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Preface
VoorwoordFrom April 1, 1996 men in the Netherlands are not obliged anymore to join the militaryservice. However, in the spring of 1995, I received my summons to join the service startingMarch 1996. So, I would belong to the last of the Mohicans who has to perform his duty.However, at more or less the same moment, Antoon Kolen and Olaf Flippo o�ered me apossibility to escape. They asked me to become a Ph.D. student at Maastricht Universityfor the next 4 years. So, I had to make a decision between 9 months of military serviceand 4 years Ph.D. studentship. About four and a half years later, this thesis clari�es mychoice: I became a Ph.D. student.The choice to accept a Ph.D. studentship was, of course, not only made by the alternativeof serving the country as a soldier. The application of mathematics to real problemsattracted my attention from the start of my studies in Technical Mathematics at DelftUniversity of Technology in 1991. I specialized in operations research, and in the lastyear I met two other students, who did their graduation project on frequency assignment.Their subject called my attention to the operations research problems in telecommuni-cation, which resulted in my application for the position in the project CombinatorialOptimization problems in Telecommunication, with an emphasis on the frequency assign-ment problem. Antoon and Olaf o�ered me the freedom to do research on network designproblems as well. Altogether, an attractive position in which I could do research to solvereal-life operations research problems.After �nishing my Master's Thesis and a holiday, I started in Maastricht in September1995. Soon, I discovered that Antoon and Stan van Hoesel had made a bet about theresults of my research project. My task was to �nd the optimal solution for 11 frequencyassignment problems. In case the optimal solution for an instance was better than thebest known value (derived by Antoon), Antoon should pay Stan a bottle of wine. In casethe optimal solution was equal to the best known one, a bottle of wine should go theother way. By now, we can conclude that Stan lost 7 bottles of wine to Antoon, whereasthe bet has not ended yet for the 4 other frequency assignment problems.It will be clear that Antoon, Stan and Olaf played an important role during my years inMaastricht. I owe a lot to them for their support, cooperation and friendship. Withoutthe stimulating environment they created, this thesis would probably never have beencompleted. I am also indebted many thanks to them for the freedom they gave meto do research on other topics in telecommunication as well. To work on two di�erenti



Prefacetopics, frequency assignment and network design gave me the opportunity to extend myknowledge to the whole area of operations research and telecommunication. The researchon telecommunication network design resulted in three articles [56, 86, 132] that are notpart of this thesis (they appeared in the Ph.D. thesis of Robert van de Leensel [131]).Speaking of Robert, a special word of thanks should be devoted to him. He was for almost4 years my roommate and co-researcher. The afternoons that we locked the door, anddiscussed research topics together are worthwhile remembering. They were pleasant andproductive at the same time. Many times, Robert acted as guinea-pig to test the validity ofnew ideas. Besides the research activities, I also indebted thanks to him for our discussionson varying topics, the joint travel experiences (especially in the U.S.A. and Israel), andlast but not least his friendship. Besides the already mentioned people, I have to thankthe other members of the Operations Research group in the years 1995-1999: Joris van deKlundert, Ron van der Wal, Rudolf Müller, Jos Sturm and Jan-Willem Goossens. Theywere always available to answer my questions. Of course, also many thanks to the othermembers of the Department of Quantitative Economics for the pleasant contacts.Furthermore, I have to thank the students in Econometrics for their interest in my researchproject. For four years I had the opportunity to teach them the basics and more advancedlevels of programming in C++. Without mentioning particular students, very pleasantcontacts originate from these courses. I also have to acknowledge some people from out-side Maastricht. A couple of people served as hosts during the trip with Robert throughthe United States of America. The (�nancial) support of Martin Savelsbergh (GeorgiaInstitute of Technology), Rutgers University, Oktay Günlük (AT&T Labs), Daniel Bi-enstock (Columbia University), David Williamson (IBM T.J. Watson Research Center),and `Raghu' Raghavan (US West Telecommunications) provided that our trip ended suc-cessfully. The visit of the INFORMS Israel conference was �nancially supported by ShellNederland.Tot slot gaat mijn dank uit naar mijn familie en vrienden in Schoonhoven en omgeving.In het bijzonder moet ik mijn ouders en mijn zus Cora bedanken voor hun niet-a�atendesteun en belangstelling voor mijn onderzoek en onderwijs. Veel dank ben ik verschuldigdvoor hun ondersteunende activiteiten, zoals het vele wassen en strijken als ik weer eensmet een uitpuilende tas met wasgoed thuiskwam. In de toekomst hoop ik jullie daar nietal te vaak meer mee lastig te vallen.Finally, my latest but not least word of thanks has to go to our Creator, Who amongall other things He did for me, talented me with the gift for mathematics. Without Hisnever-ending aid and assistance, I would not have been able to complete this thesis.Arie KosterSeptember 1999ii



Contents
InhoudsopgavePreface iContents iiList of Figures vList of Tables vii1 Introduction 11.1 History of Wireless Communication . . . . . . . . . . . . . . . . . . . . . . 11.2 Applications of Wireless Communication . . . . . . . . . . . . . . . . . . . 31.2.1 Radio and television broadcasting . . . . . . . . . . . . . . . . . . . 31.2.2 Terrestrial mobile cellular networks . . . . . . . . . . . . . . . . . . 31.2.3 Satellite-based cellular systems . . . . . . . . . . . . . . . . . . . . 61.2.4 Fixed cellular telecommunication networks . . . . . . . . . . . . . . 61.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 The Frequency Assignment Problem: A Survey 112.1 The Frequency Assignment Problem . . . . . . . . . . . . . . . . . . . . . 122.2 Fixed Channel Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.2.1 Minimization of the Maximum Penalty . . . . . . . . . . . . . . . . 152.2.2 Minimization of the Cumulative Penalty . . . . . . . . . . . . . . . 162.2.3 Frequency Assignment and Graph Coloring . . . . . . . . . . . . . . 172.2.4 Application speci�c properties . . . . . . . . . . . . . . . . . . . . . 182.3 Minimum Order Frequency Assignment . . . . . . . . . . . . . . . . . . . . 202.3.1 Problem De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.3.2 Benchmark Instances . . . . . . . . . . . . . . . . . . . . . . . . . . 222.3.3 Lower Bounds and Exact Methods . . . . . . . . . . . . . . . . . . 232.3.4 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.4 Minimum Span Frequency Assignment . . . . . . . . . . . . . . . . . . . . 252.4.1 Problem De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.4.2 Benchmark Instances . . . . . . . . . . . . . . . . . . . . . . . . . . 282.4.3 Lower Bounds and Exact Methods . . . . . . . . . . . . . . . . . . 292.4.4 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322.4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33iii



Contents2.5 Minimum Blocking Frequency Assignment . . . . . . . . . . . . . . . . . . 342.5.1 Problem De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . 342.5.2 Lower Bounds and Exact Methods . . . . . . . . . . . . . . . . . . 362.5.3 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372.5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382.6 Minimum Interference Frequency Assignment . . . . . . . . . . . . . . . . 382.6.1 Problem De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . 382.6.2 Benchmark Instances . . . . . . . . . . . . . . . . . . . . . . . . . . 402.6.3 Lower Bounds and Exact Methods . . . . . . . . . . . . . . . . . . 412.6.4 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412.6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452.7 Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 The Partial Constraint Satisfaction Formulation 493.1 The partial constraint satisfaction problem . . . . . . . . . . . . . . . . . . 503.2 Formulation, Dimension and Trivial Facets . . . . . . . . . . . . . . . . . . 523.3 Lifting theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.4 Non-trivial classes of facets . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.4.1 The cycle inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 583.4.2 The clique-cycle inequalities . . . . . . . . . . . . . . . . . . . . . . 603.5 Separation of non-trivial facets . . . . . . . . . . . . . . . . . . . . . . . . . 633.5.1 The cycle inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 643.5.2 The clique-cycle inequalities . . . . . . . . . . . . . . . . . . . . . . 703.6 The Boolean Quadric Polytope and the PCSP . . . . . . . . . . . . . . . . 733.7 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804 A Tree Decomposition Approach 834.1 Graph Theoretic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 844.2 Construction of a Tree-Decomposition . . . . . . . . . . . . . . . . . . . . . 874.2.1 Minimum separating vertex set in a graph . . . . . . . . . . . . . . 874.2.2 Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884.3 Dynamic Programming Algorithm . . . . . . . . . . . . . . . . . . . . . . . 894.4 Reduction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914.4.1 Constraint graph reduction . . . . . . . . . . . . . . . . . . . . . . . 924.4.2 Penalty shifting - Lower bounding . . . . . . . . . . . . . . . . . . . 944.4.3 Domain reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944.5 Iterative Version Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 1004.6 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044.6.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054.6.2 Construction of Tree-decompositions . . . . . . . . . . . . . . . . . 106iv



Contents4.6.3 Dynamic Programming Algorithm . . . . . . . . . . . . . . . . . . . 1074.6.4 Iterative version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1094.6.5 Iterative Algorithm and Integer Programming . . . . . . . . . . . . 1114.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125 Local Search Approaches 1175.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175.2 Local Search and Integer Programming . . . . . . . . . . . . . . . . . . . . 1185.2.1 Neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195.2.2 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . 1195.3 Local Search and Tree Decomposition . . . . . . . . . . . . . . . . . . . . . 1215.3.1 Neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225.3.2 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . 1235.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236 Directions for Further Research and Concluding Remarks 1256.1 Directions for Further Research . . . . . . . . . . . . . . . . . . . . . . . . 1256.1.1 Benders Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 1256.1.2 Lagrangean Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 1266.1.3 Semi-De�nite Programming Relaxation . . . . . . . . . . . . . . . . 1276.1.4 Frequency Assignment Formulation . . . . . . . . . . . . . . . . . . 1296.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132Bibliography 135Author index 149Samenvatting in het Nederlands - Summary in Dutch 153Introductie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153Frequentie Toewijzing: Een Overzicht . . . . . . . . . . . . . . . . . . . . . . . . 154Exacte Methoden voor het MI-FAP . . . . . . . . . . . . . . . . . . . . . . . . . 157Heuristieken voor MI-FAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158Richtingen voor Nader Onderzoek en Conclusies . . . . . . . . . . . . . . . . . . 158Curriculum Vitae 161

v





List of Figures
Lijst van Illustraties1.1 Radio spectrum for wireless communication . . . . . . . . . . . . . . . . . 21.2 Subscribers GSM Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.1 Philadelphia instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.2 Reuse distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.1 Extension of the graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553.2 Extension of the domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.3 Cycle Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593.4 Clique-Cycle Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603.5 (
; k)-Clique-Cycle Inequalities . . . . . . . . . . . . . . . . . . . . . . . . 613.6 Digraph for the separation of cycle inequalities . . . . . . . . . . . . . . . 694.1 Example path decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 854.2 Example tree decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 864.3 Improvement step of a tree decomposition . . . . . . . . . . . . . . . . . . 894.4 Heuristic for construction of a tree decomposition . . . . . . . . . . . . . . 904.5 Dynamic programming algorithm . . . . . . . . . . . . . . . . . . . . . . . 924.6 Example shifting penalties . . . . . . . . . . . . . . . . . . . . . . . . . . . 944.7 Example upper bounding and dominance . . . . . . . . . . . . . . . . . . 954.8 Example iterative algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 1014.9 Iterative version of the algorithm . . . . . . . . . . . . . . . . . . . . . . . 1034.10 Example partition of subsets . . . . . . . . . . . . . . . . . . . . . . . . . . 1034.11 Graphical representation CELAR 06 . . . . . . . . . . . . . . . . . . . . . . 1084.12 Number of non-redundant assignments CELAR 06 . . . . . . . . . . . . . . 1104.13 Lower bounds CELAR 06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124.14 Vertices and domain-subsets chart iterative algorithm . . . . . . . . . . . . 1134.15 Max number of non-redundant assignments iterative algorithm . . . . . . . 1146.1 Example semi-de�nite relaxation . . . . . . . . . . . . . . . . . . . . . . . 129

vii





List of Tables
Lijst van Tabellen2.1 Minimum Order benchmark instances CALMA project . . . . . . . . . . . 242.2 Characteristics Philadelphia benchmark instances. . . . . . . . . . . . . . 302.3 Results Philadelphia benchmark instances . . . . . . . . . . . . . . . . . . 302.4 Minimum Span benchmark instances CALMA project . . . . . . . . . . . . 312.5 Minimum Interference benchmark instances CALMA project . . . . . . . . 423.1 Computational results jDvj = 2 . . . . . . . . . . . . . . . . . . . . . . . . 783.2 Comparison exact and heuristic separation . . . . . . . . . . . . . . . . . . 783.3 Separation valid inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 793.4 Results on a subgraph problem with jDvj = 44. . . . . . . . . . . . . . . . 804.1 Penalties example upper bounding and dominance . . . . . . . . . . . . . 964.2 Statistics and preprocessing CALMA-instances . . . . . . . . . . . . . . . 1064.3 Construction of a tree decomposition . . . . . . . . . . . . . . . . . . . . . 1074.4 Computational results dynamic programming algorithm test instances . . 1094.5 Computational results dynamic programming algorithm . . . . . . . . . . 1094.6 Computational results iterative version of the algorithm . . . . . . . . . . 1114.7 Computational results iterative algorithm and integer programming . . . . 1155.1 Results local search and integer programming . . . . . . . . . . . . . . . . 1205.2 Local search and tree decomposition . . . . . . . . . . . . . . . . . . . . . 1246.1 Comparison integer programming formulations . . . . . . . . . . . . . . . . 1316.2 Minimum Interference lower and upper bounds CALMA instances . . . . . 133

ix





1. Introduction
Mathematical models and algorithms for frequency assignment problems are the topicof this thesis. Frequency assignment problems occur in many di�erent types of wirelesscommunication networks. In the last decade, the rapid development of new wirelessservices like digital cellular phone networks resulted in a run out of the most importantresource, frequencies in the radio spectrum. Like with all scarcely available resources, thecost of frequency-use provides the need for economic use of the available frequencies. Reuseof frequencies within a wireless communication network can o�er considerable economies.However, reuse of frequencies also leads to loss of quality of communication links. The useof (almost) the same frequency for multiple wireless connections can cause an interferencebetween the signals that is unacceptable. The frequency assignment problem balances theeconomies of reuse of frequencies and the loss of quality in the network. Quanti�cation ofthe di�erent aspects results in a mathematical optimization problem that can be solvedwith Operations Research techniques. Depending on the point of view of the researchers,the goal of the network provider, and application speci�c conditions many di�erent modelsand algorithms are proposed.The Chapters 2-6 are devoted to these models and algorithms. In this chapter we introducethe frequency assignment problem through a brief description of the early history ofwireless communication networks in Section 1.1. In Section 1.2 we continue with thediscussion of a number of applications of wireless communication in which the assignmentof frequencies plays a crucial role. We conclude this chapter with an outline of the sequelof this thesis in Section 1.3. The contents of the Sections 1.1 and 1.2 is partly based onthe encyclopedias [29] and [52].1.1 History of Wireless CommunicationMore than a century ago, in the early 1890s, Marconi started to experiment with wirelesscommunication via radio waves. His research resulted in 1897 in the successful transmis-sion of radio waves to a ship at sea over a distance of 29 kilometers. A couple of yearslater, it was possible to transmit signals across the Atlantic Ocean, and already in 1905many ships were using wireless telegraphy to communicate with shore stations. The im-portance of Marconi's invention can be demonstrated with for example the sinking of theTitanic. Without the equipment to communicate with other ships and shore stations, the1



1. Introductiondisaster would be considerably larger than it already was. In 1909, Marconi received theNobel Prize in physics for his pioneering work on the wireless telegraph. Continuing im-provements of the equipment resulted in the establishment of wireless telephony betweenVirginia and Paris in 1915. After World War I, radio broadcasting became more andmore popular, �rst on an amateur level, later by professional broadcasters. Experimen-tal television broadcasting already began in the 1930s and was successfully introducedto the mass since the end of the 1940s. In the last 50 years, the radio spectrum hasbeen explored for wireless communication in many di�erent ways. For example, spacemissions are not possible without communication via radio waves. It is not only used forvoice communication with the astronauts, but also for the navigation of the spacecrafts.Nowadays radio waves are used for wireless telegraphy, radio broadcasting, television, cel-lular telephone networks, radar, navigational systems (air and sea tra�c control), militarycommunication, and space communication.Every application uses a speci�c part of the radio spectrum. The frequencies that can beused for wireless communication range from 3 kilohertz to 300 gigahertz. These valuescorrespond with a wavelength between 1 mm and 100 km. Figure 1.1 shows an overview ofwhich frequencies are used for the di�erent applications. The most popular applications,radio, television, and cellular phone use frequencies in the very high frequency (VHF)and ultra high frequency (UHF) spectrum. The use of frequencies for an application isregulated by the International Telecommunication Union (ITU) and national agencies.They issue licenses to use certain frequencies.
frequencywavelength

3 kHz
100 km

30 kHz
10 km

300 kHz
1 km

3 MHz
100 m

30 MHz
10 m

300 MHz
1 m

3 GHz
10 cm

30 GHz
1 cm

300 GHz
1 mmVLF LF MF HF VHF UHF SHF EHF

maritimenavigation navigationalaids AM radio,maritimeradio shortwaveradio VHF television,FM radio UHF television,cellular phone,global position space / satellitecommunication,microwaves radioastronomy,radar
very lowfrequency lowfrequency mediumfrequency highfrequency very highfrequency ultra highfrequency super highfrequency extreme highfrequencyFigure 1.1: The radio spectrum that can be used for wireless communication.Wireless communication between two points is established with the use of a transmit-ter and a receiver. The transmitter generates electrical oscillations at a radio frequency;the carrier frequency. Oscillations at a radio frequency can be modulated either via theamplitude or the frequency itself. The receiver detects these oscillations and transformsthem in either sounds or images. When two transmitters use (almost) the same carrierfrequency, they may interfere. The level of interference depends on many aspects like thedistance between the transmitters / receivers, the geographical position of the transmit-ters, the power of the signal, the direction in which the signal is transmitted, and theweather conditions. In case the level of interference is high, the received signal may dropbelow the signal-to-noise ratio, which causes an unacceptable loss of quality. However,2



1.2. Applications of Wireless Communicationthe limited availability of frequencies causes their reuse by multiple transmitters withinone and the same network.As a consequence, an operator should carefully choose the frequencies on which eachstation transmits to avoid high interference-levels. The selection of the frequencies in sucha way that interference is avoided, or second best, is minimized, is called the FrequencyAssignment Problem (FAP). Depending on the application the conditions that should besatis�ed by the frequency plan may vary. Therefore, it is not surprising that many di�erentapproaches have been suggested in the literature to solve this problem. In Chapter 2 wesurvey the most recent approaches. For now, we would like to illustrate the wide varietyof FAPs with a brief discussion of the most popular applications. Successively, we discussin the next section radio and television broadcasting, cellular telephone networks (bothterrestrial and satellite based), and �xed location wireless telecommunication networks.1.2 Applications of Wireless Communication1.2.1 Radio and television broadcastingTill the large-scale introduction of cable television and satellite broadcasting in the be-ginning of the 1980s, the most convenient way to transmit radio and television signalswas (and still is for radio) through the air. To cover an area for radio or television broad-casting, antennae scattered around the region are necessary. For radio, each of theseantennae transmit in a radial way either an Amplitude Modulated (AM) or a FrequencyModulated (FM) signal. For AM signals frequencies in the range from 540 kHz to 1600kHz (medium frequency spectrum) are used, whereas FM signals are transmitted on VHFfrequencies in the range 87 MHz - 108 MHz. Another part of the VHF spectrum and UHFfrequencies are explored to transmit television signals. Like radio, the television signal isnot directed but transmitted in a radial way. The signal transmitted by an antenna maynot interfere with other signals transmitted by other radio or television services in thesame area. Moreover, in case two antennae of the same broadcasting service cover a partof the area simultaneously, the signals of these antennae are not allowed to interfere aswell.1.2.2 Terrestrial mobile cellular networksThe last decade the development of (digital) cellular phone networks not only attractsthe attention of the scienti�c community, but in�uences the whole society. Cellular phonenetworks, however, exist already more than 50 years. As early as 1946, the �rst commercialmobile telephone service (MTS) was introduced by AT&T. Eighteen years later, AT&T3



1. Introductionintroduced an improved version (IMTS). In this system 11 channels were available for allusers within a geographic area. Since each frequency could be used only once (withoutinterference), the IMTS system had a very limited capacity. In the region New Yorkfor example, the number of subscribers was limited to 545. In the late 1970s AT&Tand Motorola Inc. developed the advanced mobile phone system (AMPS). AMPS had atits disposal 666 paired voice channels. These 666 channels made it possible to serve alarge population. The system, publicly introduced in 1983, had 200,000 subscribers afterthe �rst year and 2,000,000 �ve years later. To increase the capacity even further, 166additional channels were made available for the AMPS. Systems like the AMPS were alsodeveloped in Japan (1979) and Europe (starting in Scandinavia in 1981).A disadvantage of the systems available in Europe during the 1980s was the incompatibil-ity with one another. Therefore, in 1988 the Groupe Speciale Mobile (GSM) was foundedby a group of government-owned telephone companies. They developed a new digital-based mobile communication standard, which is in use since 1992. GSM networks usefrequencies in the 900 Mhz and 1800 Mhz spectrum (UHF). The GSM system became anoverwhelming success, not only in Europe, but currently all around the world. At the endof 1998 a total of 320 networks in 118 countries were serving approximately 135 millioncustomers (cf. Figure 1.2) [51, 77]. In the Netherlands, currently 5 providers of cellular
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Figure 1.2: Number of subscribers to a GSM network [51, 77].networks are active, serving more than 5 million customers (over 30% of the Dutch pop-ulation) by the end of 1999 [151]. KPN Telecom, the former state telephone company,4



1.2. Applications of Wireless Communicationstarted already in 1992 with its GSM network. In 1995 the new �rm Libertel became thesecond provider of GSM in the 900 MHz spectrum in the Netherlands. Within 4 yearsLibertel became a company with more than 1.4 million customers, and a market valueof 12 billion guilders1. After an auction of the available frequencies in the 1800 MHzspectrum in 1998, Telfort, Dutchtone and Ben started the construction of their cellularphone network.A third generation of mobile communication will be introduced in the near future. UMTS(Universal Mobile Telecommunications System) will replace GSM as the new world widestandard for cellular phone networks. In contrast, with the current GSM system, UMTSwill be compatible in both Europe and the United States of America. UMTS will use highspeed connections (up to 2 megabit per second), which enables mobile use of internet andvideo communication.All terrestrial cellular phone systems can be characterized by the following properties.They consist of a number of base stations that divide a geographic area to be served insmaller areas, called cells. Each base station operates on a certain frequency. A cellularphone within a cell is connected with the base station upon request via this frequency. As amobile phone proceeds from one cell to another during a call, a mobile telephone switchingo�ce arranges that the call continues without noticeable interruption. If the demand forthe wireless service within a cell exceeds the capacity of the base station, splitting the cellinto smaller cells can increase the capacity. Depending on the geographical position, thepower of the signal and the direction in which the signal is transmitted, transceivers mayinterfere when they use (almost) the same frequency.The rapid development of cellular telephone networks in recent years has increased theneed for good solution techniques for the frequency assignment problem for cellular net-works. A main di�erence between radio / television broadcasting and cellular phonenetworks is the need for an individual connection for every customer. In radio and televi-sion networks thousands or even millions of customers receive the same signal transmittedby one single antenna. In a cellular phone network, a signal is transmitted only betweenone transmitter and one receiver. Technological developments like Frequency DivisionMultiple Access (FDMA), Time Division Multiple Access (TDMA), and Code DivisionMultiple Access (CDMA) make it possible to use a frequency simultaneously for a lim-ited number of di�erent customers within the same cell. Nevertheless, the service area ofa cellular network has to be covered with a substantially larger number of antennae tosatisfy the demand. In a country like the Netherlands for example, a radio or televisionnetwork can cover the area with less than a dozen transmitters. In contrast, the numberof transmitters needed to cover the same area for a mobile phone service can be as largeas a couple of thousands. Combined with about 40 available frequencies, we have to con-clude that each frequency must be reused many times. Fortunately, the low transmitting11 guilder = 0.45378 euro 5



1. Introductionpower of battery-operated portable phones o�ers the opportunity to increase the reuse offrequencies within the same service area without interference.Not only, the scale of the cellular radio networks, but also the investments related to it,strengthen the need for good frequency plans. Let us illustrate the importance of a goodassignment by the investments related to GSM networks in the Netherlands. The threeproviders Telfort, Dutchtone, and Ben paid altogether reputedly 1.8 billion guilders forthe frequencies in the 1800 Mhz spectrum that were sold at an auction in 1998. Besidesthis investment, the building of a cellular network costs at least 300 million guilders.However, all these e�orts are worthless without a good frequency plan that can guaranteehigh-quality communication links to the customers.1.2.3 Satellite-based cellular systemsIn addition to the terrestrial systems, in recent years satellite-based telephone systemsare under construction. With such a system it is possible to make a connection with acellular phone all around the world, especially in those regions currently not covered by aterrestrial system. In contrast with other satellite communication systems, satellite-basedphone systems operate in the low earth orbit (780 km high), and are therefore called LEOsystems. The satellites work di�erently from those at a much higher orbit (36,000 km) intwo major ways. First, the small distance between earth and satellite makes it possibleto connect to the system with a handheld device. Second, signals can be moved overheadin between satellites without the use of base stations at the earth [93]. The �rst LEOsystem is operated by Iridium Inc. [93], a consortium of corporations and governmentsfrom around the world. It consists of 66 satellites, forming a cross-linked grid above theEarth. In the near future, operators will supply services in which terrestrial and satellitecommunication are integrated.Like in the terrestrial systems, the satellites operate on certain frequencies, that have tobe selected in such a way that interference is avoided. Not only frequencies are neededto communicate with handheld devices, but also to establish communication betweensatellites and ground stations, and between satellites mutually.1.2.4 Fixed cellular telecommunication networksOne of the most recent applications of wireless communication is the establishment of�xed cellular telecommunication networks. In contrast with mobile cellular networks,in non-mobile or �xed systems both the transmitters and receivers are located at �xedpoints in the area. Fixed cellular networks provide a �nancially attractive alternative tothe construction of conventional wired networks in developing countries, where no wired6



1.3. Outline of this thesisnetwork structure is available yet. Moreover, the introduction of new services, like datacommunication (internet, e-mail) and video-conferencing causes shortage of capacity inexisting wired networks. Point-to-point wireless connections can be used as an alterna-tive to the extension of the capacity of these wired networks. In both cases no cableconnections have to be established. A disadvantage of point-to-point connections is thatthe transmitter and receiver have to see each other, which means that there should beno obstacles in between them. As a consequence, transmitters and receivers have to bebuilt at high locations (e.g., at the roof of apartment and o�ce buildings). Although thetransmitters are directed to the receivers their signals can interfere. Especially if signalscross each other, the use of (almost) the same frequencies should be avoided.Another application that has similarities with �xed cellular networks stems from themilitary. In military communication networks, wireless connections have to be establishedbetween pairs of transceivers. These connections, or radio links, can interfere with eachother, if they use similar frequencies in one and the same area.
1.3 Outline of this thesisIn the previous section we have discussed several applications of wireless communication.For each of these applications the quality of the network depends on a `good' frequencyassignment plan. The sequel of thesis is devoted to models and algorithms to solve thecorresponding frequency assignment problems (FAPs). It can be divided in three parts.We start in Chapter 2 with a survey on the models and algorithms that have beenproposed for the FAP in the literature in recent years. We discuss four di�erent waysto model the FAP. Each of these models has its own (dis)advantages. For every model,we investigate which approaches have been proposed in the literature. These approachescan be divided in three categories: (i) heuristic methods, like sequential assignment algo-rithms, Simulated Annealing, and Tabu Search, (ii) exact methods, like exhaustive searchand integer programming techniques, and (iii) Lower bounds obtained from graph theory.In the sequel of the thesis, we focus on one of these models, the minimum interferencefrequency assignment problem (MI-FAP). Many heuristic techniques have been appliedto this problem. Exact methods and lower bounds, however, are rarely explored. Onlyvery special cases can be solved with the existing exact methods. Therefore, the secondpart of the thesis is devoted to solution techniques for this fairly general model. Twoexact methods are described in the Chapters 3 and 4, whereas Chapter 5 is devoted tonew heuristics that are derived from the exact methods. In Chapter 3, we model theMI-FAP as a Partial Constraint Satisfaction Problem (PCSP). We present an integerlinear programming formulation for the PCSP and study the corresponding polytopefrom a polyhedral point of view. We prove two lifting theorems for facet de�ning valid7



1. Introductioninequalities. With these theorems we can analytically derive classes of facets, given asingle facet for a particular problem. In fact, we derive two classes of facet de�ningvalid inequalities in this way. For these two classes we discuss the complexity of thecorresponding separation problems. Due to the equivalence of a restricted version of thePCSP and the boolean quadric polytope (BQP), other classes of facets can be obtainedfrom facets for the BQP. The chapter is concluded with computational results on a numberof instances. They show that the two classes of valid inequalities are very e�ective forMI-FAPs with small domains. However, for real-life instances, the inequalities, althoughthey are facets of the polytope, are not powerful enough to close the gap between thelinear programming relaxation and the optimal solution in reasonable time.Due to the limited applicability of the integer linear programming techniques on real-lifeinstances, we present in Chapter 4 an approach based on the tree decomposition of theconstraint graph. The MI-FAP is de�ned on a graph, and like many other combinatorialoptimization problems based on graphs, it can be solved in time polynomial in the lengthof the input, in case the treewidth of the graph is bounded by a constant. Although thisfact is well known, computational studies in this direction have not been described inthe literature for any combinatorial optimization problem. The only study we are awareof has been carried out by Cook in the context of the traveling salesman problem [37].In Chapter 4, we study the use of tree decompositions of the constraint graph to solvethe FAP. In fact, we describe a dynamic programming algorithm to solve the FAP tooptimality in polynomial time, given that the treewidth of the constraint graph is boundedby a constant. The algorithm, however, is exponential in the treewidth, which causes theneed for additional processing techniques to reduce the time and memory e�orts of thealgorithm. We describe methods to reduce the size of the graph, as well as methodsto reduce the size of the domains and the number of di�erent assignments we have tomemorize. Computational experiments show that small-sized and medium-sized real-life instances can be solved using these additional (pre)processing techniques. For themore di�cult instances, however, the method still requests too much time and memory.Therefore, we present an iterative version of the algorithm which can be used to obtain asequence of non-decreasing lower bounds for the original problem. For the more di�cultinstances we can derive the �rst non-trivial lower bounds in this way. Combination of theiterative techniques of Chapter 3 resulted in even better lower bounds for the instanceswith large treewidth.We conclude the second part of the thesis with the discussion of two new heuristics forthe MI-FAP. In Chapter 5 we present two local search algorithms based on the resultsof Chapters 3 and 4. In the �rst local search algorithm the question whether there existsa neighbor in the solution space with smaller objective value is answered by solving aPCSP with 2 domain elements. In Chapter 3 it is shown that this problem, althoughNP-complete can be solved e�ciently by the polyhedral results. The second local searchapproach is based on the fact that PCSP on graphs with small treewidth can be solved with8



1.3. Outline of this thesisdynamic programming. This result can be incorporated within a local search framework.Instead of solving the PCSP on the complete graph, we solve subproblems on inducedsubgraphs with small treewidth. Preliminary computational results show that both localsearch algorithms produce promising results.In the last chapter of this thesis, Chapter 6, we address directions for further research onthe MI-FAP, and state overall concluding remarks. We brie�y discuss other exact methodslike well known techniques as Benders Decomposition, and Lagrangian relaxation. We alsodiscuss a semi-de�nite programming relaxation. All these methods and formulations canbe used to solve the more general PCSP, instead of the MI-FAP. The last direction forfurther research is dedicated to a new integer linear programming formulations for theMI-FAP, in which the number of variables is substantially smaller than in the PCSPformulation of Chapter 3. This formulation is based on characteristics typical for a MI-FAP, and therefore cannot be used to solve the more general PCSP. The thesis is closedwith some conclusions concerning the results of this thesis.
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2. The Frequency AssignmentProblem: A Survey
Frequency Assignment Problems (FAPs) have been investigated by many researchers.Depending on the application and the goal of the researchers, a wide variety of models andsolution techniques have been proposed. The use of a wide variety of methods is promptedby the fact that the FAP belongs to the class of NP-complete problems, which meansthat there does not exist an algorithm that solves the problem in time polynomial in thelength of the input, unless P = NP (see either Garey and Johnson [62] or Papadimitriouand Steiglitz [153] for a discussion of NP-completeness). In this chapter we present asurvey on the models and algorithms that have been proposed in recent years. We startwith a general description of the FAP in Section 2.1. We also discuss in this section the3 approaches applied to the FAP: Fixed Channel Assignment schemes, Dynamic ChannelAssignment schemes, and Hybrid Channel Assignment schemes. Our survey is devotedto �xed channel assignment schemes. In Section 2.2 we distinguish the 4 most acceptedpoints of view for the FAP. For each of the models, we compare as far as possible theresults obtained by the di�erent techniques available to solve combinatorial optimizationproblems in the Sections 2.3-2.6. Section 2.7 is devoted to approaches which cannot beclassi�ed within one of the four models. We close this survey with some conclusions inSection 2.8. The survey in [4] will partly be based on this chapter. Recently, an overview ofexact methods for frequency assignment is given by Jaumard, Marcotte and Meyer [100].In the sequel of this chapter many di�erent approaches from the �elds of operationsresearch and arti�cial intelligence are discussed. For those not familiar with one or moreof these methods we refer to the following papers and books on the topic:Local Search (general). For local search techniques in general we refer to the recentbook of Aarts and Lenstra [8], which gives a comprehensive overview of the availabletechniques.Tabu Search. Tabu search was introduced by Glover [68], and more recently discussedin [69, 70, 71] and the book by Glover and Laguna [73]. In Glover [72], tabu thresh-olding was introduced, a combination of tabu search and candidate list strategies.Simulated Annealing. Kirkpatrick, Gelatt and Vecchi [115] introduced the use of simu-lated annealing to optimization problems. The book by Aarts and Korst [7] discussesthe topic comprehensively. 11



2. The Frequency Assignment Problem: A SurveyGenetic Algorithms. Genetic algorithms have been proposed by Holland [87], and arediscussed in Goldberg [74] as well.Neural Networks. Neural networks were introduced in the �eld of optimization by Hop-�eld and Tank [88, 89] (see also Dayho� [44]).Integer Programming. For exact methods based on integer linear programming likeBranch and Bound, Branch and Cut, and Column generation, we refer to Nemhauserand Wolsey [148] or Schrijver [166]. A comprehensive overview of network �owproblems is presented by Ahuja, Magnanti, and Orlin [9].2.1 The Frequency Assignment ProblemThe frequency assignment problem has two basic aspects:(i). a set of wireless communication connections must be assigned frequencies such thatdata transmission between the transmitter and receiver for every connection is pos-sible. The frequencies should be selected from a given set that may di�er amongconnections. Note that much tra�c is bidirectional, so that in fact two frequenciesmust be chosen, one for each direction.(ii). The frequencies assigned to two connections may incur interference resulting in lossof quality of the signal. Two conditions must be ful�lled in order to have interferenceof two signals:(a) The two frequencies must be close on the electromagnetic band (Doppler ef-fects) or (close to) harmonics of one another. The latter e�ect seems to belimited, however, since the frequency bands from which we can choose areusually so small that they do not contain harmonics.(b) The connections must be geographically close to each other. The signals thatmay interfere should have a similar level of energy at the position where theymight disturb each other.Both aspects are modeled in many di�erent ways in the literature. The models discussedin the literature di�er in the types of constraints they impose on frequency choices forconnections they make, and in the objectives to be optimized. We will describe thepractical settings of known applications, and the simpli�cations that are assumed in theaccompanying models that lead to the models described in the literature. The diversemodels are discussed both in their common features and their di�erences.The frequency band [fmin; fmax] available to some provider of wireless communication isusually partitioned in a set of channels, all with the same bandwidth � of frequencies.12



