has some drawbacks. Because of it’s heuristical character, DSATUR will probably
not produce the optimal solution and at the same time, no quality guarantees on
solution quality can be made. A further drawback is, that DSATUR produces integer
solutions. This is useful concerning the overall solution as a frequency assignment,
but is of limited use concerning the solution of the linear relaxation. Since no in-
vestigations in the direction of heuristics for the linear relaxation were made in this
work, there might still be room for improvements.
Though the above mentioned DSATUR heuristic produces acceptable starting soluti-
ons, a further (improvement) heuristic, a typical 1-opt step, was implemented. Given
a complete assignment, e.g from DSATUR this heuristic orders the STRX I regarding
their induced interference Ind(I), defined by

Ind(I) := Ind(Ass)− Ind(Ass \ I),

whereas Ind(Ass) describes the total interference of the current assignment and
Ind(Ass \ I) describes the interference induced by the resulting partial assignment,
when STRX I is unassigned/ignored. In the next step, it is subsequently tried, whe-
ther a better assignment can be made for every STRX, namely in unassigning it and
reassigning it with the frequencies, which would induce the least interference in the
total assignment. If an improvement could be made, the process is started all over
again (therefore the heuristic classically belongs to the class of improvement heuri-
stics). While this heuristic worked as desired and improved given (integer) soluti-
ons, using this heuristic is very costly since comparing different “new“ assignments
with respect to their induced interference needs many computation on the whole
interference map. For every STRX I there are O(|F|k[I]) possible assignments, with
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costs for recognizing it’s interference in the order of the adjacent STRX of I (at most
O(|S| · |S|)), with all calculations repeated for every improvement made.
While this time consumption is okay as a one time operation at the beginning, it
restricts the heuristic’s later usage, as is described in the next but one section. Some
pseudo code of the 1-opt step can be found, in the next section.

Note that both heuristics (DSATUR and 1-opt) deal with integer solutions (or with
the improvement of integer solutions). While this concept is helpful concerning the
overall aim of feasible frequency assignments, both are limited in their quality in re-
lation to the linear relaxation, since they cannot exploit fractional structures/values.
Nevertheless, they serve as a sufficient starting point for column generation, whose
practical results on some instances are presented in section 5.1.

4.5.1 Pseudo code Starting heuristics

Referring to the description of DSATUR above, the algorithm is outlined in the fol-
lowing pseudo code:

I n i t i a l i z e : / / Cost ma t r ix / −v e c t o r

double a ( I , J ) = 0 ; / / For a l l I in STRX, J in F
double c ( I ) = 0 ; / / For a l l I in STRX

Algorithm :

while ( Assignment not complete )
{

Choose I [max ] ;
/ / STRX I with h i g h e s t c ( I ) va lue , I no t a s s i g n e d

For ( i n t j = 1 ; j < k [ I [max ] ] ; j ++)
{

Choose f [ min ] ;
/ / Fr equency f wi th l o w e s t a ( I [ max ] , f ) va lue ,
/ / f no t a l r e a d y a s s i g n e d t o I

Assign f −> I ;

/ / Update c o s t−ma tr ix and t o t a l c o s t s
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a ( J , f [ min ] ) += co ( J , I [max ] ) ;
c ( J ) += co ( J , I ) ;

}
}

Algorithm 1: DSATUR Heuristic

Note, that an implementation, where the chosen STRX is not “fully assigned“ is pos-
sible too. That means, after every single frequency assignment, the costs are updated
and a (potential) new maximum STRX is chosen.

At the end of this section, the pseudo code of the 1-opt step is presented. Starting
with a complete assignment, in the notation of the section before, the 1-opt algorithm
can be described as:

I n i t i a l i z e :

bool Improvement = t rue ;
double o l d _ c o s t s = Ind ( Ass ) ;
Algorithm :

While ( Improvement )
{

C a l c u l a t e : Ind ( I ) ;

Choose I [max ] ;
/ / Maximum Ind ( I ) v a l u e

Unassign I [max ] ;

Choose f [ min ] ;
/ / k [ I [ max ] ] F r e q u e n c i e s wi th would i n d u c e
/ / t h e l e a s t i n t e r f e r e n c e

Assign f [ min ] −> I [max ] ;
double new_costs = Ind ( Ass ) ;

i f ( o l d _ c o s t s <= new_costs )
Improvement = f a l s e ;

61



Frequency Assignments in SFH Networks § 4 The first Stage

e lse
o l d _ c o s t s = new_costs ;

}

Algorithm 2: 1-opt Step

Here, different approaches as reassigning all k[I] frequencies or just a single frequen-
cy (e.g. the one inducing most interference) can be made, similar as in DSATUR.

4.6 Pricing heuristics

Since the aim of the pricing is, to find appropriate variables (objective function of
the pricing problem strictly lower than zero) iteratively for every basic solution, the
pricing problem needs to be solved very often and therefore, as fast as possible. Ne-
vertheless, the pricing problem needs not to be solved to optimality, such that it can
be treated by heuristics in many cases. In extreme cases, when the heuristics are al-
ways able to produce feasible solutions, the pricing problem just needs to be solved
once, at the end to prove optimality, and not to generate new columns. Neverthe-
less, the here presented heuristics and their variants may not be able to produce
feasible results, so that in this case, the pricing problem needs to be solved, until it
finds a feasible solution (not necessarily optimal) with negative reduced costs. Sin-
ce the pricing problem is not very restrictive in it’s constraints (all in all they just
tell to choose an appropriate (low cost) subset of STRX), there is only the objective
function, to work with. Since a variable can be expressed as a subset of STRX, both
expressions are used synonymous in the following. For a heuristic’s success, it all
depends on a selection of some STRX, whose inbound interference is low, compared
to their corresponding (constraint) dual values. In the following, the purpose and
the general idea behind the here presented heuristics are explained, using the nota-
tion of the pricing problem [FAPHPRICE] in section 4.4. Detailed pseudo-code can
be found at the end of this section, again.
Here, the focus lies on two (main) variations of greedy heuristics. Both aim is, to
create adequate subsets of STRX, and both kind of operate inversely to each other.
The key element of both heuristics is the ordering of STRX, on which is commented
later on, in more detail. Nevertheless, here are different variations possible again,
each with different consequences. So in the following, the two types of greedy heu-
ristics (increasing / decreasing) and their variants (different ordering priorities) are
introduced.

The first heuristic starts with an empty set of STRX and tries to expand it as much
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a possible (as long as the set’s reduced costs stay negative). This is done the followi-
ng way: The STRX are ordered decreasingly, according to their corresponding dual
values. Then the STRX are added into the set, according to that order, as long as the
objective value stays below y0.
The second heuristic operates the other way around. It starts with the set of all STRX
with positive dual value (and therefore the objective value /reduced cost is most li-
kely above y0) and subsequently eliminates STRX (again, the STRX with the highest
dual value first) until the objective value is below y0. Note, that in both cases, if no
STRX with a positive dual value exits, the current solution is already optimal (since
interference is always positive, the objective function can not become negative in this
case).

Both heuristic’s runtime are polynomially bounded, since the most costly operations
are the ordering of the STRX and the (more expensive) calculations of the inbound
interference, which are possible in polynomial time, both. So they are very fast and
can potentially be applied in every pricing step. Both generate new variables during
the whole pricing process and are very helpful in that perspective (detailed results
are presented in section 5.1). Nevertheless, in the proposed way, both use the du-
al values of the STRX as decision criterion, only. This addresses only “half“ of the
objective function. Without going into detail too much, both heuristics can be ex-
tended to consider the interference, too (as another variation of the heuristic types).
For instance, the STRX are added to the set, if the decrease through dual values is
higher than the increase through inbound interference. Nevertheless, since the incre-
ased amount of interference costs calculations are rather expensive, this method has
it’s drawbacks, too. At the end of this section, the pseudo code of this variations, is
presented, too.

Interesting to mention are the following characteristics: The first heuristic apparently
creates relatively small and the second heuristic relatively large sets. This has to be
noted carefully. Assuming some kind of even distributed interference and a “dense
enough“ interference graph (though this assumption may contradict to reality, since
the interference relations in typical instances are mostly “sparse“), it is most likely
that in an optimal frequency assignment, all frequencies are used and that all sets
sharing the same frequency will be of about the same size. The reason is, that every
STRX in a set T with |T| = n increases the number of potential interferences (the
number of STRX interfering each other, not the interference value) by a factor of
n (the potential interference increases with O(n2). For example in a set with one
STRX, there is no potential interference, in a set with two STRX, there is one poten-
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tial interference, in a set of n elements, there are n · (n− 1) potential interferences.
So the number of potential interferences rises quadratically and therefore they will
probably induce too much interference if the number of STRX grows too big. From
a stochastical point of view, the sets’ sizes will center around dn/ f e. On the back-
ground of that thought, most variables created by heuristic one (two) are to small
(big). So it might be necessary, to rephrase them, e.g. for producing sets close to the
desired size.
In this work, the following trade-off was used. Since the heuristics are relatively fast,
they can be run many times, without major impact on the performance. Resulting,
these heuristics were applied in some different ways. At first, in the way mentio-
ned above, and in the following, as a further criterion, the set’s size was limited (if
possible) to the range of

|T| ∈
⌊

f
n

⌋
± 2.

Though the here presented heuristics and their variants offer a lot of possibilities,
there is surely room for other and potentially better heuristics, in future research.
Nevertheless, within the purpose of this thesis, sufficient results could be obtained,
which are presented in section 5.1. In the following, the pseudo code of the above
heuristic is presented.

4.6.1 Pseudo code

The first heuristic, generating variables / sets increasingly:

I n i t i a l i z e :

s e t T = { } ; / / The new v a r i a b l e
double c u r r e n t _ c o s t s = 0 ; / / c o s t o f c u r r e n t T
i n t demanded_size = x ; / / I f d e s i r e d
bool f e a s i b l e ;

s o r t (STRX ) ; / / Accord ing t o dua l v a l u e s

Algorithm :

for ( I in STRX ) / / In t h e o r d e r o f above , h i g h e s t f i r s t
{

/ / c o s t s ( T ) = i n t e r f e r e n c e ( T ) − d u a l _ v a l u e s ( f o r a l l I in T )
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i f ( c o s t s ( T union I ) < c u r r e n t _ c o s t s )
{

T := T union I ;
c u r r e n t _ c o s t s = c o s t s ( T ) ;
( ( re ) s o r t (STRX ) ; ) / / I f o r d e r i n g i n c l u d e s i n t e r f e r e n c e

}
STRX = STRX \ I ;

/ / I f a s p e c i a l s i z e i s d e s i r e d
( i f ( s i z e ( T ) = demanded_size ) break ; )

}
i f ( s i z e ( T ) > 0)

f e a s i b l e = t rue ;
e lse

f e a s i b l e = f a l s e ;

Algorithm 3: Greedy Heuristic (Increasing)

Note, that the ordering may also imply interference (as another variant). So the
“costs“ of a STRX might be it’s dual value or it’s dual value minus it’s additional
induced interference in the current assignment. Apparently, there are many different
variations possible.
A similar variant be can expressed as a “stable-set“ approach. As above the STRX
are sorted according to their dual values, but they may only be inserted into the
new variable as long as the inbound interference of the new variable / set is zero.
Concerning the interference relations, a weighted (dual values) stable set is created
in a greedy way. Naturally, this approach is kind of limited, since no interference
is accepted at all, but it still produces (different) feasible solutions and is therefore
useful in the above mentioned context.

