
Bachelor�esis

Matching-based Algorithms
for Computing Treewidth

Moses Ganardi

Supervisor: Prof. Dr. Arie M.C.A. Koster
Lehr- und Forschungsgebiet Diskrete Optimierung

Rheinisch-Westfälische Technische Hochschule Aachen

Aachen, October 2012

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig und
nur unter Benutzung der angegebenen Hilfsmittel angefertigt sowie Zitate
kenntlich gemacht habe.

Aachen, den 5. Oktober 2012

(Moses Ganardi)

Contents

1 Introduction 1

2 Algorithms for Computing Tree Decompositions 3
2.1 Preliminaries . 3
2.2 Bodlaender’s algorithm . 4
2.3 Greedy triangulation algorithms . 5
2.4 Post-processing . 7

3 Contracting Matchings and Tree Decompositions 9
3.1 Expanding a tree decomposition . 9
3.2 Contracting edges vs. merging subgraphs . 11
3.3 Limitations of the approach . 13
3.4 Expanding elimination orderings . 17

4 Computational Evaluation 21
4.1 Test graphs and generation of random partial k-trees 21
4.2 Maximal matchings . 23
4.3 Maximum cardinality matchings . 24
4.4 Weighted matchings . 25
4.5 Maximum edge reduction . 31
4.6 Matchings from tree decompositions . 36
4.7 Further extensions and running time analysis . 39

5 Summary 41

Bibliography 42

iii

1 Introduction

�e notions of treewidth and tree decompositions have attained a lot of attention in the past thirty
years. Tree decompositions provide a good answer to how to deal with NP-complete graph prob-
lems. Many graph problems are easy to solve when one restricts the input graphs to be trees. �is
observation leads to the idea of regarding graphs that “resemble” trees, which can for example
be measured by treewidth. It turns out that a lot of NP-complete problems become linear-time
solvable when restricted to graphs of bounded treewidth.

�ese algorithms usually use a dynamic programming approach on a tree decomposition,
which is a tree-like structure on the input graph. A graph can have several di�erent tree decompo-
sitions and one is interested in �nding tree decompositions of small width such that the dynamic
programming can perform fast. However, there is no polynomial-time algorithm known which
computes an optimal tree decomposition, i.e. having minimal width, for a given graph.

In 1996, Bodlaender presented an algorithm which for every �xed k computes in linear-time a
tree decomposition of width at most k for the input graph, or outputs that no such exists. From a
practical viewpoint this result is not useful since the algorithm performs very slow as experiments
have indicated. In practice itmakesmore sense to use non-optimal tree decomposition heuristics.
�e advantage is their speed and also o�en the computed width is close to optimal. Bodlaender
and Koster give a good overview of such upper bound algorithms in [BK10].

In this thesis, we want to reuse just one of the ideas in Bodlaender’s algorithm and ignore the
other rather complicated parts of it. At some point in the algorithm, the input graph is reduced
to a smaller graph which is obtained by contracting a maximal matching. �en the algorithm is
called recursively on the reduced graph and we gain a tree decomposition of it, say of width k.
One can easily transform this tree decomposition into a tree decomposition of the original graph
of width at most 2k+ 1. We will study how this technique can be used in tree decomposition algo-
rithms and examine its performance in combination with another tree decomposition heuristic.
Instead of using mere maximal matchings, we will test several algorithms that compute matching
contractions. We are especially interested in matching contractions that cause a large decrease of
the treewidth of the input graph.

1

�is thesis is structured as follows: In Chapter 2 we will start with basic de�ntions from graph
theory and a�erwards introduce algorithms that are known for computing tree decompositions:
Bodlaender’s algorithm and two heuristics based on so called triangulations. We also present a
post-processing method to further improve computed tree decompositions. In Chapter 3 we will
introduce the main idea of this thesis how to use matching contractions to compute tree decom-
positions and motivate why this approach is reasonable. We will also discuss problems and lim-
itations of this approach; in particular we study the question whether there exists a polynomial-
time algorithm that minimizes the treewidth by a matching contraction. In Chapter 4 we will
then present various matching types for the main algorithm and show results from our experi-
mental evaluation using these types of matchings. In Chapter 5 we will summarize the results and
mention possible improvements and extensions for our approach.

2

2 Algorithms for Computing Tree
Decompositions

2.1 Preliminaries

We start by recapitulating basic de�nitions and notations from graph theory. Further notions will
be introduced in the particular chapters where needed.

In this thesis we consider simple graphsG = (V , E), i.e. �nite, undirected graphs without loops
or parallel edges. �e edge set E contains undirected edges {v ,w} where v ,w ∈ V and v ≠ w. For
a graph G we write V(G) and E(G) for the vertex and edge set of G, or simply V and E if the
referred graph is arbitrary or clear from the context. Usually we denote by n or by ∣G∣ the number
of vertices of a graphG. We denote the neighbourhood and the degree of a vertex v by NG(v) and
degG(v) respectively; the closed neighbourhood of v is denoted by NG[v] = NG(v) ∪ {v}. O�en
we omit the subscripts in this notation if the graph is clear from the context. We write ω(G) for
the maximal clique size of G.

Removing a vertex is the operation that deletes the vertex and all edges incident to it. For a set
of vertices W ⊆ V we denote by G −W the graph obtained from G by removing all vertices in
W . Contracting an edge {u, v} ∈ E is the operation that introduces a new vertex w with neigh-
bourhood N(w) = (N(u)∪N(v))∖{u, v} and a�erwards removes u and v. G is calledminor of
H if there is a graph isomorphic to G that can be obtained from a subgraph of H by contracting
edges. For a set of edges M ⊆ E we denote by G/M the contracted graph which is obtained from
G by contracting all edges in M.

A matching of G is a set of edges M ⊆ E such that no two edges in M share an endpoint. A
matching M is called maximal if there is no matching M′ ⊋ M, i.e. every edge e ∈ E shares an
endpoint with an edge in M. A matching M is called a maximum (cardinality) matching if there
is no matching M′ of G with ∣M′∣ > ∣M∣.

Finally we introduce tree decompositions and treewidth, which became famous by Robertson
and Seymour in a long series of papers [RS86]. A tree decomposition of a graph G = (V , E) is a

3

pair T = ({Xi}i∈I , T = (I, F)) consisting of a family of subsets Xi ⊆ V and a tree T satisfying the
following conditions:

(i) for all vertices v ∈ V , there is an i ∈ I with v ∈ Xi ,

(ii) for all edges {v ,w} ∈ E, there is an i ∈ I with v ,w ∈ Xi and

(iii) for all i , j, k ∈ I: if j is on the path from i to k in T , then Xi ∩ Xk ⊆ X j.

�e width of a tree decomposition T is maxi∈I ∣Xi ∣ − 1. �e treewidth of a graph G, denoted by
tw(G), is the minimum width of a tree decomposition of G. �e subsets Xi are o�en called bags.
To distinguish vertices i ∈ I of the tree from vertices v ∈ V of the graphG, we will call the vertices
i ∈ I nodes.

2.2 Bodlaender’s algorithm

Arnborg et al. proved in 1987 that the decision problem Treewidth “Given a graph G and a
number k, does G have treewidth ≤ k?” is NP-complete [ACP87]. Hence, we cannot expect that
there is an polynomial-time algorithm which computes tree decompositions of minimal width.
In 1996, Bodlaender showed that the problem becomes tractable if we �x the parameter k.

�eorem 1 ([Bod96]). For every k ∈ N there is a linear-time algorithm that decides whether a given
graph G has treewidth at most k, and if so, outputs a tree decomposition of G with width at most k.

We will not present the algorithm in its entirety. �e algorithm distincts two cases, depending
on a certain property of the graph. In one of the cases the following procedure is executed:

1. Obtain G′ from the input graph G by contracting a maximal matching.

2. Call the algorithm recursively on G′. Either we obtain a tree decomposition T ′ of G′ of
width k, or we get tw(G′) > k (then we can also output tw(G) > k and terminate).

3. Convert T ′ into a tree decomposition T of G of width 2k + 1.

4. Use T to compute a tree decomposition of G of width k, or output that tw(G) > k.

�e last step uses another linear-time algorithm by Bodlaender andKloks, which, for constants
k and l , converts a tree decomposition of width ≤ k to a tree decomposition of width ≤ l or
returns that this is not possible [BK96]. �e interest of this thesis lies in the former three steps.
In particular, we will present step 3 in the next chapter.

Bodlaender’s theorem is an important theoretical result. Combining it with Courcelle’s theo-
rem [Cou90], we obtain linear-time algorithms for a large family of NP-hard problems on graphs

4

with bounded treewidth. However, the “hidden constants” in the running time analysis of Bod-
laender’s algorithm are very large (due to the mentioned subroutine in step 4) such that this algo-
rithm is unusable in practice, even for small values of k [Rö98]. In a practical setting we should
switch to heuristics which compute (non-optimal) tree decompositions with acceptable running
times.

2.3 Greedy triangulation algorithms

We will present heuristics that compute tree decompositions based on so called triangulations of
graphs. At �rst we need to introduce further notions.

A graph is chordal (also triangulated) if every cycle of length at least four has a chord, i.e. an edge
connecting two non-consecutive vertices of the cycle. A graph H = (V , F) is called triangulation
(also chordalization) of G = (V , E) if E ⊆ F and H is chordal. An elimination ordering of a graph
G = (V , E) is a bijection π ∶ V → {1, . . . , n}. An elimination ordering π is perfect if for all v ∈ V
the set of higher numbered neighbours {w ∈ N(v) ∶ π(w) > π(v)} forms a clique.

�e following theorem connects the concept of elimination orderings and chordal graphs.

�eorem 2 ([FG65]). A graph is chordal if and only if it has a perfect elimination ordering.

From that theorem we get a method to compute a triangulation of a graph using an (arbitrary)
elimination ordering of the graph. We add edges to the graph to make the elimination ordering
perfect. We call the chordal graph obtained by this procedure the �ll-in graph Gπ of G with respect
to π. �e edges added to the graph are called �ll-in edges.

Algorithm 1 FillIn(Graph G, Elimination ordering π)
H ∶= G
for i = 1, . . . , n do

let v ∶= π−1(i)
make {w ∈ NH(v) ∶ π(w) > π(v)} into a clique in H

end for
return H

We introduce further notations for the �ll-in graph: We denote by N+
π (v) = {w ∈ NGπ(v) ∶

π(w) > π(v)} the set of higher numbered neighbours of v in the �ll-in graph with respect to π
and we de�ne deg+π(v) = ∣N+

π (v)∣.

