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PREFACE

VOORWOORD

From April 1, 1996 men in the Netherlands are not obliged anymore to join the military
service. However, in the spring of 1995, I received my summons to join the service starting
March 1996. So, I would belong to the last of the Mohicans who has to perform his duty.
However, at more or less the same moment, Antoon Kolen and Olaf Flippo offered me a
possibility to escape. They asked me to become a Ph.D. student at Maastricht University
for the next 4 years. So, I had to make a decision between 9 months of military service
and 4 years Ph.D. studentship. About four and a half years later, this thesis clarifies my
choice: I became a Ph.D. student.

The choice to accept a Ph.D. studentship was, of course, not only made by the alternative
of serving the country as a soldier. The application of mathematics to real problems
attracted my attention from the start of my studies in Technical Mathematics at Delft
University of Technology in 1991. T specialized in operations research, and in the last
year [ met two other students, who did their graduation project on frequency assignment.
Their subject called my attention to the operations research problems in telecommuni-
cation, which resulted in my application for the position in the project Combinatorial
Optimization problems in Telecommunication, with an emphasis on the frequency assign-
ment problem. Antoon and Olaf offered me the freedom to do research on network design
problems as well. Altogether, an attractive position in which I could do research to solve
real-life operations research problems.

After finishing my Master’s Thesis and a holiday, I started in Maastricht in September
1995. Soon, I discovered that Antoon and Stan van Hoesel had made a bet about the
results of my research project. My task was to find the optimal solution for 11 frequency
assignment problems. In case the optimal solution for an instance was better than the
best known value (derived by Antoon), Antoon should pay Stan a bottle of wine. In case
the optimal solution was equal to the best known one, a bottle of wine should go the
other way. By now, we can conclude that Stan lost 7 bottles of wine to Antoon, whereas
the bet has not ended yet for the 4 other frequency assignment problems.

It will be clear that Antoon, Stan and Olaf played an important role during my years in
Maastricht. T owe a lot to them for their support, cooperation and friendship. Without
the stimulating environment they created, this thesis would probably never have been
completed. I am also indebted many thanks to them for the freedom they gave me
to do research on other topics in telecommunication as well. To work on two different
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topics, frequency assignment and network design gave me the opportunity to extend my
knowledge to the whole area of operations research and telecommunication. The research
on telecommunication network design resulted in three articles [56, 86, 132] that are not
part of this thesis (they appeared in the Ph.D. thesis of Robert van de Leensel [131]).

Speaking of Robert, a special word of thanks should be devoted to him. He was for almost
4 years my roommate and co-researcher. The afternoons that we locked the door, and
discussed research topics together are worthwhile remembering. They were pleasant and
productive at the same time. Many times, Robert acted as guinea-pig to test the validity of
new ideas. Besides the research activities, I also indebted thanks to him for our discussions
on varying topics, the joint travel experiences (especially in the U.S.A. and Israel), and
last but not least his friendship. Besides the already mentioned people, T have to thank
the other members of the Operations Research group in the years 1995-1999: Joris van de
Klundert, Ron van der Wal, Rudolf Miiller, Jos Sturm and Jan-Willem Goossens. They
were always available to answer my questions. Of course, also many thanks to the other
members of the Department of Quantitative Economics for the pleasant contacts.

Furthermore, I have to thank the students in Econometrics for their interest in my research
project. For four years I had the opportunity to teach them the basics and more advanced
levels of programming in C+-+. Without mentioning particular students, very pleasant
contacts originate from these courses. I also have to acknowledge some people from out-
side Maastricht. A couple of people served as hosts during the trip with Robert through
the United States of America. The (financial) support of Martin Savelsbergh (Georgia
Institute of Technology), Rutgers University, Oktay Giinlik (AT&T Labs), Daniel Bi-
enstock (Columbia University), David Williamson (IBM T.J. Watson Research Center),
and ‘Raghu’ Raghavan (US West Telecommunications) provided that our trip ended suc-
cessfully. The visit of the INFORMS Israel conference was financially supported by Shell
Nederland.

Tot slot gaat mijn dank uit naar mijn familie en vrienden in Schoonhoven en omgeving.
In het bijzonder moet ik mijn ouders en mijn zus Cora bedanken voor hun niet-aflatende
steun en belangstelling voor mijn onderzoek en onderwijs. Veel dank ben ik verschuldigd
voor hun ondersteunende activiteiten, zoals het vele wassen en strijken als ik weer eens
met een uitpuilende tas met wasgoed thuiskwam. In de toekomst hoop ik jullie daar niet
al te vaak meer mee lastig te vallen.

Finally, my latest but not least word of thanks has to go to our Creator, Who among
all other things He did for me, talented me with the gift for mathematics. Without His
never-ending aid and assistance, I would not have been able to complete this thesis.

Arie Koster
September 1999
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1. INTRODUCTION

Mathematical models and algorithms for frequency assignment problems are the topic
of this thesis. Frequency assignment problems occur in many different types of wireless
communication networks. In the last decade, the rapid development of new wireless
services like digital cellular phone networks resulted in a run out of the most important
resource, frequencies in the radio spectrum. Like with all scarcely available resources, the
cost of frequency-use provides the need for economic use of the available frequencies. Reuse
of frequencies within a wireless communication network can offer considerable economies.
However, reuse of frequencies also leads to loss of quality of communication links. The use
of (almost) the same frequency for multiple wireless connections can cause an interference
between the signals that is unacceptable. The frequency assignment problem balances the
economies of reuse of frequencies and the loss of quality in the network. Quantification of
the different aspects results in a mathematical optimization problem that can be solved
with Operations Research techniques. Depending on the point of view of the researchers,
the goal of the network provider, and application specific conditions many different models
and algorithms are proposed.

The Chapters 2-6 are devoted to these models and algorithms. In this chapter we introduce
the frequency assignment problem through a brief description of the early history of
wireless communication networks in Section 1.1. In Section 1.2 we continue with the
discussion of a number of applications of wireless communication in which the assignment
of frequencies plays a crucial role. We conclude this chapter with an outline of the sequel
of this thesis in Section 1.3. The contents of the Sections 1.1 and 1.2 is partly based on
the encyclopedias [29] and [52].

1.1 HISTORY OF WIRELESS COMMUNICATION

More than a century ago, in the early 1890s, Marconi started to experiment with wireless
communication via radio waves. His research resulted in 1897 in the successful transmis-
sion of radio waves to a ship at sea over a distance of 29 kilometers. A couple of years
later, it was possible to transmit signals across the Atlantic Ocean, and already in 1905
many ships were using wireless telegraphy to communicate with shore stations. The im-
portance of Marconi’s invention can be demonstrated with for example the sinking of the
Titanic. Without the equipment to communicate with other ships and shore stations, the




1. INTRODUCTION

disaster would be considerably larger than it already was. In 1909, Marconi received the
Nobel Prize in physics for his pioneering work on the wireless telegraph. Continuing im-
provements of the equipment resulted in the establishment of wireless telephony between
Virginia and Paris in 1915. After World War I, radio broadcasting became more and
more popular, first on an amateur level, later by professional broadcasters. Experimen-
tal television broadcasting already began in the 1930s and was successfully introduced
to the mass since the end of the 1940s. In the last 50 years, the radio spectrum has
been explored for wireless communication in many different ways. For example, space
missions are not possible without communication via radio waves. It is not only used for
voice communication with the astronauts, but also for the navigation of the spacecrafts.
Nowadays radio waves are used for wireless telegraphy, radio broadcasting, television, cel-
lular telephone networks, radar, navigational systems (air and sea traffic control), military
communication, and space communication.

Every application uses a specific part of the radio spectrum. The frequencies that can be
used for wireless communication range from 3 kilohertz to 300 gigahertz. These values
correspond with a wavelength between 1 mm and 100 km. Figure 1.1 shows an overview of
which frequencies are used for the different applications. The most popular applications,
radio, television, and cellular phone use frequencies in the very high frequency (VHF)
and ultra high frequency (UHF) spectrum. The use of frequencies for an application is
regulated by the International Telecommunication Union (ITU) and national agencies.
They issue licenses to use certain frequencies.

AM radio,

maritime

UHF television,
cellular phone,
global position

space / satellite
navigational icati
aids

VHF television,
FM radio

shortwave

maritime
navigation

radio radio

100 km 10 km 1 km 100 m 10 m 1m 10 cm 1 cm 1 mm
-<—  wavelength —»
VLF LF MF HF ‘ VHF UHF SHF EHF
- frequency —
3 kHz 30 kHz 300 kHz 3 MHz 30 MHz 300 MHz 3 GHz 30 GHz 300 GHz
very low low medium high very high ultra high super high xtreme high
frequency frequency ‘ frequency ‘ frequency ‘ frequency ‘ frequency ‘ frequency frequency

FIGURE 1.1: The radio spectrum that can be used for wireless communication.

Wireless communication between two points is established with the use of a transmit-
ter and a receiver. The transmitter generates electrical oscillations at a radio frequencys;
the carrier frequency. Oscillations at a radio frequency can be modulated either via the
amplitude or the frequency itself. The receiver detects these oscillations and transforms
them in either sounds or images. When two transmitters use (almost) the same carrier
frequency, they may interfere. The level of interference depends on many aspects like the
distance between the transmitters / receivers, the geographical position of the transmit-
ters, the power of the signal, the direction in which the signal is transmitted, and the
weather conditions. In case the level of interference is high, the received signal may drop
below the signal-to-noise ratio, which causes an unacceptable loss of quality. However,
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the limited availability of frequencies causes their reuse by multiple transmitters within
one and the same network.

As a consequence, an operator should carefully choose the frequencies on which each
station transmits to avoid high interference-levels. The selection of the frequencies in such
a way that interference is avoided, or second best, is minimized, is called the Frequency
Assignment Problem (FAP). Depending on the application the conditions that should be
satisfied by the frequency plan may vary. Therefore, it is not surprising that many different
approaches have been suggested in the literature to solve this problem. In Chapter 2 we
survey the most recent approaches. For now, we would like to illustrate the wide variety
of FAPs with a brief discussion of the most popular applications. Successively, we discuss
in the next section radio and television broadcasting, cellular telephone networks (both
terrestrial and satellite based), and fixed location wireless telecommunication networks.

1.2  APPLICATIONS OF WIRELESS COMMUNICATION

1.2.1 RADIO AND TELEVISION BROADCASTING

Till the large-scale introduction of cable television and satellite broadcasting in the be-
ginning of the 1980s, the most convenient way to transmit radio and television signals
was (and still is for radio) through the air. To cover an area for radio or television broad-
casting, antennae scattered around the region are necessary. For radio, each of these
antennae transmit in a radial way either an Amplitude Modulated (AM) or a Frequency
Modulated (FM) signal. For AM signals frequencies in the range from 540 kHz to 1600
kHz (medium frequency spectrum) are used, whereas FM signals are transmitted on VHF
frequencies in the range 87 MHz - 108 MHz. Another part of the VHF spectrum and UHF
frequencies are explored to transmit television signals. Like radio, the television signal is
not directed but transmitted in a radial way. The signal transmitted by an antenna may
not interfere with other signals transmitted by other radio or television services in the
same area. Moreover, in case two antennae of the same broadcasting service cover a part
of the area simultaneously, the signals of these antennae are not allowed to interfere as
well.

1.2.2 TERRESTRIAL MOBILE CELLULAR NETWORKS

The last decade the development of (digital) cellular phone networks not only attracts
the attention of the scientific community, but influences the whole society. Cellular phone
networks, however, exist already more than 50 years. As early as 1946, the first commercial
mobile telephone service (MTS) was introduced by AT&T. Eighteen years later, AT&T

3
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introduced an improved version (IMTS). In this system 11 channels were available for all
users within a geographic area. Since each frequency could be used only once (without
interference), the IMTS system had a very limited capacity. In the region New York
for example, the number of subscribers was limited to 545. In the late 1970s AT&T
and Motorola Inc. developed the advanced mobile phone system (AMPS). AMPS had at
its disposal 666 paired voice channels. These 666 channels made it possible to serve a
large population. The system, publicly introduced in 1983, had 200,000 subscribers after
the first year and 2,000,000 five years later. To increase the capacity even further, 166
additional channels were made available for the AMPS. Systems like the AMPS were also
developed in Japan (1979) and Europe (starting in Scandinavia in 1981).

A disadvantage of the systems available in Europe during the 1980s was the incompatibil-
ity with one another. Therefore, in 1988 the Groupe Speciale Mobile (GSM) was founded
by a group of government-owned telephone companies. They developed a new digital-
based mobile communication standard, which is in use since 1992. GSM networks use
frequencies in the 900 Mhz and 1800 Mhz spectrum (UHF). The GSM system became an
overwhelming success, not only in Europe, but currently all around the world. At the end
of 1998 a total of 320 networks in 118 countries were serving approximately 135 million
customers (cf. Figure 1.2) [51, 77]. In the Netherlands, currently 5 providers of cellular

300 288
LI e e PR
i e e L EEEEE

150 4

Millions

100 A

50 1

0 $ T T T T T T
End 1992 End 1993 End 1994 End1995 End 1996 End1997 End1998 End 1999 End 2000

FIGURE 1.2: Number of subscribers to a GSM network [51, 77].

networks are active, serving more than 5 million customers (over 30% of the Dutch pop-
ulation) by the end of 1999 [151]. KPN Telecom, the former state telephone company,

4
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started already in 1992 with its GSM network. In 1995 the new firm Libertel became the
second provider of GSM in the 900 MHz spectrum in the Netherlands. Within 4 years
Libertel became a company with more than 1.4 million customers, and a market value
of 12 billion guilders!. After an auction of the available frequencies in the 1800 MHz
spectrum in 1998, Telfort, Dutchtone and Ben started the construction of their cellular
phone network.

A third generation of mobile communication will be introduced in the near future. UMTS
(Universal Mobile Telecommunications System) will replace GSM as the new world wide
standard for cellular phone networks. In contrast, with the current GSM system, UMTS
will be compatible in both Europe and the United States of America. UMTS will use high
speed connections (up to 2 megabit per second), which enables mobile use of internet and
video communication.

All terrestrial cellular phone systems can be characterized by the following properties.
They consist of a number of base stations that divide a geographic area to be served in
smaller areas, called cells. Each base station operates on a certain frequency. A cellular
phone within a cell is connected with the base station upon request via this frequency. Asa
mobile phone proceeds from one cell to another during a call, a mobile telephone switching
office arranges that the call continues without noticeable interruption. If the demand for
the wireless service within a cell exceeds the capacity of the base station, splitting the cell
into smaller cells can increase the capacity. Depending on the geographical position, the
power of the signal and the direction in which the signal is transmitted, transceivers may
interfere when they use (almost) the same frequency.

The rapid development of cellular telephone networks in recent years has increased the
need for good solution techniques for the frequency assignment problem for cellular net-
works. A main difference between radio / television broadcasting and cellular phone
networks is the need for an individual connection for every customer. In radio and televi-
sion networks thousands or even millions of customers receive the same signal transmitted
by one single antenna. In a cellular phone network, a signal is transmitted only between
one transmitter and one receiver. Technological developments like Frequency Division
Multiple Access (FDMA), Time Division Multiple Access (TDMA), and Code Division
Multiple Access (CDMA) make it possible to use a frequency simultaneously for a lim-
ited number of different customers within the same cell. Nevertheless, the service area of
a cellular network has to be covered with a substantially larger number of antennae to
satisfy the demand. In a country like the Netherlands for example, a radio or television
network can cover the area with less than a dozen transmitters. In contrast, the number
of transmitters needed to cover the same area for a mobile phone service can be as large
as a couple of thousands. Combined with about 40 available frequencies, we have to con-
clude that each frequency must be reused many times. Fortunately, the low transmitting

11 guilder = 0.45378 euro
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power of battery-operated portable phones offers the opportunity to increase the reuse of
frequencies within the same service area without interference.