The opposite heuristic, generating sets decreasingly:

I n i t i a l i z e :

s e t T = { STRX | duals >= 0 } ;
double c u r r e n t _ c o s t s = c o s t s ( s ) ;
i n t demanded_size = x ;
bool f e a s i b l e ;
s o r t ( T ) ; / / E . g . a c c o r d i n g t o dua l v a l u e s
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Algorithm :

While ( c u r r e n t _ c o s t s > y_0 && 0 < s i z e ( T ) < demanded_size )
{

T := T − T [max ] ;
c u r r e n t _ c o s t s = c o s t s ( T ) ;
( ( Re ) s o r t ( T ) ; )

}
i f ( s i z e ( T ) > 0)

f e a s i b l e = t rue ;
e lse

f e a s i b l e = f a l s e ;

Algorithm 4: Greedy Heuristic (Decreasing)

Clearly, if the maximum element (with respect to the dual value) is selected, one can
consider a variant, where the minimal dual value is selected instead of the maximum,
as well. Contrary, in the example above, a “minimum“ increase is not useful, since
bigger sets imply a higher interference (loss) compared to the dual value (gain).
As suggested above by the “stable set“ approach, many different heuristics may
be applied at this stage, mostly having some greedy characteristic in common but
differing within the details. Since reasonable solutions could be obtained from these
heuristics, there was no need to develop further ones, though there might be a chance
to improve time consumption, or heuristics success (finding a negative reduced cost
variable) by other algorithms.
Note, that similar to the heuristic before, many variations in the STRX costs (for the
ordering) are possible as well. Possible costs are: a STRX’s dual value, it’s reduced
costs allotment (induced interference of the STRX in the current assignment minus
it’s dual value), among other.

4.7 Problems with new Variables

This section is dedicated to a phenomenon concerning the inclusion of new varia-
bles. In the practical context of section 5.1, the procedure described above works as
desired, up to the point, that new (theoretically) improving variables are generated
and inserted into the LP. The problem that arises, is that these variables are not used
(they stay equal to zero) in the next basis solution, in most cases. Recalling the pri-
cing procedures background, the aim was, to produce variables, which improve the
current LP solution. Therefore adding an improving variable should theoretically
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imply, that this variable is used in the next basis solution (at least if only one varia-
ble is added). Nevertheless in the instances presented here, this is not the case. The
reason for this can be found in the constraints of the main problem: The constraints
are sharp in the sense, that it is impossible to exchange exactly one (or very few)
basis variables. Each change in one variable needs to be compensated by many other
changes on other variables. Resulting, having a rather small pool of variables availa-
ble, it is difficult to assign a value above zero to new variables.
Since the amount of basis variables or their total sum is limited to |F| (because of
constraint (10), adding a variable (with value higher than zero) results in disap-
pearance (or a decrease in the value) of another. In most cases, this change, in the
sense of maintaining feasibility, cannot be compensated by the available set of va-
riables.This can be emphasized by the following example (for the sake of simplicity,
an integer example is regarded, but the same holds similar for fractional values).
Note, that the example above with 3 STRX combined with it’s frequency demand is
to small here, so a new example is used. Assume, the following instance given:

S = {1, 2, 3, 4} , kI = 1 ∀ I ∈ S ,

F = {1, 2} .

A feasible basis solution could consist of two variables:

x{1,2} = x{3,4} = 1,

(xT = 0 ∀ T ⊆ S , {1, 2} 6= T 6= {3, 4}) ,

Assuming {{1, 2} , {3, 4}} the only variables, which are available at this pricing
round and that the new variable would be x{1,3}. By incorporation of x{1,3} with
a value of one, at least one of x{1,2} and x{2,3} needs to be set to zero to fulfill cons-
traints (10) and resulting (9). Consequentially, without loss of generality: x{1,2} is
chosen. So STRX 2 has not enough frequencies any longer, the change cannot be
compensated by the other variable (setting both existing variables to zero and ad-
ding the variable x{2,4} could be a solution). So the new variable would not be used
for the next basis solution. The reason is clear, forcing one variable to appear in the
next basis, it might be necessary to add other variables for maintaining feasibility
as well. These variables (in the following denoted as surrounding or auxiliary va-
riables) need not necessarily have negative reduced costs as well and can therefore
not be found by the procedure shown above, consisting of adding only improving
variables in each pricing step. Resulting, adding an improving variable might force
to add a (lesser) corrupting variable, as well.

In general, it is very hard to address this problem, little research is available on
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that matters. In this thesis, the following workarounds have been tested:
As a very first approach, ignoring this behavior and just adding lots of “out-priced“
variables may produce enough variables to be able to compensate most changes by
further added variables, through pure mass. But there is no guarantee of success, as
mentioned above, there might be the need of adding corrupting variables, as well).
As a second approach, during the later presented examples / computations, the
DSATUR heuristic was used to generate a “surrounding“ solution for an “out - pri-
ced“ variable. In detail, the DSATUR heuristic was used under the assumption that a
special variable has a value of one (and therefore reducing the demanded frequencies
k[I] of the inbound STRX) and then, the outpriced variable were added, as well as
the ones produced by DSATUR. Comparing to the first approach, it has the advanta-
ge of creating corrupting variables as well. Obviously this approach has no claim for
generating the best compensating / surrounding variables either, but among various
implementations, a significant speed up in the solution process could be regarded.
But, for every outpriced variable, |F| − 1 other variables have been added as well.
Nevertheless, the quality of the standard DSATUR solution was increased, by assi-
gning the new variable prior to running the DSATUR algorithm and respecting this
during the DSATUR run (concerning the induced interference of this assignment).
Since the algorithm is fast enough, all possible assignments to the new variable can
be tested and the best solution over all possible prior assignments is chosen. Note,
that another possible solution would be, to choose the frequency for the new set
after the DSATUR algorithm is run, not beforehand. But since both solutions have
approximative character, there is no forecast possible, which one will be better. The
latter variant is faster, while the first usually yields better results in the test scenarios.
Referring to the one-opt step from above, this is only applied on top, when the DSA-
TUR solution is not to far away from the current objective function (for all scenarios,
a difference of plus/minus two at most seemed appropriate), since it is relatively
slow. Resulting: If the chance of obtaining a new basis solution via DSATUR and
one-opt is relatively high, it is used, but not in all cases. But since the solutions of
DSATUR are always integer, the linear relaxations solution value generally differs by
more than two, in the long run. Resulting, the (slow) one-opt heuristic is only used
in the beginning. Note, that even though the DSATUR solution offered no new basis
solution in nearly all cases, the added (potentially corrupting) other variables still
helped to obtain new basis solutions. Hereby, this improvement has been paid off, by
adding (many) surrounding variables on the one hand and on the other hand, these
variables are not the best possible, which means that an improving variable may not
be used to it’s full potential (the improvement is less than indicated by the redu-
ced cost). Both aspects slow the improvement process down severely: more variables
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result in slower computations in each simplex step, each for less improvement as
potentially possible.

Summing the last section up, the column generation algorithm combined with the-
se heuristics leads to an improvement concerning the solution’s behavior compared
to the [FAPHSFH] model. In general, this means no optimal (because of the above
mentioned problems), but a “relatively good“ solution of the linear relaxation (a pri-
mal bound) could be produced. In more detail, some results of the first stage and
the here presented column generation procedure are presented in the next section
(5.1).
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§ 5 Computational Results

In this section, a detailed view on the computational results of the above mentioned
procedure for the first stage problem, on various instances, is given. Hereby statistics
are produced and interpreted, in the following way: a collection of the scenarios of
f ap.zib.de is used with some modifications (because of the transition to slow fre-
quency hopping, in detail explained in section 3.1 and 5.2). At first, the results of the
“Siemens1“ instance are commented on in detail, representatively. In the following
section, results for more instances are given from a less detailed perspective. Her-
eby, the test environment was a processor with 4 cores (4x Intel(R) Xeon(R) CPU
W3540@2.93GHZ) and 12 Gigabyte Ram, though the quell code was not especially
parallelized.
As a first, general result, it has to be clarified, that the [FAPHCG] model could not be
solved optimally in most scenarios. As presented in section 4.7, improving variables
can hardy be used to their full computational potential. The amount of additional/-
surrounding variables (slowing the simplex algorithm down, overcrowding memo-
ry) and the inefficient usage of the improvement potential of an outpriced variable
hampered the solution process. On top of that, in cases, when the heuristics were not
successful, improving variables had to be computed via an explicit solution of the
pricing problem, whose bad computational structure (see section 4.4) even increased
the time consumption. As a consequence, the tree factors

• Too many surrounding variables→ Memory and simplex speed issues.

• Inefficient improvement per variable→ Decreased improvement speed overall.

• Slow explicit pricing problem→ Decreased improvement speed overall.

prevented an optimal solution. Nevertheless, the column generation approach was
successful in obtaining an approximation on a dual bound (an approximation – pri-
mal bounds – of the linear relaxation). Progress could be made in or towards the
linear relaxation (contrary to the first presented model [FAPHSFH]), but it could
not be solved to optimality either (not to mention a branch and price / branch and
bound framework).