Every elimination ordering possibly gives a di�erent triangulation of the graph. �e next theo-
rem draws the connection to treewidth. It states that, in terms of �nding good upper bounds on

5

the treewidth, one should regard elimination orderings which induce �ll-in graphs with small
cliques.

�eorem 3 ([Bod98]). Let G be a graph and k ∈ N. �e following statements are equivalent.

(i) G has treewidth ≤ k

(ii) �ere is a triangulation H of G such that H has maximal clique size ≤ k + 1.

(iii) �ere is an elimination ordering π of G such that the �ll-in graph of G with respect to π has
maximal clique size ≤ k + 1.

Note that every (inclusion-)maximal clique in the �ll-in graph of G is of the form N+
π [v] =

N+
π (v)∪{v} for some vertex v. Hence, one could add a fourth equivalent statement to the theorem

above: there is an elimination ordering π of G such that deg+π(v) ≤ k for all vertices v. If we are
given an arbitrary elimination ordering π of G we can compute the �ll-in graph and obtain an
upper bound on the treewidth:

tw(G) ≤ max
v∈V

deg+π(v) = ω(Gπ) − 1

We will call this upper bound the width of π1.

But where do we get the elimination ordering from? Instead of looking for an optimal elimina-
tion ordering (which minimizes the maximal clique size in the �ll-in graph), we will build up an
elimination ordering by successively choosing vertices greedily according to certain criteria. We
pick a vertex v, make its neighbourhood into a clique and remove v from the graph. We call this
operation eliminating v (hence the name elimination ordering). �en we pick the next vertex in
the new graph, eliminate it, and so on. �is procedure is called the elimination game.

Algorithm 2 EliminationGame(Graph G, Criterion C)
for i = 1, . . . , n do

choose a vertex v from G according to C
set π(v) ∶= i
eliminate v from G

end for
return π

Note that if we undo all deletions of vertices and edges a�er the elimination game, we will
get exactly the �ll-in graph with respect to the resulting elimination ordering. In the elimina-
tion game we can simultaneously compute the width of the resulting elimination ordering if we
compute the degree of a vertex before it is eliminated and keep the maximum value.

1which is dependent on the graph, but usually we do not mention it

6

�e choice of the next vertex should be such that the formation of large cliques is avoided. Here
we focus on two implementations: MinimumDegreeFillIn (short: md�) always picks a vertex
with minimum degree. �is heuristic is also used as preprocessing for solving systems of sparse
linear equations [Liu85]. GreedyFillIn (short: g�) picks a vertex with the minimum number of
non-adjacent neighbours such that the number of added �ll-in edges is (locally) minimized.

It turns out that GreedyFillIn gives better upper bounds in practice than MinimumDe-
greeFillIn, in trade for a slower performance. �ese simple greedy algorithms o�en perform
better than several other, more complicated upper bound algorithms [BK10].

In their basic forms these algorithms only yield an elimination ordering of the input graph.
�e width of the elimination ordering is an upper bound on the treewidth, but it does not give
us a concrete tree decomposition as needed in a real practical setting. An elimination ordering of
width k can be easily converted into a tree decomposition of width k using the �ll-in graph: For
every vertex v, we create a bag Xv = N+

π (v) ∪ {v} and connect every node v in the tree with the
lowest higher numbered neighbour of v in the �ll-in graph. More details and a correctness proof
can be found in [BK10].

2.4 Post-processing

A�er applying a tree decomposition heuristic on a graph, there are several methods to further
post-process the computed tree decomposition in order to decrease its width. Most of them are
based on so called triangulation minimization. A triangulation H of G is called minimal if there
is no triangulation of G which is a proper subgraph of H. Given a graph G = (V , E) and a
triangulation H = (V , F) of G, the triangulation minimization problem is to compute a minimal
triangulation G′ = (V , E′) of G such that E′ ⊆ F.

To improve the width of a tree decomposition T we can �rst compute a triangulation of the
graph G = (V , E) by adding edges to all pairs of non-adjacent vertices that occur together in
some bag of T . Let F be the set of newly added edges; it can be shown that H = (V , E ∪ F)must
be chordal [BK10]. From that we compute a minimal triangulation, which hopefully decreases
the maximal clique size. �is triangulation can be converted to a (perfect) elimination ordering,
for example by the Maximum Cardinality Search algorithm [TY84], from which we can com-
pute a new tree decomposition with (lower) width. References and results of using triangulation
minimization can be found in [BK10].

Here we tried the following slightly di�erent approach. We want to remove edges from the
edge set F maintaining chordality, however, instead of looking for a minimal triangulation, we

7

aim to minimize the maximal clique size. We want to use a integer linear program to achieve
that, but expressing chordality directly seems to be rather complicated. Instead, we directly apply
MaximumCardinality Search onH and use the computed perfect elimination ordering π ofH to
solve an easier problem: Minimize the maximal clique size of H by removing edges from F such
that π still is a perfect elimination ordering of the resulting graph. �e resulting triangulation is
not neccessarily optimal, i.e. a triangulation ofG withminimummaximal clique size, because we
imposed the restriction that π must be perfect.

Given a triangulation H = (V , E ⊍ F) of G = (V , E) and a perfect elimination ordering π of
H, our problem can be modelled by an ILP formulation as follows:

minimize w

subject to Xe = 1, for all e ∈ E
X{u,v} + X{u,w} − X{v ,w} ≤ 1, for all 3-cliques {u, v ,w} inH

with π(u) < π(v) < π(w)
1 +∑w∈N+

H ,π(v) X{v ,w} ≤ w, for all v ∈ V

w ≥ 0, Xe ∈ {0, 1}, for all e ∈ E ∪ F

�e binary variables Xe encode the edges of the solution graph G∗. �e �rst condition ensures
that only edges from F can be removed. �e second set of inequalities expresses that π is perfect
forG∗, by stating that any two distinct higher numbered neighbours of a vertex must be adjacent.
�e integer variable w is the maximal clique size of G∗, which is the maximal number of higher
numbered neighbours of a vertex. Sincew is minimized, it automatically assumes this maximum
value by the third condition.

In the course of this work, we realized that the usage of this ILP is actually not needed, because
the �ll-in graph ofG with respect to π is always an optimal solution to this problem: π is obviously
perfect for its �ll-in graph and all �ll-in edges with respect to π must occur in any triangulation
of G for which π is perfect. �us, the �ll-in graph has the minimal maximum clique size of all
these graphs.

�erefore, to post-process a tree decompositionwewill simply triangulate the graphG bymak-
ing the bags into cliques and apply Maximum Cardinality Search, which gives a perfect elimina-
tion ordering π of the triangulation. Regarding π as an elimination ordering ofG, we can convert
it to a new tree decomposition of G.

8

3 Contracting Matchings and Tree
Decompositions

We adopt the simple idea used in Bodlaender’s algorithm: contract a matching in the input graph
and compute a tree decomposition of the contracted graph. For that we use heuristic algorithms
such as MinimumDegreeFillIn or GreedyFillIn, which we will call base algorithms (to avoid
confusion of names). A�erwards, we transform the obtained tree decomposition back into a tree
decomposition of the input graph.

We start by looking at how this transformation works exactly. Later in this chapter, we also
present a similar method that uses elimination orderings instead of tree decompositions.

3.1 Expanding a tree decomposition

Let us brie�y look at amore general situationwherewemergemultiple vertices into single vertices
instead of just endpoints of edges. Formally, one can describe this by amerging function f ∶ V →
V ′ from the vertex set V of the original graph G into a new vertex set V ′ with the interpretation
that all vertices in f −1({v′}) = {v ∈ V ∶ f (v) = v′} are merged into a single vertex v′. For
example, the contraction of a matching M can be described by the function fM with

fM(v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

v , if v is not matched by M ,

a{v ,w}, if {v ,w} ∈ M for some w ∈ V .

Sometimes we also allow ourselves to write fM({u, v}) for the vertex fM(u) = fM(v).

For such a merging function f , we de�ne the new graph f (G) with

vertex set f (V) and edge set {{ f (u), f (v)} ∶ {u, v} ∈ E}.

Recall that we also introduced the notation G/M for fM(G) in the case of matchings. Now, if
we are given a tree decomposition of f (G), we can undo all mergings in the bags to get a tree

9

1 2

3 4

5 6

7 8

9 10

(a) Graph G

13 24 56

78

910

(b) Graph G/M

1 2
3 4

2

4
5 6 5 6

7 8

9 10

(d) expansion of T

13 24 24 56 56
78
910

(c) tree decomposition T of G/M

Figure 3.1: Illustration of a matching contraction and a tree decomposition expansion. Matching
edges are marked red in panel (a).

decomposition of G.

Lemma 1. Let G = (V , E) be a graph and f ∶ V → V ′ be a merging function. If ({Xi}i∈I , T) is a
tree decomposition of f (G), then ({ f −1(Xi)}i∈I , T) is a tree decomposition of G.

Proof. Since every vertex f (v) and every edge { f (u), f (v)} of f (G) occurs in some bag Xi ,
every vertex v and every edge {u, v} of G also occurs some bag f −1(Xi).

Now let j be a node on the path from i to k in T . If a vertex v is contained in f −1(Xi) and
f −1(Xk), then f (v) is contained in Xi and Xk . �us, X j also contains f (v), which implies that
f −1(X j) contains v.

We call ({ f −1(Xi)}i∈I , T) the expansion of ({Xi}i∈I , T)1 (expansion as the opposite of contrac-
tion). When a tree decomposition is expanded, the size of a bag can increase by a factor which is
at most the maximal size of a vertex subset that we have merged. �is gives us an upper bound
on the treewidth of G:

tw(G) ≤ r ⋅ (tw(f (G)) + 1) − 1, where r = max
v′∈V ′

∣ f −1({v′})∣.

In our special case we only merge endpoints of edges (the case r = 2) and we get the upper
bound tw(G) ≤ 2 ⋅ tw(f (G)) + 1 as mentioned in the previous chapter.