2.1. The Frequency Assignment ProblemFor this reason the channels are usually numbered from 1 to a given maximum N , whereN = (fmax�fmin)=�. The available channels are denoted by the domainD = f1; : : : ; Ng.For a particular connection possibly not all channels from D are available. For instance,if this connection is close to the border of a country division rules between the countriesinvolved may lead to a substantial decrease in channel availability. Therefore, the channelsavailable for a connection v form a subset Dv � D. On each channel available one cancommunicate information from a transmitter to a receiver. For bidirectional tra�c oneneeds two such channels, one for each direction. In the models considered in the literaturethe second channel is almost always ignored. The reasons for ignoring this aspect of theFAP depend on the application. Instead of one band [fmin; fmax], in most applicationstwo bands [f 1min; f 1max] and [f 2min; f 2max] of N channels are available: one with the channelsf1; : : : ; Ng, and one with the channels fs + 1; : : : ; s + Ng, where s � N . Thus, thebackward connection uses a channel which is shifted s channels up. The choice of sprevents any interference of backward channels with forward channels. As a consequence,each assignment for the forward channels can directly be transformed to an assignmentfor the backward channels with similar performance.Interference of signals is measured by the signal-to-noise ratio (or signal-to-interferenceratio) at the receiving end of a connection. There, the signal transmitted should be clearlyunderstandable. The noise comes from other signals which have an interfering frequencyon which they broadcast. There may be more than one source that transmits on the sameor a close frequency and thus contribute to the total noise experienced at the receiver.In practice, a threshold value of 12 dB or 15 dB for the signal-to-noise ratio is foundsatisfactory. The computation of the level of interference is a di�cult job in itself, since itdepends not only on signal choice and strength, but also on the shape of the environment.If we ignore the environment and consider some other signal transmitted at the samefrequency channel, then the interference of this signal at the receiver is computed withthe following formula: P=d
 where P is the power of the transmitter and d the distance tothe disturbed receiver. Here, 
 is a fading factor with values between 2 and 4. If this othersignal is transmitted on a frequency at a distance of n � 1 units of the original signal,then a �ltering factor of �15(1 + log2 n) is to be taken into account (see [48]). The factthat multiple signals may disturb communication quality is ignored in most models, whereonly interference between pairs of connections is measured. A notable exception is [54],in which constraints are developed to determine the total interference of neighboringconnections. Another assumption is the quanti�cation of the levels of interference. Wewill assume given values of the interference as input to our models and problems.The previously discussed two-way tra�c poses another problem, even in the binary case,since interference need not be symmetric: if a transceiver1 pair (r1; r2) transmits onfrequencies f and f + s, and another transceiver pair (s1; s2) transmits on frequencies gand g+s where f and g interfere, and f+s and g+s interfere, interference levels at r1 and1A single unit containing a transmitter and a receiver 13



2. The Frequency Assignment Problem: A Surveyr2 may be di�erent due to the fact that these transceivers may have di�erent distances tos1 and s2. As mentioned before, this aspect is ignored in most of the literature.Depending on the application, one or multiple connections have to be established betweenthe same geographic end points. In general, this is modeled by assuming that cv 2 Z+frequencies have to be assigned to connection v. Interference between frequencies assignedto the same connection can be avoided by the introduction of an additional value forcertain combinations of frequencies f; g 2 Dv. In practice the values cv vary duringtime, depending on the actual demand for connections. By this property, the approachessuggested in the literature to deal with the FAP can be divided into three categories:Fixed Channel Assignment (FCA), Dynamic Channel Assignment (DCA), and HybridChannel Assignment (HCA) schemes2.In an FCA the forecasted demand is transformed to the requirement that we have to assignto each connection a number of frequencies beforehand. In this scheme it is not allowed tochange the assignment on-line to satisfy actual demand for wireless connections. This is incontrast with DCA schemes in which frequencies are assigned on-line to the connectionsin such a way that the actual demand is satis�ed and the interference is minimized. Anexample of a procedure for DCA is presented by Janssen, Kilakos and Marcotte [98]. Theydiscuss a �xed preference assignment scheme. For every cell there exists a preference listof frequencies to serve the demand. In [98] it is proved that the preference lists can beconstructed in such a way, that they are optimal according to some performance measure.Finally, in HCA schemes a combination of FCA and DCA is implemented to obtain abetter overall performance of the network. In HCA schemes a number of frequencies isassigned to every connection beforehand, whereas another part of the spectrum can beused for on-line assignment of frequencies upon request. An example of an HCA schemeis given by Sandalidis, Stavroulakis and Rodriguez-Tellez [165], who describe a neuralnetwork and a genetic algorithm approach to the borrowing channel assignment problem.In the borrowing channel assignment problem, a �xed number of frequencies are assignedto the connections. However, whenever the actual demand for frequencies exceeds thenumber of available frequencies, the connection can borrow an unused frequency assignedto an adjacent connection. The performance of networks that operate on DCA andHCA schemes is mostly studied via simulation of the particular procedure. It is provedby Johri [104] that DCA schemes perform better than FCA schemes under light tra�cand under nonuniform tra�c. However, under uniform and heavy load, FCA schemesoutperform the DCA schemes. Besides this, FCA gives a bound on the performance ofthe DCA scheme. In fact, in case the DCA scheme allows for complete rearrangementof the assignment, a FCA problem has to be solved, every time the situation changes.For these last two reasons, we concentrate in this thesis on �xed channel assignment.2The need for multiple connections, and the application of DCA and HCA schemes originates fromcellular phone networks.14



2.2. Fixed Channel AssignmentFor a survey on the topic of FCA, DCA and HCA schemes we refer to Katzela andNaghshineh [111].2.2 Fixed Channel AssignmentIn a Fixed Channel Assignment scheme, the expected tra�c load of the network is trans-formed to a requirement that we have to assign to each connection a �xed number offrequencies. The standard representation of a FAP is by means of a graph G = (V;E),the interference graph or constraint graph. Each connection is represented by a vertexv 2 V . The available channels or frequencies for a vertex are denoted by the set Dv � D.Let cv denote the required number of frequencies for connection v 2 V . Two vertices vand w for which the corresponding connections may interfere for at least one pair of fre-quencies, are connected by an edge fv; wg 2 E. For each pair of frequencies f 2 Dv andg 2 Dw we penalize the combined choice by a measure depending on the interference level.This penalty is denoted by pvwfg. The interference between two frequencies f; g 2 Dv as-signed to the same vertex v can be modeled in the same way: an edge fv; vg 2 E andpenalty pvvfg. Another way to model this, is by replacing v by cv vertices and additionaledges between all of them. Some instances deal with a frequency plan in which changesare considered, to reduce interference. This reduction should take place under minimalchanges of the total frequency plan, thus changes in the plan are penalized per change aswell. This is modeled with additional penalties on the frequencies to be chosen for eachvertex: the choice of frequency f 2 Dv costs qvf .The approaches to solve the FAP can be subdivided in two main streams. We want toassign frequencies to the vertices in such a way that either the total penalty incurred bya solution (minsum) or maximum penalty incurred by a solution (minmax) is minimized.2.2.1 Minimization of the Maximum PenaltyInstead of computing a solution where the maximum penalty is minimized, we often searchfor a solution where the incurred interference does not exceed a given threshold value.Thus, certain frequencies and combinations of frequencies are forbidden. This essentiallyreduces the penalty matrices of the edges to 0-1 matrices. Combinations of frequencieswith penalty 0 are allowed, whereas penalty 1 is forbidden. The objective reduces in thiscase to �nd a feasible solution, i.e., a solution in which no forbidden combinations areselected. In case such an assignment exists, often a second objective is introduced. Thesecond objective represents a preference relation between all feasible assignments. In the1970s minimization of the number of used frequencies was a popular second objective,since frequencies should be bought per unit at a high price in that time. The problem15



2. The Frequency Assignment Problem: A Surveyof minimizing the number of used frequencies is called the minimum order problem, orminimum cardinality problem. The objective to minimize the span, i.e., the di�erencebetween the highest and lowest frequencies selected, was popular in the 1980s wherefrequencies were bought per bandwidth, e.g., the value N determined the costs.In case the incurred penalties exceed the given threshold in every assignment, two di-rections remain. On the one hand, the threshold value can be increased allowing forassignments with more interference. On the other hand, we can search for a partial as-signment that does not exceed the given threshold penalty. The most common objectiveto distinguish between partial assignments is minimization of the blocking probability. Incase instead of the requested cv only mv frequencies can be assigned to a connection, wecan calculate the probability that in practice a request to establish a connection have tobe rejected. This probability is called the blocking probability of the connection. Optimalpartial assignments minimize the overall blocking probability of the network.2.2.2 Minimization of the Cumulative PenaltyThe minsum criterion is not seen frequently in practical instances, but in some models itis combined with the minmax criterion by introducing threshold values for the penaltiesthat denote the maximum acceptable interference. We then look for feasible solutionswith a minimum total penalty under the condition that no penalty exceeds the thresholdvalue. This combined model is most accurate in describing real-world problems, but itis also the one for which it is most di�cult to determine optimal solutions. Note thatthe combined model is easily translated into a minsum problem, by setting all penaltiesexceeding the threshold to in�nity.Summarized, we can distinguish four models to solve the FAP. In this chapter we discussthese four most common points of view:(i). The Minimum Order Frequency Assignment Problem (MO-FAP),(ii). the Minimum Span Frequency Assignment Problem (MS-FAP),(iii). the Minimum Blocking Frequency Assignment Problem (MB-FAP), and(iv). the Minimum (Total) Interference Frequency Assignment Problem (MI-FAP).In the Sections 2.3-2.6, we discuss these models (and their variants) in more detail. InSection 2.7 we mention some examples of other �xed channel approaches to the FAP thatcannot be classi�ed in one of the above models. We close this section with a discussion ofthe relation of frequency assignment with graph coloring (Section 2.2.3), and a descriptionof application speci�c properties (Section 2.2.4).16



2.2. Fixed Channel Assignment2.2.3 Frequency Assignment and Graph ColoringThe minmax criterion is closely related to generalized coloring problems like T -coloringor list coloring. This relation has �rst been observed by Metzger [145] (see also Hale [78]).The relation of �nding a feasible solution with coloring is due to two modeling aspects.First, the division of the levels of interference in acceptable and unacceptable levels,reduces the problem to forbidden combinations and allowed combinations like in the graphcoloring problem, where it is not allowed to color two adjacent vertices with the same color.Second, in many settings the interference levels are related with the distance between theassigned frequencies: the smaller the distance between two assigned frequencies, the largerthe interference level pvwfg. Combined with the �rst assumption, interference is de�nedunacceptable between the connections v and w if f 2 Dv and g 2 Dw are at a distancesmaller than dvw of each other. The interference is acceptable if the frequencies are at alarger distance, i.e., jf � gj � dvw. Now, if we relax the problem by setting all dvw = 1for fv; wg 2 E, which is not far beyond reality, then we only penalize equal choices offrequencies for connected vertices. Thus, we can view the frequencies as colors, and asolution should have as few (or none at all) edges for which the end vertices have thesame colors.In a more general setting, we are not allowed to assign frequencies that di�er a valuecontained in a set Tvw (containing 0), i.e., jf � gj 62 Tvw. If the set Tvw is de�nedby f0; : : : ; dvw � 1g the problems are equivalent. However, more general sets with non-consecutive numbers may also be de�ned. For instance, in the context of UHF televisionbroadcasting the set Tvw consists of a non-successive set of integers (see Hale [78]). Incase all sets Tvw are the same, the problem reduces to a T -coloring problem, which wasintroduced by Hale [78]. He formally de�ned both the minimum order and minimumspan variants of the T -coloring problem, and connected them to the frequency assignmentproblem.Another way to represent the minimum distance constraints is the use of a compatibil-ity matrix C where the rows and columns correspond to the connections. The valuesCvw := dvw denote the minimum separation distance of the frequencies. In case Cvw = 0,the vertices v and w are not adjacent, and no constraint on the assigned frequencies ex-ists. In the literature the constraints are called di�erently depending on the value Cvw.We distinguish co-site, adjacent-site, co-channel , and adjacent-channel constraints. Thevalues Cvv are called the co-site constraints, whereas the values Cvw > 0 are the so-called adjacent-site constraints. The terms co-channel and adjacent-channel constraintsare widely used to designate a di�erence between values Cvw = 1 (we are not allowed toassign the same frequencies to both connections), and values Cvw � 2 (we are not allowedto assign adjacent channels to the connections), respectively. 17



2. The Frequency Assignment Problem: A Survey2.2.4 Application specific propertiesTo conclude this section we describe a number of application speci�c properties andinstances that are discussed in the literature. The large variety in practical settings doesnot only lead to these di�erent models for the FAP, but also to di�erent instance types.Some of the settings are:Mobile telephone. This application di�ers from the standard FAP in the sense that oneof the endpoints of the connection is a �xed antenna, and the other endpoint is amobile phone. Each antenna covers a certain area, where it can pick up signals frommobile phones. The frequency chosen for a certain connection is determined only byuse of the position of the antenna, and by the positions of the neighboring antennaethat cover part of the area simultaneously. Therefore, vertices in the constraintgraph do not correspond to connections, but to antennae, i.e., only one of the twoend vertices of a connection. Antennae are usually concentrated into cells. Eachcell contains about 4 antennae. At a site there are several cells present, usuallyabout 4 or 5. In the literature frequency restrictions are often presented by meansof the so-called re-use distances. If an antenna uses a frequency f , then there is alarge area around it with radius d0 in which this frequency cannot be re-used bysome other antenna. In general a re-use distance ds is de�ned as the area aroundan antenna where no frequencies in the interval [f � s; f + s] can be used by otherantennae. In terms of the constraint graph this means that two antennae v and wwithin a geographical distance ds of each other can not be assigned frequencies at adistance of s or smaller. Thus, there is an edge between v and w with a constraintde�ned by frequency distance s. In most practical applications the re-use distancesd0 and d1 are applied. The �rst denotes the co-channel interference. It induces alot of edges in the constraint graph with distance 1. The second is the adjacentchannel interference. It induces usually edges between antennae of the same site orcell. Below we give a list of (real-life) instances known from the literature with theirspeci�cs.� The Philadelphia instances were among the �rst discussed in the literature [12].The sites in Philadelphia were modeled on a hexagonal grid (see Figure 2.1,page 28). Each site demands a high number of frequencies, the multiplic-ity of the sites. Adjacent sites should not be admitted to use the same fre-quencies, and antennae at the same site should not use adjacent frequencieseither. Variants of this structure use di�erent re-use distances, for instance(d0; d1; d2) = (3; 2; 1) meaning that antennae in cells of distance 3 can usethe same frequency and so on (the distance between 2 adjacent cells is takenas unit distance). The Philadelphia instances were used in many studies toexplore lower bounding techniques on the span of instances, see Section 2.4.� Castelino, Hurley, and Stephens [33] discussed 6 computer generated realistic18



2.2. Fixed Channel Assignmentinstances that have comparatively high distances in the constraint graph, andare fairly large with respect to the number of antennae. For every antenna50 frequencies are available. The objective is to minimize the interference (seeSection 2.6).� Hao, Dorne, and Galinier [81] (see also [45, 46, 47, 80]) used instances fromthe French National Research Center for Telecommunications (CNET). Theysearched for interference free assignments with a minimal number of frequen-cies. The number of frequencies needed varies from 8 to 30, whereas the numberof vertices in the constraint graph is at most 300 (cv = 1 or 2).� Borndörfer et al. [23, 24] studied also cellular phone instances from one ofthe German telecommunication companies (E-Plus). The size of the instancesranges from 267 vertices (20,164 edges) to 4,240 vertices (529,000 edges). Thenumber of available channels varies from 30 to 50. The objective is to minimizethe cumulative interference.� Finally, Crisan and Mühlenbein [40] carried out experiments on 6 real worldexamples with up to 5,500 vertices and 3:9 � 105 constraints. The objective isto minimize the total interference.Military applications. In military the usage of �eld phones leads to (in principle dy-namic in time and place) FAPs. These FAPs have the property that each connec-tion consists of two movable phones. To each connection we have to assign twofrequencies at a �xed distance of each other. Thus, all frequencies are given as com-binations of two with this �xed distance. Instances are available in the EUCLIDCALMA (Combinatorial ALgorithms for Military Applications) project. In theCALMA project researchers from England, France, and the Netherlands tested dif-ferent combinatorial algorithms on the same set of frequency assignment problems.The set contains minimum order problems (cf. Section 2.3), as well as minimum span(cf. Section 2.4) and minimum interference problems (cf. Section 2.6). Eleven real-life instances were provided by CELAR (Centre d'ELectronique de l'ARmement,France), whereas a second set of 14 instances was made available by the researchgroup of Delft University of Technology. These GRAPH (Generating Radio LinkFrequency Assignment Problems Heuristically) instances were randomly generatedby Van Benthem [18], and have the same characteristics as the CELAR instances.Besides the minimum distance constraints, the instances also contain equality con-straints, to model that two frequencies at a �xed distance have to be assigned tothe corresponding vertices. The distance is the same for all constraints and everyvertex is contained in exactly one equality constraint. Moreover, the domains areconstructed in such a way that for every frequency there exists only one `matching'frequency. Altogether, these characteristics provide the possibility to reduce thesize of the instances to half the original size whenever that may be pro�table. Thenumber of available frequencies for a vertex is 40 on average. We have to assignone frequency to every vertex (cv = 1). Results of the CALMA project as well as19



2. The Frequency Assignment Problem: A Surveyall test problems are available by anonymous ftp [32]. Aardal et al. [6] (extendedabstract published as [5]) presented an overview of the di�erent approaches appliedin connection with the project (see also [183, 31]).Radio and Television. These are applications where the standard FAP arises in a spe-cial setting with regard to the instances, but essentially these instances resemble themobile phone instances. In [140] instances of this type, provided by a large Italianbroadcasting company are discussed.Satellite communication. In Thuve [181] a frequency planning problem in satellitecommunication is discussed. In this application both the transmitters and receiversare ground terminals. They communicate with each other with the help of one ormore satellites. Each signal is �rst transmitted via an uplink to the satellite and nexttransmitted by the satellite via a downlink to the receiving terminal. The uplink anddownlink frequency should be separated by a �xed distance. This distance, however,is larger than the bandwidth, which implies that we only have to assign frequenciesto the uplink. Instead of assigning cv frequencies to connection v, we have to assignNl consecutive frequencies in this problem. To avoid interference, every frequencymay be used only once. The objective is minimization of the cumulative interferencerelated to the single assignments.2.3 Minimum Order Frequency Assignment2.3.1 Problem DefinitionIn the minimum order frequency assignment problem (MO-FAP), we have to assign fre-quencies in such a way that no unacceptable interference occurs, and the number ofdi�erent used frequencies is minimized. Formally we can describe the problem as follows:Minimum Order Frequency Assignment (MO-FAP)instance: Undirected graph G = (V;E), fv; vg 2 E, for all v 2 V , sets Tvw � Z,fv; wg 2 E, 0 2 Tvw, demand cv 2 Z+, domain subsets Dv � Z+ for all v 2 V , D =[v2VDv, and positive integer K.question: Does there exist an assignment of subsets f : V 7! 2D such that,(i). jf(v)j = cv,(ii). f(v) � Dv,(iii). j �f � �gj 62 Tvw for all fv; wg 2 E, �f 2 f(v), �g 2 f(w), v 6= w or �f 6= �g, and(iv). j [v2V f(v)j � K ?20



2.3. Minimum Order Frequency AssignmentThe MO-FAP is the �rst frequency assignment problem that is discussed in the literature.In most articles, Metzger [145] has received the credits for bringing the MO-FAP to theattention of the Operations Research society (cf. Hale [78]). This problem is a directgeneralization of the graph coloring problem.Graph K-Colorability (Garey and Johnson [62])instance: Undirected graph G = (V;E), and positive integer K � jV j.question: Is G K-colorable, i.e., does there exist a function f : V 7! f1; 2; : : : ; Kg suchthat fv 6= fw whenever fv; wg 2 E ?The minimum number of colors needed to color the graph is denoted as �(G). Karp [110]proved that Graph K-Colorability is NP-complete for all K � 3. As a consequenceMO-FAP is NP-complete as well. In Garey and Johnson [61], it is proved that approx-imation of the optimal value within a factor 2 is NP-complete as well. A generalizationof graph coloring (and restricted version of MO-FAP) is proposed in Hale [78], and is wellknown as T -coloring.Minimum Order T-Coloring (Hale [78])instance: Undirected graph G = (V;E), set T � Z+, fv; wg 2 E, 0 2 T , and positiveinteger K.question: Does there exist an assignment f : V 7! Z+ such that, jfv � fwj 62 T for allfv; wg 2 E and j [v2V fvj � K ?The minimum number of colors needed to color a graph G with respect to the set T isdenoted by �T (G). Cozzens and Roberts [39] proved that �T (G) = �(G): Let (fv)v2V bea coloring for G, and let tmax = maxt2T t + 1. Then the coloring (tmaxfv)v2V is a feasibleT -coloring.As a consequence, research in this direction has been focused on the graph coloring prob-lem instead of the T -coloring problem, or on the minimum span T -coloring problem(cf. Section 2.4).Another generalization of graph coloring (and restricted version of MO-FAP) is the ListColoring problem.Minimum Order List Coloring (Erdös, Rubin, and Taylor [53],Vizing [188])instance: Undirected graph G = (V;E), subsets Dv � Z+ (lists) for all v 2 V , D =[v2VDv, and positive integer K.question: Does there exist an assignment of subsets f : V 7! D such that,(i). f(v) 2 Dv,(ii). f(v) 6= f(w) for all fv; wg 2 E, and 21



2. The Frequency Assignment Problem: A Survey(iii). j [v2V f(v)j � K ?The problem Minimum Order List Coloring is NP-complete, even for specialgraphs for which the graph coloring problem can be solved in linear time, e.g. for in-terval graphs [20].For the general MO-FAP, an integer linear programming formulation has been presentedby Aardal et al. [1]. For every vertex v and available frequency f a binary variable isintroduced:xvf = � 1 if frequency f 2 Dv is assigned to vertex v0 otherwiseMoreover, a binary variable yf denotes the use of frequency f :yf = � 1 if frequency f 2 D is used0 otherwiseThen, MO-FAP readsmin Xf2D yf (2.1)s.t. Xf2Dv xvf = cv 8v 2 V (2.2)xvf + xwg � 1 8fv; wg 2 E; f 2 Dv; g 2 Dw :(jf � gj 2 Tvw) ^ ((f 6= g) _ (v 6= w)) (2.3)xvf � yf 8v 2 V; f 2 Dv (2.4)xvf 2 f0; 1g 8v 2 V; f 2 Dv (2.5)yf 2 f0; 1g 8f 2 D (2.6)The constraints (2.2) model that cv frequencies have to be assigned to connection v 2 V .The forbidden combinations of frequencies are modeled by constraints (2.3), whereas (2.4)speci�es that a y variable is set to one in case the corresponding frequency is used by theassignment. The objective (2.1) simply sums the use of the available frequencies.2.3.2 Benchmark InstancesBenchmark instances for the MO-FAP are available via the CALMA project (see Sec-tion 2.2.4). For the minimum order instances, an overview of the results is presented22



2.3. Minimum Order Frequency Assignmentin Table 2.1. In all instances cv = 1 for all v 2 V . The average number of availablefrequencies is 40.2.3.3 Lower Bounds and Exact MethodsIn the framework of the CALMA project, Aardal et al. [1] applied integer programmingtechniques to the problem. They added cutting planes to the formulation (2.1)-(2.6).The used cutting planes are well known valid inequalities of the related vertex packingproblem. Additional preprocessing techniques and speci�ed branching strategies madeit possible to solve large instances with up to 916 vertices to optimality. For all thetested instances, they proved the optimal values in this way. They compared the lowerbounds obtained through the linear programming (LP) approach with bounds based oncombinatorial arguments like cliques in the graph (cl.), the coloring number (col.) andthe generalized coloring (gcol.). In all 4 cases tested, the LP provided the best bound.Hurkens and Tiourine [91] computed lower bounds on the minimum order of any assign-ment. The lower bounds were derived through the detection of cliques in the constraintgraph. By combination of the knowledge about several cliques the clique lower bound canbe improved.Finally, in Kolen, van Hoesel, and van der Wal [120] constraint satisfaction techniqueswere applied to the MO-FAP. For all but two of the instances the optimal solution isreported by combination of the lower and upper bounds generated by the technique.2.3.4 HeuristicsMost heuristics for the MO-FAP were proposed in the framework of the CALMA project.Besides their lower bounding techniques, Tiourine, Hurkens, and Lenstra [91, 184] alsoapplied several local search techniques, like simulated annealing (SA), tabu search (TS)and variable depth search (VDS) to the instances (see also Tiourine [182]). For 6 outof the 10 instances, they proved optimality combining the lower and upper bounds. Agroup from King's College London [25, 26] applied Tabu Search as well. In contrastwith the tabu search approach of [184], the neighborhood function is less sophisticated,which explains the di�erent performance of the algorithms. Moreover, in [26] a GEneralNETwork algorithm (GENET) for constraint satisfaction problems is applied to the sameinstances. They obtained optimal or near optimal solutions.In the Master's Thesis of Warners [192], a potential reduction (PR) algorithm for theMO-FAP was introduced (see also Warners et al. [194, 193]). The algorithm is inspiredby Karmarkar's interior point potential reduction approach to combinatorial optimiza-23



2.TheFrequencyAssignmentProblem:ASurvey

instance jV j jEj lower bounds optimal upper bounds[1] [1] [1] [1] [184] [120] value [120] [184] [184] [184] [26] [26] [106] [194] [155] [41]cl. col. gcol. LP cl. CS (range) CS SA VDS TS TS GENET GA PR PR ESCELAR 01 916 5,548 12 14 16 16 14 16 16 16 16 16 16 18 16 20 16 16 -CELAR 02 200 1,235 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14CELAR 03 400 2,760 12 14 14 14 14 14 14 14 14 14 14 14 14 16 16 14 14CELAR 04 680 3,967 - - - 46 46 46 46 46 46 46 46 46 46 46 46 46 -CELAR 11 680 4,103 20 20 20 22 22 22 22 22 24 24 22 24 24 32 - 22 -GRAPH 01 200 1,134 - - - 18 18 18 18 18 - - 18 18 18 20 18 18 18GRAPH 02 400 2,245 - - - 14 14 14 14 14 - - 14 16 14 16 14 14 14GRAPH 08 680 3,757 - - - - 16 - 16-18 - - - 20 24 22 - 18 18 -GRAPH 09 916 5,246 - - - - 18 18 18 18 - - 22 22 22 28 18 18 -GRAPH 14 916 4,638 - - - - 8 - 8 10 - - 10 12 - 14 10 8 -Table 2.1: Minimum Order benchmark instances CALMA project. Framed values indicate the optimal value. Some of the resultsare only mentioned in [183].
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2.4. Minimum Span Frequency Assignmenttion problems (cf. [105, 108, 109]). Pasechnick [155] improved the performance of thealgorithm, and proved the optimal value of the instance GRAPH 14.Kapsalis, Rayward-Smith and Smith [107] (see also [106]) applied a genetic algorithm tothe instances. The results are less satisfactory than of the other algorithms. Only for 2instances they obtained the optimal solution. Crisan and Mühlenbein [41] applied evolu-tionary search (ES) to MO-FAP. Evolutionary search consists of the repeatedly mutationof a solution according to a certain mutation operator. They investigated the performanceof an evolutionary search algorithm, and analyzed the search space in order to obtain someinformation on the di�culty of the instances. Computational results were carried out onthe CALMA instances. They concluded from the analysis that there is far less relation-ship between two good frequency assignment plans, than there is for instance between twogood tours in the traveling salesman problem. This implies that local search techniqueswill have more di�culties to reach the optimum for MO-FAP, than comparable heuristicsfor the traveling salesman problem. Their computational results with evolutionary searchare comparable with the results of the tabu search, simulated annealing or variable depthsearch in [184].Finally, Cuppini [42] applied a genetic algorithm to the minimum order problem. Incontrast with other genetic algorithms for FAPs, an assignment is represented by jDjgenes of N = Pv2V cv elements (in most genetic algorithms jV j genes of size jDvj areused to represent an assignment). Computational results are only reported for a smallexample.2.3.5 ConclusionsSummarized, good heuristics for the MO-FAP seem to be most well known local searchtechniques, as well as the potential reduction technique based on interior point meth-ods. For the local search algorithms the quality of the solution heavily depends on theneighborhood that is used. To guarantee optimality, lower bounding techniques based oninteger and quadratic programming can be applied successfully.2.4 Minimum Span Frequency Assignment2.4.1 Problem DefinitionIn the minimum span frequency assignment problem (MS-FAP), the problem is to assignfrequencies in such a way that no unacceptable interference occurs, and the di�erencebetween the maximum and minimum used frequency, the span, is minimized. Formally25



2. The Frequency Assignment Problem: A Surveywe can describe the problem as follows:Minimum Span Frequency Assignment (MS-FAP)instance: Undirected graph G = (V;E), fv; vg 2 E, for all v 2 V , sets Tvw � Z,fv; wg 2 E, 0 2 Tvw, demand cv 2 Z+, domain subsets Dv � Z+ for all v 2 V , D =[v2VDv, and positive integer K.question: Does there exist an assignment of subsets f : V 7! 2D such that,(i). jf(v)j = cv,(ii). f(v) � Dv,(iii). j �f � �gj 62 Tvw for all fv; wg 2 E, �f 2 f(v), �g 2 f(w), v 6= w or �f 6= �g, and(iv). max[v2V f(v)�min[v2V f(v) � K ?In case Dv = Z+ and Tvw = f0g, the problems MO-FAP and MS-FAP are equivalent [78].In general, however, there exist examples in which neither a minimum order assignmentwith minimum span, nor a minimum span assignment with minimum order exists. Thespecial case of minimum span T -coloring attracted a lot of attention in the literature, dueto its relation with both the coloring problem and the MS-FAP. Roberts [160] presenteda survey on T -coloring problems. More recently, theoretical results on T -coloring in thecontext of the MS-FAP are obtained by Griggs and Liu [76] and Liu [133]. A surveyon frequency assignment problems with emphasis to the relation with graph theory byMurphey, Pardalos and Resende will appear in [147].Several other authors have investigated coloring problems related to MS-FAP. For in-stance, Kubale [125] presented lower and upper bounds, and considered special cases fora graph-coloring problem related to the MS-FAP in which we have to color each vertex vwith cv consecutive colors (interval coloring). Like in the MS-FAP the span of the assign-ment must be minimized. In Kubale [126] complexity results are presented for anotherminimum span coloring problem with forbidden colors (minimum span list coloring).The interval T -coloring problem has been studied by De Werra and Gay [195]. In theinterval T -coloring problem we have to assign cv consecutive colors to v in such a way thatthe assignment does not violate the sets Tvw. This problem is equivalent to an asymmetricMS-FAP, i.e. a FAP in which, instead of jf � gj 62 Tvw, we have to satisfy f � g 62 Tvw,where Tvw � Z may also contain negative numbers, and is not necessarily symmetric withrespect to 0. De Werra and Gay [195] derived upper bounds on the minimum span ofthe asymmetric MS-FAP. Moreover, they apply a heuristic based on the graph coloringalgorithms of Brélaz [28] on randomly generated instances (with in some cases Euclideandistances).26



2.4. Minimum Span Frequency AssignmentFor the general case, an integer programming formulation similar to (2.1)-(2.6) readsmin zmax � zmin (2.7)s.t. Xf2Dv xvf = cv 8v 2 V (2.8)xvf + xwg � 1 8fv; wg 2 E; f 2 Dv; g 2 Dw :(jf � gj 2 Tvw) ^ ((f 6= g) _ (v 6= w)) (2.9)xvf � yf 8v 2 V; f 2 Dv (2.10)zmax � fyf 8f 2 D (2.11)zmin � fmax � (fmax � f)yf 8f 2 D (2.12)xvf 2 f0; 1g 8v 2 V; f 2 Dv (2.13)yf 2 f0; 1g 8f 2 D (2.14)zmin; zmax 2 Z+ (2.15)where fmax = maxf2D f the maximum available frequency, and zmin and zmax are twoadditional variables for the minimum and maximum used frequency, respectively. Theconstraints (2.11) and (2.12) guarantee that these variables are set to the right values.Several other ways to model the objective can be applied. For instance, instead of the yand z variables we can use binary variables lf and uf :lf = � 1 if f 2 D is the smallest frequency that is used0 otherwiseand uf = � 1 if f 2 D is the largest frequency that is used0 otherwiseThen the objective (2.7) can be replaced bymin Xf2D f(uf � lf )and the constraints (2.10)-(2.12) have to be replaced byXf2D lf = 1 27



2. The Frequency Assignment Problem: A SurveyXf2D uf = 1xvf + lg � 1 8v 2 V; f; g 2 Dv; f < gxvf + ug � 1 8v 2 V; f; g 2 Dv; f > gIn case Dv = D for all v 2 V and D consists of consecutive numbers, minimization of thespan is equivalent with minimization of the maximum frequency used. This implies thatin that case the zmin variable (or the lf variables) can be left out of the formulation.2.4.2 Benchmark Instances
1 2 3 4 56 7 8 9 10 11 1213 14 15 16 17 1819 20 21(a) network structure

8 25 8 8 815 18 52 77 28 13 1531 15 36 57 28 810 13 8(b) instance P1Figure 2.1: Philadelphia instances.To test proposed algorithms a number of benchmark instances are available. In 1973,Anderson [12] introduced the Philadelphia instances. The original instance and certainvariants are widely used afterwards to substantiate algorithms and lower bounds for theMS-FAP. The Philadelphia instances are characterized by 21 hexagons denoting the cellsof a cellular phone network around Philadelphia (see Figure 2.1(a)). Until recently, it wascommon practice to model wireless phone networks as hexagonal cell systems. For eachcell, a demand cv is given. Figure 2.1(b) shows the demand for the original instance P1,whereas Table 2.2 contains the demand vectors of all instances. In conformity with [186],the instances are denoted by P1-P9. Some of them are also appointed in [92] as E3-E9.In the basic model, interference of cells is characterized by a co-channel reuse distanced. No interference occurs if and only if the centers of two cells have mutual distance� d. In case the mutual distance is less than d (normalized by the radius of the cells),it is not allowed to assign the same frequency to both cells. This pure co-channel case isgeneralized by replacing the reuse distance d by a series of non-increasing values d0; : : : ; dkand corresponding forbidden sets T 0 � : : : � T k. The following relation holds:Tvw = T j�1 whenever dj � dvw < dj�1; j 2 f1; : : : ; kg28



2.4. Minimum Span Frequency Assignmentwhere dvw is the distance between the cell centers. For the Philadelphia instances,the sets T j are taken as T j = f0; : : : ; jg. For instance, P1 the values d0; : : : ; d5 are2p3;p3; 1; 1; 1; 0. So, frequencies assigned to the same site should be separated by atleast 4 other frequencies, whereas frequencies assigned to adjacent sites should be at adistance of at least 2, and frequencies assigned to a second and third `ring' of cells shouldstill di�er (see Figure 2.2). For the other instances, the reuse distances are given inTable 2.2. The domains Dv are simply Z+, in which case minimization of the span isequivalent to minimization of the maximum used frequency. Note that, there is a di�er-ence of one between minimum span and maximum used frequency. Table 2.3 shows theresults obtained on the Philadelphia instances.
1 1 1 11 1 1 1 11 1 2 2 1 11 1 2 5 2 1 11 1 2 2 1 11 1 1 1 11 1 1 1(a) P1, P3, P5, P7, P9

1 11 1 1 1 11 1 2 2 1 11 2 5 2 11 1 2 2 1 11 1 1 1 11 1(b) P2, P4, P6Figure 2.2: Reuse distances Philadelphia instances. The values denote the minimumseparation distance in relation to the central cell.A second set of benchmark instances, that are not de�ned on a hexagonal grid, areavailable via the CALMA project [32]. In Table 2.4 the characteristics and the results arepresented.2.4.3 Lower Bounds and Exact MethodsA lot of research has been devoted to lower bounds on the span for the Philadelphiainstances. The �rst non-trivial lower bounds for the MS-FAP, with Tvw = f0; : : : ; kgfor some k 2 Z+, and Dv = Z+, were presented by Gamst [60]. He applied severallower bounds based on graph theory (GT) to instance P1. The most important bound ofGamst is the clique bound. Let the vertices S � V form a complete subgraph (clique)in the graph G. Let Tmin = minfv;wg2E[S] jTvwj (with the assumption that Tvw is a set ofconsecutive values). Then the span of any assignment, sp(G) � Tmin(Pv2S cv � 1). Twomore sophisticated bounds are given in [60]. Although, Gamst only computed the lowerbounds for P1, Table 2.3 shows the best lower bound for all instances. 29