Nevertheless, some statistics on the linear relaxation are presented in the following
(pricing was applied, until no significant progress could be made with reasonable
effort any longer). To complete the two staged approach, in the next chapter, the best
integer solutions found are recorded, for obtaining a feasible frequency assignment
(especially with respect to adjacency interference).
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5.1 Statistics of a key example

Regarding the “siemens1“ modification, the following section gives detailed stati-
stics concerning the first stage problem, accessed with column generation (at least
on the linear relaxation). Hereby, the solution process was sustained, until it ran
out of memory, at about 50, 000 added variables after about 80, 000 seconds. At this
point, the solution improvement was so slow (figure (16)), that solution probably
was close enough to the optimal value (the solution value improved by about 0.0002
per pricing step). Further processment would have taken great effort for a rather low
advance. Before commenting on the objective value in detail, the column generation
process with respect to th created variables is analyzed.
The graphics ((9) and (10)) show the amount of created variables (with negative re-
duced costs) in relation to the time consumption and the pricing steps. Important is,
that the number of totally added variables is (because of the creation of surrounding
variables) significantly higher.
These graphics show a well known characteristic of column generation. The first
variables can be created relatively easily, the heuristics find many solutions but as
the time progresses, improving variables are harder and harder to acquire. The heu-
ristics produce less useful solutions (especially in the long run, only one variable
with negative reduced costs is found per pricing step). This is exactly the behavior,
which is expected for a column generation / improvement process. At early stages,
improvements can be made easily, but in later stages this becomes more difficult.
Nevertheless, it is remarkable, that the process of “increasing hardness“ is not un-
limited. Even in the long run, the heuristics produce at least one result (variable) in
most cases (pricing steps). Resulting, the explicit pricing problem solvings are equal-
ly distributed over the whole time frame (figure 13). In contrast to first expectations,
there is no need to solve the pricing problem relatively more often, in the long run.
Though this cannot be claimed with generality, since the instance was not solved to
optimality. Theoretically, this (expected) behavior could still take place, in a wider
time frame than examined here.
At the same time, regarding the “hardness“ of the pricing LP over time, figure (14)
suggests that the problem gets more difficult over time (here, with great variance,
it’s solution time has roughly doubled). So the explicit pricing problem’s hardness
rises over time, while the frequency of it’s solvings stays constant.
This behavior of the added variables differs in amounts, but not in structure, if the
surrounding variables are counted as well (see figure (11) and (12)). Note, that the
surrounding solutions will add at least |F| = 75 variables per solution (variable with
negative reduced costs) per pricing step. As a result, about 50, 000 variables have
been created at the end, thus effectively overcrowding the memory and putting the
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Figure 9: Negative reduced costs variables found over time
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Figure 10: Negative reduced costs variables found per pricing step

73



Frequency Assignments in SFH Networks § 5 Computational Results

solution process to an end (actually, scip 2.01 cannot delete variables, it can only fix
them to a certain value, such that these memory restrictions take place). In additi-
on, having the speed of the solution / success of the heuristics in mind, picture 15
shows, which heuristics found solutions when the pricing LP was not run. Hereby,
if a heuristic produced an improving variable, the heuristic’s number is plotted for
this pricing step, or if it did not find an improving variable, zero was plotted for
that pricing step (this holds for all heuristics, such that zero may be plotted multi-
ple times during each pricing step). Note, that the scale of this graphic is somewhat
compressed, not all heuristics are generating solutions at the same time (compare fi-
gure 10, in the long run, all heuristics produce only one solution in sum, per pricing
step). Nevertheless, some observations can be made:

• The “original“ heuristics and the ones demanding special sizes in the created
sets (denoted with “... pieces“) create variables in the same frequency, both
variants are equally successful. The exception is the stable set heuristic. While
the “pieces“ variant was not successful at all, the original variant was successful
during the whole time. This apparently is reasoned by the fact, that it is rather
easy to create small stable sets (e.g. of size 2), but it gets increasingly harder
(by greedy heuristics) to generate bigger ones.

• The “maximal increase“ heuristics (especially the ones demanding a special
size) fail to produce solutions on the long run.

• The “maximum reduce“ heuristics are somewhat more successful, than the
others (the density of their findings is higher than the ones from the others).

As a comparison, the behavior of the solution values over time or pricing step (fi-
gures 16 and 17) are outlined. At first glance, these values show exactly the typical
behavior of column generation algorithms. While a fast decrease (in minimization
problems) can be achieved at the beginning, the quality gain is diminishing in the
log run.

Remarkably, the solution values behavior shows a high coincidence to the variable
creations. The progress in quality decays by time. Apparently, the more improving
variables are found, the greater progress in solution quality might be achieved, so
the progress is faster in the beginning. A further interesting point can be regarded in
the “long term“ behavior of the solution and in the variable-addition behavior. After
some time, the amount of variables added per pricing step is close to one. Neverthe-
less, the solution improvement decays even further. So on the one hand, the amount
of variables added has an impact on the solutions improvement (as well as in quality
as in speed) but on the other hand, the “ability to gain quality“ is diminishing even
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Figure 11: Totally added variables over time
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Figure 12: Totally added variables per pricing step
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Figure 13: Pricing LP solves per time
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Figure 14: Time used per pricing LP solve
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Figure 15: Heuristics effectivity
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Figure 16: Solution value over time
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Figure 17: Solution value per pricing step
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more than the “ability“ to find improving variables.

Evaluating the column generation process, it is to say, that the time and memory
consumption is still significant, which causes, that instead of an optimal solution,
only a primal bound (on the linear relaxation or an approximation on a dual bound
of the integer problem) could be acquired. This is mainly reasoned in the problems
in embedding new variables. As shown above, it is possible to find improving va-
riables, but these may only be used by adding many surrounding variables as well
(which overcrowds the memory in the long run) and significantly increasing the
amount of simplex calculations between the pricing steps. With this approach, pro-
gress can be made at the beginning, but the optimal solution is not reachable. Ne-
vertheless, this behavior could be improved by better heuristics or a more targeting
incorporation of new variables, in future research. A further improvement could be
made, in a technical point of view. Since the used software (scip 2.0.1) does not al-
low to delete variables (it only allows to fix variables to zero), memory restrictions
are rather striking. Advancement in the software (or in creating less and better im-
proving variables and embedding them) could lead to an improvement here, so that
the column generation approach does not fail in general, like the [FAPHSFH] model.

In the next section, more results, on other instances are given, though not as highly
detailed as in the present section.

5.2 More general results

In this section, more examples like the above, but from a less detailed perspective,
are shown. Hereby, the three instances “Koeln“, “Bradford-0-eplus“ and “Swisscom“
are treated (and compared with the “Siemens1“ scenario). All are taken from the
“cost256“ project from fap.zib.de, like the “siemens1“ instance and as well adapted
for slow frequency hopping. Furthermore, all the scenarios are solved for the given
number of frequencies, as well as for 50% and 150% of the available number of fre-
quencies.

For completeness sake, the above mentioned modification is explained in detail,
here: every cell is interpreted as STRX, with the TRX demand (from that cell) inter-
preted as the number of inbound TRX. The demanded number of frequencies per
STRX (k[I]) is set as the amount of inbound TRX plus four (more information on that
parameter can be found in section 3.5). Notable is, that the most common setting for
the inbound TRX is equal to one. But since the important influential factor for the
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LP is is given by the demanded frequencies, which are not equal to one, generality
is not decreased in this aspect. As mentioned in section 3.5, minor constraints like
local blockings and separations are left out. Interference relations are modified as
explained in section 3, equation 1. Hereby, the TRX interference values are the same
than the ones of their corresponding site, the site’s relations are multiplied for the
inbound TRX. The available frequency spectrum stays the same, though it is trans-
formed to begin with frequency number one.
It is to mention, that with these modifications, some characteristics of the test sce-
narios are diminishing. While the relatively high density of interference relations
of the Koeln scenario is contained, the key characteristic of Swisscom (many local
blockings) is omitted (in this case, combined with few interference relations, leading
to a trivial scenario).

For completeness sake, an overview on the characteristics of these instances is given
in table (1). Most of the time, no optimal solution could be acquired, so an uniform

Name STRX Frequencies 50% 150%

Siemens1 506 75 37 112

Bradford-0-Eplus 1886 75 37 112

Koeln 264 50 25 75

Swisscom 148 68 34 102

Tabelle 1: Overview Scenarios

computation time of 100, 000 seconds was used for every scenario. Nevertheless, if
a scenario’s linear relaxation was solved optimally, this is denoted with (o) and if
the computation was aborted before the 100, 000 seconds were reached, this is deno-
ted with (a). Note, that such a termination could be caused by generating to much
variables or the pricing problem using too much memory on top of that. Resulting,
the results presented in table 2 have been obtained (denoting k for 1000). Interesting
to mention is, that the Brad f ord instance with 75 frequencies could be solved op-
timally with 50k variables and a solution value of 3241.45 (in 250k seconds), while
other instances (Siemens1 with less STRX but more frequencies) were aborted due to
memory issues.

From this data, some general trends can be derived. At first, it is confirmed, that
interference assignments become (drastically) better with more available frequen-
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Name
Solution value

50% 150%
Generated Variables

Siemens1
44.0(a) 767.20 0.85 (a)

50k 30k 80k

Bradford-0-Eplus
3264.2 (o) 11661.4 1321.84

23k 10k 32k

Koeln
882.75 2707.7 384.92

10k 6k 12k

Swisscom
0 (o) 11.48 (o) 0 (o)

90 4k 90

Tabelle 2: Overview on First Stage Results

cies. Further, it seems, that with increasing available frequencies, the problem gets
easier accessible. In the same period of time, more improving variables could be
created (this means more successful heuristics or less solvings of the explicit pricing
problem demanded), throughout all instances (with the exception of Swisscom). On
the other hand, since no relation to an optimal solution can be shown, it is not
proven that more variables correspond to a better approximation of the optimum.
Hereby, having in mind that the number of feasible results is directly dependent on
the number of available frequencies (e.g. more STRX combinations are allowed, for
example the ones forming smaller subsets), such that the solution space increases
with increasing frequencies. Informally spoken, the problem size increases, while
the problems difficulty decreases.
Interference values obviously depend on the special interference data, but in gene-
rally (as the contrast between Siemens1 and Brad f ord shows), more STRX (and the
same amount of available frequencies, same “overall level“ of interference) lead to an
increasing interference value. On the other hand, comparing Siemens1 to Koeln, the
above trend is not true, if the interference levels differ (overall the Koeln scenario has
much more interference relations). In general, this was to be expected. More STRX
within the same area (higher density, higher average interference per STRX pair)
will induce more interference than the same STRX on a wider area (lower overall
interference level). As a result, the interference amount is not directly dependent on
the number of STRX, but rather on the inbound interference relations.
A further remarkable difference between these scenarios can be observed at the num-
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ber of added variables. Though a uniform computation time was chosen, these differ
a lot. This is reasoned in the pricing problem. While the heuristics are equally suc-
cessful over all scenarios (the relation of the amount of pricing steps, in which it
was necessary to solve the explicit pricing problem to the amount of steps where
the heuristics were successful, is the same), the difference lies in the pricing problem
solutions them self. Because of the pricing problem’s structure (penalty variables),
the explicit solution (until a solution with negative objective value is found) may
take considerable amounts of time. These time amounts are not directly dependent
on STRX or frequency amounts and are therefore not comparable between different
scenarios. As a result, these differences in created variables are rather differences in
the made pricing steps, which are mostly determined by the time consumption of
the explicit pricing problem solves.
Since the above instances could not be solved optimally (integer), the best recogni-
zed integer solutions have been noted in table 3 (these are further processed in the
second stage, section 6.2). Note, that all of these solutions have been found relative-
ly early in the solution process. This is remarkable. Contrary to the solution of the
linear relaxation, the integer solutions( heuristically produced) are not improved on
the long run during the column generation process. All of these solutions have been

Name
Solution value

50% 150%
Time

Siemens1
58.81 830.93 4.27
384 400 188

Bradford-0-Eplus
3333.79 11706 1390.66

14k 44k 22k

Koeln
945.20 2754.7 432.50

135 134 102

Swisscom
0 23.75 0
0 42 0

Tabelle 3: Best Integer Solutions

obtained by the DSATUR heuristic, combined with the one opt step, so they have
no claim for optimality (for the integer problem), in general. Recall, that integer so-
lutions are produced in each pricing step, when surrounding variables are created
(compare section 4.7).
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Since the linear relaxation of the first stage was not solved, the values of table 2 can-
not serve as dual bounds for the integer problem, either (though they are a feasible
primal bound for the linear relaxation and are most likely to apply as dual bound as
well). Nevertheless, these solutions cannot be improved trivially, such that they are
sufficient for an exemplary calculation in the second stage optimization (adjacent
channel interference). Concerning the solution value of the integer solutions, it is to
say, that they clearly follow the trend of the solution of table 2. In a nutshell, more
frequencies lead to better solutions and the STRX amount is not as important as the
underlying (corresponding) interference relations.