1we usually do not mention the corresponding function f and graph G

10

Algorithm 3 Input: Graph G, merging function f , base algorithmA
compute f (G)
applyA on f (G), obtain tree decomposition ({Xi}i∈I , T) of f (G)
return ({ f −1(Xi)}i∈I , T)

Our main procedure is formulated in Algorithm 3. Usually the base algorithm A can only
compute upper bounds k and k′ on the treewidth of G and f (G) respectively. We will compare
k with the width of the expanded tree decomposition, which is at most r ⋅ (k′ + 1) − 1 with the
notation above. Even if this algorithm might not to be able to compete with the pure application
of the base algorithm, we want to examine how good the computed upper bound is. Usage of our
algorithmmight pay o� if it runs considerably faster than the base algorithm and gives acceptable
upper bounds.

3.2 Contracting edges vs. merging subgraphs

Now one could pose the question why we restrict ourselves to the special case of contracting only
edges. If we only merge vertex sets which induce a connected subgraph, we obtain a minor of the
original graph. A well-known fact states that taking minors does not increase the treewidth.

Lemma 2. If G is a minor of H, then tw(G) ≤ tw(H).

Proof. We transform a tree decomposition ofH into a tree decomposition ofG without increasing
its width. If ({Xi}i∈I , T) is a tree decomposition of H and G is a subgraph of H, then ({Xi ∩
V(G)}i∈I , T) is a tree decomposition of G. Now it su�ces to regard the case of a single edge
contraction. If G is obtained from H by contracting the edge {u, v} to the vertex w, then we can
replace any occurrence of u or v in a bag Xi by w and we get a tree decomposition for G. �e
conditions of a tree decomposition can be veri�ed easily.

If f (G) is indeed a minor of G and we �x r, then from Lemma 2 it follows that

tw(G) ≤ r ⋅ (tw(f (G)) + 1) − 1 ≤ r ⋅ (tw(G) + 1) − 1,

which can be seen as a constant-factor approximation in a certain sense. Assuming that the base
algorithm computes an upper bound k′ for tw(f (G)) that is not too far from the real value, the
width r ⋅(k′+1)−1 computed by Algorithm 3 will also be not much greater than r ⋅(tw(G)+1)−1.
Although r is not a precise approximation-ratio as in the theory of approximation algorithms,

11

our algorithm has this property that we should expect from a good heuristic. �erefore, we are
interested in merging only such vertices that do not cause the treewidth to increase.

It is easy to see that merging non-adjacent vertices can increase the treewidth of a graph. For
example, if the two endpoints of a path with length ≥ 3 are merged, the treewidth increases from
1 to 2. In general, we cannot easily determine whether a givenmerging of vertices is “good” in our
sense, i.e. does not increase the treewidth. A simple argument shows that this problem is even
NP-hard.

For the hardness-proof we need a simple lemma about tree decompositions, from which we
can derive that the treewidth of a graph is at least its maximal clique size minus one.

Lemma 3 ([Bod98]). Let ({Xi}i∈I , T) be a tree decomposition of G = (V , E). If W ⊆ V is a clique
in G, then there exists an i ∈ I with W ⊆ Xi .

�eorem 4. �e decision problem “Given a graph G and a merging function f , is tw(f (G)) ≤
tw(G)?” is NP-hard.

Proof. Observe that any graph can be built up from isolated edges by merging the endpoints
properly.

We present a polynomial-time reduction from Treewidth to this problem. Given a graph
G = (V , E) and k ∈ N, letG′ be the graph which consists of ∣E∣ isolated edges and a (k+ 1)-clique.
More formally, G′ has the vertex set

{(e , u), (e , v) ∶ e = {u, v} ∈ E} ⊍ {c1, . . . , ck+1}

and edges {(e , u), (e , v)}, for all e = {u, v} ∈ E and edges {ci , c j}, for all i ≠ j.

If we merge all vertices in {(e , u) ∶ u ∈ e ∈ E} to a single vertex u, for all u ∈ V and also merge
the clique {c1, . . . , ck+1} to a vertex c, we obtain G plus an isolated vertex c. Let f be a merging
function that describes this merging. �e graph G′ has treewidth k and the merged graph f (G′)
has the same treewidth as G. �erefore, it holds that

tw(G) ≤ k ⇐⇒ tw(f (G′)) ≤ tw(G′).

�e computation of G′ and f can clearly be done in polynomial time. �is completes the reduc-
tion.

�is result shows that it is hard to �nd out whether a merging function is useful or not in
the sense that we do not want to increase the treewidth by merging vertices. One could think

12

of an algorithm in which we repeatedly merge multiple vertices into single vertices to lower the
treewidth and stop at some point. As soon as we merge non-adjacent vertices, we are unsure
whether the treewidth has increased or not and it seems to be infeasible to �nd that out, as we
have seen, making such an algorithm rather useless.

Hence, we are restricted to merging connected subgraphs. We will restrict our method further
to merging only endpoints of edges and leave the more general method open. One should notice
that merging large connected subgraphs to single vertices means a high loss of information in
the merged graph. One the one hand the base algorithm might perform better (time and qual-
ity of the bound) if the merged graph is small, on the other hand we expect that the expanded
tree decomposition will have a larger width (think of the extreme case of contracting the whole
graph into one vertex). For this reason, we stick to the simplest special case of contracting only
matchings.

3.3 Limitations of the approach

3.3.1 Objectives of the approach

It remains to determine according to which criteria we should choose the matching M that is to
be contracted. Assume that T is the tree decomposition ofG/M computed by the base algorithm
with width k and T ′ is the expansion of T having width k′. Our overall goal is to minimize the
width of T ′. To achieve that we want to �nd a matching such that �rstly the width k of T is
small and secondly the increase from k to k′ is also small. An extreme case for no increase in the
width, i.e. k = k′, can be achieved by contracting no edges at all. Hence there is no meaningful
optimization possible in that direction. Also, here we usually want to contract a maximal, “dense”
matching which makes it likely that at least one bag of T contains k − 1 vertices which originated
from an edge contraction such that the bound k′ = 2k + 1 is reached. We will look into that again
in the next chapter. Here we will focus on minimizing the width k of T .

For minimizing the width of T one could also think of two directions. We can try to mini-
mize k, but if we want to make the selection of the matching independent of the underlying base
algorithm, we should minimize the treewidth of G/M instead of k. We imagine that it is quite
challenging to analyze the heuristics and to �nd out which matching M minimizes the width of
the tree decomposition for G/M calculated by the base algorithm; however, this of course could
yield better results. In this thesis, we decided to ignore the underlying base algorithm and de�ne
the overall objective to be the minimization of tw(G/M).

13

3.3.2 Minimizing treewidth of the contracted graph

We were not able to devise a polynomial-time algorithm that computes a matching M minimiz-
ing the treewidth of G/M and we strongly assume that there does not exist such an algorithm.
Usually the non-existence of a polynomial-time algorithm A is “shown”, assuming P ≠ NP, by
constructing another polynomial-time algorithm for an NP-hard problem under the assumption
thatA exists. In fact, we can show that the following problem is NP-hard.

�eorem 5. �e decision problem “Given a graph G and a number k, does there exist a matching
M such that tw(G/M) ≤ k?” is NP-hard.

Proof. �eproof idea was adopted from [BGHK92]. Again we use a reduction from Treewidth,
so let G = (V , E) be a graph and k ∈ N. Let G′ = (V ′, E′) be the graph with

vertex set V ′ = {v1, v2 ∶ v ∈ V} and
edge set E′ = {{v1, v2} ∶ v ∈ V} ∪ {{ui , v j} ∶ {u, v} ∈ E , 1 ≤ i , j ≤ 2}.

Clearly, G′ is polynomial-time computable from G.

Note that M∗ = {{v1, v2} ∶ v ∈ V} is a maximal matching in G′ and G′/M∗ is isomorphic to
G. We will to prove the following equivalence.

tw(G) ≤ k ⇐⇒ there exists a matching M ⊆ E′ such that tw(G′/M) ≤ k.

If tw(G) ≤ k holds, then we can pick the matching M = M∗. For the other direction, we will use
that tw(G′) = 2 ⋅ tw(G) + 1, which we will show later. If tw(G′/M) ≤ k for some matching M,
then we can expand a tree decomposition of G′/M and get tw(G′) ≤ 2k + 1. Using the lemma we
conclude tw(G) ≤ k.

It remains to show that tw(G′) = 2 ⋅ tw(G) + 1. Again we have tw(G′) ≤ 2 ⋅ tw(G) + 1 by
the expansion argument. Conversely, let T ′ = ({Yi}i∈I , T) be a tree decomposition of G′ with
minimal width and set

Xi = {v ∈ V ∶ {v1, v2} ⊆ Yi}.

One easily veri�es that T = ({Xi}i∈I , T) is a tree decomposition ofG: Every vertex v is contained
in some bag Xi , since {v1, v2} is an edge in G′. If {u, v} is an edge in G, then {u1, u2, v1, v2} is a
4-clique in G′, implying that there is a bag Yi containing the clique and that the corresponding
bag Xi contains u and v. If j is a node on the path between nodes i and k in T and v ∈ Xi ∩ Xk ,
then {v1, v2} ⊆ Yi ∩ Yk holds. It follows that {v1, v2} ⊆ Yj and hence v ∈ X j. �e size of the bag
Xi is at most half the size of Yi and so 2 ⋅ tw(G) + 1 ≤ tw(G′) is proved.

14

(a) Original graph G (b) Graph G′ with matching M∗

Figure 3.2: Illustration of the NP-hardness proof

However, even with this theorem the existence of an polynomial-time algorithm which min-
imizes the treewidth of G/M does not directly lead to P = NP. �e problem is that we cannot
use such a hypothetical algorithm to solve the problem above in polynomial-time, as we cannot
compute the treewidth of G/M in polynomial-time for an optimal matching M which we have
computed.

Our second approach was to regard simpler decision problems, namely by �xing the param-
eter k in the above problem formulation. �e NP-hardness of such a problem would prove the
non-existence of the minimization algorithm, unless P = NP, since we can decide in linear-time
whether the treewidth of a graph is at most k, for a �xed k, by Bodlaender’s theorem. Unfortu-
nately, if we �x the parameter k, the adapted problems also become polynomial-time decidable.

�eorem 6. For all k ∈ N the decision problem “Given a graph G, does there exist a matching M
such that tw(G/M) ≤ k?” is polynomial-time decidable.

Proof. We just sketch the proof idea to not go beyond the scope of this thesis and assume the
reader to be familiar with the concepts used (see [Cou90], [RS04]). First of all, note that a graph
with tw(G) > 2k + 1 cannot be contracted with a matching to tw(G/M) ≤ k (again expansion
argument). We can verify tw(G) ≤ 2k+ 1 using Bodlaender’s algorithm. If it indeed returns a tree
decomposition of width at most 2k + 1, we can use Courcelle’s theorem to decide the validity of a
formula in monadic second-order logic expressing the desired property.