Not only, the scale of the cellular radio networks, but also the investments related to it,
strengthen the need for good frequency plans. Let us illustrate the importance of a good
assignment by the investments related to GSM networks in the Netherlands. The three
providers Telfort, Dutchtone, and Ben paid altogether reputedly 1.8 billion guilders for
the frequencies in the 1800 Mhz spectrum that were sold at an auction in 1998. Besides
this investment, the building of a cellular network costs at least 300 million guilders.
However, all these efforts are worthless without a good frequency plan that can guarantee
high-quality communication links to the customers.

1.2.3 SATELLITE-BASED CELLULAR SYSTEMS

In addition to the terrestrial systems, in recent years satellite-based telephone systems
are under construction. With such a system it is possible to make a connection with a
cellular phone all around the world, especially in those regions currently not covered by a
terrestrial system. In contrast with other satellite communication systems, satellite-based
phone systems operate in the low earth orbit (780 km high), and are therefore called LEO
systems. The satellites work differently from those at a much higher orbit (36,000 km) in
two major ways. First, the small distance between earth and satellite makes it possible
to connect to the system with a handheld device. Second, signals can be moved overhead
in between satellites without the use of base stations at the earth [93]. The first LEO
system is operated by Iridium Inc. [93], a consortium of corporations and governments
from around the world. It consists of 66 satellites, forming a cross-linked grid above the
Earth. In the near future, operators will supply services in which terrestrial and satellite
communication are integrated.

Like in the terrestrial systems, the satellites operate on certain frequencies, that have to
be selected in such a way that interference is avoided. Not only frequencies are needed
to communicate with handheld devices, but also to establish communication between
satellites and ground stations, and between satellites mutually.

1.2.4 FIXED CELLULAR TELECOMMUNICATION NETWORKS

One of the most recent applications of wireless communication is the establishment of
fixed cellular telecommunication networks. In contrast with mobile cellular networks,
in non-mobile or fixed systems both the transmitters and receivers are located at fixed
points in the area. Fixed cellular networks provide a financially attractive alternative to
the construction of conventional wired networks in developing countries, where no wired
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network structure is available yet. Moreover, the introduction of new services, like data
communication (internet, e-mail) and video-conferencing causes shortage of capacity in
existing wired networks. Point-to-point wireless connections can be used as an alterna-
tive to the extension of the capacity of these wired networks. In both cases no cable
connections have to be established. A disadvantage of point-to-point connections is that
the transmitter and receiver have to see each other, which means that there should be
no obstacles in between them. As a consequence, transmitters and receivers have to be
built at high locations (e.g., at the roof of apartment and office buildings). Although the
transmitters are directed to the receivers their signals can interfere. Especially if signals
cross each other, the use of (almost) the same frequencies should be avoided.

Another application that has similarities with fixed cellular networks stems from the
military. In military communication networks, wireless connections have to be established
between pairs of transceivers. These connections, or radio links, can interfere with each
other, if they use similar frequencies in one and the same area.

1.3 OUTLINE OF THIS THESIS

In the previous section we have discussed several applications of wireless communication.
For each of these applications the quality of the network depends on a ‘good’ frequency
assignment plan. The sequel of thesis is devoted to models and algorithms to solve the
corresponding frequency assignment problems (FAPs). It can be divided in three parts.
We start in Chapter 2 with a survey on the models and algorithms that have been
proposed for the FAP in the literature in recent years. We discuss four different ways
to model the FAP. Each of these models has its own (dis)advantages. For every model,
we investigate which approaches have been proposed in the literature. These approaches
can be divided in three categories: (i) heuristic methods, like sequential assignment algo-
rithms, Simulated Annealing, and Tabu Search, (ii) exact methods, like exhaustive search
and integer programming techniques, and (iii) Lower bounds obtained from graph theory.

In the sequel of the thesis, we focus on one of these models, the minimum interference
frequency assignment problem (MI-FAP). Many heuristic techniques have been applied
to this problem. Exact methods and lower bounds, however, are rarely explored. Only
very special cases can be solved with the existing exact methods. Therefore, the second
part of the thesis is devoted to solution techniques for this fairly general model. Two
exact methods are described in the Chapters 3 and 4, whereas Chapter 5 is devoted to
new heuristics that are derived from the exact methods. In Chapter 3, we model the
MI-FAP as a Partial Constraint Satisfaction Problem (PCSP). We present an integer
linear programming formulation for the PCSP and study the corresponding polytope
from a polyhedral point of view. We prove two lifting theorems for facet defining valid
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inequalities. With these theorems we can analytically derive classes of facets, given a
single facet for a particular problem. In fact, we derive two classes of facet defining
valid inequalities in this way. For these two classes we discuss the complexity of the
corresponding separation problems. Due to the equivalence of a restricted version of the
PCSP and the boolean quadric polytope (BQP), other classes of facets can be obtained
from facets for the BQP. The chapter is concluded with computational results on a number
of instances. They show that the two classes of valid inequalities are very effective for
MI-FAPs with small domains. However, for real-life instances, the inequalities, although
they are facets of the polytope, are not powerful enough to close the gap between the
linear programming relaxation and the optimal solution in reasonable time.

Due to the limited applicability of the integer linear programming techniques on real-life
instances, we present in Chapter 4 an approach based on the tree decomposition of the
constraint graph. The MI-FAP is defined on a graph, and like many other combinatorial
optimization problems based on graphs, it can be solved in time polynomial in the length
of the input, in case the treewidth of the graph is bounded by a constant. Although this
fact is well known, computational studies in this direction have not been described in
the literature for any combinatorial optimization problem. The only study we are aware
of has been carried out by Cook in the context of the traveling salesman problem [37].
In Chapter 4, we study the use of tree decompositions of the constraint graph to solve
the FAP. In fact, we describe a dynamic programming algorithm to solve the FAP to
optimality in polynomial time, given that the treewidth of the constraint graph is bounded
by a constant. The algorithm, however, is exponential in the treewidth, which causes the
need for additional processing techniques to reduce the time and memory efforts of the
algorithm. We describe methods to reduce the size of the graph, as well as methods
to reduce the size of the domains and the number of different assignments we have to
memorize. Computational experiments show that small-sized and medium-sized real-
life instances can be solved using these additional (pre)processing techniques. For the
more difficult instances, however, the method still requests too much time and memory.
Therefore, we present an iterative version of the algorithm which can be used to obtain a
sequence of non-decreasing lower bounds for the original problem. For the more difficult
instances we can derive the first non-trivial lower bounds in this way. Combination of the
iterative techniques of Chapter 3 resulted in even better lower bounds for the instances
with large treewidth.

We conclude the second part of the thesis with the discussion of two new heuristics for
the MI-FAP. In Chapter 5 we present two local search algorithms based on the results
of Chapters 3 and 4. In the first local search algorithm the question whether there exists
a neighbor in the solution space with smaller objective value is answered by solving a
PCSP with 2 domain elements. In Chapter 3 it is shown that this problem, although
NP-complete can be solved efficiently by the polyhedral results. The second local search
approach is based on the fact that PCSP on graphs with small treewidth can be solved with
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dynamic programming. This result can be incorporated within a local search framework.
Instead of solving the PCSP on the complete graph, we solve subproblems on induced
subgraphs with small treewidth. Preliminary computational results show that both local
search algorithms produce promising results.

In the last chapter of this thesis, Chapter 6, we address directions for further research on
the MI-FAP, and state overall concluding remarks. We briefly discuss other exact methods
like well known techniques as Benders Decomposition, and Lagrangian relaxation. We also
discuss a semi-definite programming relaxation. All these methods and formulations can
be used to solve the more general PCSP, instead of the MI-FAP. The last direction for
further research is dedicated to a new integer linear programming formulations for the
MI-FAP, in which the number of variables is substantially smaller than in the PCSP
formulation of Chapter 3. This formulation is based on characteristics typical for a MI-
FAP, and therefore cannot be used to solve the more general PCSP. The thesis is closed
with some conclusions concerning the results of this thesis.







2. THE FREQUENCY ASSIGNMENT
PROBLEM: A SURVEY

Frequency Assignment Problems (FAPs) have been investigated by many researchers.
Depending on the application and the goal of the researchers, a wide variety of models and
solution techniques have been proposed. The use of a wide variety of methods is prompted
by the fact that the FAP belongs to the class of ANP-complete problems, which means
that there does not exist an algorithm that solves the problem in time polynomial in the
length of the input, unless P = NP (see either Garey and Johnson [62] or Papadimitriou
and Steiglitz [153] for a discussion of N'P-completeness). In this chapter we present a
survey on the models and algorithms that have been proposed in recent years. We start
with a general description of the FAP in Section 2.1. We also discuss in this section the
3 approaches applied to the FAP: Fixed Channel Assignment schemes, Dynamic Channel
Assignment schemes, and Hybrid Channel Assignment schemes. Our survey is devoted
to fixed channel assignment schemes. In Section 2.2 we distinguish the 4 most accepted
points of view for the FAP. For each of the models, we compare as far as possible the
results obtained by the different techniques available to solve combinatorial optimization
problems in the Sections 2.3-2.6. Section 2.7 is devoted to approaches which cannot be
classified within one of the four models. We close this survey with some conclusions in
Section 2.8. The survey in [4] will partly be based on this chapter. Recently, an overview of
exact methods for frequency assignment is given by Jaumard, Marcotte and Meyer [100].

In the sequel of this chapter many different approaches from the fields of operations
research and artificial intelligence are discussed. For those not familiar with one or more
of these methods we refer to the following papers and books on the topic:

Local Search (general). For local search techniques in general we refer to the recent
book of Aarts and Lenstra [8], which gives a comprehensive overview of the available
techniques.

Tabu Search. Tabu search was introduced by Glover [68], and more recently discussed
in [69, 70, 71] and the book by Glover and Laguna [73]. In Glover [72], tabu thresh-
olding was introduced, a combination of tabu search and candidate list strategies.

Simulated Annealing. Kirkpatrick, Gelatt and Vecchi [115] introduced the use of simu-
lated annealing to optimization problems. The book by Aarts and Korst [7] discusses
the topic comprehensively.

11
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Genetic Algorithms. Genetic algorithms have been proposed by Holland [87], and are
discussed in Goldberg [74] as well.

Neural Networks. Neural networks were introduced in the field of optimization by Hop-
field and Tank [88, 89] (see also Dayhoff [44]).

Integer Programming. For exact methods based on integer linear programming like
Branch and Bound, Branch and Cut, and Column generation, we refer to Nemhauser
and Wolsey [148] or Schrijver [166]. A comprehensive overview of network flow
problems is presented by Ahuja, Magnanti, and Orlin [9].

2.1 THE FREQUENCY ASSIGNMENT PROBLEM

The frequency assignment problem has two basic aspects:

(i). a set of wireless communication connections must be assigned frequencies such that
data transmission between the transmitter and receiver for every connection is pos-
sible. The frequencies should be selected from a given set that may differ among
connections. Note that much traffic is bidirectional, so that in fact two frequencies
must be chosen, one for each direction.

(ii). The frequencies assigned to two connections may incur interference resulting in loss
of quality of the signal. Two conditions must be fulfilled in order to have interference
of two signals:

(a) The two frequencies must be close on the electromagnetic band (Doppler ef-
fects) or (close to) harmonics of one another. The latter effect seems to be
limited, however, since the frequency bands from which we can choose are
usually so small that they do not contain harmonics.

(b) The connections must be geographically close to each other. The signals that
may interfere should have a similar level of energy at the position where they
might disturb each other.

Both aspects are modeled in many different ways in the literature. The models discussed
in the literature differ in the types of constraints they impose on frequency choices for
connections they make, and in the objectives to be optimized. We will describe the
practical settings of known applications, and the simplifications that are assumed in the
accompanying models that lead to the models described in the literature. The diverse
models are discussed both in their common features and their differences.

The frequency band [fin, fmaez] available to some provider of wireless communication is
usually partitioned in a set of channels, all with the same bandwidth A of frequencies.

12
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For this reason the channels are usually numbered from 1 to a given maximum N, where
N = (fmaz — fmin)/A. The available channels are denoted by the domain D = {1,..., N}.
For a particular connection possibly not all channels from D are available. For instance,
if this connection is close to the border of a country division rules between the countries
involved may lead to a substantial decrease in channel availability. Therefore, the channels
available for a connection v form a subset D, C D. On each channel available one can
communicate information from a transmitter to a receiver. For bidirectional traffic one
needs two such channels, one for each direction. In the models considered in the literature
the second channel is almost always ignored. The reasons for ignoring this aspect of the
FAP depend on the application. Instead of one band [fin, fmaez], in most applications
two bands [f!. | fl 1and [f2, ,f2..] of N channels are available: one with the channels
{1,...,N}, and one with the channels {s + 1,...,s + N}, where s > N. Thus, the
backward connection uses a channel which is shifted s channels up. The choice of s
prevents any interference of backward channels with forward channels. As a consequence,
each assignment for the forward channels can directly be transformed to an assignment
for the backward channels with similar performance.

Interference of signals is measured by the signal-to-noise ratio (or signal-to-interference
ratio) at the receiving end of a connection. There, the signal transmitted should be clearly
understandable. The noise comes from other signals which have an interfering frequency
on which they broadcast. There may be more than one source that transmits on the same
or a close frequency and thus contribute to the total noise experienced at the receiver.
In practice, a threshold value of 12 dB or 15 dB for the signal-to-noise ratio is found
satisfactory. The computation of the level of interference is a difficult job in itself, since it
depends not only on signal choice and strength, but also on the shape of the environment.
If we ignore the environment and consider some other signal transmitted at the same
frequency channel, then the interference of this signal at the receiver is computed with
the following formula: P/d” where P is the power of the transmitter and d the distance to
the disturbed receiver. Here, 7y is a fading factor with values between 2 and 4. If this other
signal is transmitted on a frequency at a distance of n > 1 units of the original signal,
then a filtering factor of —15(1 4 log®n) is to be taken into account (see [48]). The fact
that multiple signals may disturb communication quality is ignored in most models, where
only interference between pairs of connections is measured. A notable exception is [54],
in which constraints are developed to determine the total interference of neighboring
connections. Another assumption is the quantification of the levels of interference. We
will assume given values of the interference as input to our models and problems.

The previously discussed two-way traffic poses another problem, even in the binary case,
since interference need not be symmetric: if a transceiver' pair (ri,r) transmits on
frequencies f and f + s, and another transceiver pair (s, s2) transmits on frequencies g
and g-+s where f and g interfere, and f+s and g+ s interfere, interference levels at r; and

LA single unit containing a transmitter and a receiver
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ro may be different due to the fact that these transceivers may have different distances to
s1 and sp. As mentioned before, this aspect is ignored in most of the literature.

Depending on the application, one or multiple connections have to be established between
the same geographic end points. In general, this is modeled by assuming that ¢, € Z™
frequencies have to be assigned to connection v. Interference between frequencies assigned
to the same connection can be avoided by the introduction of an additional value for
certain combinations of frequencies f,g € D,. In practice the values ¢, vary during
time, depending on the actual demand for connections. By this property, the approaches
suggested in the literature to deal with the FAP can be divided into three categories:
Fixed Channel Assignment (FCA), Dynamic Channel Assignment (DCA), and Hybrid
Channel Assignment (HCA) schemes?.