All in all, the here presented results offer some useful insights into frequency plan-
ning, though they have some major drawbacks - the most important, that no optimal
solution (at least of the linear relaxation) could be obtained. Other drawbacks are,
that the approximation of the linear relaxation does not produce formal dual bounds
(for the integer problem), though they are most likely to apply (given a long enough
runtime). On the other hand, heuristical integer solutions are produced, which can
be further processed towards adjacent channel optimization.
Furthermore, there is still improvement potential in this approach. Better heuristics
(e.g y exploiting parallel computing) or another concept of incorporating improving
variables, combined with an increased runtime may lead to an optimal solution, at
least of the linear relaxation.
Concluding this chapter, some thoughts on a possible evaluation of the above results
by feasible dual bounds (and how to obtain them) are given in the sequent section.

5.3 Quality Estimations: Lower Bounds

Having the above presented results in mind, the question of their quality appears,
especially on the background of their approximative character. Since feasible appro-
ximations to the linear relaxations have been found, their objective values may serve
as primal, or upper bounds to this relaxation. Nevertheless, while an optimal solu-
tion is not available, the only evaluation possible, is by the means of lower bounds
on the optimal solution. In the following, two potential ways of obtaining feasible,
non trivial lower bounds (for the linear relaxation) are presented. Note, that these
lower bounds apply for the non relaxated problem as well, though they are not as
tight. For completeness sake, it is repeated, that a trivial lower bound is zero (since
an assignment can induce not less than zero interference at all).

As a first possibility of obtaining a dual (lower) bound, the mean of a lagrangian
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relaxation is given. Though this is condensely presented in the following, it is re-
ferred to [JF10] for more information. Given a linear program (row wise defined, I
denotes the set of all rows),

z := min ct · x
s.t. Ai · x ≥ bi ∀ i ∈ I,

x ∈ X.

a lagrangian relaxation (lagrangian dual) is obtained by “dualizing“ a subset J ⊆ I
of the constraint into the objective function by

z(λ) := min : ct · x + ∑
j∈J

λj ·
(
bj − Aj · x

)
s.t. Ai · x ≥ bi ∀ i ∈ I \ J,

x ∈ X.

whereas λ ∈ R|J|, λ ≥ 0 holds component wise. In the following, this problem is re-
ferred to as LR(λ) (with Lagrange multipliers λ). While from a computational point
of view, this concept allows to get rid of “difficult“ constraints (by moving them
into the objective function and paying a penalty if not fulfilling these constraint), it
holds that z ≥ LR(λ), thus LR(λ) is a formal relaxation of the above LP. Resulting a
solution of LR(λ) would yield a feasible lower bound.
Now, the Lagrangian relaxation is applied to the model in section 4.2. Hereby, in
every pricing step, choose λ = π?, as the vector of the dual solution values of the
current basis solution, and dualize all constraints. As a result, in every pricing step
a dual bound can be computed via the following problem. Hereby, denote I for the
set of constraints and S as set of STRX, T ⊆ S for a set of STRX (corresponds to a
variable) and a(i, T) as the induced constraint matrix. Note, that by using the (equi-
valent) “≥“ constraints in (9) and (10), the dual variables are always equal or bigger
than zero. Then, a dual bound on the optimum of the linear relaxation z is computed
via

z≥z(π?) = min

(
∑

T⊆S
co(T) · xT + ∑

i∈I
π?

i

(
k[i]− ∑

T⊆S
ai,T · xT

))

= min

(
∑
i∈I

π?
i · k[i] + ∑

T⊆S
co(T) · xT −∑

i∈I
∑

T⊆S
π?

i · ai,T · xT

)

= min

(
∑
i∈I

π?
i · k[i] + ∑

T⊆S
co(T) · xT − ∑

T⊆S
∑
i∈I

π?
i · ai,T · xT

)
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= min

(
∑
i∈I

π?
i · k[i] + ∑

T⊆S

(
co(T)−∑

i∈I
π?

i · ai,T

)
· xT

)

= ∑
i∈I

π?
i · k[i] + min

(
∑

T⊆S
(co(T)− π?

i · χT) · xT

)
=: ∑

i∈I
π?

i · k[i]︸ ︷︷ ︸
obj(π?)

+ min ∑
T⊆S

red(T) · xT.

Hereby, the only constraints for the minimization problem are the (from the linear
relaxation inherited) xT ∈ [0, 1] conditions for every set T. In this context, red(T)
(for every variable T) denotes the reduced costs, appearing in the column generati-
on process as well and obj(π?) denotes the current LP solution. Note, that this dual
bound is computed via an optimization problem again. Though the solution is easy
to see (current objective value minus all negative reduced costs) it is hard to compute
(because of the exponentially many variables).

Another mean of calculating a dual bound is presented in [LD05]. Since the LP bears
the information, how many variables are used at most, in every solution (constraint
(10): at most |F| frequencies / variables), a dual bound (in every pricing step) is
given by

z := ∑
i∈I

π?
i · k[i] + |F| ·min {{red(T)|T ⊆ S} , 0}

= obj(π?) + |F| ·min {{red(T)|T ⊆ S} , 0} .

This holds, since the reduced costs show, how much the objective function chan-
ges per unit of this variable. In contrast to the calculations above, the evaluation
of all reduced costs is exchanged with the problem of finding the lowest reduced
costs, which is exactly the pricing problem. Since a column generation approach is
invoked here, the latter formulation seems preferable. Nevertheless, during column
generation, it is not necessary to solve the pricing problem optimally in most cases,
such that the above data may not be available.
Both concepts have the same basis in common. A dual bound is computed by the
current LP solution, decreased by some reduced costs. As a consequence, these con-
cepts do not produce sensible results / bounds from the start onwards. Reasons are
given in the following: Since a dual bound strictly above zero is desired, ||F| · red(T)|
needs to be smaller than the current solution value. As a result (and having some
numerical results in mind, e.g. obj(π?) = 45, |F| = 75 in the “siemens1“ example)
the (minimal) reduced costs need to be close to zero. This will probably not hold
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true at the beginning, but at the end of the pricing process, since this process con-
verges to the optimum, the reduced costs must rise to zero at some point. Resulting,
these dual bounds should only be computed towards the end (delayed) of a column
generation approach.

Summing up, both possibilities show some theoretical ways of calculating feasible
dual bounds. Unfortunately, both turned out to be inappropriate for the here presen-
ted solution approach. Since this is obvious for the lagrangian dual (exponentially
many calculations necessary), the reasons for the second option are presented below.
As the above calculations relied on heuristics rather than on an explicit solution of
the pricing problem, the calculation of the optimal solution (respective the calcu-
lation of all negative reduced costs) was too expensive (in it’s time consumption)
to be done at runtime in each pricing step. Consequential, these bounds were only
computed, when the column generation approach was aborted (with the final solu-
tion) and not in each pricing step. A straight forward implementation showed the
same drawbacks (because of penalty variables) as presented in section 3.3, such that
no non trivial dual bounds could be presented here. This data is supported by the
“Siemens1“ example. After the above presented 100, 000 seconds runtime of the first
stage problem, the explicit pricing problem was run. While it could not be solved op-
timally by straight forward implementation because of memory restrictions, a dual
bound proved, that the minimum laid below −7. This is nowhere as near to zero (see
above) as it should be for a sensible dual bound. Having this in mind, this concept
for obtaining dual bounds may only be helpful at later stages of the approximation,
which can’t be given here, because of the reasons presented in section 6.3.
Nevertheless, non trivial dual bounds may be obtained by this procedure, if a better
approximation of the linear relaxation (more advance in the column generation pro-
cedure) is available, e.g. in a wider time frame, or in future, when the problem with
the embedding of new variables is resolved.

In the next section, the further processment of an (integer) first stage solution to-
wards adjacent channel interference (the second stage problem) is shown.
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§ 6 The second Stage

Referring to section 3.5, the FAPH problem was split into a two staged approach.
While in the sections before a column generation approach was analyzed for the
first stage, this section is dedicated to the second stage problem. Therefore, an inte-
ger solution of the [FAPHCG] model is needed and should be processed, towards
adjacent channel interference. Since the [FAPHCG] model could not be solved opti-
mally, obtaining (good) integer solutions is not trivial. The following section shows,
that it is impossible, to enforce integrality straight forward, on a solution of the linear
relaxation of [FAPHCG].

6.1 Enforcing Integrality

While the column generation approach was helpful in steadily improving the ob-
jective value towards the optimum of the linear relaxation, but could not solve the
problem optimally, the solution itself could be processed further for creating feasible
(in the sense of integer) frequency plans (as input for the second stage). It seems
reasonable to generate a frequency plan out of that approximation, even when the
(co-channel) interference guarantees or bounds of the first optimization step can not
be kept by that processing.
A naive way of enforcing integrality would be, to solve the problem again, on the
subset of variables, that is different to zero in the above mentioned solution and
additionally enforce integrality (a branching routine restricted to that subset of va-
riables). Hereby having in mind, that the number of variables is low enough, such
that a branch and bound procedure may yield a solution (repeating, that a complete
branch and bound process is not possible here). Unfortunately, this does not work,
since solvability by fractional variables does not imply solvability by integer varia-
bles. So the problem of solving (branch and bound) “on the fractional solution“ for
an integer solution is not feasible. This can be made clear by the following example.
Given

S = {1, · · · 8} , kI = 1 ∀ I ∈ S ,

F = {1, 2, 3} ,

a solution might look like:

x{1,3,4} = x{2,3,4} = x{1,2} =
1
2

x{5,7,8} = x{6,7,8} = x{5,6} =
1
2

.
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Hereby, all other variables are not available in that pricing step. On these six varia-
bles, an integer solution is clearly impossible. For example choosing one of the first
three variables (which is necessary in every solution) yields to the usage of a second
one of that group, since at least one STRX of {3, 4} is not covered. The same argu-
mentation applies to the second group, from which two variables need to appear in
every integer solution, either. Combining both arguments, an integer solution would
need at least 4 frequencies, when operating on that variables, which is infeasible. So
a feasible solution with fractional values cannot be transfered to a feasible solution
with integer values in general. Especially, this means, that the induced solution po-
lyeder (derived from the variables with positive solution value, which is iteratively
adapted during column generation) needs not to contain any integer points inbound.

Currently, there is no way known, to transfer the fractional solution of the first sta-
ge problem into the second stage problem, without loosing the quality guarantees.
So, in the following stage, the best known integer solution (heuristically produced
during the column generation process) is used, gaining at least some quality level
(determined interference amount) out of the first stage.