�e formula can be constructed as follows. �ere is a formula φ≤k that expresses that a graph
has treewidth at most k, as the class of graphs with treewidth at most k is characterizable by a
�nite set of forbidden minors and the relation “H is minor of G” for a �xed graph H can be
expressed in monadic second-order logic. Since φ≤k should be evaluated in G/M, we have to
adapt the formula. For example, two vertices in G are considered equal in G/M if and only if

15

(a) (5 × 5)-grid (b) Complete bipartite graph K5,6

Figure 3.3: Contracting a matching can decrease treewidth to its half, or not at all.

they are either the same or they are matched by the same edge in M, which can be expressed in
monadic second-order logic. Every occurrence of an atom u = v in φ≤k has to be replaced by such
a suitable formula and similarly we proceed for the other atoms, such as adj(u, v) and inc(e , v)
expressing adjacency and incidence. If φ̂≤k is the transformed formula, then ∃Mφ̂≤k expresses
the desired property.

�is leaves the existence of a polynomial-time algorithm which minimizes the treewidth of
G/M open. Here we will use heuristics to compute the matchings, which we will present in the
next chapter.

3.3.3 Lower-bound instances

Another limitation of the method is the existence of hard instances. �ere exist graphs whose
treewidth cannot be decreased by matching contraction, independent of the matching chosen.
Consider a complete bipartite graphKn,n+1 which has vertices {u1, . . . , un , v1, . . . , vn+1} and edges
{ui , v j} for all 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1. It is easy to see that the complete bipartite graph Kn,n+1 has
treewidth n. Contracting anymaximal matching yields the complete graph Kn+1 on n+ 1 vertices,
which also has treewidth n.

In addition to this, we also want to present a graph class on which our algorithm could, at least
in theory, run optimal. �e (m × n)-grid is the graph with

vertex set {1, . . . ,m} × {1, . . . , n}
and edge set {{(i1, i2), (j1, j2)} ∶ ∣i1 − i2∣ + ∣ j1 − j2∣ = 1}.

16

It is known that the (m × n)-grid has treewidth min(m, n)2. �e (m ×m)-grid has a matching
of size m ⋅ ⌊m/2⌋ as depicted in Figure 3.3. Contracting this matching yields a (m × ⌈m/2⌉)-grid
with treewidth ⌈m/2⌉. We see that grids are an optimal example for the reduction of treewidth
by contraction of a matching.

3.4 Expanding elimination orderings

As an alternative to expanding tree decompositions, we will present a di�erent approach based on
elimination orderings. In our setting this is very convenient because we work withMinimumDe-
greeFillIn and GreedyFillIn, which operate on elimination orderings. Let M be a matching
in the graph G and let σ be an elimination ordering of G/M. Consider a vertex w in G/M which
originated from contracting an edge {u, v} ∈ M and replace w in σ by u and v by juxtaposing u
and v in an arbitrary order. If this is done for all such verticesw, we obtain a elimination ordering
π for G. �is procedure is also described in Algorithm 4.

Algorithm 4 ExpandEO(elimination ordering σ , graph G, matching M)
set j ∶= 1
for i = 1, . . . , ∣G/M∣ do

w ∶= σ−1(i)
if f −1M ({w}) = {u, v} ∈ M then

set π(u) ∶= j
set π(v) ∶= j + 1
set j ∶= j + 2

else
let {u} ∶= f −1M ({w})
set π(u) ∶= j
set j ∶= j + 1

end if
end for
return π

We call π an expansion of σ3. For now we leave open in which order the two endpoints of a
matching edge are juxtaposed in the expansion, so an elimination ordering can have several ex-
pansions. We will show that, similar to the tree decomposition approach, the width of an expan-
sion of σ is bounded by 2k + 1 where k is the width of σ . �e following lemmata help to calculate
the width of the new elimination ordering. �e notation G ⊖ v denotes the graph obtained from
G by eliminating v. �e operator ⊖ is le�-associative.
2which is usually proven using the cops-and-robber game by Seymour and�omas [ST93]
3the corresponding graph G and matching M are implicit

17

1 2

3

4

5

6

(a) Graph G

12

3 5

46

(b) Graph G/M

1 2 3 5 4 6

(d) expanded elimination ordering

12 3 5 46

(c) elimination ordering of G/M

Figure 3.4: Expansion of an elimination ordering (�ll-in edges are dashed)

Lemma 4. Let M be a matching in G and w be a vertex in G/M.

(i) If f −1M ({w}) = {v}, then:

a) (G/M) − {w} = (G − {v})/M

b) (G/M) ⊖w = (G ⊖ v)/M

(ii) If f −1M ({w}) = {u, v}, then:

a) (G/M) − {w} = (G − {u, v})/(M ∖ {{u, v}})

b) (G/M) ⊖w = (G ⊖ u ⊖ v)/(M ∖ {{u, v}})

Proof. All statements follow easily from the de�nitions.

Lemma 5. Let M be amatching in G and σ be an elimination ordering of G/M. If π is an expansion
of σ, then (G/M)σ = Gπ/M.

Proof. �e two graphs have the same vertex sets, we need to show that they have exactly the same
edges. We will prove that by induction on the number of vertices of G.

IfG has one vertex, the statement is clear. Otherwise, letw be the �rst vertex in σ . Wewill show
that (G/M)σ and Gπ/M agree on the neighbourhood of w and on the rest (the graphs without
w), which proves that the graphs must be the same. We will do a case distinction whether w
originated from an edge contraction or not.

18

First case. Assume f −1M ({w}) = {v} for some vertex v in G. �en v is the �rst vertex in π
and by de�nition it holds that

N(G/M)σ (w) = NG/M(w) = fM(NG(v)) = fM(NGπ(v)) = NGπ/M(w).

Now let σ̂ be the elimination ordering obtained from σ by removing w. Also let π̂ be π without
v. We can apply the induction hypothesis on G ⊖ v, M, σ̂ and π̂ because π̂ is an expansion of σ̂ .
Using Lemma 4 we get

(G/M)σ − {w} = ((G/M) ⊖w)σ̂ = ((G ⊖ v)/M)σ̂ = (G ⊖ v)π̂/M
= (Gπ − {v})/M = (Gπ/M) − {w}.

Second case. Assume f −1M ({w}) = {u, v} ∈ M. �en u and v are the �rst two vertices in π,
say π(u) < π(v). �at means that v is connected to all neighbours of u in Gπ and it holds that

N(G/M)σ (w) = NG/M(w) = fM((NG(u) ∪ NG(v)) ∖ {u, v})
= fM((NGπ(u) ∪ NGπ(v)) ∖ {u, v}) = NGπ/M(w).

Again let σ̂ be σ withoutw and let π̂ be π without u and v. By Lemma 4 and induction hypothesis
on G ⊖ u ⊖ v ,M ∖ {{u, v}}, σ̂ and π̂ we get

(G/M)σ − {w} = ((G/M) ⊖w)σ̂ = ((G ⊖ u ⊖ v)/(M ∖ {{u, v}}))σ̂
= (G ⊖ u ⊖ v)π̂/(M ∖ {{u, v}}) = (Gπ − {u, v})/(M ∖ {{u, v}})
= (Gπ/M) − {w}.

�is concludes the proof.

�eorem 7. Let M be a matching in G and σ be an elimination ordering of G/M. If σ has width
k, then an expansion of σ has width at most 2k + 1.

Proof. �e size of a maximal clique in the �ll-in graph Gπ can at most reduce to its half by con-
tracting a matching M. By Lemma 5 we obtain

ω(Gπ) ≤ 2 ⋅ ω(Gπ/M) = 2 ⋅ ω((G/M)σ).

By the de�nition of the width of an elimination ordering, this proves the claim.

In terms of deriving (worst case) upper bounds on tw(G) from tw(G/M), we have shown

19

nothing new. Later we want to compare the tree decomposition approach with the elimination
ordering approach in practical experiments.

All results presented so far are independent of the order in which we position two vertices u,
v from a matching edge {u, v} ∈ M. But the resulting width may depend on that order. Recall
that the width of an elimination ordering π can be computed as the maximum of all deg+π(v). If
vertex u is eliminated �rst, the neighbourhood of v becomes (N+

π (u)∪N+
π (v))∖{v}. �en, a�er

eliminating v, this set is made into a clique.

Hence, we should put the vertex with the lower degree prior in the order. Because G ⊖ u⊖ v =
G ⊖ v ⊖ u, this choice does not a�ect the remaining �ll-in graph. �us, to gain the optimal width
that we can obtain by transposing vertex pairs {u, v} ∈ M in the expansion, it su�ces to apply this
local optimization on all edges {u, v} ∈ M. To implement this we have to go from le� to right in
the elimination ordering because implicitly we need to compute the �ll-in graph. �e extension
of the procedure ExpandEO is shown below.

Algorithm 5 ExpandEO+(elimination ordering σ , Graph G, matching M)
set H ∶= G
set j ∶= 1
for i = 1, . . . , ∣G/M∣ do

w ∶= σ−1(i)
if f −1M ({w}) = {u, v} ∈ M then

set π(argminx∈{u,v} degH(x)) ∶= j
set π(argmaxx∈{u,v} degH(x)) ∶= j + 1
set j ∶= j + 2
H ∶= H ⊖ u ⊖ v

else
let {u} ∶= f −1M ({w})
set π(u) ∶= j
set j ∶= j + 1
H ∶= H ⊖ u

end if
end for
return π

20

4 Computational Evaluation

In this chapter we introduce algorithms that compute di�erent kinds of matchings and present
the results that we get by applying the main algorithm in combination with these matching algo-
rithms. For the sake of completeness, we formulate Algorithm 3 again for the case of matchings.

Algorithm 6 Input: Graph G, base algorithmA
compute a matching M of G
contract all edges in M, obtain G/M
applyA on G/M, obtain tree decomposition ({Xi}i∈I , T) of G/M
return ({ f −1M (Xi)}i∈I , T)

We implemented the algorithms in C++ on the basis of the Treewidth Optimization Library
(TOL), a framework for the computation of tree decompositions, developed by Arie M.C.A.
Koster. �e algorithms were tested on a Linux 3.0.2 machine with an Intel®Core™2 Duo CPU
T5670 (1.80 GHz) and 2 GB RAM. Sometimes we use integer linear programs in the algorithms,
which we solved using the integer programming solver SCIP, which is developed at the Zuse In-
stitute Berlin (ZIB) [Ach09].