In an FCA the forecasted demand is transformed to the requirement that we have to assign
to each connection a number of frequencies beforehand. In this scheme it is not allowed to
change the assignment on-line to satisfy actual demand for wireless connections. This is in
contrast with DCA schemes in which frequencies are assigned on-line to the connections
in such a way that the actual demand is satisfied and the interference is minimized. An
example of a procedure for DCA is presented by Janssen, Kilakos and Marcotte [98]. They
discuss a fixed preference assignment scheme. For every cell there exists a preference list
of frequencies to serve the demand. In [98] it is proved that the preference lists can be
constructed in such a way, that they are optimal according to some performance measure.

Finally, in HCA schemes a combination of FCA and DCA is implemented to obtain a
better overall performance of the network. In HCA schemes a number of frequencies is
assigned to every connection beforehand, whereas another part of the spectrum can be
used for on-line assignment of frequencies upon request. An example of an HCA scheme
is given by Sandalidis, Stavroulakis and Rodriguez-Tellez [165]|, who describe a neural
network and a genetic algorithm approach to the borrowing channel assignment problem.
In the borrowing channel assignment problem, a fixed number of frequencies are assigned
to the connections. However, whenever the actual demand for frequencies exceeds the
number of available frequencies, the connection can borrow an unused frequency assigned
to an adjacent connection. The performance of networks that operate on DCA and
HCA schemes is mostly studied via simulation of the particular procedure. It is proved
by Johri [104] that DCA schemes perform better than FCA schemes under light traffic
and under nonuniform traffic. However, under uniform and heavy load, FCA schemes
outperform the DCA schemes. Besides this, FCA gives a bound on the performance of
the DCA scheme. In fact, in case the DCA scheme allows for complete rearrangement
of the assignment, a FCA problem has to be solved, every time the situation changes.
For these last two reasons, we concentrate in this thesis on fixed channel assignment.

2The need for multiple connections, and the application of DCA and HCA schemes originates from
cellular phone networks.
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For a survey on the topic of FCA, DCA and HCA schemes we refer to Katzela and
Naghshineh [111].

2.2 FIXED CHANNEL ASSIGNMENT

In a Fixed Channel Assignment scheme, the expected traffic load of the network is trans-
formed to a requirement that we have to assign to each connection a fixed number of
frequencies. The standard representation of a FAP is by means of a graph G = (V, E),
the interference graph or constraint graph. Each connection is represented by a vertex
v € V. The available channels or frequencies for a vertex are denoted by the set D, C D.
Let ¢, denote the required number of frequencies for connection v € V. Two vertices v
and w for which the corresponding connections may interfere for at least one pair of fre-
quencies, are connected by an edge {v,w} € E. For each pair of frequencies f € D, and
g € D,, we penalize the combined choice by a measure depending on the interference level.
This penalty is denoted by py,fe. The interference between two frequencies f, g € D, as-
signed to the same vertex v can be modeled in the same way: an edge {v,v} € FE and
penalty py,,f,. Another way to model this, is by replacing v by ¢, vertices and additional
edges between all of them. Some instances deal with a frequency plan in which changes
are considered, to reduce interference. This reduction should take place under minimal
changes of the total frequency plan, thus changes in the plan are penalized per change as
well. This is modeled with additional penalties on the frequencies to be chosen for each
vertex: the choice of frequency f € D, costs g,.

The approaches to solve the FAP can be subdivided in two main streams. We want to
assign frequencies to the vertices in such a way that either the total penalty incurred by
a solution (minsum) or maximum penalty incurred by a solution (minmax) is minimized.

2.2.1 MINIMIZATION OF THE MAXIMUM PENALTY

Instead of computing a solution where the maximum penalty is minimized, we often search
for a solution where the incurred interference does not exceed a given threshold value.
Thus, certain frequencies and combinations of frequencies are forbidden. This essentially
reduces the penalty matrices of the edges to 0-1 matrices. Combinations of frequencies
with penalty 0 are allowed, whereas penalty 1 is forbidden. The objective reduces in this
case to find a feasible solution, i.e., a solution in which no forbidden combinations are
selected. In case such an assignment exists, often a second objective is introduced. The
second objective represents a preference relation between all feasible assignments. In the
1970s minimization of the number of used frequencies was a popular second objective,
since frequencies should be bought per unit at a high price in that time. The problem
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of minimizing the number of used frequencies is called the minimum order problem, or
minimum cardinality problem. The objective to minimize the span, i.e., the difference
between the highest and lowest frequencies selected, was popular in the 1980s where
frequencies were bought per bandwidth, e.g., the value N determined the costs.

In case the incurred penalties exceed the given threshold in every assignment, two di-
rections remain. On the one hand, the threshold value can be increased allowing for
assignments with more interference. On the other hand, we can search for a partial as-
signment that does not exceed the given threshold penalty. The most common objective
to distinguish between partial assignments is minimization of the blocking probability. In
case instead of the requested ¢, only m, frequencies can be assigned to a connection, we
can calculate the probability that in practice a request to establish a connection have to
be rejected. This probability is called the blocking probability of the connection. Optimal
partial assignments minimize the overall blocking probability of the network.

2.2.2  MINIMIZATION OF THE CUMULATIVE PENALTY

The minsum criterion is not seen frequently in practical instances, but in some models it
is combined with the minmax criterion by introducing threshold values for the penalties
that denote the maximum acceptable interference. We then look for feasible solutions
with a minimum total penalty under the condition that no penalty exceeds the threshold
value. This combined model is most accurate in describing real-world problems, but it
is also the one for which it is most difficult to determine optimal solutions. Note that
the combined model is easily translated into a minsum problem, by setting all penalties
exceeding the threshold to infinity.

Summarized, we can distinguish four models to solve the FAP. In this chapter we discuss
these four most common points of view:

i). The Minimum Order Frequency Assignment Problem (MO-FAP),
the Minimum Span Frequency Assignment Problem (MS-FAP),
the Minimum Blocking Frequency Assignment Problem (MB-FAP), and

. the Minimum (Total) Interference Frequency Assignment Problem (MI-FAP).

In the Sections 2.3-2.6, we discuss these models (and their variants) in more detail. In
Section 2.7 we mention some examples of other fixed channel approaches to the FAP that
cannot be classified in one of the above models. We close this section with a discussion of
the relation of frequency assignment with graph coloring (Section 2.2.3), and a description
of application specific properties (Section 2.2.4).
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2.2.3 FREQUENCY ASSIGNMENT AND GRAPH COLORING

The minmax criterion is closely related to generalized coloring problems like T™-coloring
or list coloring. This relation has first been observed by Metzger [145] (see also Hale [78]).
The relation of finding a feasible solution with coloring is due to two modeling aspects.
First, the division of the levels of interference in acceptable and unacceptable levels,
reduces the problem to forbidden combinations and allowed combinations like in the graph
coloring problem, where it is not allowed to color two adjacent vertices with the same color.
Second, in many settings the interference levels are related with the distance between the
assigned frequencies: the smaller the distance between two assigned frequencies, the larger
the interference level py,r,. Combined with the first assumption, interference is defined
unacceptable between the connections v and w if f € D, and g € D,, are at a distance
smaller than d,, of each other. The interference is acceptable if the frequencies are at a
larger distance, i.e., |f — g| > dy,. Now, if we relax the problem by setting all d,, = 1
for {v,w} € E, which is not far beyond reality, then we only penalize equal choices of
frequencies for connected vertices. Thus, we can view the frequencies as colors, and a
solution should have as few (or none at all) edges for which the end vertices have the
same colors.

In a more general setting, we are not allowed to assign frequencies that differ a value
contained in a set Ty, (containing 0), i.e., |f — g| & Tyw. If the set T,, is defined
by {0,...,dy, — 1} the problems are equivalent. However, more general sets with non-
consecutive numbers may also be defined. For instance, in the context of UHF television
broadcasting the set T, consists of a non-successive set of integers (see Hale [78]). In
case all sets Ty, are the same, the problem reduces to a T-coloring problem, which was
introduced by Hale [78|. He formally defined both the minimum order and minimum
span variants of the T-coloring problem, and connected them to the frequency assignment
problem.

Another way to represent the minimum distance constraints is the use of a compatibil-
ity matrix C' where the rows and columns correspond to the connections. The values
Cyw := dyy, denote the minimum separation distance of the frequencies. In case C,,, = 0,
the vertices v and w are not adjacent, and no constraint on the assigned frequencies ex-
ists. In the literature the constraints are called differently depending on the value C,.
We distinguish co-site, adjacent-site, co-channel, and adjacent-channel constraints. The
values C,, are called the co-site constraints, whereas the values C,, > 0 are the so-
called adjacent-site constraints. The terms co-channel and adjacent-channel constraints
are widely used to designate a difference between values C,,, = 1 (we are not allowed to
assign the same frequencies to both connections), and values C,, > 2 (we are not allowed
to assign adjacent channels to the connections), respectively.
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2.2.4 APPLICATION SPECIFIC PROPERTIES

To conclude this section we describe a number of application specific properties and

instances that are discussed in the literature. The large variety in practical settings does
not only lead to these different models for the FAP, but also to different instance types.

Some of the settings are:

Mobile telephone. This application differs from the standard FAP in the sense that one

of the endpoints of the connection is a fixed antenna, and the other endpoint is a
mobile phone. Each antenna covers a certain area, where it can pick up signals from
mobile phones. The frequency chosen for a certain connection is determined only by
use of the position of the antenna, and by the positions of the neighboring antennae
that cover part of the area simultaneously. Therefore, vertices in the constraint
graph do not correspond to connections, but to antennae, i.e., only one of the two
end vertices of a connection. Antennae are usually concentrated into cells. Each
cell contains about 4 antennae. At a site there are several cells present, usually
about 4 or 5. In the literature frequency restrictions are often presented by means
of the so-called re-use distances. If an antenna uses a frequency f, then there is a
large area around it with radius d° in which this frequency cannot be re-used by
some other antenna. In general a re-use distance d® is defined as the area around
an antenna where no frequencies in the interval [f — s, f + s] can be used by other
antennae. In terms of the constraint graph this means that two antennae v and w
within a geographical distance d* of each other can not be assigned frequencies at a
distance of s or smaller. Thus, there is an edge between v and w with a constraint
defined by frequency distance s. In most practical applications the re-use distances
d’ and d' are applied. The first denotes the co-channel interference. It induces a
lot of edges in the constraint graph with distance 1. The second is the adjacent
channel interference. It induces usually edges between antennae of the same site or
cell. Below we give a list of (real-life) instances known from the literature with their
specifics.

e The Philadelphia instances were among the first discussed in the literature [12].
The sites in Philadelphia were modeled on a hexagonal grid (see Figure 2.1,
page 28). Each site demands a high number of frequencies, the multiplic-
ity of the sites. Adjacent sites should not be admitted to use the same fre-
quencies, and antennae at the same site should not use adjacent frequencies
either. Variants of this structure use different re-use distances, for instance
(d°,d',d*) = (3,2,1) meaning that antennae in cells of distance 3 can use
the same frequency and so on (the distance between 2 adjacent cells is taken
as unit distance). The Philadelphia instances were used in many studies to
explore lower bounding techniques on the span of instances, see Section 2.4.

e Castelino, Hurley, and Stephens [33] discussed 6 computer generated realistic
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instances that have comparatively high distances in the constraint graph, and
are fairly large with respect to the number of antennae. For every antenna
50 frequencies are available. The objective is to minimize the interference (see
Section 2.6).

e Hao, Dorne, and Galinier [81] (see also [45, 46, 47, 80]) used instances from
the French National Research Center for Telecommunications (CNET). They
searched for interference free assignments with a minimal number of frequen-
cies. The number of frequencies needed varies from 8 to 30, whereas the number
of vertices in the constraint graph is at most 300 (¢, = 1 or 2).

e Borndorfer et al. [23, 24] studied also cellular phone instances from one of
the German telecommunication companies (E-Plus). The size of the instances
ranges from 267 vertices (20,164 edges) to 4,240 vertices (529,000 edges). The
number of available channels varies from 30 to 50. The objective is to minimize
the cumulative interference.

e Finally, Crisan and Miihlenbein [40] carried out experiments on 6 real world
examples with up to 5,500 vertices and 3.9 - 10° constraints. The objective is
to minimize the total interference.

Military applications. In military the usage of field phones leads to (in principle dy-
namic in time and place) FAPs. These FAPs have the property that each connec-
tion consists of two movable phones. To each connection we have to assign two
frequencies at a fixed distance of each other. Thus, all frequencies are given as com-
binations of two with this fixed distance. Instances are available in the EUCLID
CALMA (Combinatorial ALgorithms for Military Applications) project. In the
CALMA project researchers from England, France, and the Netherlands tested dif-
ferent combinatorial algorithms on the same set of frequency assignment problems.
The set contains minimum order problems (cf. Section 2.3), as well as minimum span
(cf. Section 2.4) and minimum interference problems (cf. Section 2.6). Eleven real-
life instances were provided by CELAR (Centre d’ELectronique de ’ARmement,
France), whereas a second set of 14 instances was made available by the research
group of Delft University of Technology. These GRAPH (Generating Radio Link
Frequency Assignment Problems Heuristically) instances were randomly generated
by Van Benthem [18|, and have the same characteristics as the CELAR instances.
Besides the minimum distance constraints, the instances also contain equality con-
straints, to model that two frequencies at a fixed distance have to be assigned to
the corresponding vertices. The distance is the same for all constraints and every
vertex is contained in exactly one equality constraint. Moreover, the domains are
constructed in such a way that for every frequency there exists only one ‘matching’
frequency. Altogether, these characteristics provide the possibility to reduce the
size of the instances to half the original size whenever that may be profitable. The
number of available frequencies for a vertex is 40 on average. We have to assign
one frequency to every vertex (¢, = 1). Results of the CALMA project as well as
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all test problems are available by anonymous ftp [32]. Aardal et al. [6] (extended
abstract published as [5]) presented an overview of the different approaches applied
in connection with the project (see also [183, 31]).

Radio and Television. These are applications where the standard FAP arises in a spe-
cial setting with regard to the instances, but essentially these instances resemble the
mobile phone instances. In [140] instances of this type, provided by a large Italian
broadcasting company are discussed.

Satellite communication. In Thuve [181] a frequency planning problem in satellite
communication is discussed. In this application both the transmitters and receivers
are ground terminals. They communicate with each other with the help of one or
more satellites. Each signal is first transmitted via an uplink to the satellite and next
transmitted by the satellite via a downlink to the receiving terminal. The uplink and
downlink frequency should be separated by a fixed distance. This distance, however,
is larger than the bandwidth, which implies that we only have to assign frequencies
to the uplink. Instead of assigning ¢, frequencies to connection v, we have to assign
N, consecutive frequencies in this problem. To avoid interference, every frequency
may be used only once. The objective is minimization of the cumulative interference
related to the single assignments.

2.3 MINIMUM ORDER FREQUENCY ASSIGNMENT

2.3.1 PROBLEM DEFINITION

In the minimum order frequency assignment problem (MO-FAP), we have to assign fre-
quencies in such a way that no unacceptable interference occurs, and the number of
different used frequencies is minimized. Formally we can describe the problem as follows:

MINIMUM ORDER FREQUENCY ASSIGNMENT (MO-FAP)

INSTANCE: Undirected graph G = (V, E), {v,v} € E, for all v € V, sets T,, C Z,
{v,w} € E, 0 € T,,, demand ¢, € Z*, domain subsets D, C Z* for all v € V, D =
Upev Dy, and positive integer K.