6.2 Adjacency Optimization

Given a (feasible) integer solution of the FAPHRES problem ([FAPHCG] formulati-
on), the amount of co-channel interference is fixed. On the other hand, this solution
does not uniquely determine, which specific channels are assigned to which STRX,
since this is not clear without ambiguity. As a result, a solution contains no explicit
frequency assignment, but can be processed towards adjacent channel interference,
obtaining a well defined frequency assignment. Formally spoken, the second stage
problem (FAPHRES_A) could be defined as: Given a set of sets of STRX, each with
a demanded number of frequencies (xT values), the adjacent channel interference
relations and the available frequency spectrum. How can the frequencies be unique-
ly (one frequency to exactly one set) assigned to these sets, such that the induced
adjacent channel interference is minimal. Note, that a mathematical formulation is
given in section 6.2.1.
This processment can be expressed as a linear program, as well. The solution of
[FAPHCG] consists of |F| sets of STRX Ti, sharing the same frequency. Hereby,

Ti ∈ S ∀ i = 1, · · · , |F|,

T :=
F⋃

i=1

Ti, T ⊆ P (S) .
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These sets / variables have a solution value, denoted with xTi ∈ Z, xTi > 0. In
the following, these sets get frequencies assigned, inducing the lowest total adjacent
channel interference value. This can be solved by the following LP, [FAPHAC], using
the notation of the sections above:

There are three types of variables, namely

xT, f ∈ {0, 1} ∀ T ∈ T, f ∈ F,

nT1,T2, f ∈ {0, 1, 2} ∀ T1, T2 ∈ T, f ∈ F,

yT1,T2 ∈ Z ∀ T1, T2 ∈ T.

The first variable xT, f describes, which frequency is assigned to a certain set and
the second (nI,J, f ) indicates, how many adjacent channels f in I has in J. The third
variable, yT1,T2 , denotes how many adjacent channels from I are in J (zero, one or
two). This leads to the objective function

min : ∑
T1∈T

∑
T2∈T

ad(T1, T2) · yT1,T2 .

Hereby, for a pair of sets T1 and T2, the number ad(T1, T2) denotes the estimation of
induced adjacent channel interference between the STRX in T1 and the ones in T2,
whereas

ad(T1, T2) := ∑
I∈T1

∑
J∈T2

ad(I, J).

Note, that this estimated value is additive, with respect to the number of adjacent
channels, such that the total interference can be obtained by the number of adjacent
channels multiplied with a interference amount per neighboring channel. So via
equation (4), with the numbers nI,J denoting the amount of neighboring channels
from I in J it holds, that the interference measure is equivalent to the one in section
3.2. Note, that nI,J = nK,L∀ I, K ∈ T1, J, L ∈ T2 and that this number is the same
for every pair of STRX in the current sets, namely nI,J = yT1,T2 . It follows, that the
interference of an assignment is measure equivalently in both models:

∑
T1∈T

∑
T2∈T

ad(T1, T2) · yT1,T2 = ∑
T1∈T

∑
T2∈T

∑
I∈T1

∑
J∈T2

ad(I, J) · yT1,T2

= ∑
T1∈T

∑
T2∈T

∑
I∈T1

∑
J∈T2

∑
v∈I

∑
w∈J

nI,J

kI · k J
· ad(v, w).
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For completeness sake, the constraints can be written as

∑
f∈F

xT, f = xT ∀ T ∈ T,

nT1,T2, f ≥ 2
(
xT1, f − 1

)
+ xT2, f−1 + xT2, f+1 ∀ T1, T2 ∈ T, f ∈ F,

∑
f∈F

nT1,T2, f = yT1,T2 ∀ T1, T2 ∈ T,

∑
T∈T

xT, f = 1 ∀ f ∈ F.

That notation is similar, to that ones in section 3.2. Hereby, the first constraint de-
termines the demanded frequencies for every, the second recognizes if two sets use
neighboring frequencies, the third counts the number of neighboring frequencies
and the last constraint preserves the settings from the FAPHRES problem, or from
the [FAPHCG] model, equation (10), namely using different frequencies for every
set (not reusing single frequencies). Note, that the value of xT in the first constraint
may be integer, though in most cases, it will be equal to one.
Remarkable, the structure of this problem is very similar to the FAPH problem (the
[FAPHSFH] formulation). This is related to the formulation with penalty variables
(y) and results in the same advantages and disadvantages (symmetry on the one
side, bad linear relaxation behavior on the other). Nevertheless, since this problem
is significantly smaller (variables and constraints in the order of |F|3), it is much
more likely to be solvable (analysis concerning the “hardness“ of the problem can
be found below, in section 6.2.1).

At the end of this section, some details on additional constraints (separations and
blockings) ignored in the FAPHRES problem, are given. As mentioned in section
3.5, these constraints are omitted in general, but in the following, it is explained how
they could be added, at least to a small extend. Since these constraints need the con-
crete frequency assignment, which was not explicitly given in [FAPHCG], they need
to be treated in the second stage. The first, inner STRX separation (for STRX I) can
be addressed easily with

xT1, f1 + xT2, f2 ≤ 1 ∀ T1, T2 ∈ T, I ∈ T1, I ∈ T3, f1, f2 ∈ F and | f1 − f2| ≤ dI .

Outer STRX separation has to be taken care of at the first stage problem, as well.
Since

dI,J > 0 ⇒ ∀ T ∈ T : I ∈ T xor J ∈ T,

this can be expressed as: For all STRX I and STRX J, it holds

xT1, f1 + xT2, f2 ≤ 1 ∀ T1, T2 ∈ T, I ∈ T1, J ∈ T2, f1, f2 ∈ F and | f1 − f2| ≤ dI,J .
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The last constraint (blocking conditions) can be expressed similar. For all STRX I:

xT, f = 0 ∀ T ∈ T, I ∈ T, f ∈ F and f ∈ BI .

This is the only possibility to respect these (additional) conditions in the two staged
model. But these constraints have a significant drawback, namely they are to stri-
king. Generally spoken, a condition on xT, f does not only appeal to a STRX I ∈ T,
but to all STRX in T. This has not only the effect of imposing conditions on STRX,
which did not have them originally (as was done by generalizing FAP to FAPH,
too), but may significantly harm feasibility, too. Further, these conditions are heavily
influenced by the solution obtained from [FAPHCG]. Different sets induce different
conditions in the following problem, therefore guarantees about feasibility can not
be made and are dependent on the special solution of [FAPHCG]. One result may
stay feasible, while the other does not. At this point, the focus swifts from the two
staged approach, primary minimizing co-channel interference, to an approach, whe-
re the focus lies on the secondary constraints. As a result, only the most important
constraints should be represented in the LP formulations or they should entirely left
out, if possible (and done in the following work).

6.2.1 Problem Hardness

Before some results of the FAPHRES_A problem are presented, some difficulty ana-
lysis of the second stage problem is given. Having in mind, that this problem has
additional character, being on top of the column generation approach for the first
stage problem, it needs to be solvable in practical instances with sensible effort. Ne-
vertheless, it is shown in the following, that this problem has a very high theoretical
difficulty (it is NP complete, see section 8.1 for an introduction on that matters), as
well as the last (FAPHRES problem with [FAPHCG] formulation). Hereby, the addi-
tional constraint mentioned above are left out, due to the above argumentation.
While a spoken definition of FAPHRES_A was given in the last section, this problem
can formally be defined as follows: Let the input be given as a five-tuple

R :=
(
T, E, F, xT, ad

)
.

Hereby,
(
T, E

)
is the graph, induced by the results (sets) of the first stage as nodes

and edges E between the nodes, with the induced adjacent-channel interference as
weights between these sets (ad). Further, |F| denotes the available frequency spec-
trum, still, and xT denotes, how many frequencies every node gets assigned.
A feasible solution / assignment to that input is a function

y4 : T → 2|F|,
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mapping each set to a subset of frequencies (uniquely to one or more frequencies),
such that

|y4(T)| = xT ∀ T ∈ T,

y4(T1) ∩ y4(T2) = ∅.

Then, the FAPHRES_A problem is defined by: Given the above input, the problem

min :
y3

∑
(T1,T2)∈E
f∈y4(T1)

f±1∈y4(T2)

ad(T1, T2)

for a feasible solution y4, is called the second stage restricted adjacent channel assi-
gnment problem for slow frequency hopping networks (FAPHRES_A).

At first, some important observations of the FAPHRES_A problem, restricted to

xT = 1 ∀ T ∈ S.

is given. Every set T should have some frequencies between one and |F| assigned,
in a unique way (bijection between sets and frequencies). Hereby a penalty value
arises (adjacent channel interference), when two sets have neighboring frequencies.
Further, every set can only induce two penalty values and it is not important if
the interfering channels are e.g. 3 and 5 or 7 and 9. In other words, a special se-
quence of these sets is searched. A graph description/interpretation can be given in
the following way. Every set T forms a node and two nodes T1 and T2 are linked
(not directed) if both sets induce potential adjacent channel interference, with the
interference value (ad(T1, T2) + ad(T1, T2)) as weight. Accordingly the subgraph is
complete, though a link may have weight zero. At the end, a (start and end) node in
this graph, connected with every other node (weight zero) is added. Now, the aim
is to create a tour, containing all nodes exactly once and with minimal length (from
which a frequency assignment is easily reconstructed). Resulting (with a polynomial
reduction: creating the graph), the (restricted) FAPHRES_A problem can be formu-
lated as traveling salesman problem [TSP]. It is assumed, that LP formulations of the
TSP are known to the reader, so more details are omitted here (a [TSP] formulation
can be found in the following section (6.3)). Therefore the restricted FAPHRES_A is
obviously NP-complete and “theoretically hard“.
For completeness sake, since FAPHRES_A contains the above special case, it must
be NP-complete, as well.
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Though the settings of separation and blocking constraints are left out, they are men-
tioned here for completeness sake. These conditions could be partially incorporated
in the TSP transformation as well. Inner or outer separation constraints between the
variables / sets (xT1 + xT2 ≤ 1, for T1, T2 ∈ T, in the notation of the section above),
can be reflected in the subgraph by missing links between the nodes for T1 and T2, at
least if the separation demand is not bigger than one. Bigger separation or blockings
may need a special TSP formulation and can probably not be applied in all of them.
Complexity wise, this problem does not get easier, when applying these conditions,
so that the problem is at least NP-hard, still (without going deeply into formalism,
here).

For practical applications, with xT = 1 ∀ T ∈ S, the above reduction to [TSP] yields
to an useful computational approach. Even though the problem is NP-complete as
well as the TSP, much effort has been put into [TSP] problems and since the instances
are relatively small (|F| nodes), a good solvability can be claimed. Since this restric-
tion holds for all test cases from section 6.3, this approach is chosen in the following
section.
In the case, that not all xT are equal to one, a reduction to TSP is still possible. Here-
by every set T with xT > 1 is replaced by xT different nodes. Each two of these new
nodes are connected by an edge with weight ad(T, T) (which needs not be zero) and
each other node (e.g. node S, the rest of the graph is formed like above) is connected
with these new nodes by edges with weights ad(T, S) + ad(S, T). As a result, in both
cases the resulting graph has |F| nodes and is therefore easily accessible/compu-
table by a TSP formulation. Further note, that since this graph can be constructed
in polynomial time in both cases –same amount of nodes– a direct reduction from
FAPHRES_A to TSP would have been possible as well.
In the following section, some solutions of the FAPHRES_A problem, obtained with
a [TSP] formulation are given and explained.