4.1 Test graphs and generation of random partial k-trees

We tested the algorithms with di�erent kinds of graph instances. We started by running the algo-
rithms on a collection of various graphs from the TOL repository. It contains interesting graphs
from graph theory, but also graph instances which are closer to “real world” applications such as
a graph from computational biology or travelling salesman problem graphs.

However, we quickly realized that for some situations it would be good, if we could generate
random graphs with adjustable parameters such as the size, the edge density and of course the
treewidth. Running the algorithms on a large series of graphs allows for a better analysis because
we may be able to recognize how certain parameter settings can in�uence the performance of the
algorithms. �ese graphs however are most likely not a good representation of graphs that would
occur in “real world” applications, as they are arti�cially constructed instances. �e algorithms

21

may behave very di�erently in practice than on such random graphs.

To generate such random graphs we follow the approach from [BK10], which we want to
present in the following. A k-tree is a graph G that has a perfect elimination ordering π such
that deg+π(v) = min{k, n − π(k)} for all vertices v ∈ V(G). To put it di�erently, the last k ver-
tices (in fact, the last k + 1 vertices) in π form a clique and all other vertices have exactly k higher
numbered neighbours. We see that a k-tree is chordal and has treewidth k. A partial k-tree is a
subgraph of a k-tree and hence, has treewidth at most k. In fact, it can be shown that a graph is a
partial k-tree if and only if it has at most treewidth k [Bod98], and that is why we are interested
in generating random partial k-trees.

Let us �rst see how to generate a random k-tree G. For the sake of simplicity we will use
the vertex set {1, . . . , n}, which also de�nes the (perfect) elimination ordering π of the graph.
Algorithm 7 generates a random k-tree with n vertices.

Algorithm 7 RandomKTree(n ∈ N, k < n)
G ∶= ({1, . . . , n},∅)
make {n − k, . . . , n} into a clique in G
for i = n − k − 1, . . . , 1 do

U ∶= NG[j] for some random j ∈ {i + 1, . . . , n − k}
U ∶= U ∖ {u} for some random u ∈ U
connect i to all vertices i′ ∈ U

end for
return G

First of all, wemake the last k+1 vertices {n−k, . . . , n} into a clique. Now the idea is to connect
every vertex v with a k-clique of higher numbered vertices so that the subgraph induced by v and
together with all higher numbered vertices satis�es the condition of a k-tree, going from the back
to the front. Recall that every (k + 1)-clique in a chordal graph with perfect elimination ordering
π occurs as a set N+

π [v] for some vertex v, and we can show that every k-clique C can be extended
to a (k + 1)-clique. If one vertex in C is connected to a vertex u that is lower numbered than all
vertices in C, then C ∪ {u} forms a (k + 1)-clique. Otherwise let v ∈ C be the lowest numbered
vertex in C. N+

π [v] is a superset of C and forms a (k+ 1)-clique because π(v) ≤ n−kmust be true
in this case. Hence, we can �nd a random k-clique by removing a random vertex from a random
neighbourhood NG[j].

To generate a random partial k-tree, we generate a random k-tree and remove edges randomly.
For that we introduce a third parameter p ∈ [0, 1]which speci�es the probability for an edge to be
removed. By the de�ning equation, a k-tree always has kn − k(k + 1)/2 edges and the randomly
generated partial k-tree has (1 − p)(kn − k(k + 1)/2 edges on average.

22

Finally, to ensure that the graph still has treewidth exact k a�er removing the edges, we apply
a lower bound algorithm, i.e. an algorithm that computes a lower bound on the treewidth of a
graph. Herewe use a heuristic calledMaximumMinimumDegree [BK11]. We repeatedly generate
partial k-trees until the lower bound is exactly k.

4.2 Maximal matchings

At �rst, we start by using arbitrary maximal matchings as in Bodlaender’s algorithm. We call
Algorithm 6 using maximal matchingsmm. �is matching type should serve as a reference point
for other matching types being an “average” matching with no special properties.

Maximal matchings can be computed greedily by repeatedly adding an edge {v ,w} ∈ E to the
matching and removing the vertices v and w, until the graph is empty. �e resulting matching is
dependent on the choice of the edges, of course. In our implementation we simply use the order
of the edges as stored in the representation of the test graphs.

MinimumDegreeFillIn GreedyFillIn

graph name none mm maxcard none mm maxcard

1ubq 12 19 23 12 19 21
C5 2 4 (5) 4 4 4 4
C5+ 2 4 (5) 3 2 4 3
Clebsch 10 9 9 8 9 9
gr216 91 137 143 89 133 141
hamming9-2 203 203 203 203 203 203
kneser8-3 34 35 41 34 35 43
knights8 8 20 21 25 20 23 23
macaque71 21 30 (31) 29 20 28 29
petersen 4 9 9 5 9 9
pyramid3 5 7 7 5 7 7
risk 5 7 9 4 7 9
scoregraph 320 508 (511) 577 307 496 559
sheep 330 685 (689) 635 260 507 537
sudoku 51 53 59 53 53 55

Table 4.1: Comparison of computed widths (none: pure application of the base algorithm, mm:
maximal matching,maxcard: maximum cardinality matching)

23

Evaluation

Table 4.1 shows the upper bounds for a collection of 15 graphs computed by mm using the base
algorithms MinimumDegreeFillIn and GreedyFillIn. As a �rst observation we can state that
in most cases mm does not give an improvement to the base algorithm. For some instances, the
upper bounds of mm come close and for the graph “Clebsch” mm even performs better than
MinimumDegreeFillIn. For the graph “sheep”, which is by far the largest of the tested graphs
(6418 vertices and 18474 edges), the width computed by mm is noticeably larger than twice the
width computed by MinimumDegreeFillIn. In this rather odd case MinimumDegreeFillIn
computes a higher width for a graph than for a half-sized minor of it.

Finally, we want to mention that if k is the width computed for the contracted graph, for most
of the graphs 2k + 1 was indeed reached as the width of the expanded tree decomposition. As an
example, in the columnmm for MinimumDegreeFillIn, the number 2k + 1 is given in brackets,
if it di�ers from the “real” width of the expansion. For the larger graphs we get a di�erence of
3–4, for the other smaller graphs the di�erence is at most one.

4.3 Maximum cardinality matchings

As a �rst improvement towards more sophisticated matching types, we use maximum cardinality
matchings (we denote the corresponding algorithm by maxcard). �is will minimize the vertex
number of the contracted graph. �e computation of maximum matchings (on general graphs)
is more involved; the well known Blossom algorithm by Edmonds [Edm65] in its original form
runs in time O(n4) . Here we use an implementation from the LEMON graph library [DJK11].

Evaluation

In Table 4.1 we can compare the performance of mm and maxcard. We see that for most of the
graphsmaxcard does not give better bounds thanmm, and especially for the medium-sized and
large graphs the bounds are clearly worse. �e width for the “sheep” graph using MinimumDe-
greeFillIn is improved; here we assume that mm “unluckily” (being a quite unfounded ap-
proach) produces a contracted graph that is bad for MinimumDegreeFillIn because we see that
for GreedyFillIn the situation on the “sheep” graph is reversed. We veri�ed this with a second
experiment: We ranmm again on �ve random permutations of the “sheep” graph to forcemm to
select di�erent maximal matchings every time. �e average upper bound computed is 629 which
is better than the bound computed bymaxcard.

24

Contracting a maximum cardinality matching seems to be the wrong direction to lower the
treewidth, realizing thatmaxcard even cannot compete with picking arbitrary, “average”maximal
matchings.

4.4 Weighted matchings

Instead of trying to �nd a matching that is as large as possible, it seems to be more important to
�nd the “right” collection of edges for a matching, in terms of lowering the treewidth by contrac-
tion. Our next idea is to give weights to edges according to how much an edge contraction can
contribute to the decrease of treewidth. We present two approaches that such an edge weighting:
in the �rst approach we compute a maximum weighted matching and in the second, we use a
greedy algorithm to build up a matching.

4.4.1 Edge weighting functions

We believe that in general such a reasonable weighting function does not really exist because
treewidth and tree decompositions are concepts which are based on large substructures in the
graph, such as large cliques, and cannot be fully captured by local structures as for example ver-
tex neighbourhoods. Despite of that, we want to try out some weighting functions which might
perform decently, at least on some graph instances.

We have three ideas for weighting an edge {u, v}, which can be quickly computed locally:

1. Common Neighbours. �e number of neighbours that u and v have in common.

2. Symmetric Di�erence. �e number of neighbours that u and v do not have in common,
excluding u and v themselves.

3. Degree Sum. �e sum of the degrees of u and v.

For the �rst and the third criterion, we consider edges with large weights as useful for contrac-
tion; for the second criterion we prefer edges with small weights. We want to brie�y discuss, why
we decided to choose these criteria.

Common Neighbours

If vertices u and v have a large number of common neighbours, the contraction of {u, v} causes a
lot of edges incident to u to bemergedwith edges incident to v. Contracting such edges preferably

25

leads to a contracted graph with a lower edge number, which then could mean a lower treewidth.
�is can be partially justi�ed by the following theorem.

�eorem 8 ([Bod96]). If G = (V , E) has treewidth at most k, then ∣E∣ ≤ k∣V ∣ − 1
2k(k + 1).

Colloquially, this theorem states that a graph must be sparse to have small treewidth, thus, it is
a good idea to try to lower the number of edges.

Moreover, if the endpoints of an edge {u, v} share many neighbours, they belong to many 3-
cliques, which implies that u and v will occur together in many bags of any tree decomposition
of the graph. By contracting the edge {u, v}, automatically the two vertices will always occur
together in the bags of the expanded tree decomposition.

Symmetric Di�erence

�e name of the second criterion is borrowed from set theory where the set

A△ B = (A∪ B) ∖ (A∩ B)

is called symmetric di�erence of A and B. Here we regard the weight ∣N(u) △ N(v)∣ − 2 (minus
two, to exclude u and v themselves), which is in some way dual to the common neighbours cri-
terion. In the best case according to this weighting, the endpoints u and v of an edge have the
exactly same neighbourhood (again, excluding u and v). In this situation, one can easily see that
there is an optimal tree decomposition such that u and v always occur together in the bags. Be-
cause of that, we make no error if we force u and v to always occur together in the expanded tree
decomposition when we contract the edge {u, v}. If there exist additional neighbours which are
not shared by both endpoints, a minimal-width tree decompositionmight need to have bags con-
taining only one endpoint and not the other. Contracting that edge could cause non-optimality
in the expanded tree decomposition. If we contract an edge with a small weight, we expect that
this error will be small, too.