QUESTION: Does there exist an assignment of subsets f : V + 2” such that,

(i
(ii

(iii

F0)] = e,
f(v) C Dy,
F =gl & T for all {v,w} € E, f € f(v), § € f(w), v #wor [ # g, and

)-
)-
)-
). | Upev f)| <K 7

(iv
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The MO-FAP is the first frequency assignment problem that is discussed in the literature.
In most articles, Metzger [145] has received the credits for bringing the MO-FAP to the
attention of the Operations Research society (cf. Hale [78]|). This problem is a direct
generalization of the graph coloring problem.

GRAPH K-COLORABILITY (Garey and Johnson [62])

INSTANCE: Undirected graph G = (V, E), and positive integer K < |V|.

QUESTION: Is G K-colorable, i.e., does there exist a function f: V — {1,2,..., K} such
that f, # f, whenever {v,w} € E 7

The minimum number of colors needed to color the graph is denoted as x(G). Karp [110]
proved that GRAPH K-COLORABILITY is NP-complete for all K > 3. As a consequence
MO-FAP is N'P-complete as well. In Garey and Johnson [61], it is proved that approx-
imation of the optimal value within a factor 2 is N"P-complete as well. A generalization
of graph coloring (and restricted version of MO-FAP) is proposed in Hale [78], and is well
known as T-coloring.

MINIMUM ORDER T-COLORING (Hale [78])

INSTANCE: Undirected graph G = (V, E), set T C Z*, {v,w} € E, 0 € T, and positive
integer K.

QUESTION: Does there exist an assignment f : V — Z% such that, |f, — f,| € T for all
{v,w} € E and |Upey fo| < K 7

The minimum number of colors needed to color a graph G with respect to the set T is
denoted by xr(G). Cozzens and Roberts [39] proved that xr(G) = x(G): Let (f,)yev be
a coloring for G, and let ., = maxer ¢ + 1. Then the coloring (fmaxfy)vev is a feasible
T'-coloring.

As a consequence, research in this direction has been focused on the graph coloring prob-
lem instead of the T-coloring problem, or on the minimum span T-coloring problem
(cf. Section 2.4).

Another generalization of graph coloring (and restricted version of MO-FAP) is the List
Coloring problem.

MINIMUM ORDER LIST COLORING (Erdos, Rubin, and Taylor [53],Vizing [188])
INSTANCE: Undirected graph G = (V, F), subsets D, C Z* (lists) for all v € V, D =
Upev Dy, and positive integer K.

QUESTION: Does there exist an assignment of subsets f : V' + D such that,

(i). f(v) € Dy,

(ii). f(v) # f(w) for all {v,w} € E, and
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(iii). |Uperv f(v)| < K ?

The problem MINIMUM ORDER LIST COLORING is NP-complete, even for special
graphs for which the graph coloring problem can be solved in linear time, e.g. for in-
terval graphs [20].

For the general MO-FAP, an integer linear programming formulation has been presented
by Aardal et al. [1|. For every vertex v and available frequency f a binary variable is
introduced:

. . { 1 if frequency f € D, is assigned to vertex v
o 0 otherwise

Moreover, a binary variable y; denotes the use of frequency f:

{ 1 if frequency f € D is used
Yy = .
0 otherwise

Then, MO-FAP reads

min ny (2.1)

fen
s.t. Z Tyf = Cy YveV (2.2)
TEDy
Tyf + Ty < 1 V{v,w} € E, f € Dy,g € Dy :
(If =9l € Tow) A((f # 9) V (v # w)) (2.3)
Ty < Yy YoeV,feD, (2.4)
z,p € {0,1} YveV,feD, (2.5)
yr € {0,1} VfeD (2.6)

The constraints (2.2) model that ¢, frequencies have to be assigned to connection v € V.
The forbidden combinations of frequencies are modeled by constraints (2.3), whereas (2.4)
specifies that a y variable is set to one in case the corresponding frequency is used by the
assignment. The objective (2.1) simply sums the use of the available frequencies.

2.3.2 BENCHMARK INSTANCES

Benchmark instances for the MO-FAP are available via the CALMA project (see Sec-
tion 2.2.4). For the minimum order instances, an overview of the results is presented
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in Table 2.1. In all instances ¢, = 1 for all v € V. The average number of available
frequencies is 40.

2.3.3 LOWER BOUNDS AND EXACT METHODS

In the framework of the CALMA project, Aardal et al. [1| applied integer programming
techniques to the problem. They added cutting planes to the formulation (2.1)-(2.6).
The used cutting planes are well known valid inequalities of the related vertex packing
problem. Additional preprocessing techniques and specified branching strategies made
it possible to solve large instances with up to 916 vertices to optimality. For all the
tested instances, they proved the optimal values in this way. They compared the lower
bounds obtained through the linear programming (LP) approach with bounds based on
combinatorial arguments like cliques in the graph (cl.), the coloring number (col.) and
the generalized coloring (gcol.). In all 4 cases tested, the LP provided the best bound.

Hurkens and Tiourine [91] computed lower bounds on the minimum order of any assign-
ment. The lower bounds were derived through the detection of cliques in the constraint
graph. By combination of the knowledge about several cliques the clique lower bound can
be improved.

Finally, in Kolen, van Hoesel, and van der Wal [120] constraint satisfaction techniques
were applied to the MO-FAP. For all but two of the instances the optimal solution is
reported by combination of the lower and upper bounds generated by the technique.

2.3.4 HEURISTICS

Most heuristics for the MO-FAP were proposed in the framework of the CALMA project.
Besides their lower bounding techniques, Tiourine, Hurkens, and Lenstra [91, 184] also
applied several local search techniques, like simulated annealing (SA), tabu search (TS)
and variable depth search (VDS) to the instances (see also Tiourine [182]). For 6 out
of the 10 instances, they proved optimality combining the lower and upper bounds. A
group from King’s College London [25, 26| applied Tabu Search as well. In contrast
with the tabu search approach of [184], the neighborhood function is less sophisticated,
which explains the different performance of the algorithms. Moreover, in [26] a GEneral
NETwork algorithm (GENET) for constraint satisfaction problems is applied to the same
instances. They obtained optimal or near optimal solutions.

In the Master’s Thesis of Warners [192], a potential reduction (PR) algorithm for the
MO-FAP was introduced (see also Warners et al. [194, 193]). The algorithm is inspired
by Karmarkar’s interior point potential reduction approach to combinatorial optimiza-
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instance V| |E| lower bounds optimal upper bounds

1 [ [ [ [184] [120]  value [120] [184] [184] [184] [26] 126] [106] [194] [155] [41]

cl. col. geol. LP cl. CS  (range) CS SA VDS TS TS Gener GA PR PR ES
CELAR 01 916 5,548 12 14 14 16 18 20 -
coumoz 200 123 (1) (1) [0 [ (1) [w) w0 (1 [ (1) [w) [
CELAR 03 400 2,760 12 14 16 16
CELAR 04 680 3,967 - - - 46 -
CELAR 11 680 4,103 20 20 20 22 24 24 24 24 32 - -
GRAPH 01 200 1,134 - - - 18 - - 20
GRAPH 02 400 2,245 - - - 14 - - 16 16
GRAPH 08 680 3,757 - - - - 16 - 16-18 - - - 20 24 22 - 18 18 -
GRAPH 09 916 5,246 - - - - 18 - 22 22 22 28 -
GRAPH 14 916 4,638 - - - - - 8 10 - - 100 12 - 1410 -

TABLE 2.1: Minimum Order benchmark instances CALMA project. Framed values indicate the optimal value. Some of the results

are only mentioned in [183].
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tion problems (cf. [105, 108, 109]). Pasechnick [155] improved the performance of the
algorithm, and proved the optimal value of the instance GRAPH 14.

Kapsalis, Rayward-Smith and Smith [107] (see also [106]) applied a genetic algorithm to
the instances. The results are less satisfactory than of the other algorithms. Only for 2
instances they obtained the optimal solution. Crisan and Miihlenbein [41] applied evolu-
tionary search (ES) to MO-FAP. Evolutionary search consists of the repeatedly mutation
of a solution according to a certain mutation operator. They investigated the performance
of an evolutionary search algorithm, and analyzed the search space in order to obtain some
information on the difficulty of the instances. Computational results were carried out on
the CALMA instances. They concluded from the analysis that there is far less relation-
ship between two good frequency assignment plans, than there is for instance between two
good tours in the traveling salesman problem. This implies that local search techniques
will have more difficulties to reach the optimum for MO-FAP, than comparable heuristics
for the traveling salesman problem. Their computational results with evolutionary search
are comparable with the results of the tabu search, simulated annealing or variable depth
search in [184].

Finally, Cuppini [42] applied a genetic algorithm to the minimum order problem. In
contrast with other genetic algorithms for FAPs, an assignment is represented by |D|
genes of N = 3 ., c, elements (in most genetic algorithms |V'| genes of size |D,| are
used to represent an assignment). Computational results are only reported for a small
example.

2.3.5  CONCLUSIONS

Summarized, good heuristics for the MO-FAP seem to be most well known local search
techniques, as well as the potential reduction technique based on interior point meth-
ods. For the local search algorithms the quality of the solution heavily depends on the
neighborhood that is used. To guarantee optimality, lower bounding techniques based on
integer and quadratic programming can be applied successfully.

2.4 MINIMUM SPAN FREQUENCY ASSIGNMENT

2.4.1 PROBLEM DEFINITION

In the minimum span frequency assignment problem (MS-FAP), the problem is to assign
frequencies in such a way that no unacceptable interference occurs, and the difference
between the maximum and minimum used frequency, the span, is minimized. Formally
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we can describe the problem as follows:

MINIMUM SPAN FREQUENCY ASSIGNMENT (MS-FAP)

INSTANCE: Undirected graph G = (V, E), {v,v} € E, for all v € V, sets T,, C Z,
{v,w} € E, 0 € T, demand ¢, € Z*, domain subsets D, C Z* for allv € V, D =
Upev Dy, and positive integer K.

QUESTION: Does there exist an assignment of subsets f : V + 2” such that,

(i)- [f(v)] = cv,
(ii). f(v) C D,
(iii). |f — G| & Ty for all {v,w} € E, f € f(v), g € f(w), v#w or f # g, and

(iv). maxUyey f(v) —minUyey f(v) < K 7

In case D, = Z" and T, = {0}, the problems MO-FAP and MS-FAP are equivalent [78§].
In general, however, there exist examples in which neither a minimum order assignment
with minimum span, nor a minimum span assignment with minimum order exists. The
special case of minimum span T-coloring attracted a lot of attention in the literature, due
to its relation with both the coloring problem and the MS-FAP. Roberts [160] presented
a survey on T-coloring problems. More recently, theoretical results on T-coloring in the
context of the MS-FAP are obtained by Griggs and Liu [76] and Liu [133]. A survey
on frequency assignment problems with emphasis to the relation with graph theory by
Murphey, Pardalos and Resende will appear in [147].

Several other authors have investigated coloring problems related to MS-FAP. For in-
stance, Kubale [125] presented lower and upper bounds, and considered special cases for
a graph-coloring problem related to the MS-FAP in which we have to color each vertex v
with ¢, consecutive colors (interval coloring). Like in the MS-FAP the span of the assign-
ment must be minimized. In Kubale [126] complexity results are presented for another
minimum span coloring problem with forbidden colors (minimum span list coloring).

The interval T-coloring problem has been studied by De Werra and Gay [195]. In the
interval T-coloring problem we have to assign ¢, consecutive colors to v in such a way that
the assignment does not violate the sets T,,. This problem is equivalent to an asymmetric
MS-FAP, i.e. a FAP in which, instead of |f — g| & T, we have to satisfy f — g & T,
where T, C Z may also contain negative numbers, and is not necessarily symmetric with
respect to 0. De Werra and Gay [195] derived upper bounds on the minimum span of
the asymmetric MS-FAP. Moreover, they apply a heuristic based on the graph coloring
algorithms of Brélaz [28] on randomly generated instances (with in some cases Euclidean
distances).
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For the general case, an integer programming formulation similar to (2.1)-(2.6) reads

min - Zmax — Zmin (2.7)
s.t. Z Tyf = ¢y YoeV (2.8)
TEDy
Tyf + Ty < 1 V{v,w} € E, f € D,,g € D, :
(If =gl € Tow) N(f # 9) V (v # w)) (2.9)
Ty < Yy YoeV,feD, (2.10)
S vfeD (2.11)
Zmin < fmax = (fmax — f)ys Vf €D (2.12)
zyp € {0,1} YoeV, feD, (2.13)
yr € {0,1} VfeD (2.14)
Zmin, Zmax € LT (2.15)

where frax = maxyep f the maximum available frequency, and zmi, and zmax are two
additional variables for the minimum and maximum used frequency, respectively. The
constraints (2.11) and (2.12) guarantee that these variables are set to the right values.

Several other ways to model the objective can be applied. For instance, instead of the y
and z variables we can use binary variables [y and u:

I . { 1 if f € D is the smallest frequency that is used
/ 0 otherwise

and

" . { 1 if f € D is the largest frequency that is used
/ 0 otherwise

Then the objective (2.7) can be replaced by

min Zf(uf_lf)

feD

and the constraints (2.10)-(2.12) have to be replaced by

=1

feD
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ZUle

feD
Typ + 1, <1 YoeV, f,ge D, f<g
Tyf +ug <1 YoeV, f,ge D, f>g

In case D, = D for all v € V and D consists of consecutive numbers, minimization of the
span is equivalent with minimization of the maximum frequency used. This implies that
in that case the zmi, variable (or the [; variables) can be left out of the formulation.

2.4.2 BENCHMARK INSTANCES

(a) network structure (b) instance P1

FIGURE 2.1: Philadelphia instances.

To test proposed algorithms a number of benchmark instances are available. In 1973,
Anderson [12] introduced the Philadelphia instances. The original instance and certain
variants are widely used afterwards to substantiate algorithms and lower bounds for the
MS-FAP. The Philadelphia instances are characterized by 21 hexagons denoting the cells
of a cellular phone network around Philadelphia (see Figure 2.1(a)). Until recently, it was
common practice to model wireless phone networks as hexagonal cell systems. For each
cell, a demand ¢, is given. Figure 2.1(b) shows the demand for the original instance P1,
whereas Table 2.2 contains the demand vectors of all instances. In conformity with [186],
the instances are denoted by P1-P9. Some of them are also appointed in [92] as E3-E9.
In the basic model, interference of cells is characterized by a co-channel reuse distance
d. No interference occurs if and only if the centers of two cells have mutual distance
> d. In case the mutual distance is less than d (normalized by the radius of the cells),
it is not allowed to assign the same frequency to both cells. This pure co-channel case is
generalized by replacing the reuse distance d by a series of non-increasing values d°, . . ., d*
and corresponding forbidden sets 7° C ... C T*. The following relation holds:

Tyw = T’ whenever & < d,,, <d’',j € {1,...,k}
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where d,,, is the distance between the cell centers. For the Philadelphia instances,
the sets T7 are taken as 77 = {0,...,j}. For instance, P1 the values d°,...,d° are
2v/3,v/3,1,1,1,0. So, frequencies assigned to the same site should be separated by at
least 4 other frequencies, whereas frequencies assigned to adjacent sites should be at a
distance of at least 2, and frequencies assigned to a second and third ‘ring’ of cells should
still differ (see Figure 2.2). For the other instances, the reuse distances are given in
Table 2.2. The domains D, are simply Z*, in which case minimization of the span is
equivalent to minimization of the maximum used frequency. Note that, there is a differ-
ence of one between minimum span and maximum used frequency. Table 2.3 shows the
results obtained on the Philadelphia instances.