6.3 Computational Results

In this section, the results of the second stage problem are presented. Since this pro-
blem was reduced to the well known traveling salesman problem, the results are
not as presented detailed as the ones from the first stage problem. For the compu-
tation, the same hardware and software as presented in section 3.3 was used. For
completeness sake, the used MIP formulation is the well known “two -connectivity
without sub tours“. Denoting T as the set of vertices, adT1,T2 describes the potential
adjacent channel interference between the nodes. The binary variable xT1,T2 denotes,
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whether this edge is used in the optimal tour (the graph is obtained with the above
mentioned processing). Than, the [TSP] can be formulated as

min ∑
T1∈T
T2∈T

adT1,T2 · xT1,T2

subto ∑
T1∈T

xT1,T2 = 2 ∀ T2 ∈ S,

∑
T1∈S
T2 /∈S

xT1,T2 ≥ 2 ∀ S ⊂ S, 1 ≤ |S| ≤ |S| − 1, (11)

xT1,T2 ∈ {0, 1} ∀ T1, T2 ∈ S.

Since a node corresponds to a set of STRX and we are interested in a visiting se-
quence for that nodes, the underlying graph is complete (all potential visiting se-
quences are allowed). Further, since the edges’ weights denote the potential adjacent
channel interference between the nodes, this graph is not metric (the weights do not
obey the triangle inequality). Additional, it is very likely, that nearly all edges will
have strictly positive edge weight, such that the graph is complete.
This model can be easily accessed by a cutting plane approach (see section 8.2.2 for
a short introduction into cutting plane algorithms), similar to the one presented in
the scip TSP - example [AB], separating the conditions (11). As mentioned in the
beginning, the TSP problem is well researched, so that very fast heuristics are availa-
ble. At this point it is to say, that referential implementations, like the one in scip,
mentioned above or the famous Concorde solver [Coo] are very fast, but could not
be used here, since they demand metric settings. Nevertheless, expanding research
on separating subtour constraints in TSP problems was not the focal point of this
work, so that a very basic implementation of the problem was sufficient.
Especially, this means, that for every integer solution for the restricted problem (wi-
thout the conditions (11)), it is tested whether these contain a subtour (which is
possible in polynomial time). While it is formally necessary to solve a separation
problem (in this case a MINIMUM-CUT problem) to find the corresponding cons-
traint, cutting away the infeasible solution, this it not needed here. Since the problem
instances are relatively small, it is sufficient to recognize the infeasible nodes in the
branch and bound tree. If an infeasible node can be branched further (e.g. not all
integer/binary variables fixed), this is done, if not this node is marked infeasible
and closed. This has the drawback of bringing the solution process closer to a com-
plete enumeration of all feasible integer solutions, thus increasing runtime, but on
the other hand, it prevents, that the MINIMUM CUT problem needs to be explicit-
ly threaten (similar to the pricing problem). As mentioned above, the instances are

97



Frequency Assignments in SFH Networks § 6 The second Stage

small enough, such that additional branching instead of solving a MINIMUM CUT
problem is sufficient. The given instances could be solved (optimally) in reasonable
time (mere minutes). Nevertheless note, that potential improvements can be made,
by explicitly creating those separated constraints. But since this is done already in
the above mentioned solvers, restricted to the metric case, few further knowledge
could be gained, such that the above implementations are sufficient for our matter.
Resulting, a runtime analysis is not invoked here.

In the following (table 4), the results of the second stage problem from the problems
instances of section 5.2 are shown. Herby, it is to mention, that the key difference bet-
ween these scenarios is the amount of available frequencies, effectively determining
the size of the TSP instance (note, that all “TSP graphs“ are complete, with positive
edge weight nearly everywhere). Opposing to the first stage problems, these TSP
instances are relatively small (O(|F|) nodes, O(|F|2) variables / edges), so that they
can be solved to optimality (integer) .
By a rough overview on this data, one can say, that the results behave similar to
the first stage results. The Brad f ord scenario (more inbound STRX) produced higher
values than the Siemens1 solution, and more than the Koeln and the Swisscom sce-
narios. Further, the interference values decrease with more frequencies available.
But having a closer look on these results, it appears, that the second stage results

Name Solution value 50% 150%

Siemens1 125.89 363.76 43.07

Bradford-0-Eplus 207.11 516.96 108.02

Koeln 28.55 83.02 11.03

Swisscom 0 0 0

Tabelle 4: Overview Second Stage Results

are sometimes higher than the corresponding first stage results. This is remarka-
ble, since adjacent-channel interference was supposed to be of lower order than
co-channel interference. For example having two TRX v and w, their potentially
induced adjacent-channel interference is always lower than their potentially indu-
ced co-channel interference. Nevertheless, this is a straight forward consequence of
a two staged result and exactly the point, where this concept looses in comparison
to a combined approach: An optimal “co-channel assignment“ (or a sufficient clo-
se approximations) may contradict an optimal “adjacent channel assignment“ (and
both need not be optimal in a combined approach).
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Summing the results of the first stage up, it is to say that the second stage pro-
blem can be computed very well and that the solutions behave (as expected) similar
to the first stage results. In the following section, a final evaluation of the two sta-
ged approach is given, judging the here presented models and results for practical
suitability.
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§ 7 Evaluation

In the following, an overview on the results of this thesis is given. Hereby, it is to
recall, that the aim was, to provide methods for producing optimal frequency assi-
gnments (out of the context of integer programming) for practical purposes.
As a first result, it was shown that a straight forward mixed integer program, like-
wise presented in section 3, for the here presented specifications of slow frequency
hopping, is not helpful at all. Even, when exploiting characteristical features, like
symmetry or a certain sparse structure, no success (not even in the linear relaxation)
could be achieved, and this probably applies to the near future (concerning compu-
ter memory advances) as well.

As an alternative, the decomposition into two problems, for co- and adjacent channel
interference was proposed. Hereby, the hope for an optimal solution was abandoned,
since an assignment, primary optimal for co-channel interference and secondary op-
timal for adjacent channel interference needs not be optimal in the sum of both cases.
Further, some minor constraints like local blockings or separations have been omit-
ted, as a trade of for computability. This decomposition provided some success in
the following way:
The first stage problem could not be solved optimal, neither the mixed integer
program, nor the linear relaxation. Nevertheless, some approximation (or in other
words, asymptotical dual bounds for the integer problem) could be obtained by a
column generation approach. In this approach, the pricing problem could be treated
with greedy heuristics in most cases, it was not necessary to solve it explicitly. The
main problem, preventing an optimal solution, appeared in embedding the outpri-
ced variables. The first stage result is rather strict in it’s constraints, in the following
way. Having a feasible basis solution, in most cases it is impossible, to change ex-
actly one basis variable, to obtain another feasible (better) solution. These other va-
riables are called surrounding variables. During a column generation process, these
surrounding variables may not be known, which caused these problems. The here
presented workaround, creating some surrounding variables heuristically, worked
in the way, that an improvement of the basis solution was obtained. Though, these
variables will not ensure the maximal quality gain, out of the new variable, thus
the solution process was slowed down significantly. Further this had the drawback
of adding very many variables. This foreclose an optimal solution in the following
way: On the one hand, these (dimensions of) variables overcrowded the memory and
on the other hand, every simplex calculation takes more time than the one before.
Therefore, the solution process slows down even more. On top of that, it is to men-
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tion, that if the pricing problem was solved explicitly, because no heuristic had been
successful, this took a significant amount of time as well. As a consequence of the
tree factors (improvement not used to it’s full extend, many surrounding variables,
slow explicit solution of the pricing problem), this stage could not be solved optimal.
At the same time, an evaluation of the approximation by lower bounds (as proposed
in section 5.3) was not possible. This is reasoned by the following facts: On the one
hand, an explicit solution of the pricing problem is not trivial and on the other hand,
the reduced costs needed to reach a certain maximum level, which was not given in
the here obtained approximations.
Nevertheless, with further, potentially more powerful heuristics and a better concept
of finding these surrounding variables, this problem may be solved optimally in the
future (and may therefore be used for creating frequency assignments in practical
circumstances).
The second stage problem, optimizing a first stage solution towards adjacent channel
interference was formulated as a variation of the famous TSP problem. Therefore,
it could easily be solved for the instances derived from feasible solution of the first
stage problem (since these are typically relatively small). Hereby, the means of choi-
ce was a cutting plane algorithm, though not to much effort has been put into this,
since sufficient work onto the TSP problem is available already.

All in all, the here presented work shows some promising approaches for obtai-
ning optimal frequency assignments. Though it was not possible to obtain optimal
solutions (in the first stage), the reasons could be identified and may potentially be
fixed in future research, so that an optimal planing may become a useful alternative
to the usage of heuristics/simulated annealing or similar.
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§ 8 Appendix

8.1 Complexity Analysis

Developing (optimal) solution algorithms is always related to a proper understan-
ding of the treated problem. Hereby, the measure of “hardness“ or “complexity“ of
a problem is used to indicate the difficulty of a problem and therefore giving the
background for analyzing an algorithm’s quality or suitability. The aim is, to give
some system of difficulty classes, in which every problem can be sorted into, for the
mean of comparing different problems. The here presented overview, shall outline
the concepts for such a complexity analysis, as far as used in this work. This means,
a problem recognized to be a member of a certain complexity class for indicating it’s
potential computational behavior. For a more detailed and a more formal informa-
tion on that matters, the script [Voe09] or the standard work [GJ79] might be taken
into account.

For such an analysis, the following Landau - notation is used for describing asym-
ptotical behavior of functions. A function f is called to be in O(g) (or of order O(g)),
with g a function as well, if and only if

0 ≤ limsup
x→∞

,
f (x)
g(x)

< ∞.

So O(g) is the set of all functions, being of lesser order then g. In the following,
the concept of measuring complexity by a “worst case“ runtime is proposed. Here-
by, there are some formal issues when speaking of “basic computation steps“, as a
mean of measure. The concepts of RAM (Random Access Machine) and TM (Touring
Machine) are formally important, but the imagination of the costs of a calculation as
being proportional to the addressed bits is sufficient here.

At first, when talking about time consumption of an algorithm, the definition of
(worst case) runtime is needed. An algorithm is said to have a runtime of tA(n) for
n ∈ N, if any input of length n can be treated in at most tA(n) basic calculations.
Resulting, an algorithm is said to be “polynomial bounded“ (or short polynomial)
if

∃ α ∈N with: tA(n) ∈ O(nα).