Degree Sum

Lastly, we have the third criterion, the degree sum, which was chosen with no deeper theoretical
foundation. One can think of some situations where this can be good. For example, we should
de�nitely contract edges in large cliques, and such edges will have a large weight. Another illus-
trating example are graphs containing long induced paths. We think it does not make sense to

26

contract edges in such induced paths, rather one should focus on more complicated structures in
the graph. �e degree sum of an edge in an induced path is at most four.

Mixture weightings

Instead of evaluating edges by just one weighting function, we can use a primary and a secondary
weighting function. Basically we are combining two orderings on the edges into one new order-
ing. At �rst, we order two edges by the primary weighting; if they happen to have the sameweight,
we order them by the secondary weighting. If w1 and w2 are two weighting functions, this can be
encoded as a new weighting function

w(e) ∶= m ⋅ s1 ⋅w1(e) + s2 ⋅w2(e)

wherem is a value larger than the maximum ofw2 and si ∈ {−1, 1} determines whetherwi is to be
minimized or maximized. In our case the sign for common neighbours and degree sum should
be 1 and for symmetric di�erence it should be −1. Using a mixture weighting may be helpful,
if during the algorithm many edges have an optimal weight. �e choice of the next edge will
be arbitrary, if we just pick any of these. By adding a second selection criterion we get a more
deterministic choice and hopefully a better result.

4.4.2 Maximum weighted matchings

In our �rst approach to use the presented weighting functions, we compute amaximumweighted
matching, i.e. a matchingM that maximizes∑e∈M w(e), wherew is the weighting function. Note
that it does not make sense to use the symmetric di�erence weighting, since we want to choose
edges with small weight for that speci�c weighting. �e optimal matching would always be the
trivial empty matching having weight zero.

�e maximum weighted matching problem can be solved with an adapted version of the Blos-
som algorithm. Again we used the LEMON library to compute maximum weighted matchings.
We abbreviate this matching type withmaxweight.

Evaluation

For evaluating these algorithms, we restricted ourselves to just using MinimumDegreeFillIn as
the base algorithm. In Table 4.2 we can see that for the large graphs themaxweight approach can
yield better widths than mm; the common neighbours weighting seems to perform best. How-

27

maxweight greedy

graph name none mm cn ds cn ds sd

1ubq 12 19 19 21 15 19 17
C5 2 4 4 4 4 4 4
C5+ 2 4 4 3 4 3 4
Clebsch 10 9 11 11 9 13 9
gr216 91 137 147 145 131 145 139
hamming9-2 203 203 325 327 203 329 203
kneser8-3 34 35 43 41 43 43 43
knights8 8 20 21 29 29 25 27 25
macaque71 21 30 23 29 23 23 24
petersen 4 9 7 9 7 7 7
pyramid3 5 7 7 7 6 7 7
risk 5 7 7 7 7 7 7
scoregraph 320 508 427 573 420 371 566
sheep 330 685 579 565 569 439 560
sudoku 51 53 61 63 55 61 57

Table 4.2: Using weighted matchings with di�erent weighting functions (base algorithm: md�)

ever, we also get very bad results for all weighting functions, e.g. “hamming9-2” or “knights8 8”.
�e problem that we see withmaxweight is that for the weighting functions used, the addition of
weights has no interpretable meaning and neither has the quantity ∑e∈M w(e), which we max-
imize. For example, it does not make sense to regard selecting many edges with few common
neighbours and selecting one edge with many common neighbours in whatever sense equivalent.

4.4.3 Greedy weighted matchings

�erefore, we decided to switch to a greedy approach. Besides the reason mentioned above, this
approachwill also bemuch faster. �e general procedure is to compute theweightings for all edges
and pick an edge with maximal (or minimal respectively for the symmetric-di�erence-criterion)
weight. We contract the edge, update the weights and pick the next edge of optimal weight which
is not incident to an already matched vertex.

We decided not to remove the vertex that results from contracting the selected edge because
during the execution of the algorithm the edge weights should give an approximate description
of the local structures in the �nal contracted graph.

28

Common Neighbours
−1 +1

Symmetric Di�erence
−1 −1 −1 −2

Degree Sum
−1

Table 4.3: Contracting the red edge changes the weight of the blue edge by the given value.

Implementation issues

Let us make some remarks on the implementation of this procedure. First of all, one should not
recompute all edge weights in every iteration. It is clear that, for the three weighting functions
which we used here, it su�ces to update the weights of the edges that are “near” to the contracted
edge. We can also exclude all edges that share an endpoint with the contracted edge. Since we are
not allowed to add such edges to the matching, we do not need to care about their weights.

Table 4.3 shows an overview of all possible situations in which a weight is changed a�er an edge
contraction. �e values specify by howmuch theweight is changed. For common neighbours and
symmetric di�erence, one has to consider all such induced subgraphs of size four as depicted, for
instance by iterating over all edges incident to a neighbour of an endpoint of the matching edge
and verifyingwhether one of the cases is ful�lled. For degree sum, one has to consider all common
neighbours w of the contraction edge {u, v} and decrease the weight of every edge incident to w
by one (except for {u,w} and {v ,w}). If mixture weightings are used, one has to be more careful
in the updating step, as the change of the primary weight causes a change by a certain factor in
the mixture weight (factor m in the formula above).

Weuse a binary heap as the data structure to store theweights (also an implementation from the
LEMON library). Essentially, it is a priority queue which also allows us to change the priorities of
elements in the heap. �e usage of a binary heap turned out to improve the speed of the algorithm
drastically when we switched from using STL vectors to binary heaps.

29

graph name none cn ds sd cn+sd cn+ds sd+cn sd+ds ds+cn ds+sd

�3795 13 19 19 20 21 19 24 22 19 19
fnl4461 37 55 49 56 59 50 50 50 55 51
pcb3038 30 46 49 45 41 45 40 40 45 49
rl5915 28 39 41 44 41 49 50 47 49 49
rl5934 26 58 49 45 39 45 42 42 52 43

Table 4.4: Greedy weighted matching algorithm on TSP instances (base algorithm: md�). A
mixture weighting with primary and secondary weighting w1 and w2 is denoted by
w1+w2.

Evaluation

Again we only tested with the base algorithm MinimumDegreeFillIn. In Table 4.2 we can see
that the greedy approach works better than using maximumweight matchings and in most of the
cases there is at least one weighting function such that the greedy approach gives a better bound
than mm. On smaller graphs the criteria common neighbours and symmetric di�erence give
better bounds than degree sum; for larger graphs the degree sum criterion is clearly the winner.
Still this approach is not able to outperform MinimumDegreeFillIn.

Another set of �ve test graphs, which are travelling salesman problem instances1, shows that
the situation is not so clear as it seems. In Table 4.4 we �nd that on di�erent graphs di�erent
weighting functions can perform better and, except for “fnl4461”, all graphs have roughtly the
same size of 2000 vertices.

To analyze this in more detail, we ran the algorithms on random partial k-trees with dif-
ferent parameters. We used the parameter values n ∈ {100, 200, 500}, k ∈ {10, 20} and p ∈
{0.3, 0.4, 0.5}. For every combination of parameters, we generated 50 random graphs and ran
the algorithms using the three weighting functions on each of these graphs. Figure 4.1 shows the
average upper bound that is computed on such a set of 50 random graphs for di�erent weighting
functions. On the x-axis the number of vertices and expected number of edges are displayed.

�e plots clearly indicate that degree sum and common neighbours perform better than sym-
metric di�erence on random partial k-trees. Interestingly, symmetric di�erence improves with
increasing edge density, whereas the two other criteria yield better bounds on sparse graphs. On
randompartial k-trees, degree sum and commonneighbours give similar results; commonneigh-
bours seems to perform slightly better than degree sum, with increasing vertex and edge number.

1from http://www2.isye.gatech.edu/~wcook/bwidth/

30

http://www2.isye.gatech.edu/~wcook/bwidth/

(a) k = 10 (b) k = 20

Figure 4.1: Average upper bounds computed by greedyweightedmatching algorithms on random
partial k-trees

We also tried to generate partial k-trees for larger values of k, trying to simulate graphs such as
“scoregraph” or “sheep”, to analyze the quality of the algorithms on graphs with large treewidth.
However, the two mentioned graphs have a relatively low edge number, considering their large
treewidth; hence we need to remove a lot of edges from a randomly generated k-tree to replicate
such graphs. In our experiments it turned out that the computed lower bound always dropped to
a value lower than k, a�er removing the edges from the random k-tree. It seems to be very hard
to arti�cially construct random sparse graphs with high treewidth (at least with the method used
here).

Finally, we also tested using all six possible mixture weightings on the TSP instances, which is
also presented in Table 4.4. In some cases the use of amixture weighting can give an improvement
to using only the primary weighting.

4.5 Maximum edge reduction

We have already seen that contracting edges with many common neighbours is a reasonable
method to lower the treewidth of a graph. As a reason we mentioned the large decrease of the
edge number, when such edges are contracted. Next, we want to study whether we can improve
the widths computed, if this idea is taken further. We call ∣E(G)∣ − ∣E(G/M)∣ the edge reduction
for a given matchingM. �e problem that we want to solve in this section is: Find a matchingM
which maximizes the edge reduction.

We believe that this problem is NP-complete but due to the lack of time we were not able to
work further on this. We solve the problem by formulating it as an integer linear program. In the
following, we present two possible formulations for the maximum edge reduction problem.

31

u v

u′ v′

(a)
u v

u′ v′

(b)
u v

u′ v′

(c)
u v

u′ v′

(d)

Figure 4.2: Possible cases for two matching edges contained in a 4-cycle

4.5.1 ILP Formulation A

For the �rst formulation (ilp-a) we have to think about how we can express the edge reduction
for a given matching in a integer linear program. A�er the contraction of a matching M, there
are three di�erent ways how an edge {u, v} could have “vanished”:

1. �e edge is a matching edge: {u, v} ∈ M.

2. �e endpoints u and v share a common neighbourw, and either {u,w} ∈ M or {v ,w} ∈ M.
�en {u, v} is merged with {v ,w} or {u,w} respectively.