2.TheFrequencyAssignmentProblem:ASurvey

instance demand vector cv reuse distancesP1 (E3) (8; 25; 8; 8; 8; 15; 18; 52; 77; 28; 13; 15; 31; 15; 36; 57; 28; 8; 10; 13; 8) (2p3;p3; 1; 1; 1; 0)P2 (E4) (8; 25; 8; 8; 8; 15; 18; 52; 77; 28; 13; 15; 31; 15; 36; 57; 28; 8; 10; 13; 8) (p7;p3; 1; 1; 1; 0)P3 (E5) (5; 5; 5; 8; 12; 25; 30; 25; 30; 40; 40; 45; 20; 30; 25; 15; 15; 30; 20; 20; 25) (2p3;p3; 1; 1; 1; 0)P4 (E6) (5; 5; 5; 8; 12; 25; 30; 25; 30; 40; 40; 45; 20; 30; 25; 15; 15; 30; 20; 20; 25) (p7;p3; 1; 1; 1; 0)P5 (E7) (20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20) (2p3;p3; 1; 1; 1; 0)P6 (20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20) (p7;p3; 1; 1; 1; 0)P7 (E8) (16; 50; 16; 16; 16; 30; 36; 104; 154; 56; 26; 30; 62; 30; 72; 114; 56; 16; 20; 26; 16) (2p3;p3; 1; 1; 1; 0)P8 (8; 25; 8; 8; 8; 15; 18; 52; 77; 28; 13; 15; 31; 15; 36; 57; 28; 8; 10; 13; 8) (2p3; 2; 1; 1; 1; 0)P9 (E9) (32; 100; 32; 32; 32; 60; 72; 208; 308; 112; 52; 60; 124; 60; 144; 228; 112; 32; 40; 52; 32) (2p3;p3; 1; 1; 1; 0)Table 2.2: Characteristics Philadelphia benchmark instances.instance lower bounds optimal upper bounds[60] [95, 96] [92, 173] [179] value [92] [92] [92] [186] [173] [171] [179] [179] [191]GT TSP div. GT (range) Best Seq. TS SA GA Seq. GSP1 GSP2 LSP1 413 426 426 426 426 447 428 428 426 426 459 440 450 432P2 413 426 426 426 426 475 429 438 426 - 446 436 444 -P3 245 - 257 252 257 284 269 260 258 257 282 291 273 263P4 245 252 252 252 252 268 257 259 253 252 268 273 268 -P5 239 - 239 177 239 250 240 239 239 - - - - -P6 139 177 178 177 178-188 230 188 200 198 - - - - -P7 830 - 855 855 855-856 894 858 858 856 - - - - -P8 449 - 524 427 524-527 592 535 546 527 - - - - -P9 1,664 - 1,713 1,713 1,713-1,724 1,800 1,724 1,724 - - - - - -Table 2.3: Results Philadelphia benchmark instances. Framed values indicate the optimal value.
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2.4. Minimum Span Frequency Assignmentinstance characteristics lower bounds upper boundsjV j jEj [1] [184] [120] [184] [25] [26] [194] [155]LP QP CS TS TS GENET PR PRCELAR 05 400 2,598 792 792 792 792� 792 792 792 792GRAPH 03 200 1,134 - - 380 380 - - - 380GRAPH 04 400 2,244 - - 394 394 - - - 394GRAPH 10 680 3,907 - - 394 394 - - 394 394Table 2.4: Minimum Span benchmark instances CALMA project. �Instead of tabusearch, simulated annealing is applied to this instance.Only few researchers have succeeded in �nding better bounds. The best were obtained byJanssen and Kilakos [95, 96] in their study of the minimum span problem from a polyhedralpoint of view. The traveling salesman problem (TSP) on a related graph G0 can be seenas a relaxation of the MS-FAP, which means that every lower bound for the TSP, is alower bound for the corresponding MS-FAP as well. The relation between MS-FAP andTSP was �rst observed by Raychaudhuri [158], and used by Roberts [160] and Smith andHurley [172]. Let G0 be a weighted complete graph with same vertex set as G. Let theweights wvivj = 0 if fvi; vjg 62 E, and wvivj = jTvivj j+ 1 if fvi; vjg 2 E. Let H(G0) denotethe length of the shortest Hamiltonian path in G0. Then sp(G) � H(G0). Since, theminimum spanning tree S(G0) is a lower bound for the shortest Hamiltonian path, it alsoholds that sp(G) � S(G0). Janssen and Kilakos relaxed the TSP formulation to the edgecover polytope and study the polyhedral structure of the dual of this problem. In addition,they also study the polyhedral structure of the dual of the TSP linear programmingrelaxation. For the most studied Philadelphia problem, P1, they prove a lower bound of426. Combined with an upper bound of 426 this implies that this problem is solved [95].In [97], they also studied the polyhedral structure of the dual of the tile covers formulationfor the MS-FAP.Lower bounds based on subgraphs and preprocessing ideas are presented by Smith andHurley [172] (see also [173]). Every lower bound / optimal span on a subgraph of Gprovides a lower bound on the span of G itself. Preprocessing ideas incorporate thedeletion of vertices with (almost) the same neighborhood, and the deletion of verticesfor which they can prove that there is always an assignment possible within the lowerbound spectrum. Recently, Allen, Smith, and Hurley [11] derived new lower bounds byinteger programming techniques. They extended the integer programming formulation forthe Hamiltonian path problem, with additional constraints and variables that representthe MI-FAP. Application of integer programming techniques, like branch-and-bound andLagrangean relaxation resulted in improved lower bounds for a small instance.Other lower bounds are derived by Sung and Wong [179] and Tcha, Chung, and Choi [180].31



2. The Frequency Assignment Problem: A SurveyIn [179] a new lower bound for the MS-FAP is presented, based on similar arguments asthe bounds of Gamst. For most instances, the lower bound is as strong as the TSP bound.In [180] one of the lower bounds of Gamst [60] is extended. On a variant of instance P1they prove that the new lower bound indeed can improve the lower bound of Gamst.Finally, for the CALMA benchmark instances (cf. Table 2.4), researchers applied thesame methods as for the MO-FAP. Hurkens and Tiourine [91] applied the clique lowerbound techniques, whereas Aardal et al. [1] applied branch-and-cut based on the formu-lation (2.7)-(2.15) to instance CELAR 05. It turned out that the CALMA instances arequite simple to solve to optimality. In fact, in Kolen, van Hoesel, and van der Wal [120],optimality results are reported for all instances via constraint satisfaction (CS) techniques.The same formulation (2.7)-(2.15) is the topic of a study by Giortzis and Turner [65].They applied branch-and-bound with a branching priority rule to an instances with 58vertices (cv = 4) and 29 available frequencies. They proved that the optimal solutionneeds 16 frequencies.2.4.4 HeuristicsThe �rst heuristics for the MS-FAP (e.g., Philadelphia instances) are proposed as earlyas the 1970s. In Box [27] and Zoellner and Beall [197] the �rst constructive heuristics areintroduced. The frequencies are assigned to the vertices according to some order of thevertices. In Sivarajan, McEliece and Ketchum [171] several variants of the algorithm aretested on 13 Philadelphia instances. Quite a lot of the variants turned out to be trivial.For the remaining instances, P1-P4 the results are reported in Table 2.3. None of the 8tested variants outperformed the other ones.In Smith, Hurley and Thiel [173], the derived lower bounds are combined with a heuristic.The heuristic �rst assigns a subgraph in the graph, and afterwards tries to extend theassignment to a complete assignment with the same span. If such an assignment is notpossible they extend the subgraph with an additional vertex, and repeat the procedure.Optimal solutions are presented for three Philadelphia instances. In [92], the same authorsdescribe the software system FASoft, a planning tool for frequency assignment based onthese results. In this paper they describe several sequential assignment algorithms (likethose by Sivarajan, McEliece and Ketchum [171], as well as improvement heuristics liketabu search (TS), simulated annealing (SA) and genetic algorithms (GA). For the 48variants of sequential assignment algorithms the best one is reported in Table 2.3. Forthe genetic algorithms no results are reported in [92]. Valenzuela, Hurley and Smith [186]applied a GA to these instances. Each assignment is represented by a permutation ofthe vertices. An assignment is obtained by assigning frequencies to the vertices in agreedy way according to the permutation. They tested the algorithm on the Philadelphia32



2.4. Minimum Span Frequency Assignmentinstances P1-P8. In three cases the optimal solution was found.Besides their lower bound, Sung and Wong [179] also described a heuristic that providesan optimal solution in a special case. They prove that their sequential packing algorithmprovides an optimal span in case only co-channel constraints are taking into account, andthe hexagonal cell network contains at most 3 stripes, i.e., it can be represented by 3rows of hexagonal cells. For cases with adjacent channel constraints, the algorithm isgeneralized. Two versions of the algorithm, GSP1 and GSP2, are tested on the instancesP1-P4 (see Table 2.3) and some easier variants.Wang and Rushforth [191] discuss a local search method for the MS-FAP. First the verticesare assigned frequencies according to some sequence. Next, they exchange the assignmentof two vertices as long as the objective improves. In case no improvement is possibleanymore, also non-deterioration is allowed to escape from local minima. They testedtheir algorithm on two Philadelphia instances (see Table 2.3) and on instances presentedin Kim and Kim [114]. In [114] a two phase heuristic is introduced to solve the minimumspan problem. They assume a hexagonal grid and use patterns consisting of a numberof cells to which we can assign the same frequency. The algorithm is tested on randomlygenerated instances.In the context of the minimum span problem, we also should mention the work of Lan-fear [130]. In his comprehensive overview of frequency assignment, four algorithms forthe MS-FAP are proposed: an exact search algorithm (branch-and-bound), a simulatedannealing algorithm, a tabu search algorithm and an algorithm based on sequencing thevertices are described. The simulated annealing algorithm can only be applied to in-stances with constraints restricted to co-channel and adjacent-channel interference (i.e.,dvw 2 f1; 2g for all fv; wg 2 E).For the CALMA instances, all heuristics performed equally, and found the optimal solu-tion. Tabu search was applied by Tiourine, Hurkens, and Lenstra [91, 184]. In [26], TSand GENET results are reported for CELAR 05. The potential reduction (PR) methodby Warners [192] was used to solve both CELAR 05 and GRAPH 10. Pasechnik [155] alsoapplied potential reduction to the minimum span problems. Next to it, he solved theminimum order problems as minimum span instances. For GRAPH 01 he could prove thatthe minimal span equals 408, whereas for the other instances lower and upper boundswere derived.2.4.5 ConclusionsSummarized, for the MS-FAP without speci�c domains, good lower bounds are providedby several authors. The lower bounds are tested extensively on the Philadelphia instances.The heuristic techniques proposed for these problems seem to be less accurate in providing33



2. The Frequency Assignment Problem: A Surveyoptimal solutions in all cases. In cases where speci�c domains are given, the benchmarkinstances are less challenging. In all cases the best solution is found with the appliedheuristics, whereas also lower bounds are available to guarantee optimality. More di�cultbenchmark instances are necessary to distinguish among the heuristics.2.5 Minimum Blocking Frequency Assignment2.5.1 Problem DefinitionIn case all assignments contain some unacceptable interference, we can decide to �nda partial assignment that minimizes the overall blocking probability. In the minimumblocking frequency assignment problem (MB-FAP), the problem is to assign frequenciesin such a way that no unacceptable interference occurs and the overall blocking probabilityof the network is minimized. More formally the problem is de�nedMinimum Blocking Frequency Assignment (MB-FAP)instance: Undirected graph G = (V;E), fv; vg 2 E, for all v 2 V , sets Tvw � Z,fv; wg 2 E, 0 2 Tvw, demand cv 2 Z+, domain subsets Dv � Z+ for all v 2 V , D =[v2VDv, non-increasing blocking function bv : Z+0 7! Z+0 for all v 2 V , and positive integerK.question: Does there exist an assignment of subsets f : V 7! 2D such that,(i). jf(v)j � cv,(ii). f(v) � Dv,(iii). j �f � �gj 62 Tvw for all fv; wg 2 E, �f 2 f(v), �g 2 f(w), v 6= w or �f 6= �g, and(iv). Pv2V b(jf(v)j) � K ?The special case in which cv = 1, bv(0) = 1, bv(1) = 0, jDvj = 1, Dv = Dw for all v; w 2 V ,and Tvw = f0g for all fv; wg 2 E, is equivalent with the maximum independent set prob-lem. As a consequence, MB-FAP is NP-complete in general. An integer programmingformulation (with nonlinear objective) for this problem readsmin Xv2V bv(mv) (2.16)s.t. mv = Xf2Dv xvf � cv 8v 2 V (2.17)xvf + xwg � 1 8fv; wg 2 E; f 2 Dv; g 2 Dw :34



2.5. Minimum Blocking Frequency Assignment(jf � gj 2 Tvw) ^ ((f 6= g) _ (v 6= w)) (2.18)xvf 2 f0; 1g 8v 2 V; f 2 Dv (2.19)The constraints (2.17) model that at most cv frequencies should be assigned to v 2 V . Thevalue mv is only used to simplify the objective (2.16) that minimizes the overall blockingprobability. The objective (2.16) is a generalized version of the objective of Chang andKim [36]. They model the MB-FAP as a non-linear combinatorial optimization problem.Their objective function really represents the blocking probability. In conformity withChang and Kim, let �v denote the tra�c demand in Erlang for cell v, and mv the numberof assigned channels. Then the cell blocking probability of cell v is given by the ErlangB formula asB(�v; mv) =  mvXk=0 (�v)kk! !�1 (�v)mvmv!The weighted average blocking probability for a vertex v is then given bybv(mv) = wvB(�v; mv)with wv = �v=Pv2V �v the tra�c weighting factor. Since, the function B(�v; mv) isstrictly decreasing and convex in mv, we can linearize the objective function by the intro-duction of coe�cients �vm := B(�v; m)�B(�v; m� 1) < 0, and the binary variables yvmdenotingyvm = � 1 if at least m � cv frequencies are assigned to v 2 V0 otherwiseThen, the objective (2.16) readsmin Xv2V wv 1 + cvXm=1�vmyvm! (2.20)and the constraint (2.17) readscvXm=1 yvm = Xf2Dv xvf � cv 8v 2 V (2.21)Note that, yvm = 1 implies yvm�1 = 1, since the function B(�v; mv) is strictly convex,which implies that �vm strictly increases over m. 35



2. The Frequency Assignment Problem: A SurveyThe same objective is used by Mathar and Mattfeldt [141]. In all remaining articles theobjective is simpli�ed to bv(m) = cv � m, i.e., the unsatis�ed demand is minimized, orequivalently the number of assigned frequencies is maximized. Therefore, this problem isalso called the maximum service frequency assignment problem.2.5.2 Lower Bounds and Exact MethodsChang and Kim [36] �rst linearize (2.16) to (2.20). Next, they generate a number ofpatterns (i.e., a pair (S; f), subset S � V and a frequency f 2 D that can be assignedwithout interference to all the vertices v 2 S simultaneously). Then, the problem canbe remodeled in terms of these patterns, and Lagrangean Relaxation is applied to thenew formulation. Furthermore, they describe a grade-of-service (GoS) updating heuristic.They tested their algorithm on randomly generated instances based on a 7� 7 hexagonalgrid network.Besides the co-channel and adjacent-channel constraints, represented by (2.18), Fischettiet al. [54] also take into account that the overall interference a�ecting a cell has to belimited to a value L,Xu2V Xg2Du pvufgxug � L+M(1� xvf ) 8v 2 V; f 2 Dv (2.22)where pvufg is the interference level of the combination (v; f) and (u; g), and M is a bigconstant with respect to the interference levels. In case frequency f 2 Dv is selected thetotal level of interference should be below L, in case f 2 Dv is not selected the constraintis redundant. The value L corresponds with the signal-to-noise ratio and is for exampleset to 0.125687 (9 dB). In [54] only co-channel and adjacent-channel interference is takeninto account. Let Ivu � 0 denote the real interference level by use of the same frequencyfor v and u, and let NFD denote the Net Filter Discriminator , a reduction factor foradjacent frequencies. Then (2.22) reduces toXu2V �Ivuxuf + IvuNFD (xuf�1 + xuf+1)� � L+M(1� xvf ) 8v 2 V; f 2 Dv (2.23)In [54] the problem is solved with Branch and Cut. Their instances are obtained fromCSELT (a research laboratory connected to TIM, one of the Italian mobile radio systemmanagers) and contain up to 203 vertices. Not all instances can be solved to optimality.The same instances have been studied by Mannino and Sassano [140]. They present anenumeration scheme, within the context of a core search. They assign �rst the (di�cult)core of the problem, and afterwards extend the assignment to the complete problem, with-out additional interference. Their algorithm outperforms the Branch and Cut approach36



2.5. Minimum Blocking Frequency Assignmentof Fischetti et al. on all instances, both in time and optimality results. In [140], the adap-tive core search algorithm is also tested on several instances from an Italian broadcastingcompany. The overall interference (2.22) is not taken into account in these instances.The problem of minimizing the unsatis�ed demand is also studied by Jaumard, Mar-cotte, Meyer and Vovor [101] (see also [99, 102]). Besides the demand cv, they also takeinto account a minimum number of required frequencies cv, resulting in the additionalconstraintXf2Dv xvf � cv 8v 2 V (2.24)They compare 3 di�erent integer programming formulations, one equivalent to (2.16)-(2.19) and the formulation of Mehrotra and Trick [143] for the graph coloring problem,and two set-covering formulations. They compare the formulations with respect to thequality of the linear programming relaxation. For the best formulation, one of the set-covering formulations, the integrality gap remains signi�cant. They use column generationtechniques to solve the linear programming relaxation, and present an e�cient branchingscheme to be used within a branch and cut framework. They report results on twomedium-sized problems of Bell Mobility.In Giortzis and Turner [65], 5 instances with 4 to 58 vertices and in between 5 and29 available frequencies are solved with standard branch-and-bound. To improve theperformance of the algorithm, they applied a special branching priority on the variablesxvf .Finally, the MB-FAP is also the topic of the papers by Kazantzakis, Demestichas andAnagnostou [112] and Rouskas, Kazantzakis and Anagnostou [163]. They present aninteger linear programming formulation similar to (2.16)-(2.19) for the problem. Theysolve the linear programming relaxation and add inequalities that the objective has tobe integral. However, in case the objective value is integral, the solution can still befractional. The search for an integral solution is done via an exhaustive search of thesolution space of an integer quadratic program representing all integral solutions with thegiven objective value. Computational results are reported on a small test problem.2.5.3 HeuristicsOnly one heuristic approach is known for the MB-FAP. Mathar and Mattfeldt [141] appliedsimulated annealing to the MB-FAP with the same objective as Chang and Kim [36].They only took into account the co-channel interference. The quality of their solutions isexamined through the use of special network structures for which optimal solutions canbe computed e�ciently. 37



2. The Frequency Assignment Problem: A Survey2.5.4 ConclusionsConcluding, most approaches to solve the MB-FAP deal with exact solution techniques.This direction is inspired by the relation with the maximum independent set problemwhich belongs to the standard problems in combinatorial optimization, and therefore,has been the topic of many studies. Although benchmark instances are not available,the results show that reasonable large real-life instances can be solved to optimality withinteger programming techniques and search algorithms in which combinatorial argumentsare incorporated.2.6 Minimum Interference Frequency Assignment2.6.1 Problem DefinitionBesides the approaches in which the maximum interference level is minimized, anotherapproach is given by the minimization of the total sum of interference levels. In theminimum interference frequency assignment problem (MI-FAP), we have to assign fre-quencies from a limited number of available frequencies in such a way that the total sumof weighted interference is minimized. Formally, the problem can be de�ned asMinimum Interference Frequency Assignmentinstance: Undirected graph G = (V;E), fv; vg 2 E, for all v 2 V , sets Tvw � Z,fv; wg 2 E, 0 2 Tvw, demand cv 2 Z+, domain subsets Dv � Z+ for all v 2 V , D =[v2VDv, penalty values pvwfg 2 Z+, for all fv; wg 2 E, f 2 Dv, g 2 Dw, and positiveinteger K.question: Does there exist an assignment of subsets f : V 7! 2D such that,(i). jf(v)j = cv,(ii). f(v) � Dv, and(iii). Xfv;wg2E X�f2f(v);�g2g(w)(v 6=w)_( �f 6=�g) pvw �f�g�(j �f � �gj 2 Tvw) � K ?
Here, �(A) is the Kronecker delta function which is equal to one in case the logicalcondition A is true and zero otherwise.In many cases the MI-FAP is used as a subroutine to �nd the minimum span of a FAP.In this special case we would like to �nd an interference-free assignment to the vertices,38



2.6. Minimum Interference Frequency Assignmenti.e., K = 0. This problem is also known as the Feasibility Frequency Assignmentproblem.Feasibility Frequency Assignmentinstance: Undirected graph G = (V;E), fv; vg 2 E, for all v 2 V , sets Tvw � Z,fv; wg 2 E, 0 2 Tvw, demand cv 2 Z+, and domain subsets Dv � Z+ for all v 2 V ,D = [v2VDv.question: Does there exist an assignment of subsets f : V 7! 2D such that,(i). jf(v)j = cv,(ii). f(v) � Dv, and(iii). j �f � �gj 62 Tvw for all fv; wg 2 E, �f 2 f(v), �g 2 f(w), v 6= w or �f 6= �g ?An integer programming formulation for the MI-FAP can be given by the introduction ofnew binary variables zvfwg, for all fv; wg 2 E, f 2 Dv, g 2 Dw, with jf � gj 2 Tvw, andeither v 6= w or f 6= g:zvwfg = � 1 if both xvf = 1 and xwg = 10 otherwiseThen MI-FAP readsmin Xfv;wg2E Xf2Dv;g2Dwjf�gj2Tvw^(v 6=w_f 6=g) pvwfgzvwfg (2.25)s.t. Xf2Dv xvf = cv 8v 2 V (2.26)xvf + xwg � 1 + zvwfg 8fv; wg 2 E; f 2 Dv; g 2 Dw :(jf � gj 2 Tvw) ^ ((f 6= g) _ (v 6= w)) (2.27)xvf 2 f0; 1g 8v 2 V; f 2 Dv (2.28)zvwfg 2 f0; 1g 8fv; wg 2 E; f 2 Dv; g 2 Dw :(jf � gj 2 Tvw) ^ ((f 6= g) _ (v 6= w)) (2.29)Constraints (2.27) model the fact that both f and g can be assigned to v and w if andonly if zvwfg is equal to one, which implies an additional penalty in the objective (2.25).Since we assume pvwfg > 0, the z variables equal 0 in case only one of the x variables39



2. The Frequency Assignment Problem: A Surveyin (2.27) is set to 1. In case pvwfg < 0, the constraintszvwfg � xvf 8fv; wg 2 E; f 2 Dv; g 2 Dw : (2.30)(jf � gj 2 Tvw) ^ ((f 6= g) _ (v 6= w)) (2.31)have to be added to the formulation.Another way to model (2.27) is by the introduction of the variables zvwfg for all fv; wg 2 E,f 2 Dv, g 2 Dw and the constraintsXg2Dw zvwfg = cwxvf 8fv; wg 2 E; f 2 Dv (2.32)In case xvf = 0, then the constraints (2.32) enforce that all the variables zvwfg are set to0 as well. In case xvf = 1, the constraints (2.32) guarantee that exactly cw variables zvwfgare set to 1; the variables zvwfg with xwg = 1. The model with the constraints (2.32) (andcv = 1 is the topic of Chapter 3.A simpli�ed integer linear programming formulation for the case cv = 1 is presented byAardal et al. [1]. They also assume that the interference pvwfg is equal for all jf�gj 2 Tvw.Instead of zvfwg, they introduce a new binary variable zvw for every edge fv; wg 2 Ezvw = � 1 if the frequencies selected for v and w violate Tvw0 otherwiseThen, MI-FAP reads asmin Xfv;wg2E pvwzvw (2.33)s.t. Xf2Dv xvf = 1 8v 2 V (2.34)xvf + xwg � 1 + zvw 8fv; wg 2 E; f 2 Dv; g 2 Dw : jf � gj 2 Tvw (2.35)xvf 2 f0; 1g 8v 2 V; f 2 Dv (2.36)zvw 2 f0; 1g 8fv; wg 2 E (2.37)2.6.2 Benchmark InstancesIn connection with the CALMA project 11 benchmark instances are available. For theinstances CELAR 09, CELAR 10, GRAPH 07, and GRAPH 12 not only combinations of fre-quencies are penalized, but also single frequency assignments. For a number of vertices,40



2.6. Minimum Interference Frequency Assignmentthere exists a preferred frequency f �, which may only be deselected against a high penaltyqv. More general preference between frequencies can be modeled with penalties qvf for allv 2 V , f 2 Dv. In that case the objective (2.33) readsXfv;wg2E pvwzvw +Xv2V Xf2Dv qvfxvf (2.38)Table 2.5 shows the results of the applied methods. For the sake of completeness, theresults of Chapter 4 about the tree decomposition (TD) method are included as well.2.6.3 Lower Bounds and Exact MethodsAardal et al. [1] applied their Branch and Cut framework for MO-FAP to solve theseinstances as well. Unfortunately, they were not able to solve any of these instances. Fortwo instances they obtained a non-trivial, but poor, lower bound in this way. Tiourine,Hurkens, and Lenstra [91, 184] formulated a relaxation of the problem as a quadraticprogram. The quadratic program (QP) was solved by preprocessing and a branch-and-bound algorithm. For the two CELAR instances with vertex penalties qvf , they succeededto obtain fairly good lower bounds. For CELAR 06, De Givry, Verfaillie, and Schiex [66]proved through lower bounding techniques for constraint optimization problems that thevalue of the best known solution (see Section 2.6.4) is optimal. The proof of optimalitywas carried out by Russian Doll Search [187] on a computer network of 40 SPARC 4workstations, and took about 3 days computation time. In Chapter 4 more optimalsolutions / lower bounds are computed via a tree decomposition approach.2.6.4 HeuristicsIn Tiourine, Hurkens, and Lenstra [91, 184] also Simulated Annealing and Variable DepthSearch are performed on the CELAR instances with varying success. Warners [192, 194]and Pasechnik [155] applied their potential reduction approach to MI-FAP without greatsuccess.A standard genetic algorithm was proposed by Kapsalis, Rayward-Smith and Smith [107](see also [106]). In Kolen [118] a genetic algorithm with optimized crossover is proposedto solve the MI-FAP. Instead of a standard crossover, the crossover routine generates thebest possible child of two parents. To generate this child, we have to solve an MI-FAPwith jDvj = 2 for all v 2 V . This problem can be solved to optimality with the polyhedralresults of Chapter 3 (see also [121]). Applied to the instances of the CALMA project, thebest known results were obtained in this way. 41



2.TheFrequencyAssignmentProblem:ASurvey

instance characteristics lower bounds optimal upper boundsjV j jEj [1] [184] [66] Ch. 4 value [118] [106] [184] [184] [194] [155]LP QP CS TD (range) GA GA SA VDS PR PRCELAR 06 200 1,322 5 - 3,389 3,389 3,389 3,389 3,456 3,671 3,532 4,539 4,564CELAR 07 400 2,865 5 - - 300,000 300,000 - 343,592 343,592 1,670,572 567,949 344,103 - 831,926CELAR 08 916 5,744 - - - 150 150 - 262 262 612 276 299 - 533CELAR 09 680 4,103 - 14,969 - 15,571 15,571 15,571 15,599 15,571 15,573 15,775 15,770CELAR 10 680 4,103 - 31,204 - 31,516 31,516 31,516 31,517 31,516 31,516 32,460 31,517GRAPH 05 200 1,134 - - - 221 221 221 293 223 - - 452GRAPH 06 400 2,170 - - - 4,123 4,123 4,123 16,020 4,189 - - 15,047GRAPH 07 400 2,170 - - - 4,324 4,324 4,324 5,990 4,324 - - 14,183GRAPH 11 680 3,757 - - - 3,016 3,016 - 3,080 3,080 30,312 3,513 - - 14,692GRAPH 12 680 4,017 - - - 11,827 11,827 11,827 15,208 11,827 - - 17,372GRAPH 13 916 5,273 - - - 9,914 9,914 - 10,110 10,110 49,205 11,130 - - 41,784Table 2.5: Minimum Interference benchmark instances CALMA project. Framed values indicate the optimal value.
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2.6. Minimum Interference Frequency AssignmentThe instances of the CALMA project are not the only problems that have inspired re-searchers to develop algorithms for the MI-FAP. However, only the CALMA instances canbe considered as benchmark problems, since for all other sets of instances it holds thatonly a single group of researchers has investigated them. All research on these sets hasbeen carried out in the direction of heuristic methods. Especially, genetic algorithms andtabu search seem to be very popular for the MI-FAP. Tabu Search is applied by Castelino,Hurley, and Stephens [33] to �nd an assignment with minimal unweighted interference,i.e., pvw = 1 for all fv; wg 2 E. To verify their results on large instances, they comparethem with a Genetic Algorithm and a steepest descent heuristic. Computational resultsare reported for instances with up to 726 vertices and 75,306 edges. The number of avail-able frequencies is 50 in all cases. In Castelino and Stephens [34, 35] tabu thresholding [72]is applied on the same instances. In [35], surrogate constraints [67] are added to the tabuthresholding approach.Hao, Dorne and Galinier [81] also used tabu search to solve realistic instances of the FrenchNational Research Center for Telecommunications (CNET) with at most 600 transmitters.The minimum interference problem is solved as a subroutine to minimize the span of theassignment. An assignment is represented in such a way that all co-site constraints aresatis�ed. The length of the tabu-list is not constant, but varies during the search. Dorneand Hao [45, 46] also applied evolutionary search on a number of CNET instances withup to 300 vertices and cv 2 f2; 3; 4g. Again they would like to minimize the span of theassignment by solving repeatedly MI-FAPs. In [45] they use a mutation operator thatconcentrates on the change of con�icting frequencies, whereas in [46] they compare waysto deal with the co-site constraints. In [80] the same authors investigate the performanceof the crossover operator in a genetic algorithm / evolutionary search.Other genetic algorithms are given by [40, 113, 129, 150]. Crisan and Mühlenbein [40] ap-plied a genetic algorithm to MI-FAP with tailor-made crossover and mutation operators.They solved in this way real-life instances with among 670 and 5500 transmitters. In Laiand Coghill [129], another genetic algorithm is presented to solve the minimum interfer-ence problem. Computational results are given on 2 instances. Also Ngo and Li [150] haveused a genetic algorithm to solve MI-FAP. They use a special binary encoding that dealswith the demand cv for all v 2 V , and the co-site constraints. In [174], Smith presenteda genetic algorithm as well. In this case the crossover is used to reduce the adjacentand co-channel interference, whereas the mutation operator is used to reduce the co-siteinterference. Finally, genetic algorithms are applied by Kim et al. [113] to obtain interfer-ence free assignments. They tested several crossover and mutation operators for a coupleof Philadelphia instances in which the span of available frequencies is �xed to the bestlower bound of Gamst [60]. These instances were introduced by Sivrajan, McEliece andKetchum [171]. For 5 out of the 8 instances, it is known that there exist interference-freeassignments with span equal to the lower bound. 43



2. The Frequency Assignment Problem: A SurveyFunabiki and Takefuji [59] proposed a parallel neural network to solve the same instances.They used the Hysterses McCulloch-Pitts neuron model, instead of a Hop�eld network,to solve the feasibility problem. This neural network guarantees to converge to a localoptimum. With the use of some additional heuristics they hope that their approachconverts to a global optimum, which is true in a substantial percentage of the cases. The�rst neural network approach to the feasibility FAP is due to Kunz [128], who applieda Hop�eld network to the problem. Lochtie and Mehler [135, 134] also applied a neuralnetwork approach to the MI-FAP. In [135] only co-channel interference has been takeninto account, whereas in [134] the results are extended to incorporate adjacent channelinterference as well. Computational results are reported for a real-life 58 cell instance.Another neural network is used by Smith and Palaniswami [176]. They presented a non-linear integer programming formulation for the problem, and applied both a Hop�eld and aself-organized neural network to the problem. They compared their results with simulatedannealing and steepest descent on a number of Philadelphia instances by Kunz [128]. Incontrast with the standard MI-FAP, the weight of the interference depends on the distancebetween the frequencies. The penalty is inversely proportional to the di�erence betweenthe assigned frequencies.The same cost function is applied by Young [196], who presented a local search framework.It basically consists of a frequency change neighborhood. A local search approach is alsopresented by Park and Lee [154]. They adjusted a local search algorithm for the k-coloringproblem to the feasibility FAP. As neighborhood they apply color changing (other colorfor one vertex) and color interchange (interchange two colors of two vertices). Again thefeasibility problem is solved as a subroutine to minimize in the end the span. Smith, Kimand Sargent [175], describe a simulated annealing approach, applied to a real life instanceof a point-to-point wireless network in Jakarta, Indonesia.Finally, Borndörfer et al. [23] extend the graph coloring heuristics of Brélaz [28] andCosta [38] to the MI-FAP to solve instances of size in between 267 and 4,240 vertices.Combined with local search, the DSATUR heuristic yield to the best solutions. Theycompared their algorithm with T-coloring heuristics and a heuristic based on a minimumcost �ow algorithm. This last heuristic is also the topic of [24], in which the same authorspresent an orientation model for the FAP. This formulation forms the basis for a two stageheuristic in which an outer and inner optimization problem are solved iteratively. Theouter optimization problem decides for each edge in the graph which adjacent vertex isassigned the higher frequency (orientation). The inner optimization problem is to �nd anassignment that respects the orientation. The inner optimization problem can be viewedas a minimum cost �ow problem.
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2.7. Other Models2.6.5 ConclusionsIn conclusion, for the MI-FAP many heuristic procedures have been proposed by manydi�erent research groups in the context of a wide variety of applications. Among theheuristics the most promising is the Genetic Algorithm of Kolen [118], that outperformsother heuristics on the CALMA benchmark instances. A disadvantage of this techniquehowever is that the constraint graph should not be too large or should have a low den-sity, since otherwise the optimal crossover cannot be applied anymore [119]. For verylarge networks less sophisticated heuristics should be applied. Besides the proposed al-gorithms like tabu search, local search algorithms combined with disturbance of locallyoptimal solutions seems to be a promising alternative. For instance, the assignments forthe instances discussed by Castelino, Hurley and Stephens [33] can be improved in thisway [119].The lack of lower bounds and exact solution techniques for the MI-FAP causes that formost methods the quality of the solutions is unknown. In view of the size of severalinstances, it is acceptable to suppose that no exact solution technique will ever solvethese instances. However, it should be possible to derive lower bounds for these instances,and hopefully solve the smaller instances to optimality. Especially, for the benchmarkinstances of the CALMA project it would worthwhile to know the optimal solutions, orsecond best non-trivial lower bounds. The research presented in the Chapters 3 and 4 ismotivated by this conclusion.
2.7 Other ModelsBesides the models described in the previous subsections, other models have been proposedby several authors in the literature. We mention only a few of these approaches.An attractive approach is to use multiple objectives that combine characteristics of themodels MO-FAP, MS-FAP, MB-FAP, and MI-FAP. For example, in Duque-Antón, Kunzand Rüber [50] as well as in Al-Khaled [10] simulated annealing is applied to a FAPwith cost function a linear combination of minimization of the interference, the blockingprobability, and the span. Knälmann and Quellmalz [117] applied simulated annealingwith cost function a convex combination of the mean interference and the maximuminterference obtained by the assignment (see also Quellmalz, Knälmann and Müller [157]).An important question that remains unanswered in these approaches is the choice of theweights for the di�erent objectives. In Walser [190] the minimum order and minimumspan objectives are combined. First, the minimum order is determined. Next, the spanis minimized. 45



2. The Frequency Assignment Problem: A SurveyAnother approach is the use of n-ary constraints to model the FAP. In varying arrange-ments Allen, Bater, Cohen, Dunkin, and Jeavons [16, 48, 49, 103] devoted a series ofpapers to the fact that the use of binary constraints to model the FAP is too restrictive.They present examples in which better assignments are obtained whenever n-ary con-straints, n � 3 are taken into account (see also Fischetti et al. [54]). The theory of therelated constraint satisfaction problem in which n-ary constraints have to be handled aswell could direct how to deal with these constraints.In Malesi«ska [137, 138] and Malesi«ska and Panconesi [139], the combination of �xedand dynamic channel assignment is studied. They studied the case in which the cells canbe partitioned in two parts, one set of transmitters that needs a �xed channel assignmentscheme, and one set of transmitters that can handle dynamic channel assignment schemes.They present results on the complexity and the approximation of the performance of thedynamic part of the network, given a plan for the �xed part.The variant of MS-FAP, in which we have a cyclic channel distance is studied by Vanden Heuvel, Leese and Shepherd [85], Shepherd [167] and McDiarmid [142]. In the cyclicchannel assignment problem, the frequency spectrum is supposed to be cyclic (i.e., jf �gjcyclic = minfjf � gj; m� jf � gjg, where m is the available span). For a special class ofgraphs, McDiarmid [142] proves that the problem can be solve in O(jV j3). In [85, 167],theoretical results for in�nite triangular lattices, in�nite square lattices, and in�nite linelattices are derived.Finally, in Funabiki and Nishikawa [58], a FAP related to satellite communication isdiscussed. The problem in this case is related to the quadratic assignment problem andsolved with a neural network approach. Another satellite communication problem isdiscussed by Thuve [181]. He modeled the problem as a set partitioning problem, andapplied a heuristic solution algorithm.2.8 ConclusionsIn this survey, we have investigated the approaches proposed in recent years to solve awide variety of frequency assignment problems. We have limited ourselves to �xed channelassignment schemes, since for these schemes it is possible to value assignments o�-line bytechniques from operations research and arti�cial intelligence. Moreover, �xed channelassignment problems can serve as bounds for the performance of dynamic and hybridassignment schemes.The approaches to the FAP can be classi�ed in four categories: minimum order, minimumspan, minimum blocking probability, and minimum cumulative interference. Dependingon the problem, exact or heuristic methods have been proposed with varying success.46