With that expression, the first complexity class / category of difficulty can be given.
Derived by the definition above, the first complexity class introduced is called P (for
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polynomial): P is the class of all problems, for which a deterministic polynomial
(solution) algorithm exists. So the most common way, to prove that a problem in P,
is to give the corresponding algorithm.
Before introducing more complexity classes, some short explanations of the import-
ance of this class are given. In general, this class is treated as the class of problems,
which are efficiently computable (time consumption is polynomial related to the
input). Without formally going into detail on “efficiency“, it is meant, that these
problems are “practically solvable“. Important examples in this context are shortest
path problems, sortings or linear programming.

The next complexity class pursues the above concept. While P treats the problems
solvable by deterministic polynomial algorithms, the class NP contains the problems
being polynomially solvable by a not deterministic algorithm. Since this a very theo-
retical construct, a problem is proven to be in NP, if every given solution is po-
lynomially verifiable (which symbolizes the randomness, the “guessing“ of a non
deterministic algorithm). Note, that NP does not mean “not in P“, which is a very
common mistake. Characteristic for this class is, that all known (deterministic) al-
gorithms, solving problems of this class, have exponential runtime, rendering this
a class of “not efficiently“ computable problems. As above, some referential pro-
blems are the traveling salesman problem, knapsack problems or coloring problems.
Clearly (since the deterministic algorithms can be interpreted as a subclass of non-
deterministic or randomized algorithms), both classes are related via

P ⊆ NP.

There resulting question is, whether P = NP holds is very famous, since it belongs
to the Millennium Problems (some of the most famous unresolved problems in ma-
thematics, see the article [Ins] for more details). However, this (or the contrary) is not
proven yet, though it is assumed that P is strictly contained in NP.
Contrary to the class P, NP symbolizes the problems, which are not efficiently com-
putable, or informally spoken, “which take ridiculous time to compute“. So cha-
racterizing a problem as a member of one class (in the sense of “lowest“ possible)
generalizes it’s difficulty or complexity. Therefore encouraging the computation of
optimal solutions (if in P) or the use of approximations (if in NP).
Obviously, further complexity classes can be derived in a similar manner, too. The
most common ones are EXP (exponential time consumption) or LOG (logarithmic).
Nevertheless, P and NP are the most commonly used ones, for the sake of ordering
problems into “good and bad“ computability.

So how is a problem sorted into one of that classes? The easiest way is to find
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an algorithm, e.g. deterministic polynomial, for that problem and the result is, that
it lies in P. Since this is relatively hard with the first definition of NP (finding a
randomized polynomial algorithm), the mean of verifying the solution in P is often
used.
Another important mean is the (polynomial) reduction. This means a problem p1 is
polynomially reducible (time consumption) to another problem p2, if and only if the
input of p1 can be transformed to an input for p2 in P. This is denoted with

p1 ≤p p2.

With this conditions, it holds, that if p2 is in P, the same holds for p1 (and analogous
for NP; time consumption of the reduction is neglectable, there). Note, that this is
often used the other way around, in the NP case: If p1 is in NP, p2 must be in NP
as well (assumed P 6= NP), since a polynomial time algorithm would have been
found for p1, otherwise. Furthermore, with the concept of polynomial reduction, the
notation of NP completeness can be introduced. A problem p is NP complete, if and
only if

1. p ∈ NP.

2. ∀ p ∈ NP : p ≤p p.

An example is the SAT problem, among others. As a consequence, and respecting
a problems reduction: If P 6= NP, no polynomial time algorithm for NP complete
problems can exist, given a warranty of of how “good“ (or fast) an algorithm for that
problem can be.
Resulting, the NP complete problems are the “hardest“ among NP and one can ima-
gine the relation between the mentioned classes in the way, shown by figure 18 (with
the assumption, that P 6= NP, which would collapse the figure, else). Mathematically
spoken, modulo polynomial reduction (or modulo “efficient computing“) the NP
complete problems are all from the same difficulty (since they are reducible to each
other). So the concept of polynomial reduction offers a straight comparability bet-
ween the problems in one class, or offers the possibility to compare a certain problem
to other, already analyzed ones.

Summing this section up, a problem is classified in a complexity class, often the
decision between P and NP, estimating a potential good (bad) solving behavior and
offering an analogy to other problems in this class. As mentioned in the beginning,
this section may be seen as an introduction into complexity analysis, rating a pro-
blems difficulty. For further information, specific literature like the book [GJ79] or
the lecture script [Voe09] is advised
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P

NP complete

NP

Figure 18: Complexity Classes

At the end of this section, it is to mention, that all the above concepts center around
runtime. Nevertheless this can easily be converted on other resources, used for com-
putations, as well. Hereby, the memory usage is the most significant other aspect,
for which the classes P and NP and others may be distinguished as well.
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8.2 Linear Programming

8.2.1 The standard form

Linear programming is one of the key aspects in operations research. Many “real
life problems“ can be expressed by a linear program (LP), reasoning this concept’s
importance. Famous examples, closely related to linear programming (restricted to
integer solutions) are knapsack or traveling salesman problems. In the following sec-
tion, backbone ideas and concepts of linear programming are summarized, as they
are the most important mean in this work. Hereby a rough overview on techniques
and principles is rather necessary then a formal prove. Resulting, some introduction
on linear programming can be found here, but for a more formal and more detailed
view some other source, like the books [Chv83] or [HL09] is recommended.
Mathematically spoken, a (standardized) LP consists of two vectors, c ∈ Rn and
b ∈ Rm with n, m ∈ Z+ and n × m matrix A ∈ Rn×m. The aim is to find a vector
x ∈ Rn

+, which minimizes

cT · x,

with respect to the conditions, given buy

A · x ≤ b,

whereas ≤ is declared component wise. The name “linear program“ comes from the
fact, that the variables x may only occur in linear form an not quadratic, exponen-
tially or likewise. An (2 dimensional) geometrical representation about the solution
space, described by the constraints A · x ≤ b, is given by figure 19. Some variations
like “maximization“ or “≥“ constraints are possible but can equivalently be expres-
sed in the above form. Mostly, some direct conditions on x like x ≥ 0 are given
separately and are not incooperated within A.
A solution x is called feasible, if it satisfies the conditions A · x ≤ b. This solution is
called optimal, if it is feasible and minimizes cT · x. Nevertheless, an optimal solution
may not be unique, which is explained later on. Every feasible solution gives a pri-
mal bound, an upper bound (in the case of minimization) to the objective function.
If x = 0 is a feasible solution, the value zero is a trivial primal bound.
Additional to feasible and optimal solutions, the whole LP can have no (not degene-
rated) solution at all. This is the case, if it is infeasible (if no feasible solution exists)
or unbounded (no maximal objective value exists).

In the context of linear programs, the concept of duality needs to be mentioned
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Figure 19: Typical 2 dimensional LP

as well. As hinted above, every minimization problem corresponds to a maximizati-
on problem (and vice versa). The original problem is called the primal problem and
the derived one the dual problem. This relation can be expressed via

min : cT · x ⇔ max : bT · y
subto : A · x ≤ b, subto : BT · y ≥ c.

where x and y is greater or equal then zero, component wise. Some of the key facts
about the relationship of both problems are the following:

• The dual problem has a (bounded) optimal solution if an only if the original
LP has one as well (and both problems have the same objective value in the
optimum).

• If the primal problem has no feasible solution, the dual problem is unbounded
or has no feasible solution either.

• If the primal problem is unbounded, the dual problem is not feasible.

While this relation is important in general and more complicated then suggested
here, it is not used to it’s full extend in this work, so [Chv83] is referred for further
details. In the following, solution algorithms for LPs are lined out.
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8.2.2 Solution of LPs

Generally speaking of solutions of LPs, their special geometrical view plays an im-
portant role. The space of all feasible solution, is described by A · x ≤ b, which
forms a (hyper dimensional) polyeder. One can show, that an optimal solution (if
existing) must be placed on a vertex (if unique) or on an edge (not unique). Such a
solution and a vertex is called basis solution. This is due to the fact, that the solution
corresponds to an invertible sub matrix from A, which is exploited by the simplex
algorithm, explained below. For completeness sake it is to mention, that an infeasi-
ble LP corresponds to an empty ployeder (and an unbounded LP to and unbounded
polyeder).
The standard solving process of such LPs is called “simplex“ (algorithm). Hereby,
the simplex operates the following way. Beginning with a start solution (usually
x = 0 is feasible) it is subsequently tried, whether some neighboring vertex offers
an improving objective function value (by the means of reduced costs, like shown
in section 4.1). If this is the case, this solution is the new starting solution and the
algorithm starts again, if this is not the case, the solution must be optimal. Without
going into detail again, it can be proven that this algorithm is correct (and terminates
at finite times). The backside of this algorithm is it’s theoretical runtime, which is
exponential, though it can be carried out with basic calculations on the columns and
rows of A.
On the other hand, there are other algorithms (ellipsoid methods), which guaran-
tee solvability in P, for every LP. Nevertheless, these algorithms have very high
exponents/coefficients, such that the simplex method is used in most/practical ca-
ses (though the simplex runtime is exponential theoretically, it is far better in many
practical applications). In this context, it is to add, that some different variations of
the simplex algorithm are possible. While the normal simplex (as presented above) is
depended on the choice of the pivot element (when more then one improving vertex
exists, which to choose), there are variations like the dual simplex ( = simplex on the
dual LP) available. For computational issues it is mostly not clear beforehand, which
is the best / fastest to use. Note, for that matters the concrete constraint structure is
important. As a side note, a mean for modifying the constraint structure for enhan-
cing the computability is the lagrangian relaxation. Here, constraints are “dualized
into the objective function“, such that they need not be regarded as explicit cons-
traints any longer. Fore more information, it is referred to section 5.3, where this
context is shorty explained (a more detailed introduction is given in [JF10]).

While LPs have a generally good computational behavior, some problems occur
when dealing with extremely big instances. Very large input, e.g. exponentially si-
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zed columns (variables) or constraints (rows) leads to problems when calculating or
even storing the matrix A. In many practical problems, the entries of A can be cal-
culated easily, so that there is no need to store the whole matrix in a practical sense.
This can be used for two mayor approaches: column generation and feasible ine-
qualities (cutting planes). While column generation is explained in details in section
4 (for an even wider perspective on that topic, it is referred to the book [DDS05]),
cutting plane approaches (more details for example in [GLS95]) focus on reducing
the amount of used constraints to a minimum. The key idea is, that (starting with a
fixed subset of constraints and a corresponding optimal solution to that subset), all
other constraints are (implicitly) tested, whether they are satisfied as well. If this is
the case, the solution is optimal, if not, the injured constraint is added to he subset
and a new solution of that subset is created via the simplex.
Both approaches have the same concept in common: Reducing the calculation on the
needed minimum but preserve the usage of the simplex algorithm on a sub matrix
of A. Both approaches may may improve the runtime (compared to the “normal“
simplex), but at the same time, it holds that

Optimization = Separation = Pricing,

which means that the theoretical complexity / hardness of the problem remains
unchanged (see [GLS95] for more details). Finding improving variables or injured
inequalities is as hard as solving the original problem. This especially, holds true for
integer problems, as presented in the following section.
Further options, when dealing with huge models can be found in the range of de-
composition schemes (here, equivalent decompositions are meant, where the decom-
position preserves optimality). Without going into details here (this approach is not
used in this work), this deals with dividing a LP into different equivalent subpro-
blems. As an example, if A a consists of two blocks, this may look like

min : (c1, c2)
T · (x, y)

subto :
(

A −
− B

)
·
(

x
y

)
≤
(

b1
b2

)
,

x, y ≥ 0.