3. �ere are matching edges {u, u′}, {v , v′} ∈ M incident to u and v such that {u, u′, v , v′}
forms a 4-cycle. �en {u, v} is merged with {u′, v′}.

We have to pay attention not to count edges twice because these cases may intersect.

Combining case 1 and 2 we add 1 + cn(e) for every e ∈ M to the edge reduction count where
cn({u, v}) denotes the number of common neighbours of u and v. Now consider the third case;
all possible subcases are shown in Figure 4.2. �e edge reduction for subcases (b) and (c) is
already correctly counted by our estimate (reduction of four edges), but in subcase (d) we have
a reduction of �ve edges, whereas our estimate counts six. Hence we need to subtract one for all
such 4-cliques that contain two matching edges. Lastly, in case (a) the edges {u, v} and {u′, v′}
are merged, thus we add one for all induced 4-cycles containing two matching edges.

Before we can formulate the problem as an integer linear program, we de�ne the sets S◻ and
S⊠, which are sets of unordered pairs of edges. If {u, v} and {w , x} are two vertex-disjoint edges,
we de�ne

{{u, v}, {w , x}} ∈ S◻ ⇐⇒ {u,w}, {v , x} ∈ E and {u, x}, {v ,w} ∉ E

32

and
{{u, v}, {w , x}} ∈ S⊠ ⇐⇒ {u,w}, {u, x}, {v ,w}, {v , x} ∈ E .

Summing the results so far up, we can calculate the edge reduction for a matching M by

∑
e∈M

(cn(e) + 1) + ∣{{e , f } ∈ S◻ ∶ e , f ∈ M}∣ − ∣{{e , f } ∈ S⊠ ∶ e , f ∈ M}∣.

For the integer linear program, we use binary variables Xe for all edges e ∈ E with the interpre-
tation Xe = 1 if and only if e is in the matching. Also we introduce binary variables Y{e , f } for all
{e , f } ∈ S◻⊍S⊠, which shall assume the value Y{e , f } = min{Xe , X f }, that means Y{e , f } = 1 if and
only if both edges e and f are in the matching, which are the situations of interest as discussed
previously. �e ILP is now formulated as follows:

maximize ∑
e∈E

(cn(e) + 1) ⋅ Xe + ∑
{e , f }∈S◻

Y{e , f } − ∑
{e , f }∈S⊠

Y{e , f }

subject to ∑e∋v Xe ≤ 1, for all v ∈ V
Y{e , f } ≤ Xe ,

for all {e , f } ∈ S◻
Y{e , f } ≤ X f ,

Xe + X f − Y{e , f } ≤ 1, for all {e , f } ∈ S⊠
Xe ,Ys ∈ {0, 1} for all e ∈ E, s ∈ S⊠ ∪ S◻

�e �rst inequality expresses that the variables Xe encode a valid matching. Since the variables
Y{e , f } are maximized for {e , f } ∈ S◻ andminimized for {e , f } ∈ S⊠, the other inequalities ensure
that Y{e , f } indeed is the minimum of Xe and X f .

In the worst case, the set S⊠ contains all edge pairs (e.g. if the graph is a complete graph). �us,
this formulation has O(n2) variables and O(n2) inequality constraints but for sparse graphs, the
size will be much lower.

4.5.2 ILP Formulation B

In our second formulation (ilp-b) we directly minimize the edge number ofG/M instead of max-
imizing the edge reduction. To encode amatchingM ⊆ E we introduce a binary variable for every

33

v

(a) neighbourhood of fM(v)

u v

(b) neighbourhood of fM({u, v})

Figure 4.3: Vertices and edges in G (marked green) become a neighbourhood in G/M.

vertex and now also for every edge:

Xv =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if v is not matched by M ,

0, otherwise,
for all v ∈ V ,

Xe =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if e ∈ M ,

0, otherwise,
for all e ∈ E .

�e vertex set of G/M can then be identi�ed with {v ∈ V ∶ Xv = 1} ∪ {e ∈ E ∶ Xe = 1}. We
introduce further integer variables Dv and De for all vertices v ∈ V and edges e ∈ E with the
meaning

Dv =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

deg(fM(v)), if v is not matched by M ,

0, otherwise,
for all v ∈ V ,

De =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

deg(fM(e)), if e ∈ M ,

0, otherwise,
for all e ∈ E .

By the handshaking lemma, instead of minimizing ∣E(G/M)∣ we can minimize the following
quantity:

2 ⋅ ∣E(G/M)∣ = ∑
v∈V

Dv +∑
e∈E

De .

Let us see how the neighbourhoods change a�er contracting a matchingM, as in the examples
depicted in Figure 4.3. If v is an unmatched vertex, the neighbourhood of fM(v) includes all

34

unmatched neighbours of v, and also everymatching edge incident to a neighbour of v becomes a
neighbour vertex. For a matching edge {u, v} ∈ M the neighbourhood of fM({u, v}) includes all
unmatched neighbours of either u or v, and also every matching edge (except for {u, v}) incident
to a neighbour of u or v becomes a neighbour vertex in the contracted graph. We de�ne the linear
terms

degree(v) ∶= ∑
u∈N(v)

Xu + ∑
e∈NI(v)

Xe

and
degree({u, v}) ∶= ∑

w∈N(u)∪N(v)
Xw + ∑

e∈NI(u)∪NI(v),
e≠{u,v}

Xe ,

where NI(v) denotes the set of neighbour-incident edges to v

NI(v) = {e ∈ E ∶ e is incident to some w ∈ N(v) but not to v}.

�e new ILP formulation for the Maximum Edge Reduction problem is displayed below:

minimize ∑v∈V Dv +∑e∈E De

subject to Xv +∑e∋v Xe = 1, for all v ∈ V
degree(v) ≥ Dv , for all v ∈ V
degree(v) ≤ Dv + n ⋅ (1 − Xv), for all v ∈ V
Dv ≤ n ⋅ Xv , for all v ∈ V
degree({u, v}) ≥ D{u,v}, for all {u, v} ∈ E
degree({u, v}) ≤ D{u,v} + n ⋅ (1 − X{u,v}), for all {u, v} ∈ E
D{u,v} ≤ n ⋅ X{u,v}, for all {u, v} ∈ E
Xv , Xe ∈ {0, 1}, for all v ∈ V , e ∈ E
Dv ,De ≥ 0, for all v ∈ V , e ∈ E

�e �rst set of equations states that the variables encode a valid matching. If Xv = 1, then Dv is
forced to assume the value of degree(v), otherwise Dv is set to zero. Similarly, if Xe = 1, then the
inequalities express De = degree(e), otherwise we have De = 0.

�is ILP formulation has 2 ⋅ (∣V ∣+ ∣E∣) variables and 4 ⋅ ∣V ∣+3 ⋅ ∣E∣ inequality constraints, which
improves the size of the previous ILP formulation from quadratic to linear.

35

graph name ilp-a time ilp-b time

1ubq 16 4.31 - -
C5 4 0.01 4 0.05
C5+ 3 0.01 3 0.04
Clebsch 9 0.04 9 15.28
knights8 8 27 12.05 - -
petersen 9 0.02 9 0.36
pyramid3 6 0.05 7 4.21
risk 9 0.17 - -

Table 4.5: Upper bounds and running times (in seconds) from the two ILP formulations

4.5.3 Evaluation

Table 4.5 shows the results of ilp-a and ilp-b on the collection of 15 graphs. On the graph instances
which are not listed here with or marked with “-” the ILP-solver had a running time of more
than 60 seconds and we cancelled the computation. �e results clearly indicate that these ILP
formulations are solvable in reasonable time only for very small graphs and also do not give an
improvement to the greedy algorithms using weighting functions. �e smallest graph that could
not be solved in under aminute (for both formulations) was “kneser8-3” with only 56 vertices and
its formulation ilp-a (ilp-b) has 2800 (672) variables and 5096 (1064) constraints. It is interesting
to see that ilp-b cannot be solved as fast as ilp-a despite of its linear size, which is probably due to
the more complex constraints of the second formulation.

4.6 Matchings from tree decompositions

�e heuristics presented so far are not able to outperform the pure application of the base algo-
rithm. A last attempt to achieve that shall be presented in this section, which again uses an integer
linear program.

At �rst, we want to motivate the idea informally using the analogy to trees in the real world.
Suppose that we are given a graph with a certain (low) treewidth, i.e. a tree-like graph. To re-
duce the treewidth of the graph, we should contract many edges that stand perpendicular to the
branches of the tree with the goal that all branches should bemade thinner. In the language of tree
decompositions the perpendicular edges are represented by the bags and the largest thickness of
a branch of course stands for the width of the tree decomposition.

36

�is leads to the following approach (which we simply call ilp-c): We run the base algorithm
on the input graph G and obtain a tree decomposition T of G. As described in Lemma 2, T
can be easily transformed into a tree decomposition TH of any minor H of G without increasing
the width. We look for a matching M such that the contracted graph G/M minimizes the width
of TG/M . In this section TG/M will be simply called the minor tree decomposition. �is directly
gives an upper bound for the treewidth of G/M, but as always in our setting of expanding tree
decompositions, we run the base algorithm again on G/M and might get a better width than the
width of TG/M .

�is approach should be seen dual to the expansion approach: We can use the information of a
(non-optimal) tree decomposition, i.e. a description of how the graph is structured like a tree, to
�nd a matching whose contraction causes a large treewidth reduction. �e expansion approach,
which is done a�erwards, conversely uses that matching to compute a new tree decomposition of
the graph.

Consider the following ILP formulation for a given a graph G = (V , E) and a tree decomposi-
tion T = ({Bi}i∈I , T).

minimize w

subject to ∑e∋v Xe ≤ 1, for all v ∈ V
∣Bi ∣ − ∑e⊆B i ,e∈E Xe ≤ w, for all i ∈ I
w ≥ 0, Xe ∈ {0, 1}, for all e ∈ E

Here we use the variable names Bi for the bags to avoid confusion with the variables Xe . Again
we use binary variables Xe for all edges e ∈ E, which encode the matching, and an additional
integer variable w, which is the maximal bag size of the minor tree decomposition. �e �rst
set of inequalities again expresses that the variables Xe encode a valid matching. By contracting a
matchingM the number of vertices in a bag Bi is reduced by the number ofmatching edges whose
endpoints are both in Bi . �e second set of inequalities assures thatw assumes the maximum bag
size of the minor tree decomposition, since w is minimized.