(a) P1, P3, P5, P7, P9 (b) P2, P4, P6

FIGURE 2.2: Reuse distances Philadelphia instances. The values denote the minimum
separation distance in relation to the central cell.

A second set of benchmark instances, that are not defined on a hexagonal grid, are
available via the CALMA project [32]. In Table 2.4 the characteristics and the results are
presented.

2.4.3 LOWER BOUNDS AND EXACT METHODS

A lot of research has been devoted to lower bounds on the span for the Philadelphia
instances. The first non-trivial lower bounds for the MS-FAP, with T,, = {0,...,k}
for some k£ € Z*, and D, = Z™", were presented by Gamst [60]. He applied several
lower bounds based on graph theory (GT) to instance P1. The most important bound of
Gamst is the clique bound. Let the vertices S C V form a complete subgraph (clique)
in the graph G. Let Ty, = mingy wyeps) |Tow| (with the assumption that T, is a set of
consecutive values). Then the span of any assignment, sp(G) > Tmin(D_,cg ¢ — 1). Two
more sophisticated bounds are given in [60]. Although, Gamst only computed the lower
bounds for P1, Table 2.3 shows the best lower bound for all instances.
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instance

demand vector ¢,

reuse distances

P1 (E3)
P2 (E4)
P3 (E5)
P4 (E6)

P6

P7 (E8)

P8

P9 (E9)

8
8

,25,8,8,8,15,18,52, 77, 28,13, 15, 31, 15, 36, 57, 28, 8, 10, 13, 8)
,25,8,8,8,15,18,52, 77, 28,13, 15, 31, 15, 36, 57, 28, 8, 10, 13, 8)
5,5,5,8,12,25,30, 25, 30, 40, 40, 45, 20, 30, 25, 15, 15, 30, 20, 20, 25)
5,5,5,8,12,25,30, 25, 30, 40, 40, 45, 20, 30, 25, 15, 15, 30, 20, 20, 25)

20,20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20)

8,25,8,8,8,15, 18,52, 77, 28,13, 15, 31, 15, 36, 57, 28, 8, 10, 13, 8)

(
(
(
(
P5 (E7) (20,20,20,20,20,20,20,20,20,20,20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20)
(
(16, 50, 16, 16, 16, 30, 36, 104, 154, 56, 26, 30, 62, 30, 72, 114, 56, 16, 20, 26, 16)
(
(

32,100, 32, 32, 32, 60, 72, 208, 308, 112, 52, 60, 124, 60, 144, 228, 112, 32, 40, 52, 32)

(2v/3,v3,1,1,1,0)
(V7,4/3,1,1,1,0)
(2v/3,v3,1,1,1,0)
(V7,4/3,1,1,1,0)
(2v/3,v3,1,1,1,0)
(V7,4/3,1,1,1,0)
(2v/3,v3,1,1,1,0)
(2v/3,2,1,1,1,0)
(2v/3,v3,1,1,1,0)

TABLE 2.2: Characteristics Philadelphia benchmark instances.

instance lower bounds optimal upper bounds

[60] 195, 96] [92,173]  [179] value [92] 92| (92| [186] [173] [171] [179]  [179] [191]

GT TSP div. GT (range) Best Seq. TS SA GA Seq. GSP1 GSP2 LS
P1 413 [426] | 426] [ 426] 426 447 428 428 |426]| [426] 459 440 450 432
P2 413 [426] | 426] [ 426] 426 475 429 438 426 - 446 436 444 -
P3 245 - 257 252 257 284 269 260 258 [257] 282 291 273 263
P4 245  [252] [ 252] [ 252] 252 268 257 259 253 [252] 268 273 268 -
P5 239 - 239 177 239 250 240 | 239] [239 - - - - -
P6 139 177 178 177 178188 230 188 200 198 - - - - -
P7 830 - 855 855  855-856 894 858 858 856 - - - - -
P8 449 - 524 427 524-527 592 535 546 527 - - - - -
P9 1,664 - 1,713 1,713 1,713-1,724 1,800 1,724 1,724 - - - - - -

TABLE 2.3: Results Philadelphia benchmark instances. Framed values indicate the optimal value.
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instance  characteristics lower bounds upper bounds
V| |E| [1] [184] [120] [184] [25] [26] [194] [155]
LP QP CS TS TS GENET PR PR
CELAR 05 400 2,598 792 792 792 792* 792 792 792 792
GRAPH 03 200 1,134 - - 380 380 - - - 380
GRAPH 04 400 2,244 - - 394 394 - - - 394
GRAPH 10 680 3,907 - - 394 394 - - 394 394

TABLE 2.4: Minimum Span benchmark instances CALMA project. *Instead of tabu
search, simulated annealing is applied to this instance.

Only few researchers have succeeded in finding better bounds. The best were obtained by
Janssen and Kilakos [95, 96| in their study of the minimum span problem from a polyhedral
point of view. The traveling salesman problem (TSP) on a related graph G’ can be seen
as a relaxation of the MS-FAP, which means that every lower bound for the TSP, is a
lower bound for the corresponding MS-FAP as well. The relation between MS-FAP and
TSP was first observed by Raychaudhuri [158], and used by Roberts [160] and Smith and
Hurley [172]. Let G' be a weighted complete graph with same vertex set as G. Let the
weights wy,,; = 0 if {v;,v;} € F, and wy,y; = [Ty, | + 1 if {v;,v;} € E. Let H(G") denote
the length of the shortest Hamiltonian path in G’. Then sp(G) > H(G'). Since, the
minimum spanning tree S(G’) is a lower bound for the shortest Hamiltonian path, it also
holds that sp(G) > S(G'). Janssen and Kilakos relaxed the TSP formulation to the edge
cover polytope and study the polyhedral structure of the dual of this problem. In addition,
they also study the polyhedral structure of the dual of the TSP linear programming
relaxation. For the most studied Philadelphia problem, P1, they prove a lower bound of
426. Combined with an upper bound of 426 this implies that this problem is solved [95].
In [97], they also studied the polyhedral structure of the dual of the tile covers formulation
for the MS-FAP.

Lower bounds based on subgraphs and preprocessing ideas are presented by Smith and
Hurley [172] (see also [173]). Every lower bound / optimal span on a subgraph of G
provides a lower bound on the span of G itself. Preprocessing ideas incorporate the
deletion of vertices with (almost) the same neighborhood, and the deletion of vertices
for which they can prove that there is always an assignment possible within the lower
bound spectrum. Recently, Allen, Smith, and Hurley [11]| derived new lower bounds by
integer programming techniques. They extended the integer programming formulation for
the Hamiltonian path problem, with additional constraints and variables that represent
the MI-FAP. Application of integer programming techniques, like branch-and-bound and
Lagrangean relaxation resulted in improved lower bounds for a small instance.

Other lower bounds are derived by Sung and Wong [179] and Tcha, Chung, and Choi [180).
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In [179] a new lower bound for the MS-FAP is presented, based on similar arguments as
the bounds of Gamst. For most instances, the lower bound is as strong as the TSP bound.
In [180] one of the lower bounds of Gamst [60] is extended. On a variant of instance P1
they prove that the new lower bound indeed can improve the lower bound of Gamst.

Finally, for the CALMA benchmark instances (cf. Table 2.4), researchers applied the
same methods as for the MO-FAP. Hurkens and Tiourine [91] applied the clique lower
bound techniques, whereas Aardal et al. [1] applied branch-and-cut based on the formu-
lation (2.7)-(2.15) to instance CELAR 05. It turned out that the CALMA instances are
quite simple to solve to optimality. In fact, in Kolen, van Hoesel, and van der Wal [120],
optimality results are reported for all instances via constraint satisfaction (CS) techniques.

The same formulation (2.7)-(2.15) is the topic of a study by Giortzis and Turner [65].
They applied branch-and-bound with a branching priority rule to an instances with 58
vertices (¢, = 4) and 29 available frequencies. They proved that the optimal solution
needs 16 frequencies.

2.4.4 HEURISTICS

The first heuristics for the MS-FAP (e.g., Philadelphia instances) are proposed as early
as the 1970s. In Box [27] and Zoellner and Beall [197] the first constructive heuristics are
introduced. The frequencies are assigned to the vertices according to some order of the
vertices. In Sivarajan, McEliece and Ketchum [171] several variants of the algorithm are
tested on 13 Philadelphia instances. Quite a lot of the variants turned out to be trivial.
For the remaining instances, P1-P4 the results are reported in Table 2.3. None of the 8
tested variants outperformed the other ones.

In Smith, Hurley and Thiel [173], the derived lower bounds are combined with a heuristic.
The heuristic first assigns a subgraph in the graph, and afterwards tries to extend the
assignment to a complete assignment with the same span. If such an assignment is not
possible they extend the subgraph with an additional vertex, and repeat the procedure.
Optimal solutions are presented for three Philadelphia instances. In [92], the same authors
describe the software system FASoft, a planning tool for frequency assignment based on
these results. In this paper they describe several sequential assignment algorithms (like
those by Sivarajan, McEliece and Ketchum [171], as well as improvement heuristics like
tabu search (TS), simulated annealing (SA) and genetic algorithms (GA). For the 48
variants of sequential assignment algorithms the best one is reported in Table 2.3. For
the genetic algorithms no results are reported in [92|. Valenzuela, Hurley and Smith [186]
applied a GA to these instances. Each assignment is represented by a permutation of
the vertices. An assignment is obtained by assigning frequencies to the vertices in a
greedy way according to the permutation. They tested the algorithm on the Philadelphia
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instances P1-P8. In three cases the optimal solution was found.

Besides their lower bound, Sung and Wong [179] also described a heuristic that provides
an optimal solution in a special case. They prove that their sequential packing algorithm
provides an optimal span in case only co-channel constraints are taking into account, and
the hexagonal cell network contains at most 3 stripes, i.e., it can be represented by 3
rows of hexagonal cells. For cases with adjacent channel constraints, the algorithm is
generalized. Two versions of the algorithm, GSP1 and GSP2, are tested on the instances
P1-P4 (see Table 2.3) and some easier variants.

Wang and Rushforth [191] discuss a local search method for the MS-FAP. First the vertices
are assigned frequencies according to some sequence. Next, they exchange the assignment
of two vertices as long as the objective improves. In case no improvement is possible
anymore, also non-deterioration is allowed to escape from local minima. They tested
their algorithm on two Philadelphia instances (see Table 2.3) and on instances presented
in Kim and Kim [114]. In [114] a two phase heuristic is introduced to solve the minimum
span problem. They assume a hexagonal grid and use patterns consisting of a number
of cells to which we can assign the same frequency. The algorithm is tested on randomly
generated instances.

In the context of the minimum span problem, we also should mention the work of Lan-
fear [130]. In his comprehensive overview of frequency assignment, four algorithms for
the MS-FAP are proposed: an exact search algorithm (branch-and-bound), a simulated
annealing algorithm, a tabu search algorithm and an algorithm based on sequencing the
vertices are described. The simulated annealing algorithm can only be applied to in-
stances with constraints restricted to co-channel and adjacent-channel interference (i.e.,
dyw € {1,2} for all {v,w} € E).

For the CALMA instances, all heuristics performed equally, and found the optimal solu-
tion. Tabu search was applied by Tiourine, Hurkens, and Lenstra [91, 184]. In [26], TS
and GENET results are reported for CELAR 05. The potential reduction (PR) method
by Warners [192] was used to solve both CELAR 05 and GRAPH 10. Pasechnik [155] also
applied potential reduction to the minimum span problems. Next to it, he solved the
minimum order problems as minimum span instances. For GRAPH 01 he could prove that
the minimal span equals 408, whereas for the other instances lower and upper bounds
were derived.

2.4.5 CONCLUSIONS

Summarized, for the MS-FAP without specific domains, good lower bounds are provided
by several authors. The lower bounds are tested extensively on the Philadelphia instances.
The heuristic techniques proposed for these problems seem to be less accurate in providing
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optimal solutions in all cases. In cases where specific domains are given, the benchmark
instances are less challenging. In all cases the best solution is found with the applied
heuristics, whereas also lower bounds are available to guarantee optimality. More difficult
benchmark instances are necessary to distinguish among the heuristics.

2.5 MINIMUM BLOCKING FREQUENCY ASSIGNMENT

2.5.1 PROBLEM DEFINITION

In case all assignments contain some unacceptable interference, we can decide to find
a partial assignment that minimizes the overall blocking probability. In the minimum
blocking frequency assignment problem (MB-FAP), the problem is to assign frequencies
in such a way that no unacceptable interference occurs and the overall blocking probability
of the network is minimized. More formally the problem is defined

MINIMUM BLOCKING FREQUENCY ASSIGNMENT (MB-FAP)

INSTANCE: Undirected graph G = (V, E), {v,v} € E, for all v € V, sets T,,, C Z,
{v,w} € E, 0 € T,,, demand ¢, € Z", domain subsets D, C Z* for all v € V, D =
Uyev Dy, non-increasing blocking function b, : Z§ — Z¢ for all v € V', and positive integer
K.

QUESTION: Does there exist an assignment of subsets f : V + 2P such that,

(i
(ii

(ii

)- [f()] < eo,
)- f(v) € Dy,
). |f = §| & T for all {v,w} € E, f € f(v),g€ f(w),v+#wor f+#g, and
(1¥). Yoo bIF)) < K 7
The special case in which ¢, =1, b,(0) = 1, b,(1) =0, |D,| =1, D, = Dy, for allv,w € V,
and T, = {0} for all {v,w} € E, is equivalent with the maximum independent set prob-

lem. As a consequence, MB-FAP is N'P-complete in general. An integer programming
formulation (with nonlinear objective) for this problem reads

min Y b,(m,) (2.16)

veEV
s.t. my, = Z Ty < Gy YoeV (2.17)
FeDy
Tyf + Ty < 1 V{v,w} € E,f € D,,g € D, :
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(If =gl € Tw) N((f#g)V(v#w))  (218)
z,p € {0,1} YvoeV,feD, (2.19)

The constraints (2.17) model that at most ¢, frequencies should be assigned to v € V. The
value m,, is only used to simplify the objective (2.16) that minimizes the overall blocking
probability. The objective (2.16) is a generalized version of the objective of Chang and
Kim [36]. They model the MB-FAP as a non-linear combinatorial optimization problem.
Their objective function really represents the blocking probability. In conformity with
Chang and Kim, let A\, denote the traffic demand in Erlang for cell v, and m,, the number
of assigned channels. Then the cell blocking probability of cell v is given by the Erlang
B formula as

B(Aym,) = (Z o ) ot

k=0

The weighted average blocking probability for a vertex v is then given by
by, (my,) = wy,B(\,, my)

with w, = A/ > ,cv
strictly decreasing and convex in m,, we can linearize the objective function by the intro-

duction of coefficients vy, := B(\,, m) — B(\,,m — 1) < 0, and the binary variables y,,,
denoting

A, the traffic weighting factor. Since, the function B(\,,m,) is

{ 1 if at least m < ¢, frequencies are assigned to v € V
Yom = .
0 otherwise

Then, the objective (2.16) reads
min Z Wy (1 + Z avmyvm> (2.20)
veV m=1

and the constraint (2.17) reads

czvyvm = Z Typ < ¢y YoeV (2.21)
m=1

fEDy

Note that, 4y, = 1 implies y,,_1 = 1, since the function B(\,,m,) is strictly convex,
which implies that a,, strictly increases over m.
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The same objective is used by Mathar and Mattfeldt [141]. In all remaining articles the
objective is simplified to b,(m) = ¢, — m, i.e., the unsatisfied demand is minimized, or
equivalently the number of assigned frequencies is maximized. Therefore, this problem is
also called the maximum service frequency assignment problem.