This can be reformulated with two problems, namely

min : cT
1 · x and min : cT

2 · y
subto : A · x ≤ b1, subto : B · y ≤ b2,

x ≥ 0, y ≥ 0.
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Nevertheless, in general, identifying structure for a decomposition is not as easy
as in this example. All in all, these are the most common possibilities to deal with
inputs, bringing the computers memory to it’s limits, without making restrictions /
shrinking the model down (which is often called a “adequate“ preprocessing).
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8.2.3 Mixed integer programming

While linear problems as presented above are solvable in most practical aspects, the
biggest problem occurs when focusing on integer variables. Formalized, this is a
shift away, form linear programming toward mixed integer programing (MIP). This
means, instead of x ∈ Rn, x ∈ Zn is demanded (since many practical/combinatorial
problems demand an integer or even binary decision, e.g. with yes = 1 or no = 0,
and no fractional values allowed) for a subset of the variables x. With this restricti-
ons, the problem is not only not linear any longer, but NP hard.
As consequence, the solution process complicates even further. Hereby, the stan-
dardized approach is an extended simplex algorithm. Before going into detail, the
expression “linear relaxation“ is needed. The linear relaxation is an omitting of the
integer constraint in the MIP, forming a LP again (making the problem linear, again).
This problem can be solved in the above manner, but it will not produce integer so-
lutions, in general. While a feasible solution for the MIP yields a primal bound, the
solution of the relaxation is not feasible (for the MIP) in general and therefore offers
a dual bound.
The whole process of solving MIPs is called “branch and bound“, which describes
how the above concept is used. At first, the (starting) MIP is relaxated and solved,
which produces a fractional solution, in general. Resulting, a further condition is
added to the MIP, which prohibits the fractional solution (it is sufficient to treat one
fractional entry of the vector x), e.g.

x =
3
2
⇒

{
x ≥ 2

x ≤ 1
.

Hereby both conditions contradict each other, but it is not known, which of both is
obeyed by an optimal solution (fractional values are evaded by a case by case ana-
lysis). Resulting, the MIP is split up into two different problems of the same size
/ complexity, each containing one of the new constraints. Then, the whole process
starts again. Each of the MIPs is relaxated, solved and potentially split again. Resul-
ting, the problem is solved by exponentially often solving linear programs (graphi-
cally spoken, a branch and bound “tree“ is created, with a LP at each node). In every
node, a LP is solved, giving a dual bound (lower in the case of minimization) to the
objective value, a better value then a feasible solution might achieve. At the same
time, every primal solution offers a primal bound. Though much effort can be saved
by sensibly branching and bounding (e.g. ignoring LPs , whose result is worse then
earlier obtained results, sensible handling of dual and primal bounds), this process
can degenerate to a complete enumeration of the possible integer solutions in the
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worst case. As a consequence, the solving behavior of MIPs is much worser than the
one of LPs, in general.
Concerning the approaches for very large instances (column generation and cutting
planes), both can can be combined with the branching process of MIPs, which is then
called branch and price and branch and cut respectively. A branch and cut approach
is relatively easy to set up. Similar to above, a LP may be solved by a cutting plane
approach, resulting in a potentially fractional solution. Then the problem is split up
again and two new problem are created, which are solved again with cutting planes.
Hereby possibly adding inequalities totally independent of each other. A column ge-
neration approach has some difficulties, on the other hand. Referring to 4.1 for more
details, in a branch and price process, the pricing problem may change with every
added inequality. This results in difficulties when generically creating and solving
this problem at runtime.

Concluding this section, linear and mixed integer programming are an important
aspect of mathematical optimization. The above section shall give a first introducti-
on on that matters, but for more detailed information, the corresponding literature,
like the above mentioned [Chv83] or [HL09] should be accessed.
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8.3 The classical Frequency assignment Problem (FAP)

The classical frequency assignment problem can be described the following way: Gi-
ven the set of all TRX (e.g. TRX := {a, b, c}) and the available frequency spectrum
(e.g. F := {1, ..., 5}). Given the possible interference data between all pairs of TRX
(e.g. co(a, b) = 0.5 and ad(a, b) = 0.3) and separation constraints (e.g. da, = 2, fre-
quencies of A and B must have a distance of two channels in the radio spectrum).
Further, given a list of locally blocked channels (e.g. Ba = {2, 4}) for each TRX, the
frequency assignment problem is the following: Assign a channel to each TRX, such
that separation constraints are met and local blockings are obeyed, with minimal
total interference (between all pairs of TRX). Note, that a formal (mathematical) de-
finition was already given in section 3.4.

In a mixed integer, program, this can be expressed the following way. A binary va-
riable xv, f denotes, whether frequency f is assigned to TRX v. Two auxilliar (binary)
variables yv,w and nv,w notify if there occurs co-channel (and respectively adjacent
channel) interference between TRX v and TRX w. Using this and the notation from
above, this leads to:

min: ∑
v∈TRX

∑
w 6=v

w∈TRX

co(v, w) · yv,w + ad(I, J) · nv,w (12)

subject to:

∑
f∈F\Bv

xv, f = 1 ∀ v ∈ TRX, (13)

xv, f1 + xw, f2 = 1 ∀ v, w ∈ TRX, | f1 − f2| ≤ dv,w, (14)

xv, f + xw, f ≤ 1 + yv,w ∀ v, w ∈ TRX, f ∈ F \ Bv ∪ Bw, (15)

xv, f + xw, f±1 ≤ 1 + nv,w ∀ v, w ∈ TRX, f ∈ F \ Bv, f ± 1 ∈ F \ Bw, (16)

whereas

xv, f ∈ {0, 1} ∀ v ∈ TRX, f ∈ F,

yv,w ∈ {0, 1} ∀ v, w ∈ TRX,

nv,w ∈ {0, 1} ∀ v, w ∈ TRX.

Hereby the constraints 13 (each TRX gets one locally available frequency) and 14
(obey separations between every pair of TRX) provide feasibility, while constraints
15 and 16 register interference potential. At the end, the objective function 12 gives
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the best solution, with respect to the minimal total interference. Various research has
been done on this model before, some analysis and a compilation of results can be
found in [Eis01], for example.
At the end, some interesting facts on this model are mentioned. At first, from a ma-
thematical point of view, FAP bears a high analogy to graph coloring. Interpreting
the TRX as nodes and possible interference relations (co- or adjacent- channel inter-
ference values strictly higher then zero) as edges between them, one gets the input
for a graph coloring instance. By definition, every coloring obeys a separation of at
last one per pair of TRX, so every interference (co- or adjacent channel) is permitted
by this setting. Ignoring separation constraints above one, coloring brevodes feasible
solution, without any interference and a minimal amount of frequencies (which still
might be higher then the amount of available frequencies). In a way, FAP might be
seen as a generalization of coloring. On the one hand, some operation constraints
and local blockings are introduced and the amount of frequencies is limited (which
“hardens“ the problem). On the other hand, one is interested in a “weighted“ colo-
ring, so adjacent TRX might be colored the same way, if their penalty (interference)
is low enough, which provides feasibility, concerning the limited amount of frequen-
cies. As a result of this similarity, many results or algorithms of one model can be
used adeptedly for the other. Some more detailed work on this topic can be found
in [Eis01], too. Both problems are NP complete, as is shown in [Eis01], as well. This
reasons, that in practical applications, frequency assignments are generated heuri-
stically, rather then optimally.
Another interesting aspect on this model is the independence on special GSM pro-
perties. This model just uses separation and availability constraints and generates
(and judges) solutions on the basis of interference. As a result, it may also be used
in other radio systems, for example UMTS or such. So, this model is not restricted to
GSM frequency assignment but may be used for more general purposes in frequency
planing as well.
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8.4 Slow Frequency Hopping: Technical Terms

Research in literature concerning slow frequency hopping is often connected with
some technical terms, concerning the technical realization of hopping etc. In the fol-
lowing, some explanation to the most frequent appearing terms and their relevance
in this work is given.
Going into detail with the concept of frequency hopping, there are some fundamen-
tal options or hopping modes, which are given in the GSM standards and need to
be specified for a clear understanding.

• Random / cyclic hopping. This mode describes the special hopping type. A
TRX may change its frequency at random or in a cyclic way (e.g. iterating
through some frequency list). Since true interference diversity is only achieved
by random hopping, (as stated in [Ce96]), the first type is treated in this work.

• Baseband / synthesized hopping. Both hopping modes have a rather technical
influence. Referring to figure 6, [Eis01], p. 17 is cited: “With synthesized fre-
quency hopping, each TRX of a sector transmits successive bursts on different
channels. ... If more than one TRX is used for a sector, baseband frequency hop-
ping can be applied alternatively. Each TRX uses a fixed channel, and the code
words constituting a flow of communication are dispatched to changing TRX“.
Sloppy spoken, in synthesized hopping, a call stays on one antenna, which
changes its frequency, while in baseband hopping, a call is passed over to dif-
ferent antennas, each sticking to their own frequency. Mathematically (concer-
ning the LP model), this can be caught with a specified generation of the set
of the STRX (baseband hopping means: all TRX of one sector form one STRX,
with as much frequencies assigned as the amount of TRX inside). From this
point of view, the different modes have rather no influence on the (LP) model
itself. This thesis focuses on synthesized hopping, since it provides a greater
margin in the model’s creation, while baseband hopping can be regarded as a
special case of synthesized hopping, in a mathematically point of view.

• Schematic frequency reuse (frequency patterns) or optimal frequency assi-
gnments. Making this point here is mostly for completeness’ sake, much lite-
rature centers around schematic frequency allocation since this was the first
possible way of assigning frequencies (historically spoken). On the other hand,
optimal (or optimized) frequency assignments provide better results in general
and so, the resulting problems are addressed by this master thesis. Neverthe-
less, one should be aware, that much literature and many results base upon
schematic frequency reuse.
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Some terms often appearing together with cyclic frequency hopping are MAL, MAIO
and HSN. MAL (Mobile allocation list) describes the list of frequencies, over which
to hop. HSN gives the hopping sequence number, which gives the special hopping
sequence of the frequencies out of the MAL. At last, MAIO (Mobile Allocation index
offset) describes the starting point in a MAL (to prevent interference if two STRX
have the same MAL/HSN, so they do not hop synchron on the same frequencies).
Since cyclic frequency hopping is not treated here, those terms are not used in in
this thesis, directly.
Obviously, this list of terms does not claim to be complete, but should cover the most
important terms.
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