2.8. ConclusionsIt seem that the minimum order problem can be solved nowadays quite e�ciently, bycombining lower bounding and heuristics. Probably the most studied FAP is the minimumspan problem. Especially lower bounds have been proposed by many researchers. Thebest lower bounds are obtained by use of the relation with the traveling salesman problem.Heuristic methods for this problem are less far developed. At this moment no heuristicsare available that solve all benchmark instances to optimality.For the minimum blocking problem, the relation with the maximum independent setproblem has directed the research to exact solution methods. Real-life instances can besolved with integer programming and e�cient search techniques. Finally, the minimuminterference problem is discussed. From an exact point of view, this problem seems to bethe most di�cult version of the FAP. Two exact methods have been applied with limitedsuccess on the benchmark instances. Most research has been carried out in the �eld ofheuristics. Variants of genetic and tabu search algorithms have been applied to a widevariety of applications. The quality of the solutions however is still unknown, due to thelack of lower bounds.
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3. The Partial ConstraintSatisfaction Formulation
One of the conclusions of the previous chapter was the lack of good lower bounding tech-niques for the minimum interference frequency assignment problem (MI-FAP). In contrastwith for instance the minimum order FAP and minimum span FAP, no combinatoriallower bounds are available for the MI-FAP. For the 11 benchmark instances available inthe CALMA project only one has been solved to optimality with a very time consumingconstraint satisfaction approach (cf. Section 2.6). By the NP-hardness of the MI-FAPwe cannot expect to �nd algorithms that solve the MI-FAP in polynomial time. Never-theless, this chapter as well as the next chapter are devoted to exact solution methods forthe MI-FAP. The goal of both chapters is to determine which exact methods can be usedto solve MI-FAPs, or second best to bound the optimal value of real-life instances frombelow. At the same time good lower bounds / optimal solutions serve as a benchmark forthe wide variety of heuristics proposed in the literature for the MI-FAP. In this chapter weformulate the MI-FAP as a partial constraint satisfaction problem with binary relations(PCSP), and analyze the problem from a polyhedral point of view.For many combinatorial optimization problems, the most successful exact methods arebased on the study of the polytope described by a (mixed) integer programming formu-lation (cf. Nemhauser and Wolsey [148] or Schrijver [166] for a thorough discussion ofpolyhedral theory, and Aardal and Van Hoesel [2, 3] for a comprehensive overview of thesuccessful application of polyhedral combinatorics). Therefore, we study the PCSP froma polyhedral point of view.The sequel of this chapter is organized as follows. In Section 3.1 we introduce the PCSP,describe its relation with the frequency assignment problem, and prove that the problemis NP-hard in general. In Section 3.2 we formulate the partial constraint satisfactionproblem as a binary linear programming problem, we determine the dimension of theproblem, and we describe the trivial facet de�ning valid inequalities. The polyhedral studyof the PCSP polytope is continued in Section 3.3 with the proof of two lifting theorems.The theorems are used to derive two classes of facets for the PCSP in Section 3.4. Thecorresponding separation problems are discussed in Section 3.5. The relation betweenthe PCSP and the boolean quadric polytope is the topic of Section 3.6. Computationalresults in Section 3.7 conclude this chapter. Roughly, the Sections 3.1-3.4, and the �rstpart of Section 3.7 are published in [121]. 49



3. The Partial Constraint Satisfaction Formulation3.1 The partial constraint satisfaction problemMany problems in combinatorial optimization and arti�cial intelligence can be modeled asconstraint satisfaction problems. A constraint satisfaction problem (CSP) consists of (i)a set of variables, (ii) a set of possible values for each variable, the so-called domain, and(iii) a set of constraints de�ned on the variables. Each constraint consists of an (implicit)list of forbidden combinations of values for a set of variables. The objective is to �ndan assignment of values from the domains to the variables such that all constraints aresatis�ed. In a binary CSP every constraint restricts only combinations of values for setsof 2 variables. Alternatively, the constraints in a binary CSP can be represented by edgesof a constraint graph, in which each vertex represents a variable. In general CSPs, theconstraints can be represented by hyperedges in a hypergraph. We refer to Kumar [127]and Tsang [185] for more information about CSPs.A CSP is called over-constrained , if there does not exist an assignment of values to thevariables that satis�es all constraints. In this case, every solution satis�es only a number ofthe constraints. To make a preference among these solutions we need an objective functionthat assigns a value to every solution. A partial constraint satisfaction problem (PCSP)involves the �nding of an assignment of values to variables such that a general objectivefunction is maximized (or minimized). It is assumed that the objective function can bedecomposed along the variables and constraints, i.e., the objective can be written as thecumulative of functions that involve the assignment of only one variable or two adjacentvariables. In the maximal constraint satisfaction problem (MAX CSP) for example, theobjective is to �nd a solution which satis�es the maximum number of constraints. Werefer to Freuder and Wallace [57] for an introduction on the PCSP, and exact solutionmethods from arti�cial intelligence. In Wallace and Freuder [189] an overview of heuristicmethods to solve the PCSP is given.In this chapter we focus on the PCSP with binary constraints. The objective functionpenalizes both certain values, and certain binary combinations of values, and our goal is tominimize the penalty assigned to a solution. A PCSP is de�ned by a so-called constraintgraph G = (V;E). Each vertex v 2 V in this graph represents a decision variable, thatcan obtain a value from a given domain Dv. Each value has a penalty attached to it.Moreover, an edge fv; wg 2 E in the graph indicates that some combinations of domainelements of v and w are also penalized. The objective of the PCSP is to select a domainelement for each vertex such that the total penalty incurred is minimized. More formally,Partial Constraint Satisfactioninstance: Undirected graphG = (V;E), �nite domain setDv for all v 2 V ,D = [v2VDv,for all v 2 V vertex-penalty function Qv : Dv 7! Z+, for all fv; wg 2 E edge-penalty50



3.1. The partial constraint satisfaction problemfunction Pvw : Dv �Dw 7! Z+, and positive integer K.question: Does there exist an assignment (dv)v2V , withXv2V Qv(dv) + Xfv;wg2E Pvw(dv; dw) � K ?The frequency assignment problem (FAP) in which we would like to minimize the totalinterference (MI-FAP) belongs to the class of PCSPs. For example, in the MI-FAP inwhich we have to assign a frequency to each transceiver in a mobile telephone network,a vertex corresponds to a transceiver. The domain of a vertex is the set of frequenciesthat can be assigned to that transceiver. An edge indicates that communication fromone transceiver may interfere with communication from the other transceiver. In mostapplications interference occurs whenever the distance between the frequencies assignedto the transceivers is less than a given threshold depending on the two transceivers. Thepenalty of an edge re�ects the priority with which interference should be avoided, whereasthe penalty on a vertex can be seen as a level of preference for the frequencies.The Maximum Satis�ability Problem (MAX SAT) can be reformulated as a partial con-straint satisfaction problem, which implies that PCSP is NP-complete. In a MAX SATproblem m clauses c1; : : : ; cm involving the boolean variables x1; : : : ; xn are given. Eachclause contains a number of literals, where a literal is either a variable or the negation of avariable. The problem is to assign a value true or false to each variable so as to maximizethe number of clauses that are satis�ed. A clause is satis�ed if at least one literal in ithas the value true. Formally de�ned,Maximum Satisfiabilityinstance: Set X = fx1; : : : ; xng of n variables, collection C = fc1; : : : ; cmg of m clausesover X, and positive integer k � jCj.question: Is there a truth assignment for X that simultaneously satis�es at least k ofthe clauses in C ?To model MAX SAT as a PCSP, we introduce a vertex vci for every clause ci, i = 1; : : : ; m,and a vertex vxj for every variable xj; j = 1; : : : ; n. The domain of vci contains an elementfor each literal in the clause ci; let us denote this element by the literal itself. The domainof vxj is given by ftrue; falseg. There is an edge between a vertex vci representing clauseci, and a vertex vxj representing variable xj if and only if xj 2 ci or �xj 2 ci (�xj isthe negation of xj). If xj 2 ci, then the penalty of the combination of domain values(xj; false) is equal to 1. If �xj 2 ci, then the penalty of the combination of domain values(�xj; true) is equal to 1. All other penalties are zero. The optimal value of this partialconstraint satisfaction problem is K if and only if the optimal value of the correspondingMAX SAT is k := m�K. Furthermore, an optimal solution of the MAX SAT is given bythe domain values selected for the vertices corresponding to the variables in the optimal51



3. The Partial Constraint Satisfaction Formulationsolution of the partial constraint satisfaction problem. This shows that the two problemsare equivalent. As a consequence, we can state the following theorem:Theorem 3.1Partial Constraint Satisfaction is NP-complete.Since MAX 2 SAT (each clause contains at most 2 literals) is NP-hard (Garey, Johnsonand Stockmeyer [63]) a partial constraint satisfaction problem with jDvj = 2 for all v 2 Vis already NP-hard.Corollary 3.2Partial Constraint Satisfaction with jDvj = 2 for all v 2 V is NP-complete.For the MAX 2 SAT problem a more compact PCSP formulation is possible. We have avertex vxj corresponding to every variable xj, and the domain is given by ftrue; falseg.There is an edge fvxi; vxjg if and only if there exists a clause containing a literal corre-sponding to xi and a literal corresponding to xj. The penalty corresponding to a combi-nation of values for the variables xi and xj is equal to the number of clauses containingliterals corresponding to both variables for which the given combination does not satisfythe clause.The satis�ability problem (SAT), in which the question is whether there is an assignmentof the variables for which all clauses are satis�ed, can also be formulated as a partialconstraint satisfaction problem as follows. There is one vertex for every clause and anedge if the two corresponding clauses contain a con�icting literal corresponding to thesame variable. A combination fxi; xig with xi 2 Cj and xi 2 Ck has penalty one. Allcombinations corresponding to noncon�icting literals have penalty zero. A problem in-stance is satis�able if and only if the corresponding partial constraint satisfaction probleminstance has optimal value zero.The PCSP can be viewed as a linearization of the boolean quadric polytope (cf. Pad-berg [152]) and is related to the transitive packing polytope (cf. Müller and Schulz [146])as well. Section 3.6 is devoted to the relation between the PCSP and the boolean quadricpolytope.3.2 Formulation, Dimension and Trivial FacetsTo formulate the partial constraint satisfaction problem as a f0; 1g-programming problemwe introduce the following binary variables for all v 2 V , dv 2 Dvy(v; dv) = � 1 if dv 2 Dv is selected0 otherwise52



3.2. Formulation, Dimension and Trivial Facetsand for all fv; wg 2 E, dv 2 Dv, dw 2 Dwz(v; dv; w; dw) = � 1 if (dv; dw) 2 Dv �Dw is selected0 otherwiseIn the sequel, let q(v; dv) and p(v; dv; w; dw) denote Qv(dv) and Pfv;wg(fdv; dwg), respec-tively.A f0; 1g-programming formulation of the partial constraint satisfaction problem is givenby min Xfv;wg2E Xdv2Dv Xdw2Dw p(v; dv; w; dw)z(v; dv; w; dw)+Xv2V Xdv2Dv q(v; dv)y(v; dv) (3.1)s.t. Xdv2Dv y(v; dv) = 1 8v 2 V (3.2)Xdw2Dw z(v; dv; w; dw) = y(v; dv) 8fv; wg 2 E; dv 2 Dv (3.3)y(v; dv) 2 f0; 1g 8v 2 V; dv 2 Dv (3.4)z(v; dv; w; dw) 2 f0; 1g 8fv; wg 2 E; dv 2 Dv; dw 2 Dw (3.5)Constraints (3.2) model the fact that exactly one value in the domain of a vertex shouldbe selected. Constraints (3.3) enforce that the combination of values selected for an edgeshould be consistent with the values selected for the vertices of that edge.We de�ne the partial constraint satisfaction polytope X(PCSP ) to be the convex hull ofall f0; 1g-vectors (y; z) satisfying (3.2) and (3.3), i.e.,X(PCSP ) = conv f(y; z) : (y; z) satis�es (3.2)-(3.5) gAlthough the y-variables can be eliminated from the formulation, we believe that it ismore convenient to keep them in the formulation. Note that, once the y-variables aref0; 1g the z-variables are forced to be integral.The dimension of the partial constraint satisfaction polytope is given by Theorem 3.3.Theorem 3.3The dimension of X(PCSP ), de�ned by (G = (V;E); DV ) isXv2V (jDvj � 1) + Xfv;wg2E(jDvj � 1)(jDwj � 1) (3.6)53



3. The Partial Constraint Satisfaction FormulationProof. We will �rst prove that X(PCSP ) satis�es jV j +Pfv;wg2E(jDvj + jDwj � 1)(number of variables minus dimension) linearly independent equalities, which impliesthat (3.6) is an upper bound for the dimension. These linear independent equalitiesare obtained by taking the jV j constraints (3.2), and for every edge fv; wg all but one(= Pfv;wg2E(jDvj + jDwj � 1)) of the constraints (3.3). Note that the constraints (3.3)for a given edge fv; wg can be viewed as the constraints of a transportation problemwith suppliers indicated by (v; dv) with supply y(v; dv) and clients indicated by (w; dw)with demand y(w; dw). Thus, deleting one of these constraints results in a set of linearindependent equalities.Next, we will prove that (3.6) is a lower bound for the dimension by supplying 1 +Pv2V (jDvj � 1) +Pfv;wg2E(jDvj � 1)(jDwj � 1) a�nely independent feasible solutions.Note that once the y-variables are given, the z-variables are uniquely determined byconstraints (3.3). To de�ne these solutions we arbitrarily select a value d�v 2 Dv. A �rstsolution is given by y(v; d�v) = 1 for all v 2 V .Next, we construct Pv2V (jDvj � 1) solutions which di�er from the �rst solution in onlyone domain element: for each v 2 V , dv 2 Dv n fd�vg, we de�ne the solution y(v; dv) = 1;y(w; d�w) = 1 for all w 6= v. Lastly, we construct Pfv;wg2E(jDvj � 1)(jDwj � 1) solutionswhich di�er from the �rst solution in two domain elements of adjacent vertices: for eachfv; wg 2 E, dv 2 Dv n fd�vg; and dw 2 Dw n fd�wg, we de�ne the solution y(v; dv) =y(w; dw) = 1 and y(u; d�u) = 1 for all u 2 V n fv; wg. Note that all these solutions area�nely independent. �The following theorem shows that many of the trivial inequalities are facet de�ning.Theorem 3.4For every fv; wg 2 E, jDvj � 2, jDwj � 2, dv 2 Dv, dw 2 Dw the inequalityz(v; dv; w; dw) � 0 (3.7)de�nes a facet for X(PCSP ).Proof. Among the a�nely independent solutions in the proof of the previous theorem,all solutions but one satisfy (3.7) with equality. �3.3 Lifting theoremsIn this section we will discuss two types of lifting. Combining them enables us to lifta facet de�ning inequality of a particular PCSP to facet de�ning inequalities for an ex-tended PCSP. First, we show that a facet de�ning inequality remains facet de�ning if the54



3.3. Lifting theoremsconstraint graph is extended with vertices having one domain element (see Figure 3.1).Second, we show how a facet de�ning inequality can be extended if the domain of a vertexis extended with copies of other domain elements (see Figure 3.2).
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3. The Partial Constraint Satisfaction Formulation
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(v; dv) for all v 2 N(u). Adding 
(v; d�v) times themodel equality y(u; du)�Pdv2Dv z(u; du; v; dv) = 0 to (3.8) for all v 2 N(u) results in theinequality24�(u; du) + Xv2N(u) 
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(v; dv)� 
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3.3. Lifting theoremsProof. Let x1; : : : ; xp be p = dimX(PCSP ) a�nely independent solutions which satisfy�x � �0 with equality. Moreover, let x1; : : : ; xq be q solutions with y(u; du) = 1 whichare a�nely independent with respect to the components y(u; du) and z(u; du; v; dv) for allv 2 N(u), dv 2 Dv (x1r(u; du); : : : ; xqr(u; du) are a�nely independent). Then we have toprove that q = 1+Pv2N(u)(jDvj�1). Since x1r(u; du); : : : ; xqr(u; du) all satisfy y(u; du) = 1these vectors are also linearly independent. So, it is su�cient to prove that the matrix[x1r(u; du); : : : ; xqr(u; du)] with 1 +Pv2N(u) jDvj rows has rank 1 +Pv2N(u)(jDvj � 1). Or,equivalently, it is su�cient to prove that the dimension of the row nullspace is jN(u)j(number of rows minus the rank of the matrix).First, we prove that the dimension of the row nullspace is at least jN(u)j. Every solutionsatis�es the model equalities y(u; du) �Pdv2Dv z(u; du; v; dv) = 0 for all v 2 N(u). So,if �v = (�v; 
v) corresponds to the coe�cients in the left hand side of the equality forv 2 N(u), then �vxir(u; du) = 0 for i = 1; : : : ; q. Moreover, �v, for v 2 N(u) are linearlyindependent, which implies that the dimension of the row nullspace is at least jN(u)j.Now, suppose the dimension of the row nullspace is at least jN(u)j + 1. Then thereexists another non-zero vector � = (�; 
) with �xir(u; du) = 0 for all i = 1; : : : ; q whichis linearly independent from the vectors �v, v 2 N(u). For j = q + 1; : : : ; p, eitheryj(u; du) = zj(u; du; v; dv) = 0 or xjr(u; du) is a�nely dependent of x1r(u; du); : : : ; xqr(u; du).Hence, these solutions also satisfy �xr(u; du) = 0. As a consequence, the facet describedby �x = �0 is a subset of the face described by �xr(u; du) = 0, i.e. F := fx 2 X(PCSP ) :�x = �0g � fx 2 X(PCSP ) : �xr(u; du) = 0g =: F�. If equality does not hold, then(since �x � �0 describes a facet) F� � X(PCSP ) and �xr(u; du) = 0 is an implicitequality. However, � is linearly independent from the implicit equalities involving (u; du).Hence F� � F . From Nemhauser and Wolsey [148] (Theorem 3.6, page 91) it follows thateither �xr(u; du) � 0 or ��xr(u; du) � 0 is a valid inequality for X(PCSP ) de�ning thesame facet as �x � �0. By Lemma 3.6, however, �xr(u; du) � 0 (or ��xr(u; du) � 0)describes a trivial facet, a contradiction. Consequently, the dimension of the row nullspaceis exactly jN(u)j. �Now, we can prove the main theorem of this chapter.Theorem 3.8Let X(PCSP ) be de�ned by (G = (V;E); DV ). Let u 2 V , du 2 Du. De�ne X+(PCSP )by (G = (V;E); D+V ) with D+v = Dv, v 2 V n fug, D+u = Du [ fd+u g. If �x � �0 is anon-trivial facet de�ning inequality for X(PCSP ), then�x+ �r(u; du)xr(u; d+u ) � �0 (3.10)is facet de�ning for X+(PCSP ).Proof. First, note that dimX+(PCSP ) = dimX(PCSP ) + 1 +Pv2N(u)(jDvj � 1).57



3. The Partial Constraint Satisfaction FormulationLet the solutions x1; : : : ; xp, where p = dimX(PCSP ), be a set of a�nely independentsolutions which satisfy �x � �0 with equality. It follows from Lemma 3.7 that there exist1 +Pv2N(u)(jDvj � 1) solutions which satisfy y(u; du) = 1 and for which the restrictionsto (u; du) are a�nely independent. Replace in these solutions du by d+u . Then these newsolutions together with the old solutions are a�nely independent. �3.4 Non-trivial classes of facetsIn this section we introduce two classes of facet de�ning inequalities for the PCSP. Thefacets are characterized by an induced subgraph G[C] = (C;E[C]) of the constraint graphG = (V;E). For every v 2 C the domain Dv is partitioned into Av and Bv. Domainvalues in Av can be seen as copies of one another (i.e., their related variables have thesame coe�cients in the inequality); likewise the domain values in Bv. Therefore, the facet-proofs for these classes can be restricted to G[C] and domains of size 2 (for all v 2 C),which su�ces according to the theorems of Section 3.3.For notational convenience, we introducey(v;D0v) = Xdv2D0v y(v; dv)and z(v;D0v; w;D0w) = Xdv2D0v Xdw2D0w z(v; dv; w; dw)for D0v � Dv and D0w � Dw.3.4.1 The cycle inequalitiesFirst, we introduce the cycle inequalities. Let the induced subgraph G[C] = (C;E[C]) ofG = (V;E) be a chordless k-cycle (i.e. C = fvi : i = 1; : : : ; kg, E[C] = ffvi; vi+1g : i =1; ::; k � 1gg [ ffvk; v1gg), then a k-cycle inequality, k � 3, is given byk�1Xi=1 �z(vi; Avi; vi+1; Avi+1) + z(vi; Bvi ; vi+1; Bvi+1)�+z(v0; Av0 ; vk; Bvk) + z(v0; Bv0 ; vk; Avk) � k � 1 (3.11)58



3.4. Non-trivial classes of facets
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� 3Figure 3.3: Cycle InequalitiesFigure 3.3 shows a 3-cycle inequality and a 4-cycle inequality. The a-dot represents theA-subset of the domain; the b-dot represents the B-subset of the domain. A line betweentwo dots indicates that the coe�cient corresponding to the indicated subsets is equal toone.Theorem 3.9The k-cycle inequalities, k � 3, are valid and facet de�ning for X(PCSP ).Proof. By Theorem 3.5 and Theorem 3.8, it is su�cient to prove that the k-cycleinequalities are valid and facet de�ning for X(PCSP ) de�ned by the k-cycle constraintgraph and Avi = favig, Bvi = fbvig, i = 1; : : : ; k.Consider an arbitrary solution x. Each edge of the cycle in the constraint graph con-tributes at most one to the left hand side of (3.11). So, if at least one edge does not con-tribute to the left hand side, (3.11) is satis�ed by x. If all edges fvi; vi+1g for i = 1; : : : ; k�1contribute 1 to the left hand side, then either avi is selected, for i = 1; : : : ; k or bvi is se-lected, for i = 1; : : : ; k. But, then the edge fvk; v1g does not contribute to the left handside. Hence, x satis�es (3.11).A k-cycle inequality is satis�ed with equality if exactly one edge of the cycle does notcontribute 1 to the left hand side. The k solutions (j 2 f1; : : : ; kg) in which avi is selectedfor 1 � i � j and bvi for j + 1 � i � k satisfy (3.11) with equality. Also, the k solutions(j 2 f1; : : : ; kg) in which bvi is selected for 1 � i � j and avi for j+1 � i � k satisfy (3.11)with equality. These 2k = dimX(PCSP ) solutions are a�nely independent. �59



3. The Partial Constraint Satisfaction Formulation3.4.2 The clique-cycle inequalitiesA second class of facet de�ning valid inequalities are the clique-cycle inequalities. Letthe induced subgraph G[C] = (C;E[C]) be a k�clique, then a k�clique-cycle inequality,k � 3, is de�ned bykXi=1 z(vi; Avi ; vi+1; Dvi+1) +Xi<j z(vi; Bvi ; vj; Bvj) � k � 1 (3.12)with k + 1 � 1. Note that, the inequality (3.12) is equivalent toXv2C y(v; Av) + Xfv;wg2E[C] z(v; Bv; w; Bw) � k � 1Figure 3.4 shows clique-cycle inequalities for k = 3 and k = 4.
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� 3Figure 3.4: Clique-Cycle InequalitiesIt should be noted that for a subset of 3 vertices of the constraint graph the clique-cycleinequality and the cycle inequality describe the same facet.Theorem 3.10The k-clique-cycle inequalities, k � 3, are valid and facet de�ning for X(PCSP ).Proof. By Theorem 3.5 and Theorem 3.8, it is su�cient to prove that the k-clique-cycleinequalities are facet de�ning for X(PCSP ) de�ned by the k-clique constraint graph andAvi = favig, Bvi = fbvig, i = 1; : : : ; k.Consider an arbitrary solution x. Whenever avi is selected for some i, then the edgefvi; vi+1g (or fvk; v1g whenever i = k) contributes exactly one to the left hand side60



3.4. Non-trivial classes of facetsof (3.12), independent of the element selected for vi+1. If both bvi and bvj are selected,then the edge fvi; vjg contributes exactly one to the left hand side of (3.12). Hence, ifbv is selected for p vertices (and consequently av is selected for k � p vertices), the totalcontribution to the left hand side is �p2�+ (k � p) � k � 1 for all integer p.A clique-cycle inequality is satis�ed with equality, if bv is selected for either 1 or 2 vertices.These �k1�+ �k2� = k+ 12k(k� 1) = dimX(PCSP ) solutions are a�nely independent. �We can extend this result to (
; k)-clique-cycle inequalities. Let the induced subgraphG[S] be a k-clique, then a (
; k)-clique-cycle inequality, k � 3, 1 � 
 � k � 1 is de�nedby 
Xv2C y(v; Av) + Xfv;wg2E[C] z(v; Bv; w; Bw) � 
k � 12
(
 + 1) (3.13)
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 � 12
(
 + 1)Figure 3.5: (
; k)-Clique-Cycle InequalitiesFor 
 = 1, inequality (3.13) is equivalent with (3.12). Figure 3.5 shows (
; k)-clique-cycleinequalities for k = 3, and k = 4.Theorem 3.11The (
; k)-clique-cycle inequalities, k � 3, are valid for 1 � 
 � k � 1, and facet de�ningfor 1 � 
 � k � 2 for X(PCSP ).Proof. First, we prove validity. Let C be a clique of k vertices inG, and let 1 � 
 � k�1.According to Theorem 3.5 and Theorem 3.8 it su�ces to prove the theorem for G = G[C],Av = favg, and Bv = fbvg for all v 2 C. Consider a solution x of X(PCSP ). Let bv beselected for p vertices, and consequently av for k � p vertices. Then
Xv2C y(v; Av) + Xfv;wg2E[C] z(v; Bv; w; Bw) = 
(k � p) + 12p(p� 1)= 
k + 12p2 � (
 + 12)p (3.14)61



3. The Partial Constraint Satisfaction FormulationThe function f(p) = 12p2� (
+ 12)p attains its minimum at p = 
+ 12 . Since p is restrictedto integral values, the minimum is attained for p 2 f
; 
 + 1g. Substitution of p by 
 or
+1 in (3.14) gives the right hand side of (3.13), which proves that the (
; k)-clique-cycleinequality is valid X(PCSP ).We continue with the proof that (3.13) de�nes a facet. A solution satis�es (3.13) atequality if and only if p 2 f
; 
 + 1g. Consider the case 
 = k � 1. If 
 = k � 1, thenthe solutions in which bv is selected k � 1 or k times satisfy (3.13) at equality. Hence,in total k + 1 solutions satisfy (3.13) at equality, whereas the dimension of X(PCSP ) isk + 12k(k � 1) > k + 1 for k � 3. So, in case 
 = k � 1, (3.13) does not de�ne a facet.For 
 2 f1; : : : ; k�2g, we prove that the face ofX(PCSP ) de�ned by (3.13) has dimensiondimX(PCSP )�1 by the identi�cation of dimX(PCSP )�1 linearly independent vectorsin the face. We construct k vectors ri (i = 1; : : : ; k), and 12k(k � 1) � 1 vectors sij(i; j = 1; : : : ; k, j > i, and (i; j) 6= (1; 2)) that (i) are linearly independent, and (ii) are inthe face of X(PCSP ) de�ned by the (
; k)-clique-cycle inequality (3.13).The vectors ri (and sij) are de�ned by the components ri(v; dv) corresponding to they(v; dv) variables, and the components ri(v; dv; w; dw) corresponding to the z(v; dv; w; dw)variables. Let C = fv1; : : : ; vkg be the vertices that de�ne the clique. For i 2 f1; : : : ; kg,let ri be a vector with the properties thatri(vj; bvj ) = � 1 if i = j,0 otherwise (3.15)For i; j = 1; : : : ; k, j > i, (i; j) 6= (1; 2), let sij be a vector with the properties thatsij(v; bv) = 0 8v 2 C (3.16)sij(vl; bvl ; vm; bvm) = 8<: 1 if (l; m) = (1; 2),�1 if (l; m) = (i; j), and0 otherwise (3.17)The vectors ri and sij are linearly independent since (a) each vector ri has an uniquenon-zero element (i.e., ri(vi; bvi)), and (b) among all sij, each vector sij has an uniquenon-zero element (i.e., sij(vi; bvi ; vj; bvj )).To prove that ri and sij are vectors in the hyperplane de�ned by X(PCSP ) and (3.13),we construct them through the subtraction of solutions that satisfy (3.13) at equality.Let Vb(x) be the subset of V for which bv is selected in the solution x, i.e., Vb(x) = fv 2V : y(v; bv) = 1g. For i = 1; : : : ; k, the vector ri is constructed by taking the di�erenceof two solutions xi0 and xi1. Let xi0 be an arbitrary solution with jVb(xi0)j = 
 and62



3.5. Separation of non-trivial facetsvi 62 Vb(xi0). Now, let xi1 be de�ned by Vb(xi1) = Vb(xi0) [ fvig. Then ri = xi1 � xi0satis�es the properties (3.15).Moreover, for i; j; l 2 f1; : : : ; kg, let xij0; xil0; xij1; xil1 be 4 solutions that satisfy (3.13) atequality. Choose arbitrarily 
 � 1 vertices S from V n fvi; vj; vlg. De�ne the solutionsxij0; xil0; xij1; xil1 by� Vb(xij0) = S [ fvjg,� Vb(xij1) = S [ fvi; vjg = Vb(xij0) [ fvig,� Vb(xil0) = S [ fvlg, and� Vb(xil1) = S [ fvi; vlg = Vb(xil0) [ fvig.Clearly, all solutions have 
 or 
+1 vertices for which bv is selected, and thus satisfy (3.13)at equality. Now, let �rijl = (xij1�xij0)�(xil1�xil0), then �rijl is a vector in the hyperplane.Finally, sij = �r1i2 � �rij1, satis�es the properties (3.16)-(3.17). �3.5 Separation of non-trivial facetsIn the previous section we introduced two classes of facet de�ning valid inequalities.The accompanying separation problems are the topic of this section. We focus on thecomplexity of the separation problems that have to be resolved within a cutting planeapproach. The separation problem for a class of valid inequalities F can be stated asfollows: Given a vector ~x either �nd an inequality in F that is violated by ~x, or concludethat all inequalities in F are satis�ed. Within a cutting plane approach, the vector ~x is asolution of the linear programming relaxation of (3.1)-(3.5) (completed with already addedinequalities). We formulate the separation problem for both classes of valid inequalities,and discuss the question whether these decision problems can be solved in polynomialtime or not.Compared with other decision problems, the input of a separation problem is restricted.Since ~x is an LP solution that satis�es certain (in)equalities the input of the separationproblem contains in many cases some special structure, which probably can be used tosolve the separation problem. Therefore, from the formulation of a separation problem asan NP-hard problem we cannot conclude automatically that the separation is NP-hard.To guarantee that the separation problem itself is NP-hard given an LP solution, oneshould really reduce an NP-hard problem to the separation problem with the conditionthat the input satis�es the (in)equalities of the LP relaxation. In the literature, this topicis discussed rarely. An exception is Klabjan, Nemhauser and Tovey [116]. They prove63



3. The Partial Constraint Satisfaction Formulationthat the separation of cover inequalities for the knapsack problem is NP-hard if ~x is anLP solution, but can be solved in polynomial time if the LP solution is an extreme pointas well. Another example is the separation of cut-set inequalities for capacitated networkdesign problems. Bienstock [19] proved that this problem is NP-hard even if the inputis restricted to a vector that satis�es all model equations (see also Brockmüller, Günlükand Wolsey [30]). A similar result is proved by Rutten [164] for the separation of the2-partition inequalities for the clique partitioning polytope.In the Sections 3.5.1 and 3.5.2 we discuss the complexity of the separation problems forthe cycle and clique-cycle inequalities, respectively. We prove that some special case of theseparation problem for cycle inequalities can be solved in polynomial time. Based on thispolynomially solvable case, we propose a heuristic for the general case. The complexityof the separation problem in which the input is restricted to an LP solution remainsopen. For the clique-cycle inequalities we show that the separation problem can only besolved in polynomial time if either we can construct an algorithm that uses the additionalinformation that ~x is a solution of the linear programming relaxation of (3.1)-(3.5), or incase P = NP.3.5.1 The cycle inequalitiesFirst of all, we calculate the number of di�erent facets obtained by the cycle inequali-ties (3.11).Lemma 3.12Let C = fv1; : : : ; vkg be a chordless cycle in G. Then the number of cycle inequali-ties (3.11) that de�ne di�erent facets is 12Qv2C(2jDvj � 2)Proof. A domain Dv can be partitioned in non-empty Av and Bv in 2jDvj� 2 ways. Wehave to partition the domain for every v 2 C, which results in Qv2C(2jDvj� 2) partitions.However, given a partition Av, Bv for all v 2 C, the partition �Av := Bv, �Bv := Avdescribes the same cycle-inequality (3.11). So, for a cycle C the number of di�erent facetsis given by 12Qv2C(2jDvj � 2). �Note that, the facets de�ned by two cycles C = fv1; : : : ; vkg and �C = fv2; : : : ; vk; v1g arethe same. Consider the two cycle inequalities (3.11), de�ned by(i). the chordless cycle C = fv1; : : : ; vkg and the partition Av, Bv, v 2 C, and(ii). the chordless cycle �C = fv2; : : : ; vk; v1g, and the partition �Av, �Bv, v 2 C, with�Av1 := Bv1 , �Bv1 := Av1 , and �Av := Av, �Bv := Bv for all v 2 C n fv1g.64



3.5. Separation of non-trivial facetsThen, the two cycle inequalities are exactly the same, and hence, they de�ne the samefacet. In other words, the starting point of the cycle does not in�uence the number ofdi�erent cycle inequalities / facets.From Lemma 3.12 we conclude that the number of cycle inequalities that represent dif-ferent facets is exponentially large, and therefore enumeration of all these inequalitiesto detect violated inequalities is not possible. Before we introduce the decision problemCycle Separation PCSP, we �rst state the following lemma:Lemma 3.13Let C be a chordless cycle, and let Av, Bv be a partition of Dv for all v 2 C. Moreover,let ~x be a vector satisfying (3.2) and (3.3). If there is a v 2 V with Av = ; or Bv = ;,then the left hand side of the cycle inequality (3.11) is less than or equal to k � 1.Proof. Suppose there is a v 2 C with either Av = ; or Bv = ;. By the symmetry of theAv and Bv subset, we may assume that Av = ;. Moreover, we may assume that v � v1.Let for i = 1; : : : ; k, �i = ~z(vi; Avi ; vi+1; Bvi+1) and �i = ~z(vi; Bvi ; vi+1; Avi+1). Note that,�1 = 0, �k = 0, and that the following equation is valid~y(vi+1; Avi+1) = ~y(vi; Avi)� �i + �iThen !(s) = k�1Xi=1 (1� �i � �i) + �k + �k= k � 1� k�1Xi=1 (�i + �i) + ~y(vk; Avk)= k � 1� k�1Xi=1 (�i + �i) + ~y(vk�1; Avk�1)� �k�1 + �k�1= k � 1� k�1Xi=1 (�i + �i) + ~y(v1; Av1)� k�1Xi=1 (�i � �i)= k � 1� 2 k�1Xi=1 �i � k � 1which completes the proof. �So, in our search to a partition that violates the cycle inequality, we do not have to requestthat Av and Bv are both non-empty. In case there exists a violated cycle inequality, theconditions that Av and Bv are both non-empty will automatically be satis�ed. 65