2.5.2 LOWER BOUNDS AND EXACT METHODS

Chang and Kim [36] first linearize (2.16) to (2.20). Next, they generate a number of
patterns (i.e., a pair (S, f), subset S C V and a frequency f € D that can be assigned
without interference to all the vertices v € S simultaneously). Then, the problem can
be remodeled in terms of these patterns, and Lagrangean Relaxation is applied to the
new formulation. Furthermore, they describe a grade-of-service (GoS) updating heuristic.
They tested their algorithm on randomly generated instances based on a 7 x 7 hexagonal
grid network.

Besides the co-channel and adjacent-channel constraints, represented by (2.18), Fischetti
et al. [54] also take into account that the overall interference affecting a cell has to be
limited to a value L,

Z Z PoufgTug S L+ M(l - l'vf) Yv € Vv,f S DU (222)

ueV geDu

where py,f, is the interference level of the combination (v, f) and (u, g), and M is a big
constant with respect to the interference levels. In case frequency f € D, is selected the
total level of interference should be below L, in case f € D, is not selected the constraint
is redundant. The value L corresponds with the signal-to-noise ratio and is for example
set to 0.125687 (9 dB). In [54] only co-channel and adjacent-channel interference is taken
into account. Let I, > 0 denote the real interference level by use of the same frequency
for v and u, and let NFD denote the Net Filter Discriminator, a reduction factor for
adjacent frequencies. Then (2.22) reduces to

[vu
ze; (wauf + m(xuf_l + xuf+1)> <SL+M(l—zy) YweV,feD, (2.23)

In [54] the problem is solved with Branch and Cut. Their instances are obtained from
CSELT (a research laboratory connected to TIM, one of the Italian mobile radio system
managers) and contain up to 203 vertices. Not all instances can be solved to optimality.
The same instances have been studied by Mannino and Sassano [140]. They present an
enumeration scheme, within the context of a core search. They assign first the (difficult)
core of the problem, and afterwards extend the assignment to the complete problem, with-
out additional interference. Their algorithm outperforms the Branch and Cut approach
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of Fischetti et al. on all instances, both in time and optimality results. In [140], the adap-
tive core search algorithm is also tested on several instances from an Italian broadcasting
company. The overall interference (2.22) is not taken into account in these instances.

The problem of minimizing the unsatisfied demand is also studied by Jaumard, Mar-
cotte, Meyer and Vovor [101] (see also [99, 102]). Besides the demand ¢,, they also take
into account a minimum number of required frequencies c,, resulting in the additional
constraint

> my>g, Yo eV (2.24)

They compare 3 different integer programming formulations, one equivalent to (2.16)-
(2.19) and the formulation of Mehrotra and Trick [143] for the graph coloring problem,
and two set-covering formulations. They compare the formulations with respect to the
quality of the linear programming relaxation. For the best formulation, one of the set-
covering formulations, the integrality gap remains significant. They use column generation
techniques to solve the linear programming relaxation, and present an efficient branching
scheme to be used within a branch and cut framework. They report results on two
medium-sized problems of Bell Mobility.

In Giortzis and Turner [65], 5 instances with 4 to 58 vertices and in between 5 and
29 available frequencies are solved with standard branch-and-bound. To improve the
performance of the algorithm, they applied a special branching priority on the variables

Tyf-

Finally, the MB-FAP is also the topic of the papers by Kazantzakis, Demestichas and
Anagnostou [112] and Rouskas, Kazantzakis and Anagnostou [163]. They present an
integer linear programming formulation similar to (2.16)-(2.19) for the problem. They
solve the linear programming relaxation and add inequalities that the objective has to
be integral. However, in case the objective value is integral, the solution can still be
fractional. The search for an integral solution is done via an exhaustive search of the
solution space of an integer quadratic program representing all integral solutions with the
given objective value. Computational results are reported on a small test problem.

2.5.3 HEURISTICS

Only one heuristic approach is known for the MB-FAP. Mathar and Mattfeldt [141] applied
simulated annealing to the MB-FAP with the same objective as Chang and Kim [36].
They only took into account the co-channel interference. The quality of their solutions is
examined through the use of special network structures for which optimal solutions can
be computed efficiently.
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2.5.4 CONCLUSIONS

Concluding, most approaches to solve the MB-FAP deal with exact solution techniques.
This direction is inspired by the relation with the maximum independent set problem
which belongs to the standard problems in combinatorial optimization, and therefore,
has been the topic of many studies. Although benchmark instances are not available,
the results show that reasonable large real-life instances can be solved to optimality with
integer programming techniques and search algorithms in which combinatorial arguments
are incorporated.

2.6 MINIMUM INTERFERENCE FREQUENCY ASSIGNMENT

2.6.1 PROBLEM DEFINITION

Besides the approaches in which the maximum interference level is minimized, another
approach is given by the minimization of the total sum of interference levels. In the
minimum interference frequency assignment problem (MI-FAP), we have to assign fre-
quencies from a limited number of available frequencies in such a way that the total sum
of weighted interference is minimized. Formally, the problem can be defined as

MINIMUM INTERFERENCE FREQUENCY ASSIGNMENT

INSTANCE: Undirected graph G = (V, E), {v,v} € E, for all v € V| sets T, C Z,
{v,w} € E, 0 € T, demand ¢, € Z*, domain subsets D, C Z* for all v € V, D =
Uyey Dy, penalty values pyy,ry € Z%, for all {v,w} € E, f € D,, g € D, and positive

integer K.
QUESTION: Does there exist an assignment of subsets f : V + 2 such that,

(i) [f(v)] = cv,
(ii). f(v) C D,, and
@i). > D P f—gl€T) <K ?

{vw}eE fef(v),geg9(w)
(vAw)V(f#9)

Here, 6(A) is the Kronecker delta function which is equal to one in case the logical
condition A is true and zero otherwise.

In many cases the MI-FAP is used as a subroutine to find the minimum span of a FAP.
In this special case we would like to find an interference-free assignment to the vertices,
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i.e., K = 0. This problem is also known as the FEASIBILITY FREQUENCY ASSIGNMENT

problem.

FEASIBILITY FREQUENCY ASSIGNMENT

INSTANCE: Undirected graph G = (V, E), {v,v} € E, for all v € V, sets T,, C Z,
{v,w} € E, 0 € Ty, demand ¢, € Z", and domain subsets D, C Z* for all v € V,

D= UvGVDv-
QUESTION: Does there exist an assignment of subsets f : V + 2 such that,

(D). |f ()] = ¢,
(ii). f(v) € D,, and

(ii). |f — gl & Tow for all {v,w} € B, f € f(v), g€ f(w),v#wor f#47

An integer programming formulation for the MI-FAP can be given by the introduction of
new binary variables z,f,,, for all {v,w} € E, f € D,, g € D,,, with |f — g| € T,,,, and

either v # w or f # ¢:

Z'uwfg

_ {1 if both 2, = 1 and z,,, = 1
0 otherwise

Then MI-FAP reads

min Z Z Puow fglvwfg

{v,w}eE fEDy,gEDy,
‘f*g‘Eva/\(U#wvf#Q)
S.t. Z Tyf = Cy YveV
fE€Dy
Typf + Twg < 1+ Zyurg V{v,w} € E, f € D,,g € D, :
(If =9l € Tow) AN((f #9) V (v# w))
z,p € {0,1} YveV,feD,
Zowrg € {0,1} V{v,w} € E, f € D,,g € D, :

(If =gl € Tw) AN(f # 9) V (v # w))

(2.29)

Constraints (2.27) model the fact that both f and g can be assigned to v and w if and
only if z,,f, is equal to one, which implies an additional penalty in the objective (2.25).

Since we assume Dy, > 0, the z variables equal 0 in case only one of the z variables
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in (2.27) is set to 1. In case py,fy < 0, the constraints

Zowfg < Tyf V{v,w} € E, f € D,,g € D, : (2.30)
(If =gl € Tw)AN((f#9V (vAw)  (2.31)

have to be added to the formulation.

Another way to model (2.27) is by the introduction of the variables z,,, for all {v, w} € E,
f e D,, g€ D, and the constraints

Z Zowfg = Cwlyf V{v,w} € E, f € D, (2.32)

g€ Dy

In case z,5 = 0, then the constraints (2.32) enforce that all the variables z,,, are set to
0 as well. In case x,; = 1, the constraints (2.32) guarantee that exactly ¢, variables 2y,
are set to 1; the variables 2,y with x,,, = 1. The model with the constraints (2.32) (and
¢, = 1 is the topic of Chapter 3.

A simplified integer linear programming formulation for the case ¢, = 1 is presented by
Aardal et al. [1]. They also assume that the interference pyy, 1, is equal for all | f —g| € Tyy.
Instead of z, ., they introduce a new binary variable z,, for every edge {v,w} € F

Z’U’LU

_J 1 if the frequencies selected for v and w violate T,
0 otherwise

Then, MI-FAP reads as

min Z Dow Zow (2.33)
{vw}eE

st Y my=1 Yo eV (2.34)
fED,
Typf + Tug < 1+ 2y V{v,w} € E,f € Dy,g € Dy : |f — g| € Ty (2.35)
zyp € {0,1} YoeV,feD, (2.36)
Zpw € {0,1} V{v,w} € FE (2.37)

2.6.2 BENCHMARK INSTANCES

In connection with the CALMA project 11 benchmark instances are available. For the
instances CELAR 09, CELAR 10, GRAPH 07, and GRAPH 12 not only combinations of fre-
quencies are penalized, but also single frequency assignments. For a number of vertices,
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there exists a preferred frequency f*, which may only be deselected against a high penalty
¢y. More general preference between frequencies can be modeled with penalties g, for all
v eV, f € D, Inthat case the objective (2.33) reads

Z DowZvw + Z Z QufTyf (238)

{v,w}eE VEV fED,

Table 2.5 shows the results of the applied methods. For the sake of completeness, the
results of Chapter 4 about the tree decomposition (TD) method are included as well.

2.6.3 LOWER BOUNDS AND EXACT METHODS

Aardal et al. [1] applied their Branch and Cut framework for MO-FAP to solve these
instances as well. Unfortunately, they were not able to solve any of these instances. For
two instances they obtained a non-trivial, but poor, lower bound in this way. Tiourine,
Hurkens, and Lenstra [91, 184| formulated a relaxation of the problem as a quadratic
program. The quadratic program (QP) was solved by preprocessing and a branch-and-
bound algorithm. For the two CELAR instances with vertex penalties g,, they succeeded
to obtain fairly good lower bounds. For CELAR 06, De Givry, Verfaillie, and Schiex [66]
proved through lower bounding techniques for constraint optimization problems that the
value of the best known solution (see Section 2.6.4) is optimal. The proof of optimality
was carried out by Russian Doll Search [187] on a computer network of 40 SPARC 4
workstations, and took about 3 days computation time. In Chapter 4 more optimal
solutions / lower bounds are computed via a tree decomposition approach.

2.6.4 HEURISTICS

In Tiourine, Hurkens, and Lenstra [91, 184] also Simulated Annealing and Variable Depth
Search are performed on the CELAR instances with varying success. Warners [192, 194|
and Pasechnik [155] applied their potential reduction approach to MI-FAP without great
success.

A standard genetic algorithm was proposed by Kapsalis, Rayward-Smith and Smith [107]
(see also [106]). In Kolen [118] a genetic algorithm with optimized crossover is proposed
to solve the MI-FAP. Instead of a standard crossover, the crossover routine generates the
best possible child of two parents. To generate this child, we have to solve an MI-FAP
with |D,| = 2 for all v € V. This problem can be solved to optimality with the polyhedral
results of Chapter 3 (see also [121]). Applied to the instances of the CALMA project, the
best known results were obtained in this way.
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instance characteristics lower bounds optimal upper bounds
\4 |E| [1]  [184] [66] Ch. 4 value [118] [106] [184] [184]  [194] [155]
LP QP CS TD (range) GA GA SA VDS PR PR
CELAR 06 200 1,322 5 - (3389 | 3389 3,389 3,389 3,456 3,671 3,532 4,539 4,564
CELAR 07 400 2,865 5 - - 300,000 300,000 - 343,592 343,592 1,670,572 567,949 344,103 - 831,926
CELAR 08 916 5,744 - - - 150 150 - 262 262 612 276 299 - 533
CELAR 09 680 4,103 - 14,969 - [ 15,571 15,571 15,571 15,599 [15,571 15,573 15,775 15,770
CELAR 10 680 4,103 - 31,204 - | 31,516 31,516 31,516 31,517 \31,516\ \31,516\ 32,460 31,517
GRAPH 05 200 1,134 - - - 221 221 221 293 223 - - 452

GRAPH 06 400 2,170 - - - 4,123 16,020 4,189 - - 15,047
GRAPH 07 400 2,170 - - - 4,324 5,990 - - 14,183

GRAPH 11 680 3,757 - - - 3,016 3,016 - 3,080 3,080 30,312 3,513 - - 14,692
GRAPH 12 680 4,017 - - - [ 11,827 11,827 11,827 15,208 [11,827 - - 17,372
GRAPH 13 916 5,273 - - - 9914 9,914 - 10,110 10,110 49,205 11,130 - - 41,784

TABLE 2.5: Minimum Interference benchmark instances CALMA project. Framed values indicate the optimal value.
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The instances of the CALMA project are not the only problems that have inspired re-
searchers to develop algorithms for the MI-FAP. However, only the CALMA instances can
be considered as benchmark problems, since for all other sets of instances it holds that
only a single group of researchers has investigated them. All research on these sets has
been carried out in the direction of heuristic methods. Especially, genetic algorithms and
tabu search seem to be very popular for the MI-FAP. Tabu Search is applied by Castelino,
Hurley, and Stephens [33] to find an assignment with minimal unweighted interference,
i.e., ppw = 1 for all {v,w} € E. To verify their results on large instances, they compare
them with a Genetic Algorithm and a steepest descent heuristic. Computational results
are reported for instances with up to 726 vertices and 75,306 edges. The number of avail-
able frequencies is 50 in all cases. In Castelino and Stephens [34, 35] tabu thresholding [72]
is applied on the same instances. In [35], surrogate constraints [67] are added to the tabu
thresholding approach.

Hao, Dorne and Galinier [81] also used tabu search to solve realistic instances of the French
National Research Center for Telecommunications (CNET) with at most 600 transmitters.
The minimum interference problem is solved as a subroutine to minimize the span of the
assignment. An assignment is represented in such a way that all co-site constraints are
satisfied. The length of the tabu-list is not constant, but varies during the search. Dorne
and Hao [45, 46] also applied evolutionary search on a number of CNET instances with
up to 300 vertices and ¢, € {2,3,4}. Again they would like to minimize the span of the
assignment, by solving repeatedly MI-FAPs. In [45] they use a mutation operator that
concentrates on the change of conflicting frequencies, whereas in [46] they compare ways
to deal with the co-site constraints. In [80] the same authors investigate the performance
of the crossover operator in a genetic algorithm / evolutionary search.