Evaluation

For the experiments, we only used MinimumDegreeFillIn as the base algorithm. Table 4.6
compares the upper bounds computed by ilp-c with MinimumDegreeFillIn. We also list the
widths from the intermediate steps, i.e. the width of the minor tree decomposition and of the
tree decomposition that is computed for the contracted graph G/M (columns: minor and con).

37

graph name none minor con ilp-c

1ubq 12 7 7 13
C5 2 2 2 2
C5+ 2 1 1 3
Clebsch 10 5 5 10
gr216 91 52 52 91
hamming9-2 203 203 203 203
kneser8-3 34 17 17 34
knights8 8 20 11 11 21
macaque71 21 10 11 21
petersen 4 3 3 6
pyramid3 5 3 3 5
risk 5 3 3 6
scoregraph 320 163 163 321
sheep 330 234 267 361
sudoku 51 25 25 51

Table 4.6: Widths computed in ilp-c compared to md�

In most of the cases the ILP solution the minor tree decomposition width is close to a half of the
original width such that the �nal upper bound has a di�erence of atmost by one to the width from
MinimumDegreeFillIn. Hence, ilp-c cannot improve the performance of the base algorithm.
For the “sheep” graph, we again have an interesting situation because MinimumDegreeFillIn
computes an upper bound for the contracted graph that is larger than the width that we get from
the minor tree decomposition. For the graph instance “hamming9-2” we also have an odd case,
as the solution of the ILP yielded that no edges should be contracted.

Although this approach seems to have failed, we can learn something from the results. �e
experiment proved that many of our test graphs are actually “good” instances, in the sense that for
these graphs indeed there exist matching contractions that can lower the treewidth of the graph
to its half. �is gives us hope that our general approach is not totally pointless but might have
room for improvement. Maybe we simply have not found the right algorithms yet to compute
good, treewidth reducing matching contractions.

38

graph name none time td time eo time td+pp time eo+pp time

�3795 13 9.65 19 3.65 18 4.27 18 5.11 18 5.41
fnl4461 37 22.29 49 8.51 40 10.53 43 12.67 37 13.46
pcb3038 30 7.84 49 3.00 43 3.99 42 4.90 38 5.21
rl5915 28 7.35 41 3.04 36 3.72 34 4.66 31 4.73
rl5934 26 8.10 49 3.34 46 4.17 41 5.61 38 5.25
scoregraph 320 58.14 371 18.72 366 158.13 351 176.05 351 293.96
sheep 330 249.28 439 98.08 432 535.38 361 602.92 326 915.90

Table 4.7: Upper bounds and running times of greedy weighted matching algorithm. td: tree
decomposition expansion, eo: elimination ordering expansion, pp: post-processing.
(base algorithm: md�)

4.7 Further extensions and running time analysis

Finally we want to compare the expansion of tree decompositions with the expansion of elimina-
tion orderings. In the worse case, both approaches can give an increase from width k to 2k + 1.
Additionally, we will test the presented post-processing method and have a look at the running
times of our algorithms compared to the ones of the base algorithm. We will use the greedy
weighting matching algorithm with the degree sum weighting, which seemed to be the best per-
forming algorithm of the presented ones.

We use the base algorithm MinimumDegreeFillIn. As usual we also run the pure Mini-
mumDegreeFillIn algorithm on the test instances as a reference point, but this time we addi-
tionally convert the computed elimination ordering into a tree decomposition, as it would be
needed in a practical settings. Our developed algorithms also output tree decompositions, not
just the upper bounds or elimination orderings, and this allows a fair comparison regarding the
running times.

Table 4.7 shows the results on the �ve TSP graphs, “scoregraph” and “sheep”. We see that ex-
panding elimination orderings generally gives better bounds than expanding tree decomposi-
tions. �e relative di�erence is larger on the TSP graphs with smaller treewidths than on “score-
graph” and “sheep” having large treewidths. Adding the post-processing to the tree decomposi-
tion approach generally (td+pp) takes slightly more time than the elimination ordering approach
(eo) and for most of the graphs the algorithm td+pp computed better bounds. Both extensions
combined (eo+pp) can result in a total improvement up to 25% to the standard tree decomposi-
tion approach without post-processing. �is algorithm unexpectedly even outperformed Mini-
mumDegreeFillIn on the “sheep” graph.

39

However, we have to admit that these results for the “sheep” graph took quite a long com-
putation time, clearly longer than MinimumDegreeFillIn. On the �ve TSP graphs the greedy
weighted matching algorithm always performed faster thanMinimumDegreeFillIn, but for the
computed bounds the base algorithm proves to be better. On average the algorithm eo+pp im-
proved the running time ofMinimumDegreeFillIn by 40% in trade for an increase of the upper
bound by around 20%.

In practical applications, algorithms that use tree decompositions usually have running times
which are exponential in the width of the given tree decomposition. �us, the computation of a
good tree decomposition is o�enworth accepting longer running times of the tree decomposition
algorithm. In the light of that, we think that onewould prefer the greedy triangulation algorithms,
such as MinimumDegreeFillIn, over our algorithms.

40

5 Summary

In this thesis we have studied a general method to compute tree decompositions with the help of
a matching contracted graph and an additional tree decomposition algorithm. We presented the
possible approaches of expanding tree decompositions or elimination orderings and discussed
several matching algorithms, which we evaluated in computational experiments. We come to the
conclusion that the algorithms developed o�en compute widths that are far lower than the pre-
dicted upper bound of 2k+ 1, where k is the upper bound computed for the contracted graph, but
rarely give widths that are lower than k. Our best performing algorithm computes the matching
by greedily picking edges according to a certain edge weighting. Considering both the quality of
the computed upper bounds and the running times, this algorithm gives the best results when
executed on larger graphs (1000 and more vertices).

Clearly, the main issue lies in designing a good matching algorithm. An experiment using
a speci�c algorithm demonstrated that the treewidth of a graph can be lowered to its half by a
matching contraction but in this thesis the algorithms proposed either could not decrease the
treewidth low enough or had unacceptable long running times. Towards �nding better matching
algorithms, we think that one should focus on the open question of the existence of a polynomial-
time algorithm that minimizes the treewidth of a graph by contracting a matching.

We believe that our approach can be improved in several directions. We have seen that using
our approach the running times of the base algorithms can be reduced considerably, which leaves
space for further computations to improve the widths of the resulting tree decompositions. Better
post-processing methods could lower the width even more than in our experiments. Instead of
using greedy triangulation algorithms, one could also try out other base algorithms which might
require more time to compute better upper bounds. We also mentioned already that instead of
contracting only matchings, one could study whether merging larger connected subgraphs into
single vertices can improve our results.

A last idea we propose is a recursive algorithm that on every recursion level expands a com-
puted tree decomposition (or elimination ordering) and lowers the width of the expansion using
post-processing methods. �is resembles the procedure of Bodlaender’s algorithm but in the
form of a non-exact heuristic algorithm.

41

Bibliography

[Ach09] Tobias Achterberg. SCIP: Solving constraint integer programs. Mathematical Pro-
gramming Computation, 1(1):1–41, 2009.

[ACP87] S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of �nding embeddings in
a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

[BGHK92] Hans L. Bodlaender, John R. Gilbert, Hjálmtýr Hafsteinsson, and Ton Kloks. Ap-
proximating treewidth, pathwidth, andminimum elimination tree height. InGraph-
�eoretic Concepts in Computer Science, pages 1–12. Springer, 1992.

[BK96] Hans L. Bodlaender and Ton Kloks. E�cient and constructive algorithms for the
pathwidth and treewidth of graphs. Journal of Algorithms, 21(2):358–402, 1996.

[BK10] Hans L. Bodlaender and Arie M.C.A. Koster. Treewidth computations I. Upper
bounds. Information and Computation, 208(3):259–275, 2010.

[BK11] Hans L. Bodlaender and A.M.C.A. Koster. Treewidth computations II. Lower
bounds. Information and Computation, 209(7):1103–1119, 2011.

[Bod96] Hans L. Bodlaender. A linear-time algorithm for �nding tree-decompositions of
small treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

[Bod98] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. In J.
Algorithms, pages 1–16. Springer, 1998.

[Cou90] B. Courcelle. �e monadic second order theory of Graphs I: Recognisable sets of
�nite graphs. Information and Computation, 85:12–75, 1990.

[DJK11] Balázs Dezs, Alpár Jüttner, and Péter Kovács. LEMON– anOpen Source C++Graph
Template Library. Electron. Notes �eor. Comput. Sci., 264(5):23–45, July 2011.

[Edm65] J. Edmonds. Paths, trees, and �owers. Canadian Journal of mathematics, 17(3):449–
467, 1965.

[FG65] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs. Paci�c
Journal of Math., 15:835–855, 1965.

43

[Liu85] JosephW. H. Liu. Modi�cation of the minimum-degree algorithm by multiple elim-
ination. ACM Trans. Math. So�w., 11(2):141–153, June 1985.

[RS86] Neil Robertson and P.D. Seymour. Graph Minors. II. Algorithmic aspects of tree-
width. Journal of Algorithms, 7(3):309–322, 1986.

[RS04] Neil Robertson and P.D. Seymour. Graph Minors. XX. Wagner’s conjecture. Journal
of Combinatorial �eory, Series B, 92(2):325–357, 2004.

[Rö98] Hein Röhrig. Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-
Institut für Informatik, Saarbrücken, Germany, 1998.

[ST93] P. D. Seymour and Robin �omas. Graph searching and a min-max theorem for
tree-width. J. Comb. �eory Ser. B, 58(1):22–33, May 1993.

[TY84] R. Tarjan and M. Yannakakis. Simple Linear-Time Algorithms to Test Chordality of
Graphs, Test Acyclicity ofHypergraphs, and Selectively ReduceAcyclicHypergraphs.
SIAM Journal on Computing, 13(3):566–579, 1984.

44

	Introduction
	Algorithms for Computing Tree Decompositions
	Preliminaries
	Bodlaender's algorithm
	Greedy triangulation algorithms
	Post-processing

	Contracting Matchings and Tree Decompositions
	Expanding a tree decomposition
	Contracting edges vs. merging subgraphs
	Limitations of the approach
	Expanding elimination orderings

	Computational Evaluation
	Test graphs and generation of random partial k-trees
	Maximal matchings
	Maximum cardinality matchings
	Weighted matchings
	Maximum edge reduction
	Matchings from tree decompositions
	Further extensions and running time analysis

	Summary
	Bibliography