3. The Partial Constraint Satisfaction FormulationCycle Separation PCSPinstance: Partial Constraint Satisfaction Problem (G;D; p; q). Chordless cycle C =fv1; : : : ; vkg of k vertices. Fractional solution vector ~x.question: Does there exist a partition of the domains Dv in Av and Bv for all v 2 Csuch that the cycle inequality (3.11) is violated, i.e.,k�1Xi=1 �~z(vi; Avi; vi+1; Avi+1) + ~z(vi; Bvi ; vi+1; Bvi+1)�+~z(v1; Av1 ; vk; Bvk) + ~z(v1; Bv1 ; vk; Avk) > k � 1 ?We model this problem as a f0; 1g quadratic programming problem. For each v 2 C,dv 2 Dv we de�nes(v; dv) = ( 1 if dv 2 Bv0 otherwiseThen, a f0; 1g quadratic programming formulation of the cycle separation problem reads! =max k�1Xi=1 Xdvi2Dvi Xdvi+12Dvi+1 ~z(vi; dvi; vi+1; dvi+1)�fs(vi; dvi)s(vi+1; dvi+1) + (1� s(vi; dvi))(1� s(vi+1; dvi+1))g+ Xdv12Dv1 Xdvk2Dvk ~z(v1; dv1 ; vk; dvk)�fs(v1; dv1)(1� s(vk; dvk)) + (1� s(v1; dv1))s(vk; dvk)gs.t. s(v; dv) 2 f0; 1g 8v 2 C; dv 2 Dvwhich is equivalent with the unconstrained quadratic f0; 1g programming problem! = k � 1 + maxfgTs+ sTHs : s 2 f0; 1gPv2C jDvjg (3.18)whereg(v; dv) = ( �2~y(v; dv) if v = vi, 2 � i � k � 10 otherwise66



3.5. Separation of non-trivial facetsfor all v 2 C, dv 2 Dv andH(v; dv; w; dw)= 8>><>>: 2~z(v; dv; w; dw) if fv; wg = fvi; vi+1g, i 2 f1; : : : ; k � 1g�2~z(v; dv; w; dw) if fv; wg = fv1; vkg0 otherwisefor all fv; wg 2 E[C], dv 2 Dv, dw 2 Dw. If ! > k� 1 then a violated inequality is found.If ! � k � 1, then no violated k-cycle inequality exists for the cycle C.The problem (3.18) can be simpli�ed by the following observations. Let !(s) denote thevalue of the objective for a solution vector s.Lemma 3.14Let s be an arbitrary binary vector, and let ~y(v; dv) = 0 for some v 2 C, dv 2 Dv. De�nea new solution �s equivalent to s except for �s(v; dv) := 1� s(v; dv). Then !(s) = !(�s).Proof. Trivial. �Let ~Dv = fdv 2 Dv : ~y(v; dv) > 0g denote the subset of domain elements which can in�u-ence the value !. Then, we can replace Dv by ~Dv in (3.18). Combination of Lemma 3.13and Lemma 3.14 leads to the following corollary.Corollary 3.15If there is a vertex v 2 C with j ~Dvj = 1, then ! � k � 1.Proof. Follows directly from the fact that (3.11) can only be violated if for all v 2 Vboth subsets Av and Bv are non-empty. �So, if the solution ~x is integral for one of the vertices in the cycle, there does not exist aviolated cycle inequality. In general, the unconstrained quadratic f0; 1g problem is NP-hard [62], except for the special case in which all elements of H are non-negative (seeBalinski [14], Rhys [159], Picard and Ratli� [156] or Hansen [79]) or the support graphG(H) is is series-parallel (see Barahona [15]). In our case the matrix H is neither neithernon-negative nor series-parallel. However, in case there is a vertex v 2 V for which onlytwo ~y variables are fractional, i.e., j ~Dvj = 2, the separation problem can be rewritten toan unconstrained f0; 1g quadratic program with non-negative matrix �H:Theorem 3.16If there is a vertex v 2 C with j ~Dvj = 2, then the problem Cycle Separation PCSPcan be solved in polynomial time.Proof. Without loss of generality we may assume that Dv1 = fav1 ; bv1g. Since, thecycle-inequality is symmetric in Av and Bv, and both Av and Bv have to be non-empty67



3. The Partial Constraint Satisfaction Formulationin case of a violated inequality, we may assume that Av1 = fav1g and Bv1 = fbv1g. Thisimplies that s(v1; av1) = 1 and s(v1; bv1) = 0. The resulting f0; 1g quadratic program canbe written asmaxf�gT s+ sT �Hs : s 2 f0; 1gPv2Cnfv1g j ~Dvjg (3.19)with for v 2 C n fv1g, dv 2 ~Dv�g(v; dv) = 8>><>>: �2~y(v; dv) if 3 � i � k � 1�2~z(v; dv; v1; bv1) if i = 2�2~z(v; dv; v1; av1) if i = kand for all fv; wg 2 E[C], dv 2 ~Dv, dw 2 ~Dw�H(v; dv; w; dw)= ( 2~z(v; dv; w; dw) if fv; wg = fvi; vi+1g, i 2 f2; : : : ; k � 1g0 otherwiseSo, all elements of �H are non-negative, and hence (3.19) can be solved in polynomial time.�Corollary 3.17If for a vertex v 2 C the partition Av, Bv is given, then the problem Cycle SeparationPCSP can be solved in polynomial time.Proof. In case the partition Av, Bv is given for a vertex v 2 V , the variables s(v; dv)can be replaced by s(v; Av) = Pdv2Av s(v; dv) and s(v; Bv) = Pdv2Bv s(v; dv). As aconsequence, the problem reduces to a problem with j ~Dvj = 2, which can be solved inpolynomial time with Theorem 3.16. �Corollary 3.18If d = minv2C j ~Dvj, then the problemCycle Separation PCSP can be solved by solving2d�1 unconstrained quadratic programs with non-negative cost matrix.Proof. There exist 2d�1 non-empty partitions Av, Bv for the vertex v that attains theminimum minv2C j ~Dvj. �The unconstrained f0; 1g quadratic program with non-negative cost matrix can be solvedvia a transformation to the minimum cut problem. However, the separation problem can68



3.5. Separation of non-trivial facetsalso be formulated directly as a minimum cut problem. By (3.2) and (3.3) we can rewritethe cycle-inequality (3.11) tok�1Xi=1 �z(vi; Avi ; vi+1; Bvi+1) + z(vi; Bvi; vi+1; Avi+1)�+z(v0; Av0 ; vk; Avk) + z(v0; Bv0 ; vk; Bvk) � 1 (3.20)Let ~Dv1 = fav1 ; bv1g and let (N;A) de�ne a digraph. For every dv 2 ~Dv, v 2 C nfv1g we de�ne a node, and for both av1 and bv1 two nodes, i.e., N = (Sv2Cnfv1g ~Dv) [fav1 ; �av1 ; bv1 ;�bv1g. For every ~z(vi; dvi; vi+1; dvi+1) > 0, i 2 f1; : : : ; k � 1g, we de�ne an arcbetween dvi and dvi+1 with weight ~z(vi; dvi; vi+1; dvi+1), and for every ~z(vk; dvk ; v1; dv1) > 0,we de�ne an arc between dvk and �dv1 with weight ~z(vk; dvk ; v1; dv1) (see Figure 3.6). Then
... ... ...

v1 v2 v3 : : : vk v1

dv2 dv3 dvk
av1
bv1 �av1

�bv1
min cut

Figure 3.6: Digraph for the separation of cycle inequalitiesthe optimal solution of the separation problem is equivalent to a minimum weightedsubset of the arcs that separates both the pairs (av1 ; �av1) and (bv1 ;�bv1). In case the 2-pairminimum cut is < 1 then a violated inequality is found, otherwise there does not exista violated inequality for this cycle. Lemma 3.13 (page 65) can be helpful in this case aswell. Since j ~Dv1 j = 2 each cut with value < 1 automatically separates av1 and bv1 (andalso �av1 and �bv1). This implies that an 1-pair minimum cut between av1 and �av1 either hasvalue � 1 or also separates bv1 and �bv1 . So, we simply have to �nd an 1-pair minimumcut between av1 and �av1 . If the minimum cut is less than 1, we have found a violatedcycle-inequality, if the minimum is greater than or equal to 1, all cycle inequalities (forthis cycle) are satis�ed by the solution ~x.If j ~Dvj > 2 for all v 2 C, we can construct a digraph similar to Figure 3.6. However, in thiscase we have to �nd a minimum set of arcs that separates all pairs fdv1 ; �dv1g, dv 2 ~Dv. Thisproblem is known as the multi-pair cut problem (see Hu [90]). The related multiterminalcut problem is discussed in Dahlhaus et al. [43]. One of their results implies that the 3-pair cut problem is NP-hard for general graphs. Unfortunately, we cannot conclude that69



3. The Partial Constraint Satisfaction FormulationCycle Separation PCSP is NP-hard, since the digraph has a special structure, andthe weights have the property that they correspond with a solution of the LP relaxation.In addtion to exact solution methods for the separation problem, we can also applyheuristics to the problem. Based on Corollary 3.17 and the minimum cut representationof the separation problem, we propose the following heuristic to �nd a violated cycle-inequality. Let v1 be a vertex on the cycle for which j ~Dvj, is minimal. Construct aninitial partition Av1 , Bv1 . Given this partition for v1, the separation problem can besolved in polynomial time, either via the unconstrained quadratic program (3.19) or viathe minimum cut representation of Figure 3.6. Next, we can move a domain elementdv1 2 ~Dv1 from Av1 to Bv1 or vice versa. For the new partition we can again calculatethe value of the separation problem. If the objective is improved we keep the change,otherwise we restore the original partition. The procedure can be repeated as long asthere exist pro�table moves.3.5.2 The clique-cycle inequalitiesLike in the previous subsection, we �rst state the number of di�erent facets de�ned bythe class of clique-cycle inequalities.Lemma 3.19Let C be a clique in G of k � 4 vertices, and let 
 2 f1; : : : ; k � 2g. Then the number of(
; k)-clique-cycle inequalities (3.13) that de�ne di�erent facets is Qv2C(2jDvj � 2)Proof. The number of di�erent non-empty partitions for a vertex is again 2jDvj � 2.In contrast with the cycle inequalities each partition gives an unique inequality, whichimplies that the total number of di�erent facets is equal to the total number of di�erentpartitions. �Note however that the (
; k)-clique-cycle inequalities are equivalent with the (k�1�
; k)-clique-cycle inequalities. Moreover, note that for k = 3 the number of di�erent facetsequals 12Qv2C(2jDvj� 2), since the 3-clique is equivalent with a 3-cycle (cf. Lemma 3.12).We now de�ne the decision problem Clique-Cycle Separation PCSP.Clique-Cycle Separation PCSPinstance: Partial Constraint Satisfaction Problem (G;D; p; q). Clique C of k � 4 ver-tices. Integer 
 2 f1; : : : ; k � 2g. Fractional solution vector ~x.question: Does there exist a partition of the domains Dv in Av and Bv for all v 2 Csuch that the (
; k)-clique-cycle inequality (3.13) is violated, i.e.,
Xv2C y(v; Av) + Xfv;wg2E[C] z(v; Bv; w; Bw) < 
k � 12
(
 + 1) ?70



3.5. Separation of non-trivial facetsAlso this problem can be formulated as a f0; 1g quadratic program. Again we de�nevariables s(v; dv) for all v 2 C, dv 2 Dvs(v; dv) = ( 1 if dv 2 Bv0 otherwiseThen the problem Clique-Cycle Separation PCSP reads as! =min Xfv;wg2E[C] Xdv2Dv Xdw2Dw ~z(v; dv; w; dw)s(v; dv)s(w; dw)+Xv2C Xdv2Dv 
~y(v; dv)(1� s(v; dv))s.t. 1 � Xdv2Dv s(v; dv) � jDvj � 1 8v 2 Cs(v; dv) 2 f0; 1g 8v 2 C; dv 2 Dvwhich is equivalent with! = 
k+ min gT s+ sTHs (3.21)s.t. 1 � Xdv2Dv s(v; dv) � jDvj � 1 8v 2 C (3.22)s(v; dv) 2 f0; 1g 8v 2 C; dv 2 Dv (3.23)with for all v 2 C, dv 2 Dvg(v; dv) = �
~y(v; dv)and for all fv; wg 2 E[C], dv 2 Dv, dw 2 DwH(v; dv; w; dw)= ~z(v; dv; w; dw)If ! < 
k � 12
(
 + 1) then a violated (
; k)-clique-cycle inequality is found, else theredoes not exist any violated (
; k)-clique-cycle inequality for this clique.Lemma 3.20Let s be an arbitrary solution that satis�es (3.22)-(3.23). Let ~y(v; dv) = 0 for some v 2 C,dv 2 Dv. Let �s be equivalent to s except for �s(v; dv) = 1� s(v; dv). Then !(s) = !(�s).71



3. The Partial Constraint Satisfaction FormulationProof. Trivial. �Let ~Dv = fdv 2 Dv : ~y(v; dv) > 0g.Corollary 3.21If j ~Dvj = 2 for all v 2 C, then Clique-Cycle Separation PCSP is equivalent with aPCSP de�ned on C with 2 domain elements.Proof. In case j ~Dvj = 2 for all v 2 C, the constraints (3.22) reduce to constraintssimilar to (3.2). Linearization of the objective (3.21) gives the desired result. �As a consequence, if we do not have additional information on ~y(v; dv) and ~z(v; dv; w; dw)then the problem Clique-Cycle Separation PCSP is NP-hard. However, we knowthat (3.2) and (3.3) hold for every LP solution ~x. The question whether this additionalinformation changes the complexity of the problem remains open. The number of clique-cycle separation problems that have to be solved can be reduced by the following lemmas.Lemma 3.22Let s be a f0; 1g vector. IfPdu2 ~Du s(u; du) = 0 for some u 2 C, then w(s) < 
k� 12
(
+1)if and only if there exists a violated (
; k � 1)-clique-cycle inequality for the k � 1 cliqueC n fug.Proof. If Pdu2 ~Du s(u; du) = 0, then ~y(u;Au) = 1, which implies that the (
; k)-clique-cycle inequality (3.13) reduces to
 Xv2Cnfug y(v; Av) + Xfv;wg2E[Cnfug] z(v; Bv; w; Bw) � 
(k � 1)� 12
(
 + 1)which is a (
; k � 1)-clique-cycle inequality for C n fug. �Lemma 3.23Let s be a f0; 1g vector. If Pdu2 ~Du s(u; du) = j ~Duj for some u 2 C, then !(s) < 
k �12
(
+1) if and only if there exists a violated (
� 1; k� 1)-clique-cycle inequality for thek � 1 clique C n fug.Proof. If Pdu2 ~Du s(u; du) = j ~Duj, then ~y(u;Au) = 0, and z(u;Bu; v; Bv) = y(v; Bv) forall v 2 C n fug. This implies that the (
; k)-clique-cycle inequality (3.13) reduces to(
 � 1) Xv2Cnfug y(v; Av) + Xfv;wg2E[Cnfug] z(v; Bv; w; Bw) �
(k � 1)� 12
(
 + 1)� (k � 1) = (
 � 1)(k � 1)� 12(
 � 1)
which is a (
 � 1; k � 1)-clique-cycle inequality for C n fug. �72



3.6. The Boolean Quadric Polytope and the PCSPCorollary 3.24If there is a vertex v 2 C with j ~Dvj = 1, then there does not exist a proper (
; k)-clique-cycle inequality that is violated.Corollary 3.25Let ! = 
k + minfgTs + sTHs : s 2 f0; 1gPv2C j ~Dvjg. Then ! < 
k � 12
(
 + 1) if andonly if there exists a violated (�; l)-clique-cycle inequality for some S � C, with jSj = l,and maxf1; 
 � (k � l)g � � � minf
; l � 2g.As a consequence, we only have to solve the clique-cycle separation problem for maximalcliques C. Although, the maximum clique problem is NP-hard in general, in practiceall maximal cliques in the constraint graph can be generated e�ciently by enumerationschemes.Besides the exact solution of (3.21)-(3.23), we can also use heuristics to solve the clique-cycle separation problem. A simple local search algorithm consists of an initialization ofthe subsets Av, Bv for all v 2 C, and local optimization by moves of domain elementsfrom Av to Bv or vice versa as long as improvements are obtained.3.6 The Boolean Quadric Polytope and the PCSPIn this section we describe the relation between the PCSP and the boolean quadric poly-tope (BQP). The BQP is de�ned by the unconstrained f0; 1g quadratic program in nvariablesmaxfcTx + xTQx : x 2 f0; 1gngwhich is already mentioned in the previous section on the separation of valid inequalities.Linearization of the quadratic terms leads to a formulation with both xi variables andyij = xixj variables max Pi cixi +Pi<j qijyij (3.24)s.t. xi + xj � yij � 1 8i < j (3.25)�xi + yij � 0 8i < j (3.26)�xj + yij � 0 8i < j (3.27)xi 2 f0; 1g 8i (3.28)yij 2 f0; 1g 8i < j (3.29)73



3. The Partial Constraint Satisfaction FormulationThen, the boolean quadric polytope is de�ned byQP = conv f(x; y) : (x; y) satis�es (3:25)� (3:29)gIn case the matrix Q is sparse, many of the yij variables can be removed from the formu-lation. The resulting problem can be associated with a graph G = (V;E) with verticesand edges that correspond to the nonzero coe�cients of c and Q. Similar QPG is de�nedby QPG = conv �(x; y) 2 RjV j+jEj : (x; y) satis�es (3:25)� (3:29) for all fi; jg 2 E	The boolean quadric polytope is studied from a polyhedral point of view by Padberg [152].Proposition 3.26 state the relation between the PCSP and the QPG.Proposition 3.26Let X(PCSP ) be de�ned by (G;D; p; q) with Dv = fd1v; d2vg for all v 2 V . Then there isa one-to-one correspondence between X(PCSP ) and QPG.Proof. Let x = (y; z) 2 X(PCSP ). De�ne (�y; �z) 2 RjV j+jEj as�yv = y(v; d2v) and �zvw = z(v; d2v; w; d2w)then (�y; �z) 2 QPG. On the other hand, if (�y; �z) 2 QPG, then (y; z) 2 R2jV j+4jEj withy(v; d1v) = 1� �yv y(v; d2v) = �yvz(v; d1v; w; d1w) = 1 + �zvw � �yv � �yw z(v; d1v; w; d2w) = �yw � �zvwz(v; d2v; w; d1w) = �yv � �zvw z(v; d2v; w; d2w) = �zvwis an element of X(PCSP ). �Corollary 3.27Let X(PCSP ) be de�ned by (G;D; p; q) with Dv = fd1v; d2vg for all v 2 V . Let �a�x � �a0be a facet de�ning inequality for the related QPG. Then ax � a0 is a facet de�ninginequality for X(PCSP ), witha(v; d2v) = �av a(v; d2v; w; d2w) = �avwa(v; d1v) = a(v; d1v; w; d1w) a(v; d1v; w; d2w) = a(v; d2v; w; d1w) = 074



3.6. The Boolean Quadric Polytope and the PCSPSo, every facet de�ning inequality for QPG can be transformed to a facet de�ning in-equality for the PCSP with 2 elements per domain. With Theorem 3.8 (page 57) theseinequalities can be extended to general domains. We do not have to use Theorem 3.5,since Padberg [152] proved a similar theorem about the extension of the graph. In thesame paper several classes of facet de�ning inequalities are presented.Proposition 3.28 ([152], Proposition 3, 4 and 5)The inequalities (3.25)-(3.27) for fi; jg 2 E de�ne facets of QPG.The transformation of these inequalities to the PCSP results in z(v; dv; w; dw) � 0, thetrivial facets of X(PCSP ).Theorem 3.29 ([152], Lemma 2 and Theorem 4)Let C be a clique in G, jCj � 2, and let 
 be an integer. The clique-inequality
Xv2C xv � Xfv;wg2E[C] yvw � 12
(
 + 1) (3.30)is valid for 
 2 f1; : : : ; jCj � 1g and de�nes a facet of QPG for 
 2 f1; : : : ; jCj � 2g.Transformation of (3.30) leads to a (
; jCj)-clique-cycle inequality (3.13).Theorem 3.30 ([152], Lemma 3 and Theorem 5)Let S [ T be a clique in G with jSj � 1, jT j � 2. Then the cut inequality�Xv2S xi � Xfv;wg2E[S] yvw + Xfv;wg2�(S;T ) yvw � Xfv;wg2E[T ] yvw � 0 (3.31)is valid and facet de�ning for QPG.Transformation of these inequalities and application of Theorem 3.8 results in a new classof valid inequalities for the PCSP, the cut inequalities.Corollary 3.31Let S [ T be a clique in G with jSj � 1, jT j � 2, and let Av, Bv be a partition of Dv forall v 2 S [ T . Then the cut inequalityXfv;wg2E[S] z(v; Bv; w; Bw) + Xfv;wg2E[T ] z(v; Bv; w; Bw)+Xv2S y(v; Bv) � Xfv;wg2�(S;T ) z(v; Bv; w; Bw) (3.32)is valid and facet de�ning for X(PCSP ). 75



3. The Partial Constraint Satisfaction FormulationPadberg [152] generalized the cut inequality (3.31) via a symmetry argument.Theorem 3.32 ([152], Corollary 1)Let S [ T be a clique in G with s = jSj � 1, t = jT j � 2. Then the generalized cutinequality(s� t)Xv2S xi + (t� s� 1)Xv2T xv� Xfv;wg2E[S] yvw + Xfv;wg2�(S;T ) yvw � Xfv;wg2E[T ] yvw � 12(t� s)(t� s� 1) (3.33)is valid and facet de�ning for QPG.The equivalent generalized cut inequality for the PCSP is given by Corollary 3.33.Corollary 3.33Let S [ T be a clique in G with s = jSj � 1, t = jT j � 2, and let Av, Bv be a partition ofDv for all v 2 S [ T . Then the generalized cut inequality(t� s)Xv2S y(v; Bv) + (s� t + 1)Xv2T y(v; Bv) + Xfv;wg2E[S] z(v; Bv; w; Bw)+ Xfv;wg2E[T ] z(v; Bv; w; Bw)� Xfv;wg2�(S;T ) z(v; Bv; w; Bw) � 12(t� s)(s� t+ 1) (3.34)is valid and facet de�ning for X(PCSP ).Concluding, the clique-cycle inequalities can be explained by a transformation of the cliqueinequalities of Padberg [152], and several other classes of inequalities can be generatedin the same way. The cycle inequalities cannot be explained by a direct transformationof inequalities in [152] for the boolean quadric polytope to the PCSP. Even more facetsfor X(PCSP ) can be obtained via the results of Sherali, Lee and Adams [168], and DeSimone [169]. Sherali, Lee and Adams [168] used a simultaneous lifting strategy to iden-tify a class of facets that subsume the clique, cut, and generalized cut inequalities ofPadberg [152]. De Simone [169] showed that the boolean quadric polytope and the cutpolytope are equivalent. As a consequence, every facet of the cut-polytope can be trans-formed to a facet for the boolean quadric polytope, which in its turn can be transformedto a facet for X(PCSP ). In fact, the facets identi�ed by Sherali, Lee and Adams [168]belong to the class of linear hypermetric inequalities of De Simone [169, 170].76



3.7. Computational Results3.7 Computational ResultsThe results of the polyhedral analysis are tested on several types of instances. First ofall, a test of the quality of the valid inequalities described above is done on 11 instanceswith jDvj = 2 for v 2 V . These instances are subproblems of the CELAR 08 instance ofthe CALMA-project (see Sections 2.2 and 2.6). For these frequency assignment problems,Kolen [118] described a genetic algorithm in which the crossover is optimized, i.e. given2 solutions (the parents) we would like to obtain the best possible solution among allsolutions that can be generated with these parents. So the crossover problem correspondsto a PCSP with at most 2 values per domain. By applying the cycle and clique-cycleinequalities these subproblems can be solved e�ciently. To illustrate the e�ciency of theclasses of inequalities, we have selected the already mentioned 11 subproblems. We usedthe callable library of CPLEX 4.0 to solve the linear programming relaxation (vLP ), theinteger programming problem (vIP ) as well as the linear programming relaxation with3-cycle valid inequalities (v3). The separation of violated valid inequalities was done byenumeration of all valid inequalities with k = 3 (i.e., 4 valid inequalities for each 3-cyclewere available). As mentioned in Section 2.2.4 the number of vertices of the constraintgraph can be reduced to half the original number, due to the equality constraints. Hence,for all instances jV j = 458 and jEj = 1655. The results are presented in Table 3.1. Theprogram written in C++ was running on a DEC 2100 A500MP workstation with 128Mbinternal memory. The table shows that for all instances the LP relaxation with 3-cyclevalid inequalities gives an integer solution. The number of violated inequalities which hadto be added is given in the last column. The computation times were on average reducedby 76.4%.Another instance with a large gap between LP and IP is p1. This instance has 708 verticesand 1677 edges (again all domains contain 2 values). The 3-cycle inequalities close 92.6%the gap between LP and IP. With these valid inequalities CPLEX needed 113 branch-and-bound nodes to obtain and prove the optimal value. CPLEX was not able to solvethis instance to optimality without adding valid inequalities.The separation of the cycle inequalities has been done in an exact way. We simplyenumerated the 4 di�erent 3-cycle inequalities for every 3-cycle in the graph. For problemswith more than 2 elements per domain, the separation problem can be solved either viathe quadratic program (3.18), or via the heuristic described in Section 3.5.1. We testedboth methods on a set of 5 instances with 100 vertices, 350 edges, and 2, 3, 4, 5, or 6elements in each domain. These instances are obtained by arbitrarily selecting a subsetof the domain elements from the instance CELAR 06 of the CALMA-project. In eachiteration of the cutting plane algorithm, we added at most 1 violated cycle inequality forevery 3-cycle in the graph. If no violated inequalities were found anymore, we started thebranch-and-bound procedure of CPLEX. For the exact separation problems, we solved thelinearization of the quadratic program (3.18) via the standard branch-and-bound routine77



3. The Partial Constraint Satisfaction Formulationinstance vLP v3 vIP CPU vLP CPU v3 CPU v3+IP CPU vIP #v.i.c8_1 848.5 986 986 8.8 18.1 18.1 78.0 1,104c8_2 721 836 836 8.7 11.4 11.4 48.4 497c8_3 630.5 747 747 7.8 13.1 13.1 63.1 771c8_4 802 834 834 8.0 10.9 10.9 35.4 1,243c8_5 627.5 729 729 7.5 11.3 11.3 35.7 608c8_6 695 717 717 8.6 12.0 12.0 31.5 907c8_7 836 894 894 8.2 9.9 9.9 39.1 267c8_8 757 835 835 7.2 10.5 10.5 71.2 747c8_9 769 866 866 9.2 12.6 12.6 54.9 610c8_10 768.5 812 812 8.1 10.0 10.0 37.7 215c8_11 622 814 814 7.3 16.0 16.0 187.1 1,259p1 35.5 104.5 110 6.6 25.5 152.4 - 266Table 3.1: Computational results jDvj = 2of CPLEX. Table 3.2 shows for each instance the percentage the gap between LP and IPthat is closed, and the cpu-times for both the cutting plane phase (v3) and the completeprocedure (v3+IP ). The gap is closed with more than 90% in all cases. The di�erence inquality between the exact and heuristic separation is negligible. Also, the di�erence inspeed between the algorithms does not provide us with a preference for either the exactor the heuristic way of separation. For all but the last instance the heuristic separationroutine is substantially faster. However, due to the inferior lower bound (part of) thebene�t is nulli�ed in the branch-and-bound procedure that have to be applied afterwards.This is especially true for instance celar6c, where the cutting plane closed `only' 90%of the gap. For this case, we also applied another approach, in which we separate theinstance jDvj CPU exact separation heuristic separationtime gap closed CPU-time for gap closed CPU-time forLP by (%) v3 v3+IP by (%) v3 v3+IPcelar6a 2 0.7 99.75 9.2 9.9 99.75 2.5 2.9celar6b 3 1.6 98.80 196.5 216.0 98.66 34.7 41.4celar6c 4 3.1 90.96 784.2 1,309.6 90.41 488.3 1,486.4celar6d 5 3.9 97.78 10,550.8 13,198.0 97.35 9,308.3 12,149.0celar6e 6 4.5 97.00 29,771.3 35,234.8 96.88 68,315.4 74,142.5Table 3.2: Comparison of exact and heuristic separation for instances with jDvj � 278



3.7. Computational Resultsinequalities heuristically, except when no violated inequalities were found anymore. Then,exact separation is applied to improve the result of the cutting plane phase. In this way,we reached the same lower bound as in the exact case in only 494 seconds.method celar6a celar6b celar6c celar6d celar6ejDv j 2 3 4 5 6CPU-time LP 0.7 1.6 2.9 3.8 4.4value LP 39,507.5 26,678 10,763.3 2,492 374value IP 60,342.0 45,053 30,113 13,498 11,582value cuts 60,290.5 44,831.8 28,381.8 13,253.6 11,243.6gap closed by (%) 99.75 98.80 90.96 97.78 96.98CPU-time LP + vi 2.8 61.2 471.2 21,120.1 89,568.23-cycles CPU-time IP 3.2 67.7 1,390.0 22,833.0 96,298.9# sep. rounds 1 21 31 827 748# B&B nodes 4 13 180 22 50value cuts 60,290.5 44,913.3 28,836.8 13,254.4 11,528.3gap closed by (%) 99.75 99.24 93.31 97.79 99.52CPU-time LP + vi 2.8 42.9 633.7 23,422.9 78,440.63+4-cycles CPU-time IP 3.2 52.3 1,244.5 24,958.4 84,893.3# sep. rounds 1 16 67 768 629# B&B nodes 4 12 104 32 92value cuts 60,342.0 45,053 30,113 13,498 11,582gap closed by (%) 100.00 100.00 100.00 100.00 100.00CPU-time LP + vi 10.6 614.0 21,044.0 163,230 67,1348all CPU-time IP 10.6 614.0 21,045.9 163,236 67,1355# sep. rounds 9 70 215 274 352# B&B nodes 0 0 2 3 1Table 3.3: Separation of 3-cycle, 4-cycle and clique-cycle inequalitiesUp to now, we have only separated 3-cycle inequalities in our cutting plane approach,whereas other k-cycle and clique-cycle inequalities are available as well. In Table 3.3we compare the results of separation of 3-cycle inequalities only, separation of 3-cycleand 4-cycle inequalities, and separation of 3-cycle, 4-cycle as well as maximal (1; k)-clique-cycle inequalities. All separation algorithms are done in a heuristic way, unlessno violated inequalities are found in this way, then we applied exact separation. Fromother experiments we have concluded that separation of k-cycle inequalities for k > 4has no added value. For the clique-cycle inequalities, we know from Lemma 3.22 thatwe only have to separate maximal cliques to obtain all violated clique-cycle inequalities.79



3. The Partial Constraint Satisfaction FormulationTable 3.3 shows that in case of separating 3-cycle and 4-cycle inequalities as well asmaximal (1; k)-clique-cycle inequalities the gap between LP and IP is closed completelyin all cases, which grounded our separation of only (1; k)-clique-cycle inequalities insteadof the general (
; k)-clique-cycle inequalities. Table 3.3 also shows that although a largerpart of the gap between LP and IP is closed when more valid inequalities are taken intoaccount, the overall computation time is not reduced in this way. Especially the exactseparation of clique-cycle inequalities causes a substantial increase of the computationtime for the larger instances.Finally, we tested the cycle inequalities (3.11) on a subgraph of the instance CELAR 06.In contrast with the previous experiments, the size of the domains is 44. The subgraphconsists of 4 vertices and 6 edges. We separate cycle inequalities for all 3-cycles (i.e., 4cycles). Table 3.4 shows the results. They indicate that in case of large domains the cycleinstance vLP CPU vLP v3 CPU v3 # sep. rounds v3+IP CPU v3+IP # B&BC6_v4 0 1 300 552,303 5,337 300 552,366 1Table 3.4: Results on a subgraph problem with jDvj = 44.inequalities (3.11) are strong enough to close the gap as well. However, the computationtime involved in solving this instance is huge. This shows the impracticability to solvereal-life instances with the polyhedral method.3.8 Concluding RemarksIn this chapter we modeled the MI-FAP as a partial constraint satisfaction problem. Weintroduced an integer programming formulation for the PCSP, and analyzed the problemfrom a polyhedral point of view. Two lifting theorems made it possible to derive classes offacet-de�ning inequalities from a single inequality. Two classes of facet de�ning inequal-ities, the cycle inequalities and clique-cycle inequalities, were obtained in this way. Dueto the relation with the boolean quadric polytope several other classes of facets could bederived. For the cycle inequalities and clique-cycle inequalities we discussed the accompa-nying separation problems. For a special case we could prove that the separation problemfor cycle inequalities can be solved in polynomial time. Based on this result we describeda heuristic for the general case. For the clique-cycle inequalities the complexity of theseparation problem remains open. If we cannot use the additional information that theinput is an LP solution, then the problem is NP-hard.Computational experiments indicated that for instances with small domains the 3-cycleand 4-cycle inequalities close the gap between LP and IP substantially. Moreover, if also80



3.8. Concluding Remarksthe clique-cycle inequalities are separated the gap is closed completely for our instanceswith small domains. The separation of these inequalities can be done in a heuristic or exactway. A combination of both strategies resulted in the best performance. For instanceswith large domains, the cutting plane approach did not lead to desirable results. Alreadyfor a very small graph, it is very time consuming to increase the objective value in thisway. It seems that, although the inequalities are facet de�ning, many inequalities arenecessary for an increase of the objective in case of large domains.
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4. A Tree DecompositionApproach
Forced by the limited success of the polyhedral method (and other exact solution ap-proaches) for real-life instances, we try to exploit the structure of the constraint graphmore directly in this chapter. Instances of the MI-FAP have a geographical nature, sinceeach antenna is placed in a two-dimensional map. Moreover, this geography in�uences theinterference, since pairs of antennae have no interference if their distance is far enough.Finally, concentrations of antennae are found in densely populated areas. These areas areconnected with one another with a limited number of edges. This led to believe that manyinstances have a constraint graph with a tree-like structure, and thus may be solved usinga tree decomposition of the constraint graph with small treewidth. The notions treewidthand tree decomposition are introduced by Robertson and Seymour [162] in their funda-mental work on graph minors. Besides the major role they play in graph theory, manyNP-hard problems on graphs have been shown to be solvable in polynomial (linear) timeon graphs with bounded treewidth. For instance, for list coloring Jansen and Sche�er [94]showed that the problem can e solved in polynomial time. Bodlaender [21] presented anoverview of NP-hard problems that can be solved if the treewidth is bounded by a con-stant. We used this idea, together with sophisticated processing techniques, on a set ofinstances for which the previous techniques generated only few signi�cant results, i.e.,only for a small set of instances non-trivial lower bounds were computed (cf. Section 2.6).We are now able to solve many of these instances to optimality. Moreover, in an iter-ative version of our algorithm we are able to generate good lower bounds on the verydi�cult instances. The algorithm is applicable on many instances. The only serious lim-itation is the treewidth of the constraint graph. Finally, we mention that the approachis not restricted to MI-FAPs but can also applied to the more general partial constraintsatisfaction problem with binary relations (PCSP).The main purpose of this chapter is twofold. In the �rst place, our goal is to �nd bench-marks for a set of publicly available MI-FAPs. Secondly, our purpose is to show that theconcept of tree decomposition is not only of theoretical value, but can really be used tosolve combinatorial optimization problems to optimality. We do not have the intention todemonstrate this method as the method to solve MI-FAPs. For that purpose the methodis not competitive compared with available heuristics.The remainder of this chapter is organized as follows. In Section 4.1 we introduce the83