Other genetic algorithms are given by [40, 113, 129, 150]. Crisan and Miihlenbein [40] ap-
plied a genetic algorithm to MI-FAP with tailor-made crossover and mutation operators.
They solved in this way real-life instances with among 670 and 5500 transmitters. In Lai
and Coghill [129], another genetic algorithm is presented to solve the minimum interfer-
ence problem. Computational results are given on 2 instances. Also Ngo and Li [150] have
used a genetic algorithm to solve MI-FAP. They use a special binary encoding that deals
with the demand ¢, for all v € V| and the co-site constraints. In [174], Smith presented
a genetic algorithm as well. In this case the crossover is used to reduce the adjacent
and co-channel interference, whereas the mutation operator is used to reduce the co-site
interference. Finally, genetic algorithms are applied by Kim et al. [113] to obtain interfer-
ence free assignments. They tested several crossover and mutation operators for a couple
of Philadelphia instances in which the span of available frequencies is fixed to the best
lower bound of Gamst [60]. These instances were introduced by Sivrajan, McEliece and
Ketchum [171]. For 5 out of the 8 instances, it is known that there exist interference-free
assignments with span equal to the lower bound.
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Funabiki and Takefuji [59] proposed a parallel neural network to solve the same instances.
They used the Hysterses McCulloch-Pitts neuron model, instead of a Hopfield network,
to solve the feasibility problem. This neural network guarantees to converge to a local
optimum. With the use of some additional heuristics they hope that their approach
converts to a global optimum, which is true in a substantial percentage of the cases. The
first neural network approach to the feasibility FAP is due to Kunz [128], who applied
a Hopfield network to the problem. Lochtie and Mehler [135, 134] also applied a neural
network approach to the MI-FAP. In [135] only co-channel interference has been taken
into account, whereas in [134] the results are extended to incorporate adjacent channel
interference as well. Computational results are reported for a real-life 58 cell instance.
Another neural network is used by Smith and Palaniswami [176]. They presented a non-
linear integer programming formulation for the problem, and applied both a Hopfield and a
self-organized neural network to the problem. They compared their results with simulated
annealing and steepest descent on a number of Philadelphia instances by Kunz [128]. In
contrast with the standard MI-FAP, the weight of the interference depends on the distance
between the frequencies. The penalty is inversely proportional to the difference between
the assigned frequencies.

The same cost function is applied by Young [196], who presented a local search framework.
It basically consists of a frequency change neighborhood. A local search approach is also
presented by Park and Lee [154]. They adjusted a local search algorithm for the k-coloring
problem to the feasibility FAP. As neighborhood they apply color changing (other color
for one vertex) and color interchange (interchange two colors of two vertices). Again the
feasibility problem is solved as a subroutine to minimize in the end the span. Smith, Kim
and Sargent [175|, describe a simulated annealing approach, applied to a real life instance
of a point-to-point wireless network in Jakarta, Indonesia.

Finally, Borndorfer et al. [23] extend the graph coloring heuristics of Brélaz [28] and
Costa [38] to the MI-FAP to solve instances of size in between 267 and 4,240 vertices.
Combined with local search, the DSATUR heuristic yield to the best solutions. They
compared their algorithm with T-coloring heuristics and a heuristic based on a minimum
cost flow algorithm. This last heuristic is also the topic of [24], in which the same authors
present an orientation model for the FAP. This formulation forms the basis for a two stage
heuristic in which an outer and inner optimization problem are solved iteratively. The
outer optimization problem decides for each edge in the graph which adjacent vertex is
assigned the higher frequency (orientation). The inner optimization problem is to find an
assignment that respects the orientation. The inner optimization problem can be viewed
as a minimum cost flow problem.
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2.7. OTHER MODELS

2.6.5 CONCLUSIONS

In conclusion, for the MI-FAP many heuristic procedures have been proposed by many
different research groups in the context of a wide variety of applications. Among the
heuristics the most promising is the Genetic Algorithm of Kolen [118], that outperforms
other heuristics on the CALMA benchmark instances. A disadvantage of this technique
however is that the constraint graph should not be too large or should have a low den-
sity, since otherwise the optimal crossover cannot be applied anymore [119]. For very
large networks less sophisticated heuristics should be applied. Besides the proposed al-
gorithms like tabu search, local search algorithms combined with disturbance of locally
optimal solutions seems to be a promising alternative. For instance, the assignments for
the instances discussed by Castelino, Hurley and Stephens [33] can be improved in this
way [119].

The lack of lower bounds and exact solution techniques for the MI-FAP causes that for
most methods the quality of the solutions is unknown. In view of the size of several
instances, it is acceptable to suppose that no exact solution technique will ever solve
these instances. However, it should be possible to derive lower bounds for these instances,
and hopefully solve the smaller instances to optimality. Especially, for the benchmark
instances of the CALMA project it would worthwhile to know the optimal solutions, or
second best non-trivial lower bounds. The research presented in the Chapters 3 and 4 is
motivated by this conclusion.

2.7 OTHER MODELS

Besides the models described in the previous subsections, other models have been proposed
by several authors in the literature. We mention only a few of these approaches.

An attractive approach is to use multiple objectives that combine characteristics of the
models MO-FAP, MS-FAP, MB-FAP, and MI-FAP. For example, in Duque-Antén, Kunz
and Riiber [50] as well as in Al-Khaled [10] simulated annealing is applied to a FAP
with cost function a linear combination of minimization of the interference, the blocking
probability, and the span. Knilmann and Quellmalz [117] applied simulated annealing
with cost function a convex combination of the mean interference and the maximum
interference obtained by the assignment (see also Quellmalz, Kndlmann and Miiller [157]).
An important question that remains unanswered in these approaches is the choice of the
weights for the different objectives. In Walser [190] the minimum order and minimum
span objectives are combined. First, the minimum order is determined. Next, the span
is minimized.
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Another approach is the use of n-ary constraints to model the FAP. In varying arrange-
ments Allen, Bater, Cohen, Dunkin, and Jeavons [16, 48, 49, 103] devoted a series of
papers to the fact that the use of binary constraints to model the FAP is too restrictive.
They present examples in which better assignments are obtained whenever n-ary con-
straints, n > 3 are taken into account (see also Fischetti et al. [54]). The theory of the
related constraint satisfaction problem in which n-ary constraints have to be handled as
well could direct how to deal with these constraints.

In Malesinska [137, 138] and Malesinska and Panconesi [139], the combination of fixed
and dynamic channel assignment is studied. They studied the case in which the cells can
be partitioned in two parts, one set of transmitters that needs a fixed channel assignment
scheme, and one set of transmitters that can handle dynamic channel assignment schemes.
They present results on the complexity and the approximation of the performance of the
dynamic part of the network, given a plan for the fixed part.

The variant of MS-FAP, in which we have a cyclic channel distance is studied by Van
den Heuvel, Leese and Shepherd [85], Shepherd [167] and McDiarmid [142]. In the cyclic
channel assignment problem, the frequency spectrum is supposed to be cyclic (i.e., |f —
Gleyeiic = min{|f — g|,m — | f — g|}, where m is the available span). For a special class of
graphs, McDiarmid [142] proves that the problem can be solve in O(]V[*). In [85, 167],
theoretical results for infinite triangular lattices, infinite square lattices, and infinite line
lattices are derived.

Finally, in Funabiki and Nishikawa [58], a FAP related to satellite communication is
discussed. The problem in this case is related to the quadratic assignment problem and
solved with a neural network approach. Another satellite communication problem is
discussed by Thuve [181|. He modeled the problem as a set partitioning problem, and
applied a heuristic solution algorithm.

2.8 (CONCLUSIONS

In this survey, we have investigated the approaches proposed in recent years to solve a
wide variety of frequency assignment problems. We have limited ourselves to fixed channel
assignment schemes, since for these schemes it is possible to value assignments off-line by
techniques from operations research and artificial intelligence. Moreover, fixed channel
assignment problems can serve as bounds for the performance of dynamic and hybrid
assignment schemes.

The approaches to the FAP can be classified in four categories: minimum order, minimum
span, minimum blocking probability, and minimum cumulative interference. Depending
on the problem, exact or heuristic methods have been proposed with varying success.
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It seem that the minimum order problem can be solved nowadays quite efficiently, by
combining lower bounding and heuristics. Probably the most studied FAP is the minimum
span problem. Especially lower bounds have been proposed by many researchers. The
best lower bounds are obtained by use of the relation with the traveling salesman problem.
Heuristic methods for this problem are less far developed. At this moment no heuristics
are available that solve all benchmark instances to optimality.

For the minimum blocking problem, the relation with the maximum independent set
problem has directed the research to exact solution methods. Real-life instances can be
solved with integer programming and efficient search techniques. Finally, the minimum
interference problem is discussed. From an exact point of view, this problem seems to be
the most difficult version of the FAP. Two exact methods have been applied with limited
success on the benchmark instances. Most research has been carried out in the field of
heuristics. Variants of genetic and tabu search algorithms have been applied to a wide
variety of applications. The quality of the solutions however is still unknown, due to the
lack of lower bounds.
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3. THE PARTIAL CONSTRAINT
SATISFACTION FORMULATION

One of the conclusions of the previous chapter was the lack of good lower bounding tech-
niques for the minimum interference frequency assignment problem (MI-FAP). In contrast
with for instance the minimum order FAP and minimum span FAP, no combinatorial
lower bounds are available for the MI-FAP. For the 11 benchmark instances available in
the CALMA project only one has been solved to optimality with a very time consuming
constraint satisfaction approach (cf. Section 2.6). By the NP-hardness of the MI-FAP
we cannot expect to find algorithms that solve the MI-FAP in polynomial time. Never-
theless, this chapter as well as the next chapter are devoted to exact solution methods for
the MI-FAP. The goal of both chapters is to determine which exact methods can be used
to solve MI-FAPs, or second best to bound the optimal value of real-life instances from
below. At the same time good lower bounds / optimal solutions serve as a benchmark for
the wide variety of heuristics proposed in the literature for the MI-FAP. In this chapter we
formulate the MI-FAP as a partial constraint satisfaction problem with binary relations
(PCSP), and analyze the problem from a polyhedral point of view.

For many combinatorial optimization problems, the most successful exact methods are
based on the study of the polytope described by a (mixed) integer programming formu-
lation (cf. Nemhauser and Wolsey [148] or Schrijver [166] for a thorough discussion of
polyhedral theory, and Aardal and Van Hoesel |2, 3| for a comprehensive overview of the
successful application of polyhedral combinatorics). Therefore, we study the PCSP from
a polyhedral point of view.

The sequel of this chapter is organized as follows. In Section 3.1 we introduce the PCSP,
describe its relation with the frequency assignment problem, and prove that the problem
is NP-hard in general. In Section 3.2 we formulate the partial constraint satisfaction
problem as a binary linear programming problem, we determine the dimension of the
problem, and we describe the trivial facet defining valid inequalities. The polyhedral study
of the PCSP polytope is continued in Section 3.3 with the proof of two lifting theorems.
The theorems are used to derive two classes of facets for the PCSP in Section 3.4. The
corresponding separation problems are discussed in Section 3.5. The relation between
the PCSP and the boolean quadric polytope is the topic of Section 3.6. Computational
results in Section 3.7 conclude this chapter. Roughly, the Sections 3.1-3.4, and the first
part of Section 3.7 are published in [121].
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3.1 THE PARTIAL CONSTRAINT SATISFACTION PROBLEM

Many problems in combinatorial optimization and artificial intelligence can be modeled as
constraint satisfaction problems. A constraint satisfaction problem (CSP) consists of (i)
a set of variables, (ii) a set of possible values for each variable, the so-called domain, and
(iii) a set of constraints defined on the variables. Each constraint consists of an (implicit)
list of forbidden combinations of values for a set of variables. The objective is to find
an assignment of values from the domains to the variables such that all constraints are
satisfied. In a binary CSP every constraint restricts only combinations of values for sets
of 2 variables. Alternatively, the constraints in a binary CSP can be represented by edges
of a constraint graph, in which each vertex represents a variable. In general CSPs, the
constraints can be represented by hyperedges in a hypergraph. We refer to Kumar [127]
and Tsang [185] for more information about CSPs.

A CSP is called over-constrained, if there does not exist an assignment of values to the
variables that satisfies all constraints. In this case, every solution satisfies only a number of
the constraints. To make a preference among these solutions we need an objective function
that assigns a value to every solution. A partial constraint satisfaction problem (PCSP)
involves the finding of an assignment of values to variables such that a general objective
function is maximized (or minimized). It is assumed that the objective function can be
decomposed along the variables and constraints, i.e., the objective can be written as the
cumulative of functions that involve the assignment of only one variable or two adjacent
variables. In the mazimal constraint satisfaction problem (MAX CSP) for example, the
objective is to find a solution which satisfies the maximum number of constraints. We
refer to Freuder and Wallace [57] for an introduction on the PCSP, and exact solution
methods from artificial intelligence. In Wallace and Freuder [189] an overview of heuristic
methods to solve the PCSP is given.

In this chapter we focus on the PCSP with binary constraints. The objective function
penalizes both certain values, and certain binary combinations of values, and our goal is to
minimize the penalty assigned to a solution. A PCSP is defined by a so-called constraint
graph G = (V, E). Each vertex v € V in this graph represents a decision variable, that
can obtain a value from a given domain D,. Each value has a penalty attached to it.
Moreover, an edge {v,w} € E in the graph indicates that some combinations of domain
elements of v and w are also penalized. The objective of the PCSP is to select a domain
element for each vertex such that the total penalty incurred is minimized. More formally,

PARTIAL CONSTRAINT SATISFACTION
INSTANCE: Undirected graph G = (V, E), finite domain set D, for allv € V', D = U,ey D,
for all v € V vertex-penalty function @, : D, — Z7, for all {v,w} € E edge-penalty

20



3.1. THE PARTIAL CONSTRAINT SATISFACTION PROBLEM

function Py, : D, x D, — 7™, and positive integer K.
QUESTION: Does there exist an assignment (d,,),ey, with

ZQv(dv)+ Z va(dv,dw)SK ?

veV {v,w}eFE

The frequency assignment problem (FAP) in which we would like to minimize the total
interference (MI-FAP) belongs to the class of PCSPs. For example, in the MI-FAP in
which we have to assign a frequency to each transceiver in a mobile telephone network,
a vertex corresponds to a transceiver. The domain of a vertex is the set of frequencies
that can be assigned to that transceiver. An edge indicates that communication from
one transceiver may interfere with communication from the other transceiver. In most
applications interference occurs whenever the distance between the frequencies assigned
to the transceivers is less than a given threshold depending on the two transceivers. The
penalty of an edge reflects the priority with which interference should be avoided, whereas
the penalty on a vertex can be seen as a level of preference for the frequencies.

The Maximum Satisfiability Problem (MAX SAT) can be reformulated as a partial con-
straint satisfaction problem, which implies that PCSP is NP-complete. In a MAX SAT
problem m clauses ¢y, ..., ¢, involving the boolean variables zy,...,x, are given. Each
clause contains a number of literals, where a literal is either a variable or the negation of a
variable. The problem is to assign a value true or false to each variable so as to maximize
the number of clauses that are satisfied. A clause is satisfied if at least one literal in it
has the value true. Formally defined,

MAXIMUM SATISFIABILITY

INSTANCE: Set X = {x1,...,2,} of n variables, collection C' = {¢y, ..., ¢y} of m clauses
over X, and positive integer k < |C.