4. A Tree Decomposition Approachgraph theoretic concepts we use in the chapter, such as treewidth. For a description of theMI-FAP, we refer to Section 3.1 and Section 3.2. In Section 4.2 we describe the heuristicmethod we use to obtain a tree decomposition of the constraint graph, and in Section 4.3we propose the dynamic programming algorithm based on the tree decomposition ofthe constraint graph. The practical utility of the algorithm can be improved via theuse of (pre)processing techniques, which are described in Section 4.4. We present aniterative extension of the algorithm that provides lower bounds for the original problemin Section 4.5. The computational results obtained with these methods are the topic ofSection 4.6. This chapter is based on [123]. A preliminary version is published in [122],whereas also an extended abstract appeared in [124].In the sequel of this chapter we use the following notation. Let N(v) = fw 2 V :fv; wg 2 Eg denote the set of vertices adjacent to v 2 V , whereas N(S) = fw 2 V n S :9v2Sfv; wg 2 Eg denotes the neighbors of the vertices in the subset S � V . Moreover,let �(S; T ) denote the set of all edges between the vertices in S � V and T � V , i.e.,�(S; T ) = ffv; wg 2 E : v 2 S;w 2 Tg. We use �(S) as short version of �(S; V n S).With E[S] we denote all edges with both vertices in S, i.e., E[S] = �(S; S). By G[W ] =(W;E[W ]) we denote the subgraph of G = (V;E) induced by W .
4.1 Graph Theoretic ConceptsIn this section we introduce the graph theoretic concepts used in our solution method.We de�ne the notions tree decomposition and treewidth, together with some (well-known)properties of these notions. We also de�ne the concept separating vertex set, which willbe used in the heuristic to construct a tree decomposition.Before we introduce the notion of tree decomposition of a graph we start with the simplernotion of path decomposition (Robertson and Seymour [161]). A path decompositiondecomposes the graph in a sequence i = 1; : : : ; r of subgraphs induced by subsets Xi � V .All vertices and edges have to be in at least one subgraph. Moreover, if a vertex is partof two induced subgraphs, then all the subgraphs in between these two in the sequenceshould also contain this vertex. Or equivalently, the subgraphs for which the vertex setscontain a certain vertex should be a subsequence of the total sequence. The width of apath decomposition is given by the maximum size of the vertex sets of the subgraphs minusone. The pathwidth of a graph G is the minimum width over all path decompositions ofG. Formally,Definition 4.1 (Robertson and Seymour [161])Let G = (V;E) be a graph. A path-decomposition is a sequence X1; : : : ; Xr of subsets ofV , such that84



4.1. Graph Theoretic Concepts(i). Si=1;:::;rXi = V ,(ii). for every edge fv; wg 2 E, there is an i 2 I with v 2 Xi and w 2 Xi, and(iii). for all i; j; k 2 f1; : : : ; rg, if i < j < k, then Xi \Xk � Xj.The width of a path decomposition is maxi=1;:::;rjXij � 1. The pathwidth of a graph G,denoted by pw(G), is the minimum width over all possible path decompositions of G.
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���������������� ................................................................................................................................ ��������abd acd cde def efgh fi ijk(b) path decompositionFigure 4.1: Example of a path decomposition with width 3In Figure 4.1 an example of a graph and an optimal path decomposition with width 3is given. For special classes of graphs the pathwidth is known in advance (cf. [21]). Forexample, if the graph consists of a single path, the pathwidth is equal to one. For trees thepathwidth is O(d), where d is the length of the longest path in the tree. Robertson andSeymour developed a variant of the path decomposition concept called tree decompositionin [162]. Instead of a decomposition of the graph into a path, the graph is decomposedinto a tree of induced subgraphs. The width of a tree decomposition is the maximumcardinality of the subgraphs minus one. Formally,Definition 4.2 (Robertson and Seymour [162])Let G = (V;E) be a graph. A tree-decomposition is a pair (T;X ), where T = (I; F ) is atree with nodes I and edges F , and X = fXi : i 2 Ig is a family of subsets of V , one foreach node of T , such that(i). Si2I Xi = V , 85



4. A Tree Decomposition Approach(ii). for every edge fv; wg 2 E, there is an i 2 I with v 2 Xi and w 2 Xi, and(iii). for all i; j; k 2 I, if j is on the path from i to k in T , then Xi \Xk � Xj.The width of a tree decomposition ismaxi2I jXij�1. The treewidth of a graph G, denotedby tw(G), is the minimum width over all possible tree decompositions of G.The third condition of the tree decomposition is equivalent to the condition that for allv 2 V , the set of nodes fi 2 I : v 2 Xig is connected in T . Note that, since each pathdecomposition is also a tree decomposition, tw(G) � pw(G).
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Figure 4.2: Example of a tree decomposition with width 2 for the graph of Figure 4.1(a)In Figure 4.2 an optimal tree decomposition of the graph of Figure 4.1 is given. The widthof this decomposition is 2. A connected graph has treewidth 1 if and only if the graph isa tree. The complexity of the construction of a tree decomposition (path decomposition)of minimal treewidth (pathwidth) is discussed in the next proposition.Proposition 4.3(i). The problem `Given a graph G = (V;E) and an integer k, is the treewidth (path-width) of G at most k' is NP-complete.(ii). Given a constant integer k, the problem `Given a graph G = (V;E), is the treewidth(pathwidth) of G at most k' can be solved in polynomial time.So, if the integer k is part of the input of the problem, the problem is NP-complete whereasit can be solved in polynomial time in case k is �xed. The NP-completeness resultsfor treewidth and pathwidth are due to Arnborg, Corneil and Proskurowski [13]. Analgorithm that solves the problem in linear time for constant k is given by Bodlaender [22].However, this algorithm is exponential in k, and is therefore impractical for graphs withlarger treewidth. Therefore, we use a heuristic to construct tree decompositions.In a tree decomposition we can remove nodes for which the corresponding vertices form asubset of the vertices of another node. As a consequence, every tree decomposition can be86



4.2. Construction of a Tree-Decompositiontransformed to a tree decomposition in which the vertex-sets of all internal nodes separatethe constraint graph in at least two components, i.e., the vertices form a separating vertexset.Definition 4.4An st-separating set of G = (V;E) is a set S � V nfs; tg with the property that any pathfrom s to t passes through a vertex of S. The minimal separating vertex set of G is givenby the st-separating set with minimum cardinality over all combinations fs; tg 62 E.Note that the separating vertex sets in a tree decomposition are not necessarily minimal.The property that every internal node correspond with a separating vertex set forms thebasis of our heuristic, which is the topic of the next section.4.2 Construction of a Tree-DecompositionSince the algorithm we want to use for solving MI-FAPs heavily depends on the widthof the tree decomposition of the constraint graph, we need a tree decomposition withsmall width. Finding a tree decomposition with optimal width is NP-hard. Therefore,we implemented a sequential improvement heuristic. The algorithm aims at decreasingthe cardinality of the nodes in a given tree decomposition based on the property that thevertices that correspond to internal nodes of the tree are separating vertex sets in thegraph. We try to replace a node in an existing tree decomposition by a number of newnodes for which the maximum cardinality is smaller than the cardinality of the originalnode. To achieve this goal, we search for small separating vertex sets. In Section 4.2.1 wedescribe the algorithm to �nd a minimum separating vertex set in a graph, whereas theheuristic itself is the topic of Section 4.2.2.4.2.1 Minimum separating vertex set in a graphFor any combination of 2 non-adjacent vertices, the st-separating set with minimal car-dinality can be found e�ciently using Menger's theorem (see also Ahuja, Magnanti, andOrlin [9]).Theorem 4.5 (Menger [144])Given a graph G = (V;E) and two distinct non-adjacent vertices s; t 2 V , the minimumnumber of vertices in an st-separating set is equal to the maximum number of vertex-disjoint paths connecting s and t.So, we have to calculate the maximum number of vertex-disjoint paths. This problem issolvable in polynomial time by standard network �ow techniques. First, we construct a87



4. A Tree Decomposition Approachdirected graph D = (V;A), in which each edge fv; wg is replaced by two arcs (v; w) and(w; v) both with weight 1. Next, we construct an auxiliary directed graph D0 by� replacing each vertex v by two vertices v0 and v00,� redirecting each arc with head v to v0,� redirecting each arc with tail v to v00, and� adding an arc from v0 to v00 with weight 1.Then, the minimum number of vertices in an st-separating set in G is equal to the mini-mum weight of an s00� t0 cut in D0. So, if we calculate the minimum s00 � t0 cut for everycombination s; t 2 V , fs; tg 62 E, we obtain the minimum separating vertex set. Note thatsince the graph D0 is a directed graph, we have to solve O(n2) minimum cut problems.In other words, we cannot use the algorithm of Gomory and Hu [75], which solves theall pairs minimum cut problem for undirected graphs by solving only O(n) minimum cutproblems.4.2.2 HeuristicThe heuristic we use to obtain a tree decomposition can be described as follows. Westart with the trivial tree decomposition in which we have one node corresponding tothe complete graph. During the process we have a tree decomposition (T;X ). We selectthe node i 2 I with jXij maximum. This node is replaced by m + 1 nodes i0; : : : ; imwith vertex sets Xi0; : : : ; Xim . The nodes i1; : : : ; im all are connected with i0. Each nodek 2 N(i) is connected to exactly one node j 2 fi0; : : : ; img, such that all conditions of atree decomposition are satis�ed again.The sets Xi0; : : : ; Xim are de�ned as follows. We construct a graph Gi = (Vi; Ei) thatconsist of the induced subgraph G[Xi] and the additional edges [k2N(i)C(Xi\Xk), whereC(X) denotes a complete graph on the vertices X (i.e., C(X) is a clique). If Gi is acomplete graph, then Xi0 := Xi and m = 0, i.e., we do not change the tree decomposition.If Gi is not a clique, then we calculate a minimum separating vertex set S � Vi. LetYi1; : : : ; Yim be the vertex sets of the m � 2 components of Gi[Vi nS]. We de�ne Xi0 := S,and Xij := Yij [ S for all j 2 1; : : : ; m. The set Xk has a non-empty intersection with atmost one set Yij , j = 1; : : : ; m: Let v; w 2 Xi\Xk, then fv; wg 2 C(Xi\Xk) � Ei, whichimplies that v and w cannot be separated by S. So, either v; w 2 S or v; w 2 Yij [ Sfor only one j 2 f1; : : : ; mg. Therefore, we connect each neighbor k 2 N(i) with thenode ij, j 2 f1; : : : ; mg for which the intersection of Xk and Yij is non-empty, or incase there is none with i0. As a consequence, the new construction is a tree again (seeFigure 4.3). In the new tree the conditions for a valid tree decomposition again hold. Since88



4.3. Dynamic Programming Algorithm
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Xk, k 2 N(i)Figure 4.3: Improvement step of a tree decomposition[mj=0Xij = ([mj=0Yij)[S = Xi condition (i) is satis�ed. To satisfy condition (ii) we have toprove that for each edge fv; wg 2 E[Xi] one of the new vertex sets Xi0 ; : : : ; Xim containsboth vertices. If v; w 2 S, then this is trivially true. Otherwise, suppose v 2 Yij for somej 2 f1; : : : ; mg. If w 2 Yik , k 6= j, then S does not separate Yij and Yik; a contradiction.And thus, w 2 Yij [S = Xij . Condition (iii) states that all nodes in the tree that containthe same vertex v must form a subtree. We only need to check this for v 2 Xi. If v 2 Sthen v is contained in all new nodes and the condition is trivially satis�ed. Otherwise, letv 2 Yij for some j 2 f1; : : : ; mg. By construction, nodes k 2 N(i) and ij are connected ifXk and Yij intersect. Hence, all nodes that contain v form a subtree again.Note that, if Gi is not a clique, then there exist vertices v; w 2 Xi with fv; wg 62 Ei.Thus S = Xi n fv; wg separates Gi in two components; Yi1 = fvg and Yi2 = fwg. So,maxfjYi1 [ Sj; jYi2 [ Sjg = jXij � 1 < jXij. As a consequence, the width of the treedecomposition may decrease. Figure 4.4 shows the heuristic in a �owchart.The width of the resulting tree decomposition approximates the minimal treewidth. How-ever, as long as the separating vertex sets S form cliques in the original graph, the algo-rithm operates in an exact way, since the optimal tree decomposition will contain a nodefor every clique that separates the graph in multiple components.4.3 Dynamic Programming AlgorithmThe algorithm that solves the MI-FAP in polynomial time (given that the treewidth is atmost a constant k) is based on the following idea. Let S � V be a separating vertex set ofG with G[V nS] = G[V1][G[V2]. Then the optimal assignment in V1 (or V2) only dependson the assignment in S. So, given an assignment of S the problem decomposes in twoMI-FAPs on G[V1] and G[V2]. Thus, the MI-FAP can be solved by solving the two MI-FAPs on G[V1] and G[V2] for all possible assignments in S. This idea can be formulatedas a dynamic programming algorithm using a tree decomposition of the graph. For everyinternal node i 2 I, Xi is a separating vertex set, which implies that given an assignmentfor Xi, the MI-FAP decomposes in smaller MI-FAPs for every branch in the tree. 89



4. A Tree Decomposition Approach
INPUT:Graph G = (V;E)

Construct (T;X )with jIj = 1 and X1 = V
9i 2 I withGi not a clique no OUTPUT: currenttree-decompositionyes

Calculate minimal separatingvertex set S for Gi:m components Yi1 ; : : : ; Yim
De�ne Xi0 := SXij := Yij [ S, for j = 1; : : : ;m

Construct new (T;X )Figure 4.4: Heuristic for construction of a tree decompositionBefore we describe the algorithm in more detail, we �rst introduce some additional no-tation. In the sequel of the chapter we assume that the tree is rooted and binary. LetYi = fv 2 V : 9j 2 I; j descendant of i and v 2 Xjg denote the set of vertices that isrepresented by the subtree rooted at node i. Given a subset S � V , we denote withdS = (dv)v2S an assignment of domain elements dv 2 Dv for every vertex v 2 S. Similar,DS denote the complete set of all assignments for a set S.Now, we can describe the dynamic programming algorithm as follows. In a bottom-to-topway we compute for every node i 2 I all assignments for the subset Yi, DYi. Startingwith a leaf i 2 I of the tree, the algorithm stores all assignments for the vertices inXi. The computation of all assignments takes O(�v2Xi jDvj) = O(djXij) time, whered = maxv2V jDvj. Next, given all assignments for two nodes j; k 2 I with commonpredecessor i 2 I, we can compute all assignments Yi by combining every assignment of90



4.4. Reduction TechniquesYj, every assignment of Yk that has the same assignment for the vertices in Xj \ Xk,and every assignment of domain elements to the vertices in Xi n (Xj [ Xk). However,since Xi is a separating vertex set in the graph, we do not have to store all assignmentsfor the vertices in Yi, but only the assignments that di�er for the vertices in Xi. For anassignment of the vertices in Xi, we only have to store the best assignment for the verticesin Yi nXi. In other words, we have to store at most �v2Xi jDvj assignments for node i 2 Iinstead of �v2Yi jDvj assignments to obtain the overall optimal solution. The computationof these assignments can be done in O(�v2Xi[Xj[Xk jDvj) = O(djXij+jXj j+jXkj). Finally, forthe root node r 2 I of the tree T , Yr = V , and so we only have to store one solution whichgives the desired optimal solution for the problem. The overall computation time of thisalgorithm is given by O(nd3k), where k is the width of the tree decomposition (T;X ) ofG that is used. So, for graphs with treewidth bounded by a constant k, this algorithmsolves the MI-FAP in time polynomial in n and d, but exponential in k. In Figure 4.5 thealgorithm is represented in a �owchart, where we assume that the nodes are numbered1; : : : ; jIj in a topological order from top to bottom.The performance of the algorithm highly relies on additional techniques to reduce the sizeof the sets of assignments DYi. These techniques are described in the next section.4.4 Reduction TechniquesQuick ways to remove vertices and edges from the constraint graph or to remove frequen-cies from the domains of the vertices may speed up any solution technique for the MI-FAPapplied afterwards. Our technique for solving the MI-FAP, a dynamic programming al-gorithm based on the tree decomposition of G, computes all non-redundant assignmentsfor subsets of vertices. The number of di�erent assignments grows exponentially with thecardinality of the subset, which makes the need for good reduction techniques evident. Inthis section we present several such techniques. All are based on the following paradigmfor extending partial feasible solutions:A partial feasible solution can be extended to an optimal solution only if the extensionitself is optimal with respect to the partial feasible solution. In other words, if a partialfeasible solution is not extended optimally, the resulting feasible solution is certainly notoptimal.In the next subsection we use this paradigm directly to remove vertices, or replace themby edges. In Subsection 4.4.2 we present a penalty shifting procedure, which is mainlyused to obtain lower bounds on the value of the instances, but can sometimes removeedges from the constraint graph as well. In Subsection 4.4.3, we present techniques toremove frequencies from the domains of vertices, and to remove non-optimal partial fea-sible solutions. This is done in two ways: by using upper bounding techniques, and by91



4. A Tree Decomposition Approach
INPUT:Problem P = (G = (V;E);D; p; q)Tree-decomposition (T;X )
i := jIj

Node i is a leaf ? yes

Compute all assignments for Xi

no
Let i be the predecessor of j; k 2 ICompute all assignments for Yifrom assignments for Yj and Yk

i := i� 1
i > 0 ?

noP solved

yes

Figure 4.5: Dynamic programming algorithmusing dominance criteria.4.4.1 Constraint graph reductionIn this subsection we describe how we can remove vertices v 2 V with jDvj = 1 orjN(v)j � 2 from G. First of all, for vertices v with Dv = fd�vg we do not have a choicefor the frequency. Therefore v can be removed from the constraint graph, provided thatq(v; d�v) is added to the solution value, and that for every w 2 N(v), dw 2 Dw the penaltyp(v; d�v; w; dw) is added to the vertex penalty q(w; dw). Vertices with degree zero can alsobe removed from the constraint graph. For a vertex v 2 V with jN(v)j = 0, the optimalchoice of a frequency is argmindv2Dv q(v; dv). So, the vertex can be removed from the92



4.4. Reduction Techniquesgraph, provided that the value of the optimal solution in the remaining problem will beincreased with mindv2Dv q(v; dv).Next, let v 2 V be a vertex with jN(v)j = 1, and let N(v) = fwg. Consider a partialsolution in which v is the only vertex without a frequency assigned to it. We should assigna frequency to v, that has minimal penalty with respect to the partial solution. To do so,we only need to consider the frequency assigned to w, say d�w, since the other vertices arenot connected to v in G, and, thus, do not in�uence the penalty incurred by any choiceof frequency for v. Therefore, it su�ces to compute the smallest penalty incurred by thefrequencies of v, i.e., mindv2Dvfq(v; dv) + p(v; dv; w; d�w)g, and extend the partial feasiblesolution with a frequency d�v that attains this minimum. Although d�w may di�er amongall partial solutions, we can determine the best extension of any partial feasible solutionbeforehand by, for all dw 2 Dw, computing the valueq0(w; dw) = mindv2Dvfq(v; dv) + p(v; dv; w; dw)gand subsequently adding q0(w; dw) to q(w; dw). This, in e�ect, adds to each dw the optimalchoice in Dv at the beginning of the algorithm, allowing us to remove the vertex v andthe edge fv; wg from the instance. At the end of the algorithm an optimal solution foundfor the problem instance restricted to G[V n fvg], can then be extended by selecting theoptimal choice d�v 2 Dv given the chosen frequency d�w of w.We can generalize this idea to vertices with degree two as follows. Let v be such avertex, and let N(v) = fu; wg. To extend a partial solution in which v is the only nodewithout a frequency, we should assign a frequency to v, that is optimal with respectto the frequencies of u and w. Let d�u and d�w be the selected frequencies. We thenselect d�v = argmindv2Dvfp(u; d�u; v; dv) + q(v; dv) + p(v; dv; w; d�w)g. Again, we can do thisbeforehand by, for all du 2 Du; dw 2 Dw, computing the valuep0(u; du; w; dw) = mindv2Dvfp(u; du; v; dv) + q(v; dv) + p(v; dv; w; dw)gand subsequently adding p0(u; du; w; dw) to p(u; du; w; dw). This, in e�ect, adds to eachcombination fdu; dwg the optimal choice in Dv, allowing us to remove the vertex v andits two incident edges from the instance. Note that possibly the edge fu; wg may have tobe inserted in the constraint graph.We can repeat the reduction process until all vertices with degree at most two are removed.93



4. A Tree Decomposition Approach4.4.2 Penalty shifting - Lower boundingIn this subsection we present a technique to obtain a lower bound on the optimal value ofthe instances by shifting penalties from edges to vertices and back, and from vertices to theobjective and back. We �rst illustrate the technique by the example in Figure 4.6(a). Wehave three vertices, each with 2 domain elements. The non-zero edge-penalties are givenby edges. We can transform this part of the instance by moving penalty from the penaltymatrix to the penalties on frequencies (Figure 4.6(b)), and even from the frequencies tothe objective (Figure 4.6(c)).
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(c) shift to objectiveFigure 4.6: Example shifting penaltiesIf for an edge fv; wg 2 E we have a penalty matrix such that given d�v 2 Dv for alldw 2 Dw, p(v; d�v; w; dw) > 0 then by model equality (3.3) we can decrease these penalties,and simultaneously increase q(v; d�v) with the same amount. The same procedure workson vertices. Suppose that we have a positive penalty q(v; dv) for all dv 2 Dv. Thenby (3.2) we can decrease the penalty q(v; dv) with the minimum vertex penalty and addthe same value to the objective. The condition that all penalties should be nonnegativeis not really crucial, but allows us to maintain a lower bound on the objective value.A special case are penalty matrices with the property that p(v; dv; w; dw) = �q(v; dv) +�q(w; dw), i.e., the elements are the sum of values corresponding to the rows and columns.Then we can reduce all edge-penalties to zero, and thus remove the edge from the con-straint graph by shifting all edge-penalties to the frequencies of the two correspondingvertices.4.4.3 Domain reductionIn this section we devise methods to reduce the number of partial feasible solutions to theones that are candidates to be used in optimal solutions. We describe two ways of doingso, namely upper bounding (in Section 4.4.3.1), and dominance (in Section 4.4.3.2).94



4.4. Reduction Techniques4.4.3.1 Upper boundingUpper bounding in its simplest form is performed on vertices as follows. Consider avertex v and its neighbors N(v). We want to derive an upper bound u(v; �(v)) on thetotal penalty incurred by node v in the optimal solution of the FAP, i.e., an upper boundon the vertex-penalty of v and the edge-penalties of the edges incident with v.Consider an arbitrary partial solution d�N(v) 2 DN(v). Then we compute the frequency forv with the lowest penalty:P (d�N(v)) = mindv2Dv nq(v; dv) +Pw2N(v) p(v; dv; w; d�w)oAmong all possible choices for d�N(v) 2 DN(v) we take the one with highest penalty, i.e.u(v; �(v)) = maxd�N(v)2DN(v) P (d�N(v))Then the value u(v; �(v)) is certainly an upper bound on the penalty incurred by anoptimal choice of frequency for v.
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Dv q(v; dv)1 02 03 0
p(v; dv; w; dw1)Dw1Dv 1 21 2 02 0 23 1 1

p(v; dv; w; dw2)Dw2Dv 1 21 0 22 2 03 1 1
p(v; dv; w; dw3)Dw3Dv 1 21 1 02 0 13 0 0Figure 4.7: Example upper bounding and dominanceWe illustrate this upper bounding technique with the following example, see Figure 4.7.Let v be a vertex in the constraint graph G. Its domain contains three frequencies: 1, 2,and 3. It is connected to three vertices w1, w2, and w3 each of which has two frequencies:1 and 2. For all dv 2 Dv, the total penalty is q(v; dv) +Pw2�(v) p(v; dv; w; d�w) whered�w is the frequency chosen for w. In Table 4.1 we have computed for any combinationof (dw1; dw2; dw3) the best frequency d�v for v, i.e., the one such that the total penalty95



4. A Tree Decomposition Approachq(v; dv) +Pw2N(v) p(v; dv ; w; dw)dw1 dw2 dw3 dv = 1 dv = 2 dv = 3 best1 1 1 5 0 2 01 1 2 4 1 2 11 2 1 3 2 2 21 2 2 2 3 2 22 1 1 3 2 2 22 1 2 2 3 2 22 2 1 1 4 2 12 2 2 0 5 2 0Table 4.1: Penalties example upper bounding and dominanceis minimal among all possible frequencies for v. Table 4.1 shows that for this examplethe upper bound is 2, the maximum of the last column. In general, though not in thisexample, any frequency dv 2 Dv with q(v; dv) > u(v; �(v)) can be removed from Dv.For arbitrary v 2 V , we can compute this upper bound by solving an integer linearprogram. For all w 2 N(v), dw 2 Dw we introduce a binary variabley(w; dw) = � 1 if dw 2 Dw is assigned to w 2 N(v)0 otherwiseIf the variable z denotes the actual upper bound, the integer linear program reads asu(v; �(v)) =max z (4.1)s.t. z � q(v; dv) + Xw2N(v)dw2Dw p(v; dv; w; dw)y(w; dw) 8dv 2 Dv (4.2)Xdw2Dw y(w; dw) = 1 8w 2 N(v) (4.3)y(w; dw) 2 f0; 1g 8w 2 N(v); dw 2 Dw (4.4)The constraints (4.3) and (4.4) enforce that for each neighbor of v exactly one frequency ischosen. For a given choice of frequencies d�N(v) the right-hand sides of constraints (4.2) arethe penalties incurred with each of the corresponding frequencies for v. Thus, a frequencydv with smallest penalty determines the highest value z can obtain for the particularchoice of frequencies for the neighbors of v. For each possible assignment of frequenciesto the neighbors of v we determine this value. The worst choice of d�N(v) is one for whichthis value is maximal. This choice determines the value of z, and so u(v; �(v)).96



4.4. Reduction TechniquesFrequencies dv 2 Dv for which q(v; dv) > u(v; �(v)) can be removed from the domain. Inthe preprocessing phase such frequencies are removed for all vertices. Also, partial feasiblesolutions dS 2 DS, v 2 S, for which the penalty incurred by the frequency assigned to vand its incident edges is higher than u(v; �(v)) need not be considered.The above technique can be generalized to sets of vertices, instead of single vertices.Consider a set S � V with its set of assignments DS.u(S; �(S)) = max z (4.5)s.t. z � q(S; dS) + Xw2N(S) Xdw2Dw Xv2N(w)\S p(v; dv; w; dw)y(w; dw)8dS 2 DS (4.6)Xdw2Dw y(w; dw) = 1 8w 2 N(S) (4.7)y(w; dw) 2 f0; 1g 8w 2 N(S); dw 2 Dw (4.8)Here, q(S; dS) denote the total penalty involved by an assignment dS, i.e.,q(S; dS) =Pv2S q(v; dv) +Pfv;wg2E[S] p(v; dv; w; dw)This value is a lower bound on the total penalty involved in any complete assignment basedon the partial assignment dS. So, if q(S; dS) > u(S; �(S)), then this partial assignmentcannot be extended to an optimal complete assignment. Hence, it can be removed fromthe set of assignments DS. An even better lower bound on the penalty in any completeassignment is given by the total penalty incurred by the subgraph G[S] and the edges�(S), i.e.l(S; �(S); dS) = q(S; dS) +Pw2N(S)mindw2Dw nPv2N(w)\S p(v; dv; w; dw)oWhenever l(S; �(S); dS) > u(S; �(S)), we can remove dS from our set of assignments forS. We will call an assignment non-redundant if l(S; �(S); dS) � u(S; �(S)).The upper bound u(S; �(S)) is especially powerful if the number of edges in the cut-set�(S;) is small, or if the sum of the maximum penalties incurred by the cut-set edges isnot too large. If the upper bound u(S; �(S)) = 0 for a subset S, then we know that givenany assignment to the vertices V n S, the partial solution can be extended to a completesolution without additional penalty. This implies that we can remove the subset S andthe edges �(S) from the constraint graph. 97



4. A Tree Decomposition ApproachA similar upper bounding technique can be applied to a small extension of the set S andthe edges in its cut-set, i.e., an upper bound for the induced subgraph G[S], the edges�(S) and the vertices N(S).Note that, if T � S, u(T; �(T )) � u(S; �(S)), which implies that the upper bound for S isalso valid for T . The upper bound u(S; �(S)) can also be used in combination with lowerbounds. Let S; T � V be disjoint subsets, and let l(S) be a lower bound on the penaltyincurred by G[S]. Then, an upper bound u(T; �(T )) is given by u(T; �(T )) = u(T; �(T ))�l(S). Similarly, if l(S; �(S)) is a lower bound on the penalty incurred by G[S] and theedges �(S), then an upper bound forG[T ] is given by u(T ) = u(S[T; �(S[T ))�l(S; �(S)).The main problem with u(S; �(S)) is that it may take quite some time to compute it.It may be preferable to compute the value of some relaxation of (4.5)-(4.8). The LP-relaxation does not generate really powerful upper bounds. Our choice is therefore torelax (4.5)-(4.8) by taking a subset of the constraints (4.6), i.e., a number of partialfeasible solutions with low q(S; dS). In case we restrict ourselves to one good partialsolution d�S for S we can solve the relaxed problem by inspection, and use this as anupper estimate of u(S; �(S)):u(S; �(S)) � q(S; d�S) + Xw2N(S) Xdw2Dw Xv2N(w)\S p(v; d�v; w; dw)y(w; dw)= q(S; d�S) + Xw2N(S) maxdw2Dw Xv2N(w)\S p(v; d�v; w; dw) (4.9)Note that good partial solutions are usually available through heuristics, or are generatedin the dynamic programming algorithm.4.4.3.2 DominanceUpper bounding techniques are a quick way to eliminate the worst partial feasible solu-tions, but these techniques sometimes only remove a small fraction of the solutions thatare redundant. In this subsection we develop techniques that remove partial solutions forwhich there exist better alternatives. Consider again the example of Figure 4.7. Thoughfrequency 3 could not be removed from Dv using the upper bound, we can verify in Ta-ble 4.1 that for no choice of frequencies for the neighbors of v frequency 3 is the uniqueoptimal choice. In other words, in any solution where frequency 3 is chosen we can replaceit by another frequency without obtaining a worse solution. Therefore, we maintain atleast one of the optimal solutions by removing this frequency from Dv.The abstract concept of dominance is as follows. Let v 2 V . Consider all partial solutionsof N(v). If these solutions can be extended with a frequency of Dv n fd�vg to solutions98



4.4. Reduction Techniquesat minimum cost, then d�v is not necessary to obtain an optimal solution. Therefore d�vcan be removed from Dv. We say that d�v is dominated by the frequencies in Dv n fd�vg.This concept can also be generalized to sets of vertices, similar to the generalization ofthe upper bounds to sets S � V . Let d�S be an assignment to S, then d�S is dominated bythe other non-redundant assignments DS n fd�Sg if every partial feasible solution of N(S)can be extended to a solution at minimum cost with an assignment of DS n fd�Sg.To �nd out whether d�S is dominated by DS n fd�Sg, we formulate the following feasibilityproblem, which has a feasible solution if and only if d�S is the unique minimum for somechoice of frequencies of the neighbors. Therefore, it is dominated if and only if thisproblem has no solution. The binary variables y(w; dw) used in this formulation have thesame meaning as in the previous subsection: y(w; dw) = 1 if frequency dw is chosen fornode w, and 0 otherwise. Then the feasibility problem readsq(S; d�S) + Xw2N(S)dw2Dw 8<: Xv2N(w)\S p(v; d�v; w; dw)9=; y(w; dw)< q(S; dS) + Xw2N(v)dw2Dw 8<: Xv2N(w)\S p(v; dv; w; dw)9=; y(w; dw) 8dS 2 DS n fd�Sg (4.10)Xdw2Dw y(w; dw) = 1 8w 2 N(S) (4.11)y(w; dw) 2 f0; 1g 8w 2 N(S)8dw 2 Dw (4.12)For any solution of N(S) the constraints (4.10) state that the penalty of d�S, the left handside (LHS), should be smaller than the penalty of each dS 2 DS nfd�Sg, the right hand side(RHS). In other words, if there is a solution of N(S) with this property, then d�S is theunique optimum for this solution, and thus it is not dominated by the other frequenciesin DS n fd�Sg.To transform (4.10)-(4.12) into an integer linear program we introduce a variable z, whichdenotes the maximum di�erence between the RHS and LHS of (4.10), i.e., it is a measureof the �minimality" of d�S.max z (4.13)s.t. z � q(S; dS)� q(S; d�S) + Xw2N(v) Xdw2Dwf Xv2N(w)\S �p(v; dv; d�v; w; dw)gy(w; dw)8dS 2 DS n fd�Sg (4.14)Xdw2Dw y(w; dw) = 1 8w 2 N(S) (4.15)99



4. A Tree Decomposition Approachy(w; dw) 2 f0; 1g (4.16)where �p(v; dv; d�v; w; dw) = p(v; dv; w; dw) � p(v; d�v; w; dw). Clearly, if z > 0, then d�Sis not dominated, since the feasibility problem has a solution; otherwise, if z � 0, d�S isdominated.The formulation (4.13)-(4.16) resembles the upper bound formulation (4.5)-(4.8). More-over, this problem has to be solved for all non-redundant assignments. Therefore, we againrelax the problem by removing constraints. For a good partial solution dS we generatethe corresponding constraint (4.14). This restricted problem can then be approximatedby inspection. From (4.14) we get:z � q(S; dS)� q(S; d�S) + Xw2N(v) Xdw2Dwf Xv2N(w)\S�p(v; dv; d�v; w; dw)gy(w; dw)= q(S; dS)� q(S; d�S) + Xw2N(v) maxdw2Dwf Xv2N(w)\S�p(v; dv; d�v; w; dw)g� q(S; dS)� q(S; d�S) + Xfv;wg2�(S) maxdw2Dw �p(v; dv; d�v; w; dw) (4.17)So, if the RHS of (4.17) is already � 0, then d�S is dominated.4.5 Iterative Version AlgorithmBoth time and memory are insu�cient to solve large instances with the dynamic pro-gramming algorithm described in Section 4.3, even if we use the reduction techniques ofSection 4.4. During the algorithm, the number of non-redundant assignments explodesfor these instances. We can point out two reasons. On the one hand, the width of ourtree decomposition is too large. On the other hand, the number of frequencies availablefor a vertex is too large. In this section we focus on this last reason. Instead of assigningfrequencies to the vertices, we propose to assign subsets of frequencies. So, we partitionthe domain of a vertex in a number of subsets, and assign one of them to the vertex. Tohandle these subsets as frequencies of a new MI-FAP, we have to harmonize the vertexand edge-penalties for all frequencies in a subset. We take as penalty the minimum ofthe individual penalties. In this way the solution value of the new MI-FAP is a lowerbound for the original problem. We can extend this idea to an iterative method whichprovides a sequence of lower bounds for the original instance. The dynamic programmingalgorithm is used as a subroutine to solve the MI-FAPs with the substantially smallerdomains. Contrary to the original MI-FAP, time and memory are su�cient to solve theseMI-FAPs, because they are much smaller.100



4.5. Iterative Version AlgorithmThe idea of the method is that we identify a subset of the domain with each vertex.The vertex- and edge-penalties for these subsets are estimated from below. For example,consider the matrix of edge-penalties given in Figure 4.8(a). The level of interferenceon this edge is 10 if the di�erence between the frequencies is less than 2. If we dividethe frequencies in two groups f1; 2g, and f3; 4g, we obtain 4 blocks in the table of edge-penalties with (almost) the same values. In most cases there is no di�erence betweenthe penalties as long as the pairs of frequencies are in the same block. Therefore, let usconstruct a new MI-FAP in which we have to assign either the subset f1; 2g or the subsetf3; 4g to the vertices. The edge-penalties in this new MI-FAP are given by the minimumof the values in each block (see Figure 4.8(b)). Solving this substantially smaller problemprovides a lower bound for the optimal value of the original problem. The quality of thelower bound depends on the size of the blocks: many small blocks will provide a betterlower bound than a small number of large blocks. In most real-life instances the blockstructure of the penalty matrices arises naturally, since the available frequencies for anantenna can be divided in groups of frequencies that are in the same part of the spectrum.dv, dw 1 2 3 41 10 10 0 02 10 10 10 03 0 10 10 104 0 0 10 10(a) original penalty matrix
dv, dw f1; 2g f3; 4gf1; 2g 10 0f3; 4g 0 10(b) new penalty matrix

Figure 4.8: Example to illustrate the idea behind the iterative algorithmThis idea can be formalized in the following algorithm. We start with the original problemP = (G;D; p; q) and we partition for every vertex v 2 V the domain Dv in an initialnumber of nv subsets D1v; : : : ; Dnvv . This partition is, for example, based on a naturalpartition of the frequencies in groups of frequencies that are in the same part of thespectrum.Next, we construct a new MI-FAP P 0 = (G;D0; p0; q0), with� domains D0v = f1; : : : ; nvg for all vertices v 2 V ,� vertex-penalties q0(v; i) = mindv2Div q(v; dv) for every vertex v 2 V , i 2 D0v, and� edge-penalties p0(v; i; w; j) = mindv2Div mindw2Djw p(v; dv; w; dw) for all fv; wg 2 E,i 2 D0v, j 2 D0w. 101



4. A Tree Decomposition ApproachSo, P 0 is de�ned on the same graph as P , and the domains of P 0 correspond with thesubsets Div, i = 1; : : : ; nv. Since the vertex and edge-penalties in P 0 are the minimum ofthe penalties in the corresponding subset(s), the optimal value of the problem P 0 providesa lower bound for the optimal value of the original problem P .Our way to obtain a sequence of non-decreasing lower bounds is based on an iterativere�nement of the domain-subsets. A partition ~D1v ; : : : ; ~Dmv of a domain Dv is called are�nement of another partition �D1v; : : : ; �Dnv , if for every subset ~Div, i = 1; : : : ; m, thereexists a subset �Djv, j 2 f1; : : : ; ng in the second partition for which Div � Djv. If ~P and �Pare MI-FAPs corresponding to these partitions, then the value of the optimal solution of~P will be at least as high as the value of the optimal solution of �P , which implies that ~Pprovides a lower bound that is greater than or equal to the lower bound provided by �P .Now, we can extend the algorithm to obtain a lower bound to an algorithm that providesa sequence of non-decreasing lower bounds as follows. We construct a problem P 0 whichprovides us with the �rst lower bound. Next, we re�ne the partition of the subsets, andagain construct a MI-FAP P 0 which hopefully provides us with a better lower bound. Wecan repeat the re�nement of the partition as long as the e�orts to solve the problem P 0is reasonable in both time and memory. A �owchart of this algorithm is presented inFigure 4.9.Whatever re�nement procedure (i.e., for which vertices do we re�ne the partition, andhow do we re�ne the partition) we apply, a guarantee that the new lower bound will bestrictly greater than the old lower bound cannot be given in general. However, if for allvertices v 2 V , the domain-subset that corresponds to the optimal solution of P 0 is notpartitioned in the re�nement procedure, then the `old' optimal solution is still optimal inthe new problem P 0. This implies that a re�nement can only be e�ective if at least oneselected domain-subset is re�ned. Therefore, for each re�nement we select one vertex v,for which we partition the assigned subset. To speed up the process in practice, we donot apply the dynamic programming algorithm after each single re�nement, but after there�nement of the domains for a subset of the vertices S � V .For a partition of the assigned subset for a vertex v 2 V we can compute an upper boundon the increase of the value of P 0. This upper bound is used as criteria to select a partition.Consider the example of Figure 4.10. Let D0v = fd1v; d2vg be the assigned subset to v, andlet D0u and D0w be the assigned subsets to the neighbors u and w, respectively. The totalpenalty incurred by this assignment is 0. However, if we either assign d1v or d2v to v, thenthe total penalty will be one. Hence, partition of the subset may lead to an increase ofthe value of P 0. It cannot be guaranteed however, since the new optimal assigned mayselect a subset other than fd1vg or fd2vg.In general, an upper bound on the increase of the optimal value by a partition of theassigned subset can be computed as follows. We restrict ourselves to a partition of the102



4.5. Iterative Version Algorithm
INPUT:Problem P = (G = (V;E);D; p; q)Tree-decomposition (T;X ), tree T = (I; F )Lower bounds l+i , i 2 I, upper bound: uSubsets Div, 8v 2 V , i 2 f1; : : : ; nvg

Construct new instance P 0 = (G;D0; p0; q0)
Apply Heuristic on P 0: upper bound u0

Apply Dynamic Programming Algorithm on P 0: l0
l0 < u no Best-known solutionis optimalyes

Re�ne the partition of the domainsFigure 4.9: Iterative version of the algorithm
assigned domain-subset in two domain-subsets, but the procedure can easily be extendedto a partition in more than two domain-subsets. The procedure can also be generalizedto subsets of vertices instead of single vertices. Let v 2 V , and D0v be the domain-subsetthat corresponds to the optimal assignment. If we partition D0v in Av and D0v n Av, thenthe value of the problem P 0 will increase with at most ��(v; Av),

��(v; Av) = minf�(v; Av); �(v;D0v n Av)g � �(v;D0v)
u uuv wuXXXXXX������ penalties D0u D0w totald1v 1 0 1D0v d2v 0 1 1minimum 0 0 1Figure 4.10: Example to illustrate the partition of assigned subsets 103



4. A Tree Decomposition Approachwhere�(v;D) = mindv2D q(v; dv) +Pw2N(v) mindv2D mindw2D0w p(v; dv; w; dw)Among all partitions Av, D0v n Av, the best partition, according to the value ��(v; Av),is A�v = argmaxAv�D0v ��(v; Av). If ��(v; A�v) = 0 then no single re�nement of thepartition for vertex v will result in an increase of the lower bound for P . Therefore, thesubset S for which we will partition the assigned subset is given by the vertices for which��(v; A�v) > 0.The iterative method can be separated from the dynamic programming algorithm. Inprinciple we can use any exact algorithm to solve the consecutive MI-FAPs. However, theuse of the dynamic programming algorithm of Section 4.3 enables us to use informationof previous solved problems. More precisely, during the computation of the optimalsolution of a previous problem P 0, we obtain for all i 2 I a lower bound l(Yi; �(Yi)) forthe penalty incurred by G[Yi] and the edges �(Yi). These values are also lower boundson the penalty in the new problem P 0, which implies that we can compute upper boundsu(V n Yi) = u0 � l(Yi; �(Yi)) for all i 2 I. Here, u0 is a general upper bound for the newproblem P 0 which can be computed by one of the heuristics available for the MI-FAP. Ifthe increase of u0 is not too large for two consecutive problems P 0, then the upper boundsfor the subsets are often relatively strong.4.6 Computational ResultsIn this section we report on the results we have obtained using the approach describedin the previous sections. We tested the methods described in this chapter on real-lifeinstances obtained from the CALMA-project (cf. the Sections 2.2.4 and 2.6). The setof instances consists of two parts. The CELAR instances are real-life problems froma military application. The GRAPH instances are randomly generated problems withthe same characteristics. We only used the 11 so-called penalty-instances, since for theother instances the objective is either to minimize the frequency span, or the minimizethe number of frequencies used. In this section we solve 7 out of the 11 instances tooptimality and we obtain good lower bounds for the other instances.The solution procedure can be divided in four parts, each of which is analyzed in theforthcoming subsections. In Section 4.6.1 we report on the results obtained with thepreprocessing techniques of Section 4.4. The results of the heuristic to construct a treedecomposition of Section 4.2 are presented in Section 4.6.2. In Section 4.6.3, we show thatsome of the instances of the CALMA-project can be solved to optimality with the dynamicprogramming algorithm of Section 4.3. Furthermore, we compare the performance of the104



4.6. Computational Resultsdynamic programming algorithm with the polyhedral approach on 5 small test instancesthat have been constructed from one of the CELAR instances. Section 4.6.4 is devoted tothe lower bounds which were obtained with the iterative version of the algorithm describedin Section 4.5. Finally, in Section 4.6.5 we combine the iterative algorithm of Section 4.5with the integer programming techniques of Chapter 3 in order to improve the lowerbounds even further.All implementations have been carried out in C++. The programs for the dynamicprogramming algorithm and the iterative version of the algorithm were running on a DEC2100 A500MP workstation with 128Mb internal memory. The programs for preprocessing,for the construction of a tree decomposition, and for the computation of upper bounds forsingle vertices were executed on a Pentium II - 233 Mhz Personal Computer with 32Mbinternal memory. We used the callable library of CPLEX 4.0 to solve (integer) linearprogramming problems.4.6.1 PreprocessingWe start our computations with the application of the graph and domain reduction tech-niques described in Section 4.4. The following procedure is repeated as long as the sizeof the problem is reduced. First of all, we apply penalty shifting from edges to verticesand from vertices to the objective. Next, we apply the graph reduction techniques: theremoval of vertices with only one domain element, the removal of edges with only zeropenalty, and the removal of vertices of degree less than or equal to two. Then, we calculatethe upper bound (4.9) for every vertex, and we apply the dominance test (4.17) for singlevertices. If a frequency is dominated, then we remove this frequency from the domain.The dominance test (4.13)-(4.16) with S = fvg yields no additional reduction. If, dueto the upper bound and dominance test, a vertex with only one frequency occurs, weremove the vertex. We apply the same upper bound (4.9) and dominance test (4.17) foradjacent vertices. Contrary to the dominance test for a single vertex we cannot removethe frequencies of the combination in case it is dominated. Therefore, we increase theedge-penalty of this combination with an amount that guarantees that it will never occurin a non-redundant assignment. Moreover, if given a frequency dv 2 Dv, the combination(dv; dw) is dominated for all dw 2 Dw, we can remove the frequency dv from the domainDv.In the Table 4.2 statistics for all penalty-instances before and after preprocessing arereported. Successively, we report the number of vertices (jV j) and the number of edges(jEj) in the constraint graph, and the average number of domain elements (jDj). Inaddition, we report the value that is �xed by the preprocessing phase, the best knownvalue (see Kolen [118]), and the best known lower bound (cf. Aardal et al. [1] and Hurkensand Tiourine [184]). For the GRAPH instances this lower bound is not available. Table 4.2105



4. A Tree Decomposition Approachbefore preprocessing after preprocessing best previousinstance jV j jEj jDj jV j jEj jDj �xed value lower boundCELAR 06 100 350 39.9 82 327 39.9 0 3,389 5CELAR 07 200 817 39.9 162 764 34.6 0 343,592 5CELAR 08 458 1,655 39.5 365 1,539 39.4 0 262 0CELAR 09 340 1,130 39.5 67 165 35.6 11,391 15,571 14,969CELAR 10 340 1,130 39.5 0 0 - 31,516 31,516 31,204GRAPH 05 100 416 37.1 0 0 - 221 221 -GRAPH 06 200 843 37.7 119 348 16.2 4,112 4,123 -GRAPH 07 200 843 36.7 0 0 - 4,324 4,324 -GRAPH 11 340 1,425 37.7 340 1,425 32.6 2,553 3,080 -GRAPH 12 340 1,255 37.6 61 123 15.3 11,496 11,827 -GRAPH 13 458 1,877 38.4 456 1,874 38.1 8,676 10,110 -Table 4.2: Statistics and preprocessing CALMA-instancesshows that 3 out of the 11 penalty-instances are solved by preprocessing only. For theinstances CELAR 10 and GRAPH 07 this is mainly due to the vertex penalties, that causethe removal of many frequencies. The graph reduction in the instances CELAR 09 andGRAPH 12 can be explained in the same way. Table 4.2 also shows that there is a majordi�erence between the real-life CELAR instances and the randomly generated GRAPHinstances. The �xed value for the CELAR instances without vertex-penalties is simplyzero, whereas for the GRAPH instances 80% or more of the best known value can be�xed. This di�erence can be explained by the e�ectiveness of the di�erent preprocessingrules. For the CELAR instances, the main part of the reduction is due to the removal ofvertices with degree less than or equal to two, whereas the main part of the reduction forthe GRAPH instances is due to penalty shifting (�xing) and the dominance test (4.17)for single vertices. In fact, for the instance GRAPH 05, a �rst round of shifting penaltiesresulted in a lower bound of 220. As a consequence, many domain elements could beremoved from the problem, and the constraint graph reduced substantially. A new roundof shifting penalties resulted in the proof of optimality of the best known solution. Therunning time of the preprocessing phase is within a minute for all penalty-instances.4.6.2 Construction of Tree-decompositionsThe second step in solving a MI-FAP is the construction of a tree decomposition of thepreprocessed constraint graph. In Table 4.3 we report on the results of the heuristic ofSection 4.2. We also report the maximum clique size minus one. Since every clique should106



4.6. Computational Resultsinstance jV j jEj width max clique - 1 cpu-time (sec)CELAR 06 82 327 11 10 17CELAR 07 162 764 17 10 176CELAR 08 365 1,539 18 10 802CELAR 09 67 165 7 7 0GRAPH 06 119 348 17 5 137GRAPH 11 340 1,425 104 7 19,749GRAPH 12 61 123 4 4 6GRAPH 13 456 1,874 133 6 63,586Table 4.3: Construction of a tree decompositionbe in at least one node of the tree, this value is a lower bound for the treewidth of a graph.Table 4.3 shows that the gap between the width and the lower bound varies from zerofor small instances to very large for the large GRAPH instances. For these instancesit is not clear which bound is poor. We have tried several variants of our heuristic toimprove the width of the tree decomposition, but without any success. Based on the treedecomposition we were able to represent the constraint graph of CELAR 06 in Figure 4.11.The �gure shows that the graph can be decomposed by several small separating vertexsets, which validates the ideas behind the heuristic of Section 4.2.4.6.3 Dynamic Programming AlgorithmIn this subsection we report the computational results obtained with the dynamic pro-gramming algorithm of Section 4.3. The order in which we calculate all non-redundantassignments for the subsets Yi, i 2 I is based on the available upper bounds (4.9) forS = Yi. The sets Yi are ordered according to non-decreasing u(Yi; �(Yi)). During the dy-namic programming algorithm the upper bounds for the subsets are updated every timewe obtain a new lower bound for a subset by computing all non-redundant assignments.If an upper bound for a subset decreases and all non-redundant assignments are alreadycomputed, we remove all assignments with penalty larger than the new upper bound.The dynamic programming algorithm is used with and without applying a dominancetest for the subsets Yi. As dominance test, we solve the linear programming relaxationof (4.13)-(4.16) with a limited number of constraints (4.14).A �rst test of the dynamic programming algorithm is performed on 5 instances with sizeof the domains between 2 and 6 for all vertices. These instances were constructed fromthe instance CELAR 06 by taking a subset of the domain elements of prede�ned size. InKoster, van Hoesel and Kolen [121] the polyhedral approach is tested on these instances.107



4. A Tree Decomposition Approach

Figure 4.11: Graphical representation CELAR 06 based on computed tree decomposi-tionThe tree decomposition approach is tested on these instances with and without usingthe dominance test (4.13)-(4.16). In Table 4.4 the computation times of the polyhedralmethod and the tree decomposition approach are compared. Without using dominancethe dynamic programming algorithm cannot solve the largest instance. At some pointduring the dynamic programming algorithm the number of non-redundant assignmentsfor a subset is too large to store into the memory of our computer. The table showsthat both dynamic programming algorithms are competitive or substantially faster thanthe polyhedral method. We also may conclude that the use of the dominance test in thedynamic programming algorithm speeds up the process for these instances.The dynamic programming algorithm is also performed on the original penalty-instances.The polyhedral method is not able to solve these instances, or even to generate non-trivial lower bounds. Table 4.5 shows the results that are obtained with the dynamicprogramming algorithmwithout dominance. Experiments with the dominance test did notresult in a better performance of the algorithm for these instances. The instances CELAR09, GRAPH 06 and GRAPH 12 can be solved very e�ciently with this method. After morethan 7.5 hours the algorithm was able to prove that the best known solution was optimalfor this instance as well. Figure 4.12 shows the number of non-redundant assignmentsduring the process compared with the theoretical number. The optimal value for all108



4.6. Computational Resultsinstance jDvj CPU-time forpolyhedral method DP without dominance DP with dominanceCELAR6a 2 3.5 3.8 8.8CELAR6b 3 84.1 38.4 35.1CELAR6c 4 11,785.5 408.6 219.2CELAR6d 5 22,501.2 2,306.5 592.9CELAR6e 6 75,570.5 - 2,399.4Table 4.4: Computational results dynamic programming algorithm test instancesinstance optimal value CPU-time (sec)CELAR 06 3,389 27,102CELAR 07 - -CELAR 08 - -CELAR 09 15,571 23GRAPH 06 4,123 29GRAPH 11 - -GRAPH 12 11,827 11GRAPH 13 - -Table 4.5: Computational results dynamic programming algorithmthese instances is equal to the best known. The instance CELAR 06 is more di�cult tosolve. Mainly due to limitations in computer memory, we are not able to solve the otherinstances.4.6.4 Iterative versionTable 4.5 in the previous subsection shows that the dynamic programming algorithm isnot able to solve several instances. For these problems we apply the iterative version ofthe algorithm of Section 4.5. Before we start our computations we have to partition alldomains in an initial number of subsets. In our experiments we start with either 2 or 4subsets for every vertex. The partition of the subsets is based on a natural partition ofthe frequencies in the radio spectrum.In each iteration of the algorithm, �rst a heuristic is applied to obtain an upper bound forthe instance. In our computational experiments we used the genetic algorithm developedby Kolen [118]. Then, we apply the dynamic programming algorithm in the same way as109
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4.6. Computational Resultsinstance initial lower bound lower bound upper CPU-time# subsets after preprocessing iterative algorithm bound (sec)2 3,388 13,734CELAR 06 n 4 0 3,388 3389 9,4292 243,066 259,022CELAR 07 n 4 0 300,000 343592 275,7362 87 313,168CELAR 08 n 4 0 74 262 12,482GRAPH 11 4 2,553 - 3,080 -GRAPH 13 4 8,676 - 10,110 -Table 4.6: Computational results iterative version of the algorithmwith the vertices as a function of the number of subsets after the last iteration. It showsthat only for a restricted number of vertices the domain is re�ned during the process.In Figure 4.15 the maximum number of non-redundant assignments is displayed for eachiteration. The �gure shows that the algorithm that started with 4 domain subsets needsin the end substantially more non-redundant assignments to compute the lower boundthan the algorithm that started with 2 domain elements.
4.6.5 Iterative Algorithm and Integer ProgrammingAs mentioned in Section 4.5, the iterative algorithm can be separated from the dynamicprogramming algorithm. In this section we present the results of preliminary computa-tional experiments to combine the iterative algorithm with the polyhedral approach ofChapter 3. From the computational results of Chapter 3 we know that the MI-FAP /PCSP can be solved through integer programming as long as the domains are small. Theproblem P 0 that has to be solved within an iteration of the iterative algorithm, containsmany small domains, and therefore suits to be solved by integer programming. A straight-forward implementation of this idea resulted in the lower bounds presented in Table 4.7.Table 4.7 shows that especially for the instances where tree decomposition fails (GRAPH11 and GRAPH 13), the integer programming approach can improve the lower bounds. Ifwe start with a partition in 4 subsets for all vertices, lower bounds of 98% of the bestknown value are obtained for both GRAPH 11 and GRAPH 13. Also for the instance CELAR08, we can improve the lower bound substantially, from 33% to 57% of the best knownsolution. For the other instances the results are competitive with the iterative version ofthe dynamic programming algorithm. 111
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Start with 4 domain elements Start with 2 domain elementsFigure 4.13: Lower bounds CELAR 064.7 Concluding RemarksIn this chapter we described a computational study to use the concept of tree decom-position to solve frequency assignment problems to optimality. We showed that themethod, although theoretically polynomial in both time and space requirements, canonly be applied to real-life problem instances if we use additional reduction techniques.The reduction techniques used include graph reduction, upper bounding and dominanceof domain elements / partial assignments. Even with these techniques, it is not sure thatthe instances can be solved. Therefore, we presented an iterative version of the algorithmwhich can be used to obtain lower bounds for most of the instances. For a set of real-life instances, we proved optimality for several instances, whereas we obtained the �rstnon-trivial lower bounds for the other instances. The iterative version of the algorithmcan also be combined with the polyhedral approach of Chapter 3 resulting in even betterlower bounds for the instances with large treewidth.Based on these results, we state four directions for further research. One way is to embedeither the dynamic programming algorithm or the iterative algorithm in a branch-and-bound framework. Hopefully, this results in even better lower bounds or even optimal112



4.7. Concluding Remarks

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

iteration

# 
ve

rt
ic

es
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instance initial lower bound lower bound upper CPU-time# subsets tree decomposition integer programming bound (sec)2 3,388 2321 69,470CELAR 06 n 4 3,388 2146 3389 67,9042 243,066 180,525 256,418CELAR 07 n 4 300,000 - 343592 -2 87 125 346,318CELAR 08 n 4 74 150 262 180,3262 2898 70,864GRAPH 11 n 4 2553� 3016 3,080 74,1132 9925 23,211GRAPH 13 n 4 8676� 9183 10,110 67,600Table 4.7: Computational results iterative algorithm combined with the integer pro-gramming techniques of Chapter 3. Values indicated with a � are obtained by preprocess-ing (cf. Table 4.6).

115





5. Local Search Approaches
Up to now, we have concentrated on exact solution methods for the minimum interferencefrequency assignment problem (MI-FAP). The methods of the Chapters 3 and 4 provide(in theory) optimal solutions to the MI-FAP, or more general to the Partial ConstraintSatisfaction Problem (PCSP). However, the computational results of both chapters showthat the techniques are not strong enough to solve the more di�cult (larger) real-lifebenchmark instances. In view of these results and the NP-completeness of the problem,we cannot expect that the even larger real-world instances can be solved to optimalitywithin the foreseeable future. Nevertheless, this does not mean that the techniques derivedin the previous chapters can only be used to obtain lower bounds and to solve smallinstances. In this chapter we show that both methods, the polyhedral techniques, andthe tree decomposition approach can be useful for the development of heuristics thatgenerate solutions of high quality to the problem.The heuristics we propose, are local search algorithms. In Section 5.1 we introduce thenecessary notation. Next, in Section 5.2 we propose a local search algorithm that uses theinteger programming results of Chapter 3. In Section 5.3, we show that also the results ofthe tree decomposition approach of Chapter 4 can be incorporated within a local searchalgorithm. For both algorithms preliminary computational results are presented. Thechapter is closed with some concluding remarks in Section 5.4.5.1 PreliminariesBefore we describe the actual local search approaches for the MI-FAP, we have to in-troduce some general notation that de�nes a local search algorithm. Any combinatorialoptimization problem can be de�ned by a pair (S; f) where S is the set of solutions and fa cost function f : S 7! Z that adds to each solution s 2 S a cost f(s). We assume thatthe objective is to �nd a solution with minimal cost. A local search framework is de�nedby its neighborhood function N : S 7! 2S. A solution s 2 S is called locally optimalwith respect to its neighborhood function N if f(s) � f(s0) for all s0 2 N (s). A localsearch algorithm changes a given solution s to a locally optimal solution t. Starting witha solution s, either there exists an s0 2 N (s) with f(s0) < f(s) or s is locally optimal. Incase there exists an s0 2 N (s) with f(s0) < f(s), then the solution s is replaced by s0,and the search for a better solution in the new neighborhood N (s0) is applied. In case no117



5. Local Search Approachess0 exists, s is returned as the locally optimal solution.In many implementations of local search, the framework is complemented with a distur-bance function D : S 7! 2S. This function is used to escape from local minima: let s 2 Sbe a locally optimal solution and the best solution found so far, then s is stored, and thelocal search algorithm is applied to an arbitrary s0 2 D(s). In case the new local optimums00 has objective value f(s00) < f(s), then the solution s is removed, and s00 is stored asnew best solution. The algorithm stops if no better local minimum is found in the lastK iterations (disturbances and local optimizations), or the maximum computation time/ maximum number of iterations is achieved. For an overview on local search we refer toAarts and Lenstra [8].For the PCSP the set of solutions S contains all possible assignments (dv)v2V of domainelements dv 2 Dv to the vertices. So, the number of solutions, jSj, equals �v2V jDvj. Thecost function f is just de�ned by the total sum of vertex and edge penalties. A simpleneighborhood function for the PCSP maps an assignment s = (dv)v2V to all assignmentss0 = (d0v)v2V that di�er from (dv)v2V for only one vertex, i.e. s0 2 N (s) if and only ifthere is a u 2 V with d0u 6= du, and for all v 2 V n fug, d0v = dv. For reasons of conformitywith local search approaches to other combinatorial optimization problems, we refer tothis neighborhood function in the sequel as 1-Opt. In the next sections we describe moresophisticated neighborhood functions, and compare them with the neighborhood function1-Opt.Disturbance functions for the PCSP disturb either the assignment of a �xed number ofthe vertices, the assignment of a �xed percentage of the vertices, or the assignment ofevery vertex with a �xed probability. In our local search algorithms we use a disturbancefunction that changes the assignment of two arbitrarily selected vertices to a randomlygenerated domain element.
5.2 Local Search and Integer ProgrammingThe computational results of Chapter 3 show that PCSPs with 2 elements per domaincan be solved e�ciently by integer programming techniques. Therefore, it is possible toincorporate this method within a heuristic to obtain good solutions. In fact, Kolen [118]�rst implemented this idea within a genetic algorithm. For the CALMA benchmarkinstances the best known solutions are obtained in this way (cf. Section 2.6). In thissection we use the same idea within a local search framework. In Section 5.2.1 we proposetwo neighborhood functions based on this idea, whereas in Section 5.2.2 these functionsare tested for the CALMA instances.118



5.2. Local Search and Integer Programming5.2.1 NeighborhoodIn the local search algorithm to be described in this section, we would like to obtain aneighbor of the current assignment (d1v)v2V by solving a PCSP with 2 domain elements forevery vertex. Let P2 denote this optimization problem. For every v 2 V we have to selecttwo domain elements of the original problem. If for all v 2 V one domain element of P2is given by d1v, then we guarantee that the new solution is at least as good as the currentassignment. So, to construct P2 one additional domain element is necessary for everyvertex. The second domain elements can be seen as a second solution s2 that di�ers froms for all vertices. As a consequence, the construction of a neighborhood problem P2 forthe current solution s is simply de�ned by the choice of a second solution s2. This secondsolution can be generated in many di�erent ways. We propose two di�erent proceduresfor the generation of s0 which will be called Best Neighbor, and Random.Best Neighbor In the procedure Best Neighbor we generate the second assignment(d2v)v2V by selecting for every vertex v 2 V , the domain element d2v that wouldincrease the value of the assignment (d1v)v2V as little as possible, i.e.,d2v = arg mindv2Dvnfd1vg8<:q(v; dv) + Xw2N(v) p(v; dv; w; d1w)9=;This solution is in general not 1-optimal. Computational experiments have shownthat the best results are obtained in case �rst 1-Opt is applied to (d2v)v2V beforethe construction of P2. Based on the same experiments the solution (d1v)v2V is alsosupposed to be 1-optimal.Random In the procedure Random we just generate the second assignment (d2v)v2V byrandomly generating another domain element for every vertex. Again, we supposethat the �rst assignment (d1v)v2V is 1-optimal, and that before P2 is constructed, weapply 1-Opt to the second solution (dv)v2V as well.5.2.2 Computational ResultsThe two neighborhood functions described in the previous subsection are applied to theCALMA benchmark instances. The local search algorithms are implemented in C++ andrun on a DEC 2100 A500MP workstation with 128Mb internal memory. We used thecallable library of CPLEX 4.0 to solve the integer linear programming problems. Since allvertices have 2 domain elements, the separation of 3-cycle inequalities has been carried outby enumeration of the 4 di�erent inequalities for every 3-cycle. Only 3-cycle inequalitiesare separated. 119



5.LocalSearchApproaches

instance 1-Opt IP-Opt - Best N. IP-Opt - Random GA [118] best cpu-timeaverage best average best average best average best known (sec/run)CELAR 06 4,566 3,730 5,032 3,643 3,476 3,402 3,406 3,389 3,389 177CELAR 07 2,502,232 1,404,410 5,314,174 2,495,854 380,173 344,093 343,604 343,593 343,592 345CELAR 08 472 324 271 262 274 263 262 262 262 967CELAR 09 18,714 15,740 15,573 15,571 15,571 15,571 15,571 15,571 15,571 146CELAR 10 31,620 31,516 31,516 31,516 31,516 31,516 31,516 31,516 31,516 1445,455 787 1,998 316 1,817 280 233 233 221 123GRAPH 05 ( - - - - 238 221 - - - 25011,826 8,410 6,805 4,297 6,213 4,373 4,133 4,133 4,124 371GRAPH 06 ( - - - - 4,999 4,134 - - - 750GRAPH 07 6,215 4,324 4,328 4,324 4,325 4,324 4,324 4,324 4,324 12818,076 14,720 6,254 4,991 6,308 3,812 3,104 3,104 3,080 861GRAPH 11 ( - - - - 4,045 3,093 - - - 1725GRAPH 12 14,855 11,827 11,827 11,827 11,827 11,827 11,827 11,827 11,827 19625,753 21,352 17,047 13,513 17,324 14,355 10,354 10,339 10,110 680GRAPH 13 ( - - - - 14,341 10,155 - - - 1360Table 5.1: Results local search algorithms based on integer programming results of Chapter 3. Framed values indicate theoptimal solution.
120



5.3. Local Search and Tree DecompositionTable 5.1 shows the results of the local search algorithms 1-Opt, IP-Opt - Best Neigh-bor, and IP-Opt -Random, as well as the results of the genetic algorithm of Kolen [118].Like in [118], the population size of the genetic algorithm was set to 150. For the CELARinstances 10 new generations were computed, whereas for the GRAPH instances 15 gener-ations were computed. For a fair comparison we have implemented the genetic algorithmwith the same data structures as the local search algorithms. The time needed by thegenetic algorithm has been taken as the maximum computation time for 10 runs of thelocal search algorithm, i.e. each run was limited by a tenth of the time needed by thegenetic algorithm. Each run of the local search algorithm consists of (i) the generationof a random solution, (ii) the local improvement of the current solution according to theselected neighborhood function, and (iii) the disturbance of the best solution so far andre-application of the local improvement step. For the compared local search algorithms,Table 5.1 reports the average and best solution value obtained in 10 runs of the localsearch algorithms. The computation times in seconds per run are presented in the lastcolumn of table.Table 5.1 shows that compared with 1-Opt, both IP-Opt algorithms provide a betterbest solution in most cases. Also the average values decrease substantially comparedwith the 1-Opt routine. The best results are obtained with the IP-Opt - Random.For the 4 instances with vertex penalties the algorithm outputs the optimal solution inalmost all cases. For the other CELAR instances the best known / optimal solutionis approached within 1%. For the more di�cult GRAPH instances, the results are lesssatisfactory. Therefore, we applied the IP-Opt- Random algorithm with a time limitof two times the original limit. The results improve in this way substantially to optimalor near-optimal ones. In comparison with the genetic algorithm, the IP-Opt - Randomalgorithm generates competitive results.
5.3 Local Search and Tree DecompositionIn this section we describe a neighborhood structure that can take advantage of the treedecomposition approach described in Chapter 4. The computational results of Chapter 4show that the dynamic programming algorithm can solve problems to optimality as longas the width of the tree decomposition is small. Therefore, we present in this section aneighborhood function in which the best neighbor is obtained by the solution of a PCSPon an induced subgraph with small treewidth. The neighborhood function is fairly generaland can be seen as an extension of the 1-Opt function. In Section 5.3.1 the neighborhoodfunction is de�ned, whereas Section 5.3.2 reports on preliminary computational results.121



5. Local Search Approaches5.3.1 NeighborhoodA neighbor of a solution s in the 1-Opt-neighborhood di�ers from s for at most one vertex.The idea behind 1-Opt can be generalized to a neighborhood in which a neighbor of thesolution di�ers for only a limited number of vertices. Since, the reassignment of domainelements to multiple vertices only leads to better results in case the vertices are connected,we can formalize the idea as follows. Let V = fV1; : : : ; Vng be a collection of n vertexsubsets. Moreover, let the neighborhood function N be de�ned by N (s) = [i=1;:::;nNi(s),where Ni(s) maps to all solutions s0 2 S that di�er from s only for vertices v 2 Vi.For instance, V = ffvg : v 2 V g is equivalent to the 1-Opt neighborhood. Another wellknown neighborhood is called 2-Opt and allows for reassignment of two adjacent vertices,i.e., V = E.For 1-Opt the question whether there exists a neighbor with smaller objective value canbe solved by inspection. Also for 2-Opt the question can be answered e�ciently. On thecontrary, for the neighborhood with V = fV g, the neighborhood problem is equivalentto the original problem and therefore NP-hard. For general collections V the searchwhether there exists a neighbor with smaller objective value than the current solution canbe carried out with the dynamic programming algorithm of Chapter 4. For every subset Vi,i = 1; : : : ; n, dynamic programming answers the question in time polynomial with respectto jVij and jDvj, but exponential with respect to the width of a tree decomposition of theinduced subgraph G[Vi]. So, if !(Vi) denotes the width of a tree decomposition for theinduced subgraph G[Vi], then !(V) = maxi=1;:::;n !(Vi) determines the complexity of thealgorithm. For 1-Opt and 2-Opt it is obvious that !(V) = 0 and !(V) = 1, respectively.However, the results of Chapter 4 show that as long as !(V) is small the neighborhoodcan be applicable in practice. This validates the search for a collection V of subsets withthe property that !(V) � K, for some value K, e.g. K = 4 or K = 5.The determination of subsets Vi with !(Vi) � K is a question that certainly requiresfurther investigation. For now, we restrict ourselves to 4 collections of subsets that canbe determined easily: 1-Opt, 2-Opt, Cycle-Opt, and Clique-Opt:1-Opt As already mentioned V = ffvg : v 2 V g. I.e., the assignment can be changedfor only one vertex at a time. The value !(V) equals 0 in this case.2-Opt The assignment can be changed simultaneously for two adjacent vertices: V = E.The value !(V) = 1 in this case.Cycle-Opt The assignment can be changed simultaneously for all vertices on a chord-less cycle: V = fC � V : G[C] is a chordless cycleg. For a chordless cycle we canconstruct a tree decomposition with width 2, which implies that !(V) = 2. In ourpreliminary experiments only cycles of size 3 are taken into account.122



5.4. Concluding RemarksClique-Opt The assignment can be changed simultaneously for all vertices that form aclique of size at most K: V = fC � V : G[C] is a clique with jCj � Kg. For cliquesthe tree decomposition simply consists of a single node containing all vertices. Asa consequence, !(V) = K � 1. In our experiments we set K = 4.Note that, N1-Opt � N2-Opt � NClique-Opt, and N3�Cycle-Opt � NClique-Opt.5.3.2 Computational ResultsWe present preliminary computational results for the local search algorithms based ontree decomposition. Due to the property that heuristics based on tree decomposition aremore time consuming than other algorithms, we limit ourselves to a demonstration of thepotential power of the above described local search algorithms. For all CALMA bench-mark instances we randomly generated 10 solutions. Next, we applied 1-Opt, 2-Opt,Cycle-Opt with 3-cycles, and Clique-Opt with K � 4 to the solutions. In Table 5.2we report the average and best solution for each of these local improvement algorithms.Table 5.2 shows that for one of the easy instances (the ones with vertex penalties) theoptimal solution is found after application of 2-Opt, and for two other instances afterthe application of Cycle-Opt. For the other instances, the best and average valuesdecrease substantially after application of 2-Opt, Cycle-Opt, and Clique-Opt. Fromthe results in Table 5.2, and taking into account that the algorithms are time consuming,we may conclude that it is worthwhile to consider the 2-Opt, Cycle-Opt, and Clique-Opt improvement heuristics as top-end heuristics to improve solutions obtained by otherheuristics.5.4 Concluding RemarksIn this chapter we have presented two local search algorithms that take advantage of theresults of the previous chapters on exact solution methods. In Section 5.2 we presenteda local search algorithm, that takes advantage of the polyhedral results of Chapter 3.The computational results, as well as the results of Kolen [118] show that (very) goodsolutions can be obtained in this way. In Section 5.3 we have proposed a local searchframework where induced subgraphs are solved to optimality with the tree decompositionalgorithm of Chapter 4. Preliminary computational results show the potential power ofthe algorithm. Local optimal solutions can substantially be improved by the use of thenew neighborhood functions Cycle-Opt and Clique-Opt. Therefore, it is certainlyworthwhile to study neighborhood functions with small !(V) more thoroughly. A moree�cient implementation of the tree decomposition algorithm for small subgraphs willreduce the computation times, and hence improve the results. 123



5.LocalSearchApproaches

instance jV j jEj 1-Opt 2-Opt Cycle-Opt Clique-Opt best knownaverage best average best average best average best (optimal)CELAR 06 100 350 13,054 10,084 7,645 4,576 6,515 3,646 5,961 3,646 3,389CELAR 07 200 817 1:7 � 107 1:2 � 107 7,269,132 4,758,558 5,043,744 1,606,955 4,602,491 1,566,834 343,592CELAR 08 458 1,655 944 754 654 418 511 388 463 356 262CELAR 09 340 1,130 25,246 15,954 18,556 15,591 18,141 15,571 15,976 15,571 15,571CELAR 10 340 1,130 32,514 31,516 31,526 31,516 31,516 31,516 31,516 31,516 31,516GRAPH 05 100 416 14,382 9,381 6,077 3,047 5,012 1,924 4,299 1,924 221GRAPH 06 200 843 27,268 20,598 19,887 16,188 17,258 12,301 14,076 7,810 4,123GRAPH 07 200 843 12,012 6,517 4,811 4,364 4,654 4,324 4,654 4,324 4,324GRAPH 11 340 1,425 42,687 34,219 26,021 19,232 21,124 13,310 15,150 7,783 3,080GRAPH 12 340 1,255 27,754 23,973 15,516 13,042 12,324 11,827 12,227 11,827 11,827GRAPH 13 458 1,877 61,319 58,660 40,566 30,519 33,408 27,569 27,363 22,557 10,110Table 5.2: Results local search algorithms based on tree decomposition approach of Chapter 4. Framed values indicate theoptimal solution.
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6. Directions for FurtherResearch and Concluding Remarks
In this concluding chapter, we brie�y investigate several directions for further research onthe minimum interference frequency assignment problem (MI-FAP). We close this thesiswith some overall concluding remarks concerning frequency assignment problems.6.1 Directions for Further ResearchIn this thesis we described two exact solution methods to solve the MI-FAP. We dis-cussed integer programming and tree decomposition. However, in the literature severalother exact solution techniques are available for combinatorial optimization problems. Inthis section, we brie�y investigate a couple of promising other methods and relaxations.Successively, we discuss Benders Decomposition, Lagrangean Relaxation, and a Semi-De�nite Programming relaxation. The last subsection is devoted to a new integer linearprogramming formulation for the MI-FAP.6.1.1 Benders Decomposition1In 1962, Benders [17] proposed a decomposition algorithm for mixed integer programs.For several specially structured mixed integer programs, with di�erent classes of vari-ables, successful application of Benders Decomposition is reported in the literature. Alsothe Partial Constraint Satisfaction formulation of the MI-FAP lends itself to the use ofBenders Decomposition. For the PCSP, the variables can be divided in two classes: thevertex variables y(v; dv), and the edge variables z(v; dv; w; dw). Application of BendersDecomposition to the formulation (3.1)-(3.5) (see page 53), results in a Benders masterproblem on the y variables, and a Benders subproblem that involves the dual of the edgeconstraints (3.3). The Benders subproblem decomposes along the edges of the constraintgraph to the dual of a transportation problem for each edge, which implies that the sub-problem can be solved in polynomial time. The master problem, however, cannot besolved e�ciently in general.1The discussion of Benders Decomposition is joint work with Olaf E. Flippo. 125



6. Directions for Further Research and Concluding RemarksMoreover, a disadvantage of Benders Decomposition is that straightforward implementa-tion of the algorithm leads in most cases to algorithms that converge very slowly: an ex-orbitant number of master problems have to be solved before optimality has been proved.Magnanti and Wong [136] discussed the problem of slow convergence in a general setting,and applied their ideas for acceleration to facility location. One of the aspects that causethe slow convergence is the degeneracy of the subproblem. Also the PCSP subproblemsare renowned for their degeneracy. Magnanti and Wong introduced in this context theconcept of Pareto optimal cuts. Without going into details, a Pareto optimal cut is a so-lution to the Benders subproblem, that dominates the other optimal solutions. Magnantiand Wong proved that such a Pareto optimal solution can be found by solving a secondlinear program, that selects among all optimal solutions of the Benders subproblem aPareto optimal solution.Limited computational experiments on the instances of Chapter 3 with jDvj = 2 (Ta-ble 3.1, page 78), indicate that, although we add Pareto optimal cuts, the convergencerate of the algorithm is still very slow. Especially, solving the master problem by branch-and-bound becomes very time consuming after a couple of iterations. The addition ofvalid inequalities for either the original problem or the Benders master problem can prob-ably resolve this problem. For the PCSP several classes of valid inequalities are derivedin Chapter 3, which can be added to the formulation. However, adding these inequalitiesto the formulation leads to the loss of the decomposition of the subproblem to the dual ofa transportation problem for every edge in the constraint graph. Therefore, derivation ofvalid inequalities for the Benders master problem should be considered as an alternative.To conclude, the application of Benders Decomposition to solve PCSPs has not been agreat success so far. Research in the direction of valid inequalities for the Benders masterproblem may result in an improved convergence rate. Moreover, the Pareto optimal cutsshould be the topic of further research. Are Pareto optimal cuts the best we can do in caseof the PCSP, or are there other possibilities that converge faster to the optimal solution?6.1.2 Lagrangean RelaxationWhereas Benders Decomposition takes advantage of the di�erent classes of variables ina mixed integer program, Lagrangean Relaxation focuses on the di�erent classes of con-straints. Lagrangean relaxation was developed by Held and Karp [82, 83] in connectionwith the traveling salesman problem, and provides lower bounds for integer linear opti-mization problems. A survey on Lagrangean relaxation methods for solving integer linearprograms is given by Fisher [55].For the PCSP, either the constraints (3.2) or the constraints (3.3) can be relaxed throughLagrangean relaxation. Relaxation of the constraints (3.2) that guarantee the selection of126



6.1. Directions for Further Researchexactly one domain element does not lead to a Lagrangean relaxation problem that can besolved e�ciently. Relaxation of the constraints (3.3), that connect the y and z variables,results in a Lagrangean relaxation problem that can be solved by its linear programmingrelaxation. This implies that the lower bound obtained through Langrangean relaxationis of the same quality as the linear programming relaxation of the original problem (3.1)-(3.5) (cf. Geo�rion [64]). By the results of Chapter 3 we know that for real-life instancesthis lower bound is very poor.Nevertheless, relaxation of the constraints (3.3) is a direction that should be investigatedfurther. In Chapter 4 we showed that for graphs with small treewidth the PCSP canbe solved in polynomial time, whereas the linear programming relaxation of the PCSPdoes not equal the optimal solution. This implies that for subgraphs with small treewidththe PCSP can be solved in polynomial time. Hence, we relax only the constraints (3.3)involving a subset of the edges E n E 0. Then for �xed Langrangean multipliers �, aPCSP P 0(�) remains on the graph G0 = (V;E 0) as Lagrangean optimization problem. Ifthe treewidth of G0 is less than or equal a constant k, then P 0(�) can be solved withthe dynamic programming algorithm of Chapter 4. For k > 1, it holds that the linearprogramming relaxation of P 0(�) does not equal the optimal solution in general, whichimplies that the lower bound obtained in this way can be better than the lower boundderived by the linear programming relaxation of the original problem P . A special caseoccurs whenever the remaining PCSP P 0(�) can be solved with the constraint graphreduction techniques of Section 4.4.1.Concluding, at �rst sight Lagrangean relaxation will not lead to good lower bounds.However, Lagrangean relaxation applied to only a subset of the edges may lead to lowerbounds that are better than the linear programming relaxation. Therefore, it would beworthwhile to investigate the relation between the Lagrangean relaxation lower boundsand the treewidth k of the graph G0. The determination of the subgraph G0 with treewidthk, however, introduces a (new) optimization problem: Select a maximum (weighted)subset E 0 of the edges E such that the subgraph (V;E 0) has treewidth at most k. For k = 1a (maximum weighted) spanning tree solves the problem. For general k, graph-theoreticresults concerning the characteristics of graphs with limited treewidth can hopefully behelpful to determine such subgraphs.6.1.3 Semi-Definite Programming RelaxationIn the last decade, a substantial part of the mathematical programming research has beendevoted to interior point methods for semi-de�nite programming (cf. Nesterov and Ne-mirovski [149]). In recent years not only results of theoretical nature were published, butalso computational experience on solving combinatorial optimization problems with semi-de�nite programming was reported (see for instance Helmberg [84] and his references).127



6. Directions for Further Research and Concluding RemarksThe MI-FAP (or PCSP) can also be formulated as a semi-de�nite program. Let y =[y(v; dv)]v2V;dv2Dv be the vector containing all y variables. Moreover, let Z = yyT =[z(v; dv; w; dw)]v;w2V;dv2Dv;dw2Dw be the matrix with z variables. Note that, Z also containsvariables for non-adjacent vertices. Finally, letX =  1y !� 1 yT � =  1 yTy Z !
By de�nition the matrix X is positive semi-de�nite. Moreover, rank(X) = 1. A feasiblesolution has to satisfy y(v; dv) 2 f0; 1g, which is equivalent with y(v; dv) = (y(v; dv))2, orin matrix notation xi1 = xii for all i. Altogether, the MI-FAP (or PCSP) readsmin tr 12  0 qTq P !X! (6.1)s.t. xi1 = xii 8i (6.2)Xdv2Dv y(v; dv) = 1 8v 2 V (6.3)rank(X) = 1 (6.4)X � 0 (6.5)where tr (:) denotes the trace of a matrix, and X � 0 denotes that the matrix X has tobe positive semi-de�nite. The objective (6.1) is the sum product of the vertex and edgepenalties and the matrix X. The constraints (6.2) model that the y variables have to beintegral, whereas (6.3) model the assignment of exactly one frequency to every vertex.The formulation is completed with the constraints (6.4) and (6.5), that model the rankrequirement, and the positive semi-de�niteness of the matrix X, respectively.Relaxation of (6.1)-(6.5) by removing the rank constraint (6.4) provides a semi-de�niteprogram, that can be solved within � of optimal in polynomial time with interior pointmethods [149]. The semi-de�nite programming relaxation can be better / worse thanthe linear programming relaxation. For instance, negative variables z(v; dv; w; dw) are notforbidden by the semi-de�nite relaxation. To improve the relaxation z(v; dv; w; dw) � 0can be added to (6.1)-(6.3), (6.5). Also constraints likeXdv2Dv Xdw2Dw z(v; dv; w; dw) = 1 (6.6)for fv; wg 2 E can improve the relaxation. Finally, valid inequalities like those of theinteger linear programming formulation of Chapter 3 can be added to the formulation128
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Dv = fav; bvg 8v 2 Vq(v; dv) = 0 8v 2 V; dv 2 Dvp(v; dv; w; dw):fv1; v2g av2 bv2av1 0 1bv1 1 0 fv1; v3g av3 bv3av1 1 0bv1 0 1 fv2; v3g av3 bv3av2 0 1bv2 1 0Figure 6.1: Example of PCSP with good semi-de�nite relaxation compared to linearprogramming relaxationto improve the lower bound. An example of a PCSP in which the semi-de�nite relax-ation is better than the linear programming relaxation is given by Figure 6.1. Usingthe semi-de�nite programming solver SeDuMi [177], Sturm [178] reported a semi-de�niterelaxation bound of 0.75, whereas the linear programming relaxation equals 0 and theoptimal solution is 1.To conclude, the semi-de�nite relaxation is a promising direction for further research.With the ongoing development of software to solve semi-de�nite programs, the positivesemi-de�nite relaxation of (6.1)-(6.5) seems to be an attractive alternative for the lin-ear programming relaxation of (3.1)-(3.5) within the near future. Probably the mostimportant obstacle will be the size of the matrix X.6.1.4 Frequency Assignment FormulationThe approaches described in the previous chapters and sections are based on the formu-lation of the MI-FAP as a Partial Constraint Satisfaction Problem. In this section wepropose a new integer linear programming formulation that is more specialized for theMI-FAP. The formulation has fewer variables and constraints than the PCSP formulation,and therefore hopefully performs better in practice. Although the new formulation is notinspired by the formulation of Borndörfer et al. [24], it can be seen as a re�nement andextension of their model.In most MI-FAPs, given an edge fv; wg 2 E, the penalty given by the domain elementsdv 2 Dv and dw 2 Dw can be speci�ed byp(v; dv; w; dw) = � pvw if jdv � dwj < �vw0 otherwisewhere pvw is an edge-dependent constant, and �vw is a constant specifying the minimumreuse distance between the frequencies of v and w. So, depending on the edge fv; wg 2 E129



6. Directions for Further Research and Concluding Remarksand the distance between the frequencies, the penalty is either zero or a constant value. Infact, the distance in between the frequencies can be divided in 3 intervals (i) (dv � dw) ���vw, (ii) ��vw < (dv � dw) < �vw, and (iii) (dv � dw) � �vw. More general, we assumethat for every edge fv; wg 2 E we can specify nvw intervals [livw; uivw] for the di�erencebetween the frequencies. These intervals cover all possible di�erences (i.e., l1vw = �1,unvwvw =1, and livw = ui�1vw + 1, for i = 2; : : : ; nvw). For every interval the penalty is �xed:p(v; dv; w; dw) = pivw if livw � dv � dw � uivw; i = 1; : : : ; nvwNote that p(v; dv; w; dw) need not be symmetric in general. The MI-FAP can be modeledas an integer linear program that takes advantage of this penalty structure. For everyedge fv; wg 2 E and every i = 1; : : : ; nvw we introduce a binary variable xivw:xivw = � 1 if we assign frequencies dv 2 Dv, dw 2 Dw, livw � dv � dw � uivw0 otherwiseMoreover, we introduce binary variables yjv for all vertices v 2 V , j 2 f1; : : : ; jDvjgyjv = � 1 if jth element of Dv is assigned to v 2 V0 otherwiseFinally, we need integer variables dv denoting the selected frequency for all vertices v 2 V .So, dv is not an index this time, but a variable. Then an integer linear programmingformulation readsmin Xfv;wg2E nvwXi=1 pivwxivw +Xv2V jDvjXj=1 qjvyjv (6.7)s.t. nvwXi=1 xivw = 1 8fv; wg 2 E (6.8)jDv jXj=1 yjv = 1 8v 2 V (6.9)dv = jDvjXj=1 djvyjv 8v 2 V (6.10)dw � dv � nvwXi=1 uivwxivw 8fv; wg 2 E (6.11)dv � dw + nvwXi=1 livwxivw 8fv; wg 2 E (6.12)130



6.1. Directions for Further Researchdv 2 Z 8v 2 V (6.13)xivw 2 f0; 1g 8fv; wg 2 E; i = 1; : : : ; nvw (6.14)yjv 2 f0; 1g 8v 2 V; j = 1; : : : ; jDvj (6.15)Here, qjv and djv denote respectively the vertex penalty and the value (frequency) corre-sponding to the jth domain element of Dv, 1 � j � jDvj. The objective (6.7) equalsthe sum of edge and vertex penalties. Constraints (6.8) model the fact that for an edgefv; wg 2 E the di�erence between the assigned frequencies is contained in exactly oneinterval [livw; uivw]. Constraints (6.9) enforce that exactly one domain element is selected,whereas the selected frequency is given by (6.10). Given a vector x satisfying (6.8), theassignment (dv)v2V has to satisfy livw � dv � dw � uivw if xivw = 1 for all fv; wg 2 E.This restriction can be split up in two restrictions dw � dv � uivw, and dv � dw + livw foreach fv; wg 2 E. Combined with the variables xivw these restrictions are modeled by theconstraints (6.11) and (6.12), respectively.Compared to the Partial Constraint Satisfaction formulation (3.1)-(3.5), the number ofconstraints and variables is reduced substantially. The number of binary variables howeveris increased. In Table 6.1, we have compared the number of variables and constraints forsome of the CALMA benchmark instances.instance number of variables number of constraints(3.1)-(3.5) (6.7)-(6.15)continuous binary binary (3.1)-(3.5) (6.7)-(6.15)CELAR 06 585,914 4,010 7,876 28,628 4,366CELAR 07 1,331,048 7,976 16,371 65,928 9,395CELAR 08 2,518,664 18,100 34,874 128,886 19,064GRAPH 11 2,032,792 12,820 23,211 107,688 12,631GRAPH 13 2,798,400 17,588 32,949 145,034 17,651Table 6.1: Number of variables and constraints for the di�erent integer programmingformulationsSummarized, the formulation (6.7)-(6.15) seems to be a pro�table alternative to the partialconstraint satisfaction formulation of Chapter 3. Directions of further research includestudy of the polyhedral structure of the corresponding polytope (cf. Borndörfer et al. [24]),and further improvements of the formulation in special cases. 131



6. Directions for Further Research and Concluding Remarks6.2 ConclusionsIn this Ph.D. thesis, we have discussed models and algorithms for the Frequency Assign-ment Problem. After an introduction of the topic in Chapter 1 we �rst presented a surveyconcerning the di�erent approaches presented in the recent literature in Chapter 2. Fourdi�erent models can be distinguished: minimum order frequency assignment, minimumspan frequency assignment, minimum blocking frequency assignment, and minimum in-terference frequency assignment. For each of these models we compared the wide varietyof approaches as far as possible on the same sets of instances.In the sequel of the thesis we have concentrated on the minimum interference frequencyassignment problem (MI-FAP). Successful lower bounds and exact solution techniquesare rarely known for this problem. Therefore, we applied two exact solution methodsto the problem in the Chapters 3 and 4, respectively. Other lower bounding and exactsolution techniques were discussed in Chapter 6. In Chapter 3 we formulated the MI-FAPas a partial constraint satisfaction problem, and studied this problem from a polyhedralpoint of view. We derived two general lifting theorems, and two classes of facet de�ningvalid inequalities. Problems with small domains can be solved e�ectively with theseinequality in a cutting plane algorithm. For real-life instances, however, this methodis not powerful enough to solve the problems. However, in Chapter 5 we showed thatthe polyhedral results can be used in a heuristic that provides fairly good solutions tothe benchmark instances. Moreover, Kolen [118] showed that a genetic algorithm, whichuses the polyhedral results of Chapter 3, outperforms all other proposed heuristics on thebenchmark instances. The results of Chapter 4 show that for 7 of the 11 instances thesolutions obtained in this way are optimal.In Chapter 4 we exploited the graph structure of the problem in order to solve the bench-mark instances from the CALMA project, or second best obtain lower bounds for them.The method is based on a tree decomposition of the constraint graph. Given a tree de-composition with limited width, the MI-FAP (or PCSP) can be solved through dynamicprogramming in polynomial time. However, the algorithm is exponential in the widthof the tree decomposition, which explains that additional reduction techniques are nec-essary to solve several benchmark instances. Successful application of this technique is,however, limited to the smaller and less di�cult instances. For the larger and more di�-cult instances the approach is extended to an iterative algorithm that provides a series ofnon-decreasing lower bounds. In this way, we obtained the �rst non-trivial lower boundsfor the remaining unsolved instances. The iterative algorithm can also be combined withthe integer programming techniques of Chapter 3. This combination resulted in an im-prove of the lower bounds for the 3 most di�cult instances. Finally, in Chapter 5 weshowed that the techniques of Chapter 4 can be used within a local search frameworkas well. Preliminary computational results indicate that the proposed neighborhood issubstantially better than less sophisticated neighborhoods.132



6.2. ConclusionsIn this chapter we have discussed several other exact methods to solve the MI-FAP. Espe-cially, Lagrangean relaxation combined with tree decomposition (Section 6.1.2), and thenew integer programming formulation of Section 6.1.4 are worthwhile research directions.Summarized, in this Ph.D. thesis, we presented a survey on frequency assignment, wesolved 7 out of the 11 CALMA MI-FAP benchmark instances to optimality, and derivedthe �rst non-trivial lower bounds for the other instances (see Table 6.2). Moreover, wepresented two new heuristics, based on the exact methods of integer programming andtree decomposition, respectively. Finally, we discussed four other solution methods thatcan be the topic of further research.instance previous lower bound new lower bound upper bound gap closed byCELAR 06 3,389 3,389 3,389 -CELAR 07 5 300,000 343,592 87.3%CELAR 08 0 150 262 57.3%CELAR 09 14,969 15,571 15,571 100.0%CELAR 10 31,204 31,516 31,516 100.0%GRAPH 05 0 221 221 100.0%GRAPH 06 0 4,123 4,123 100.0%GRAPH 07 0 4,324 4,324 100.0%GRAPH 11 0 3,016 3,080 97.9%GRAPH 12 0 11,827 11,827 100.0%GRAPH 13 0 9,925 10,110 98.2%Table 6.2: Lower and upper bounds for the Minimum Interference benchmark instancesof the CALMA project. Framed values indicate the optimal value.
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Samenvatting in het Nederlands
Summary in DutchIntroductieIn 1909 ontving de Italiaan Marconi de Nobelprijs voor zijn baanbrekende werk op hetgebied van de draadloze telegraaf. Sinds het eind van de 19e eeuw experimenteerde hijmet het verzenden van boodschappen door middel van radiogolven. Sinds die tijd heeftde draadloze communicatie een grote vlucht genomen. Reeds in 1915 was het mogelijkom gesproken woord over de Atlantische oceaan te verzenden. Niet lang daarna werdradio gemeengoed en al halverwege de jaren '30 werd volop geëxperimenteerd met hetverzorgen van televisie uitzendingen. Na de tweede wereldoorlog was de technologie zover gevorderd dat televisie op grote schaal kon worden geïntroduceerd.Direct na de tweede wereldoorlog startte ook de exploitatie van het eerste draadloze tele-foonnetwerk in de Verenigde Staten. Het duurde tot het begin van de jaren '80 voordat demobiele telefoon op grote schaal zijn intrede deed. Nadeel van de eerste mobiele netwerkenwas de diversiteit aan technologieën die werden gebruikt. Daardoor was het in Europaonmogelijk de mobiele telefoon in het buitenland te gebruiken. Standaardisatie van detechnologie werd dan ook de opdracht voor de in 1988 opgerichte Groupe Speciale Mobile(GSM). In 1992 werd het eerste GSM-netwerk geïntroduceerd in Duitsland. Inmiddelsis GSM een groot succes gebleken en beschikken wereldwijd tientallen miljoenen mensenover een aansluiting op een GSM-netwerk (zie Figuur 1.2, pagina 4). Naast radio, televisieen mobiele telefonie, heeft draadloze communicatie ook toepassingen in de ruimtevaart,luchtverkeersbegeleiding en militaire communicatie systemen.Draadloze communicatie vindt plaats met behulp van een radiozender (transmitter) enontvanger (receiver). De transmitter moduleert een frequentie uit het radiospectrum. Dereceiver zet de modulatie van de frequentie om naar geluid en/of beeld. Wanneer tweecommunicatieverbindingen in dezelfde regio gebruik maken van (bijna) dezelfde frequentiekan interferentie van het signaal optreden. D.w.z. dat de kwaliteit van het door de re-ceiver ontvangen signaal verslechtert. Afhankelijk van het niveau van de interferentie kande kwaliteit van het signaal als onacceptabel worden gekwali�ceerd. In de praktijk bete-kent dit dat voor de twee communicatieverbindingen frequenties moeten worden gebruiktdie minimaal een bepaalde afstand tot elkaar hebben. Echter, door de vele toepassingsge-bieden van draadloze communicatie en de begrensdheid van het radiospectrum zijn slechtseen beperkt aantal frequenties beschikbaar voor elke vorm van draadloze communicatie.153



SamenvattingDit betekent dat hergebruik van frequenties binnen één en dezelfde geogra�sche regionoodzakelijk is. Het hergebruik van frequenties kan echter leiden tot de reeds genoemdeinterferentie. De toewijzing van frequenties aan communicatieverbindingen zal dan ookzorgvuldig moeten gebeuren om de interferentie tot een minimum te beperken. De afwe-ging tussen hergebruik van frequenties en de kwaliteit van het telecommunicatienetwerkstaat bekend als het frequentie toewijzingsprobleem. Kwanti�catie van de diverse aspectenvan het frequentie toewijzingsprobleem leidt tot een wiskundig optimaliseringsprobleemdat met behulp van technieken uit de besliskunde kan worden opgelost.Frequentie Toewijzing: Een OverzichtDoor de sterke groei van mobiele telecommunicatie in het laatste decennium is de aandachtvoor het frequentie toewijzingsprobleem de laatste jaren sterk toegenomen. Afhankelijkvan de speci�eke eigenschappen van een netwerk en de doelstelling van het onderzoek zijnveel verschillende wiskundige modellen en besliskundige oplossingstechnieken voorgesteld.Na de introductie in Hoofdstuk 1, geeft Hoofdstuk 2 een overzicht van de literatuurdie de laatste jaren is verschenen op het gebied van frequentie toewijzing. Hierbij kun-nen wij onderscheid maken tussen vaste, dynamische en hybride toewijzingsschema. InHoofdstuk 2 beperken wij ons tot modellen en methoden voor vaste toewijzingsschema's.Het frequentie toewijzingsprobleem kan als een wiskundig optimalisatieprobleem wordengeformuleerd door middel van een graaf. Elke knoop in de graaf correspondeert met eendraadloze verbinding, terwijl een kant in de graaf aangeeft dat de aanliggende verbindin-gen kunnen interfereren afhankelijk van de keuze van de frequenties. Wanneer meerdereverbindingen tussen dezelfde geogra�sche locaties moeten worden gerealiseerd wordt veelalslechts één knoop voor alle verbindingen gemodelleerd. Aan deze knoop moeten dan meer-dere frequenties worden toegewezen. Voor elke knoop is een eindige set van frequentiesbeschikbaar, welke kan verschillen van knoop tot knoop. Het kan bijvoorbeeld zo zijndat bepaalde frequenties in de omgeving van landsgrenzen niet mogen worden gebruiktvanwege bilaterale afspraken.Afhankelijk van de doelstellingsfunctie kunnen de modellen voor het frequentie toewij-zingsprobleem in 4 categorieën worden geclassi�ceerd:� minimalisatie van het aantal gebruikte frequenties in een interferentievrije toewijzing(Minimum Order Frequency Assignment Problem, MO-FAP),� minimalisatie van het gebruikte frequentie interval in een interferentievrije toewij-zing (Minimum Span Frequency Assignment Problem, MS-FAP),� minimalisatie van de totale blokkeringskans van het netwerk bij een interferentievrijetoewijzing (Minimum Blocking Frequency Assignment Problem, MB-FAP), en154



Summary in Dutch� minimalisatie van de totale interferentie in een toewijzing (Minimum InterferenceFrequency Assignment Problem, MI-FAP).Het graaf kleuringsprobleem kan wiskundig als een speciaal geval van frequentie toewij-zing worden gezien. Hieruit volgt dat elk van de bovenstaande problemen NP-moeilijkis, hetgeen wil zeggen dat het onwaarschijnlijk is dat er optimale algoritmen bestaan metrekentijd cq. geheugengebruik polynomiaal in de gegevens. Voor elk van de 4 modellenwordt in Hoofdstuk 2 een probleemde�nitie, een wiskundige formulering en een overzichtvan de toegepaste technieken gegeven. Voor zover mogelijk worden de verschillende me-thoden met elkaar vergeleken op dezelfde probleeminstanties. Voor het MO-FAP, MS-FAPen MI-FAP zijn instanties van het CALMA-project vrij beschikbaar [32]. Daarnaast zijnvoor het MS-FAP de zogenaamde Philadelphia-instanties beschikbaar (zie Figuur 2.1,pagina 28). Tot voor kort was het gebruikelijk om elke antenne in een mobiel telefoon-netwerk te representeren door middel van een hexagoon. Het aantal frequenties dat moetworden toegewezen, in zowel de CALMA- en Philadelphia-instanties als andere praktijk-instanties, varieert tussen honderd en enige duizenden. Het beschikbare aantal frequentiesloopt uiteen van een tiental tot enkele honderden (Philadelphia-instanties).In het MO-FAP moeten de frequenties worden toegewezen zodanig dat(i). alle verbindingen kunnen worden gerealiseerd,(ii). er geen interferentie ontstaat, en(iii). het aantal gebruikte frequenties minimaal is.De meeste moderne heuristische methoden uit de besliskunde en kunstmatige intelligentiezijn toegepast op het MO-FAP. Meerdere studies tonen aan dat met tabu search de op-timale oplossing regelmatig te genereren. Ook de minder bekende potentiaal reductieme-thode gebaseerd op inwendige puntmethoden lijkt goede resultaten op te leveren. Exactemethoden, zoals geheeltallig lineair programmeren en constraint satisfaction, blijken voorde meeste van de beschikbare instanties krachtig genoeg een oplossing te genereren waar-voor optimaliteit kan worden bewezen. Ook door combinatie van ondergrenzen, gebaseerdop klieks in de graaf, met een heuristiek zoals tabu search, kan in veel gevallen optimaliteitvan de gegenereerde oplossing worden bewezen.In het MS-FAP moeten de frequenties worden toegewezen zodanig dat(i). alle verbindingen kunnen worden gerealiseerd,(ii). er geen interferentie ontstaat, en 155



Samenvatting(iii). het verschil tussen het maximum en minimum van de gebruikte frequenties minimaalis.Voor het MS-FAP heeft het meeste onderzoek zich gericht op ondergrenzen voor dePhiladelphia-instanties. De ondergrenzen zijn ofwel gebaseerd op graaf theoretische argu-menten ofwel op oplossingen/ondergrenzen voor een gerelateerd handelsreizigersprobleem.Met name de laatste grenzen (veelal toegepast op een deelgraaf) zijn vaak krachtig ge-noeg om gecombineerd met heuristieken optimaliteit te bewijzen. De instanties van hetCALMA-project zijn helaas niet moeilijk genoeg om onderscheid te maken tussen de kwa-liteit van de verschillende technieken.In het MB-FAP moeten de frequenties worden toegewezen zodanig dat(i). er geen interferentie ontstaat, en(ii). de kans op blokkering van een verbinding minimaal is.Het MB-FAP kan worden beschouwd als een generalisatie van het independent set pro-bleem, één van de standaardproblemen in de combinatorische optimalisering. Vandaardat het onderzoek voor het MB-FAP zich met name heeft gericht op exacte methodengebaseerd op geheeltallige formuleringen. In de meeste gevallen zijn deze exacte methodenkrachtig genoeg om de instanties tot optimaliteit op te lossen. Heuristische methoden zijnslechts op beperkte schaal toegepast op deze variant van frequentie toewijzing.In het MI-FAP moeten de frequenties zodanig worden toegewezen dat(i). alle verbindingen kunnen worden gerealiseerd, en(ii). de totale interferentie minimaal is.Het MI-FAP blijkt niet alleen het meest algemene model te zijn, maar ook het moeilijkstoplosbare. Vandaar dat het onderzoek voor dit probleem zich vooral op heuristieken heeftgericht. Met name tabu search en genetische algoritmen zijn veelvuldig toegepast opverschillende praktijkinstanties. Voor de beschikbare CALMA-instanties zijn de beste re-sultaten behaald met een speciaal genetisch algoritme waarin oplossingen optimaal wordengekruist. Hierbij is gebruik gemaakt van de resultaten van hoofdstuk 3 van dit proefschrift.Voor slechts een tweetal speciale instanties zijn ondergrenzen beschikbaar. Voor de overigeinstanties ontbreken ondergrenzen in het geheel of zijn zeer zwak. Voor de kleinste instan-tie is de optimale oplossing bekend na toepassing van een zeer rekenintensieve constraintsatisfaction techniek. Voor andere praktijkinstanties zijn geen ondergrenzen beschikbaar.156



Summary in DutchExacte Methoden voor het MI-FAPHet gebrek aan goede ondergrenzen voor het minimum interferentie frequentie toewij-zingsprobleem, is de aanleiding geweest voor het onderzoek dat gepresenteerd wordt inde Hoofdstukken 3 en 4. In Hoofdstuk 3 wordt het MI-FAP gemodelleerd als PartialConstraint Satisfaction Problem (PCSP). Wij bestuderen het PCSP vanuit een polyhe-draal oogpunt. Allereerst wordt het PCSP geformuleerd als een geheeltallig lineair pro-grammeringsprobleem. Na bepaling van de dimensie van het bijbehorende polytoop enbeschrijving van de ongelijkheden die triviale facetten beschrijven, vervolgen we de dis-cussie met twee stellingen voor het liften van toegestane ongelijkheden. Deze stellingenbieden de mogelijkheid om klassen van facet de�niërende ongelijkheden af te leiden uit in-dividuele ongelijkheden. Op deze wijze worden 2 klassen van ongelijkheden afgeleid. Voordeze ongelijkheden bespreken wij de complexiteit van de bijbehorende separatieproblemen.Nieuwe klassen van ongelijkheden kunnen ook worden afgeleid door de overeenkomstentussen het PCSP en het Boolean Quadric Polytope te beschouwen. Hoofdstuk 3 wordtafgesloten met rekenresultaten die het nut van de geldende ongelijkheden aantonen. VoorPCSP's met domeinen van beperkte grootte kan de optimale oplossing met behulp vaneen cutting plane algoritme in acceptabele tijd worden verkregen. Voor PCSPs met gro-tere domeinen is deze methode helaas niet krachtig genoeg om in een redelijke tijd goederesultaten op te leveren.In Hoofdstuk 4 wordt daarom een andere methode toegepast waarin de onderliggendegraafstructuur van het probleem beter wordt benut. De methode is gebaseerd op deboombreedte van de graaf. Voor vele combinatorische optimaliseringsproblemen gebaseerdop een graaf bestaan optimale algoritmen die polynomiaal zijn in tijd en geheugen, zolangde boombreedte van de graaf beperkt is tot een constante. Ook voor het MI-FAP bestaateen dynamisch programmeringsalgoritme dat gebruik maakt van een boomdecompositiemet beperkte breedte. Voor het bepalen van een boomdecompositie van beperkte breedtebestaat in principe een polynomiaal algoritme. Aangezien het algoritme in de praktijk vanweinig waarde is (exponentieel in de breedte), beschrijven we in Hoofdstuk 4 allereerst eenheuristiek voor het bepalen van een boomdecompositie. Vervolgens presenteren we eendynamisch programmeringsalgoritme voor het MI-FAP. Zoals alle algoritmen gebaseerdop een beperkte boombreedte is ook dit algoritme echter exponentieel in de breedte vande boomdecompositie. Hierdoor kunnen praktijkinstanties alleen worden opgelost metbehulp van extra reductietechnieken. We beschrijven zowel graaf-reductietechnieken alsreductietechnieken die het aantal domeinelementen verkleinen. Deze laatste techniek kanook gedurende het dynamisch programmeringsalgoritmeworden toegepast op toewijzingenaan een deelverzameling van de knopen. De graaf-reductietechnieken worden met namein de preprocesfase gebruikt. Met behulp van deze reductietechnieken en het dynamischprogrammeringsalgoritme kunnen 7 van de 11 CALMA-instanties worden opgelost.Voor de overige 4 instanties blijkt het algoritme echter nog steeds vast te lopen op een157



Samenvattingtekort aan geheugen en rekentijd. Vandaar dat een iteratieve versie van het boomdecom-positie algoritme wordt gepresenteerd. Dit algoritme genereert een niet-dalende reeks vanondergrenzen. Allereerst wordt het domein voor elke knoop in de graaf verdeeld in eenklein aantal deelverzamelingen. Vervolgens wordt een PCSP opgelost waarin een keuzetussen deze deelverzamelingen moet worden gemaakt. De kostencoë�ciënten voor ditPCSP worden zodanig gekozen dat de optimale oplossing een ondergrens voor het oor-spronkelijke probleem oplevert. Verkleining van de deelverzamelingen levert ondergrenzenop die niet slechter zijn dan de eerste. Op deze wijze worden voor de overige 4 instantiesredelijk tot zeer goede ondergrenzen verkregen. Tot slot combineren we het iteratievealgoritme met de geheeltallige programmeringstechnieken van Hoofdstuk 3, hetgeen inenkele gevallen nog betere ondergrenzen oplevert.Heuristieken voor MI-FAPIn Hoofdstuk 5 wordt het nut van de technieken uit de Hoofdstukken 3 en 4 voor heu-ristische methoden besproken. Vaak kunnen exacte methoden ook worden gebruikt in eenheuristisch kader. In Kolen [118] zijn de polyhedrale resultaten van Hoofdstuk 3 reedsgebruikt om een optimale kruising van oplossingen in een genetisch algoritme mogelijk temaken. Op deze wijze werden de best bekende oplossingen voor alle CALMA-instantiesverkregen (in veel gevallen inmiddels bewezen optimaal door de resultaten van Hoofd-stuk 4). In Hoofdstuk 5 worden de polyhedrale resultaten gecombineerd met een lokaalzoekalgoritme. Wij de�niëren de buurruimte van een oplossing zodanig dat de beste buurverkregen kan worden door het oplossen van een PCSP met 2 frequenties per domein. Deresultaten van één van de geteste varianten benaderen in kwaliteit de resultaten van hetgenetisch algoritme.De resultaten van Hoofdstuk 4 kunnen eveneens met een lokaal zoekalgoritme wordengecombineerd. In plaats van een buurruimte waarin slechts één frequentie per keer kanworden veranderd, worden buurruimtestructuren voorgesteld waarin de toewijzing van eendeelgraaf kan worden gewijzigd. Voorwaarde is dat de deelgraaf een beperkte boombreedteheeft. Voorlopige rekenresultaten tonen aan dat de lokaal optimale oplossingen met dezeuitgebreidere buurruimtestructuren duidelijk betere oplossingen opleveren.Richtingen voor Nader Onderzoek en ConclusiesDit proefschrift wordt afgesloten met een aantal suggesties voor richtingen waarin naderonderzoek op het MI-FAP mogelijk is. Mogelijkheden om Benders Decompositie, La-grange Relaxatie en een Semi De�nite Programmering Relaxatie toe te passen worden158



Summary in Dutchkort besproken. Ook wordt een nieuwe geheeltallige programmering formulering gepre-senteerd die aanzienlijk minder variabelen en restricties heeft dan de formulering vanHoofdstuk 3. Met name de combinatie van boomdecompositie met Langrange Relaxatie,en de nieuwe formulering mogen worden beschouwd als waardevolle richtingen voor naderonderzoek. Tot slot worden de resultaten van dit proefschrift samengevat (zie Tabel 6.2).
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