QUESTION: Is there a truth assignment for X that simultaneously satisfies at least k of
the clauses in C' 7

To model MAX SAT as a PCSP, we introduce a vertex v, for every clause ¢;, 7 =1,...,m,
and a vertex v, for every variable z;, j = 1,...,n. The domain of v, contains an element
for each literal in the clause ¢;; let us denote this element by the literal itself. The domain
of vy, is given by {true, false}. There is an edge between a vertex v, representing clause
c;, and a vertex v,, representing variable z; if and only if z; € ¢; or 7; € ¢ (z; is
the negation of z;). If x; € ¢;, then the penalty of the combination of domain values
(z;, false) is equal to 1. If Z; € ¢;, then the penalty of the combination of domain values
(Z;,true) is equal to 1. All other penalties are zero. The optimal value of this partial
constraint satisfaction problem is K if and only if the optimal value of the corresponding
MAX SAT is k := m — K. Furthermore, an optimal solution of the MAX SAT is given by
the domain values selected for the vertices corresponding to the variables in the optimal
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solution of the partial constraint satisfaction problem. This shows that the two problems
are equivalent. As a consequence, we can state the following theorem:

THEOREM 3.1
PARTIAL CONSTRAINT SATISFACTION is NP-complete.

Since MAX 2 SAT (each clause contains at most 2 literals) is N/P-hard (Garey, Johnson
and Stockmeyer [63]) a partial constraint satisfaction problem with |D,| = 2 for allv € V/
is already NP-hard.

COROLLARY 3.2
PARTIAL CONSTRAINT SATISFACTION with |D,| = 2 for all v € V' is NP-complete.

For the MAX 2 SAT problem a more compact PCSP formulation is possible. We have a
vertex v,, corresponding to every variable z;, and the domain is given by {true, false}.
There is an edge {v,,, v, } if and only if there exists a clause containing a literal corre-
sponding to x; and a literal corresponding to z;. The penalty corresponding to a combi-
nation of values for the variables x; and z; is equal to the number of clauses containing
literals corresponding to both variables for which the given combination does not satisfy
the clause.

The satisfiability problem (SAT), in which the question is whether there is an assignment
of the variables for which all clauses are satisfied, can also be formulated as a partial
constraint satisfaction problem as follows. There is one vertex for every clause and an
edge if the two corresponding clauses contain a conflicting literal corresponding to the
same variable. A combination {z;,7;} with z; € C; and T; € Cj has penalty one. All
combinations corresponding to nonconflicting literals have penalty zero. A problem in-
stance is satisfiable if and only if the corresponding partial constraint satisfaction problem
instance has optimal value zero.

The PCSP can be viewed as a linearization of the boolean quadric polytope (cf. Pad-
berg [152]) and is related to the transitive packing polytope (cf. Miiller and Schulz [146])
as well. Section 3.6 is devoted to the relation between the PCSP and the boolean quadric

polytope.

3.2 FORMULATION, DIMENSION AND TRIVIAL FACETS

To formulate the partial constraint satisfaction problem as a {0, 1}-programming problem
we introduce the following binary variables for all v € V', d, € D,

1 ifd, € D, is selected
y(v, dv) = {

0 otherwise
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and for all {v,w} € FE, d, € D,, d,, € D,

Z(v7 d'U) w? dw)

_ { 1 if (dy,dy) € D, x D, is selected
0 otherwise

In the sequel, let ¢(v,d,) and p(v, d,, w,d,) denote Qy(d,) and Py ({dy, dw}), respec-
tively.

A {0, 1}-programming formulation of the partial constraint satisfaction problem is given
by

min Z Z Z p(v, dy, w,dy)z(v, dy, w, dy)

{v,w}€eE dyEDy dwEDw

+3 3" qv,dy)y(v, d) (3.1)

vEV dy €Dy
st Y y(vdy) =1 Yo eV (3.2)
d‘UeDU
Z 2(v, dy, w, dy) = y(v, d,) V{v,w} € E,d, € D, (3.3)
y(v,d,) € {0,1} Vv e V,d, € D, (3.4)
2(v, dy, w, dy,) € {0,1} V{v,w} € E,d, € D,,d, € D,, (3.5)

Constraints (3.2) model the fact that exactly one value in the domain of a vertex should
be selected. Constraints (3.3) enforce that the combination of values selected for an edge
should be consistent with the values selected for the vertices of that edge.

We define the partial constraint satisfaction polytope X (PCSP) to be the convex hull of
all {0, 1}-vectors (y, z) satisfying (3.2) and (3.3), i.e.,

X(PCSP) =conv{(y,2) : (y, z) satisfies (3.2)-(3.5) }

Although the y-variables can be eliminated from the formulation, we believe that it is
more convenient to keep them in the formulation. Note that, once the y-variables are
{0,1} the z-variables are forced to be integral.

The dimension of the partial constraint satisfaction polytope is given by Theorem 3.3.

THEOREM 3.3
The dimension of X (PCSP), defined by (G = (V, E), Dy) is

DD =1+ > (D] = )(IDu] = 1) (3.6)

veV {v,w}eFE
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PROOF. We will first prove that X(PCSP) satisfies [V| + >, 1ep(|Do| + [Dwl — 1)
(number of variables minus dimension) linearly independent equalities, which implies
that (3.6) is an upper bound for the dimension. These linear independent equalities
are obtained by taking the |V/| constraints (3.2), and for every edge {v,w} all but one
(= 2 tpwyen(IDo] + [Dy| — 1)) of the constraints (3.3). Note that the constraints (3.3)
for a given edge {v,w} can be viewed as the constraints of a transportation problem
with suppliers indicated by (v,d,) with supply y(v,d,) and clients indicated by (w,d,)
with demand y(w, d,). Thus, deleting one of these constraints results in a set of linear
independent equalities.

Next, we will prove that (3.6) is a lower bound for the dimension by supplying 1 +
Yvev (Dol = 1) + 320, yen (D] — 1)(|Dw| — 1) affinely independent feasible solutions.
Note that once the y-variables are given, the z-variables are uniquely determined by
constraints (3.3). To define these solutions we arbitrarily select a value df € D,. A first
solution is given by y(v,d’) =1 for all v € V.

Next, we construct »° . (|D,| — 1) solutions which differ from the first solution in only
one domain element: for each v € V, d, € D, \ {d}}, we define the solution y(v,d,) = 1,
y(w,d;) =1 for all w # v. Lastly, we construct > ., 1cp(|Do| —1)(|Dw| — 1) solutions
which differ from the first solution in two domain elements of adjacent vertices: for each
{v,w} € E, d, € D, \ {d:}, and d,, € D, \ {d%}, we define the solution y(v,d,) =
y(w,dy) = 1 and y(u,d) = 1 for all uw € V' \ {v,w}. Note that all these solutions are
affinely independent. |

The following theorem shows that many of the trivial inequalities are facet defining.

THEOREM 3.4
For every {v,w} € E, |D,| > 2, |Dy| > 2, d, € D,, dy, € D,, the inequality

2(v, dy, w,dy) >0 (3.7)
defines a facet for X (PCSP).

PROOF. Among the affinely independent solutions in the proof of the previous theorem,
all solutions but one satisfy (3.7) with equality. |

3.3 LIFTING THEOREMS

In this section we will discuss two types of lifting. Combining them enables us to lift
a facet defining inequality of a particular PCSP to facet defining inequalities for an ex-
tended PCSP. First, we show that a facet defining inequality remains facet defining if the
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constraint graph is extended with vertices having one domain element (see Figure 3.1).
Second, we show how a facet defining inequality can be extended if the domain of a vertex
is extended with copies of other domain elements (see Figure 3.2).

-D’U2 sz DUS = {d}

D’U1 Dv4 = D’Ul ‘D'U4

Da, Dy,
7wz < my defines a facet mx < 7y defines a facet

FIGURE 3.1: Extension of the graph

If X(PCSP) is defined by (G = (V, E), Dy), let X,(PCSP) denote the PCSP-polytope
defined by the extended graph on G, = (VU {u}, EUd(u)) where d(u) is the set of edges
incident to u, with the same domains for v € V' and |D,| = 1. Moreover, let z = (y, 2)
denote the solution vector.

THEOREM 3.5

Let X(PCSP) be defined by (G = (V,E),Dy). If tx < g is a facet defining inequality
for X(PCSP), then mx < 7y is a facet defining inequality for X,(PCSP).

PROOF. The polytope X (PCSP) is a projection of X,(PCSP) and both have the same
dimension (see Theorem 3.3). |

Next, we show how a facet defining inequality of a PCSP defined by the constraint graph
G = (V, E) and a set of domains D,,, v € V, can be lifted into a facet defining inequality
for the extended PCSP defined by the same constraint graph but different set of domains
D}, v eV, where D} = D,, for allv € V, v # u, and D} = D, U{d]} (see Figure 3.2).
Theorem 3.8 states that if we give each variable related to d, the same coefficient as
the corresponding variable of an arbitrarily selected domain element d, € D,, then the
new inequality is facet defining for the extended problem whenever the original inequality
is facet defining for the original problem. In order to prove Theorem 3.8 we need the
following two lemmas.

LEMMA 3.6
LetueV,d, e D,. If

Bu, dy)y(u,dy) + Z Z v(v, dy)z(u, dy,v,dy) >0 (3.8)

vEN(u) dy €Dy

is a facet defining inequality for X (PCSP), then the inequality describes a trivial facet.
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D D +
v o dy €D, wddid g g p,
D’Ul Dv4 > Dvl Dv4
Dvs Dvs
mx < mo defines a facet 7z + T (u, dy) T (u, df ) < mo

defines a facet

FIGURE 3.2: Extension of the domain

PROOF. Let df = argming,cp, v(v,d,) for all v € N(u). Adding v(v,d) times the
model equality y(u, dy) = 4 p. 2(u, dy,v,dy) = 0 to (3.8) for all v € N(u) results in the
inequality

Blu,d) + Y (o, dy) | yluwd)+ D D (v dy) = (v, d)] 2w, dy,v,dy) > 0

VEN (u) VEN (u) dy €Dy

or using y(u,dy) = >, ,cp , 2(u,dy, V', dy) for a specific v’ € N(u)

ﬂ(uadu)_F Z ’Y(U:d;k;) Z Z(u:duavladv’)

vEN (u) d, €D,

+ Z Z [’7(”7 dv) - 7(”? d;)] z(u, dua v, dv) >0 (39)

vEN (u) dy€Dy

The validity of (3.8) implies that 5(u,du) + > ey 7(v;dy) > 0. Thus all coefficients
of (3.9) are non-negative. Furthermore, at least one coefficient is positive, otherwise (3.9)
is a linear combination of the model equalities. Hence, the face defined by (3.8) is a subset
of a trivial facet and thus, it can only be a trivial facet. [

In the sequel, for a given (u,d,), we use z,(u,d,) and 7,(u,d,) as the restriction of
respectively the vectors x and 7 to the components related to (u,d,), i.e., the variables
y(u,d,) and z(u,d,,v,d,) for all v € N(u).

LEMMA 3.7

Let mx < my define a non-trivial facet of X (PCSP). Then for each (u,d,), there are
exactly 1+ 3, v, (|Do| —1) solutions with y(u, d,) = 1, 7z = mo, and for which x,(u, d,,)
are affinely independent.
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PROOF. Let ', ..., 27 be p = dim X (PCSP) affinely independent solutions which satisfy
mr < my with equality. Moreover, let 2',..., 2% be ¢ solutions with y(u,d,) = 1 which
are affinely independent with respect to the components y(u, d,) and z(u, d,, v, d,) for all
v € N(u), d, € D, (zl(u,dy),...,2%(u,d,) are affinely independent). Then we have to
prove that ¢ =1+3% y(,) (|IDs| —1). Since rh(u,dy),...,zi(u,d,) all satisfy y(u,d,) =1
these vectors are also linearly independent. So, it is sufficient to prove that the matrix
[ (u, du), -y wf(u, dy)] with 1+ 37 o [Dy| rows has rank 1437 v (I1Dy] — 1). Or,
equivalently, it is sufficient to prove that the dimension of the row nullspace is |N(u)|
(number of rows minus the rank of the matrix).

First, we prove that the dimension of the row nullspace is at least |N(u)|. Every solution
satisfies the model equalities y(u,d,) — >, cp 2(u,dy,v,d,) = 0 for all v € N(u). So,
if a¥ = (BY,7") corresponds to the coefficients in the left hand side of the equality for
v € N(u), then a’zi(u,d,) =0 for i =1,...,q. Moreover, a’, for v € N(u) are linearly
independent, which implies that the dimension of the row nullspace is at least | N (u)].

Now, suppose the dimension of the row nullspace is at least |N(u)| + 1. Then there
exists another non-zero vector a = (3,v) with azi(u,d,) = 0 for all i = 1,...,q which
is linearly independent from the vectors o¥, v € N(u). For j = ¢+ 1,...,p, either
v (u,dy) = 27 (u,dy,v,d,) =0 or 22 (u,d,) is affinely dependent of ) (u,d,), ..., z%(u,d,).
Hence, these solutions also satisfy ax,(u,d,) = 0. As a consequence, the facet described
by mx = g is a subset of the face described by ax,(u,d,) =0, i.e. F :={x € X(PCSP):
mx =my} C {x € X(PCSP) : az,(u,d,) = 0} =: F,. If equality does not hold, then
(since mx < my describes a facet) F, = X(PCSP) and ax,(u,d,) = 0 is an implicit
equality. However, « is linearly independent from the implicit equalities involving (u, d,,).
Hence F, = F. From Nemhauser and Wolsey [148] (Theorem 3.6, page 91) it follows that
either ax,(u,d,) > 0 or —ax,(u,d,) > 0 is a valid inequality for X (PCSP) defining the
same facet as mx < my. By Lemma 3.6, however, az,(u,d,) > 0 (or —ax,(u,d,) > 0)
describes a trivial facet, a contradiction. Consequently, the dimension of the row nullspace
is exactly |V (u)]. |

Now, we can prove the main theorem of this chapter.

THEOREM 3.8

Let X(PCSP) be defined by (G = (V, E),Dy). Let u € V, d, € D,. Define X*(PCSP)
by (G = (V,E),Dy;) with D} = D,, v € V\{u}, D} = D, u{d}}. If rx < m is a
non-trivial facet defining inequality for X (PCSP), then

T+ (u, dy)ze (u, df) < m (3.10)
is facet defining for X *(PCSP).

PROOF. First, note that dim X*(PCSP) = dim X(PCSP) + 1+ 3y, (I1Do] — 1).

57



3. THE PARTIAL CONSTRAINT SATISFACTION FORMULATION

Let the solutions z',...,z”, where p = dim X (PCSP), be a set of affinely independent
solutions which satisfy 7z < my with equality. It follows from Lemma 3.7 that there exist
1+ 3 enw)(|Dy| — 1) solutions which satisfy y(u,d,) = 1 and for which the restrictions
to (u,d,) are affinely independent. Replace in these solutions d, by d;. Then these new
solutions together with the old solutions are affinely independent. |

3.4 NON-TRIVIAL CLASSES OF FACETS

In this section we introduce two classes of facet defining inequalities for the PCSP. The
facets are characterized by an induced subgraph G[C] = (C, E[C]) of the constraint graph
G = (V,E). For every v € C the domain D, is partitioned into A, and B,. Domain
values in A, can be seen as copies of one another (i.e., their related variables have the
same coefficients in the inequality); likewise the domain values in B,. Therefore, the facet-
proofs for these classes can be restricted to G[C] and domains of size 2 (for all v € C),
which suffices according to the theorems of Section 3.3.

For notational convenience, we introduce

y(v, D)) = ylv,d,)

dyeD)

and

2(v, D), w,D.)) = Z Z 2(v, dy, w, dy,)

dy€D!, dy€eD!,

for D! C D, and D! C D,,.

3.4.1 THE CYCLE INEQUALITIES

First, we introduce the cycle inequalities. Let the induced subgraph G[C| = (C, E[C]) of
G = (V,E) be a chordless k-cycle (i.e. C = {v; :i=1,...,k}, E[C] = {{vi,vi1} 1 0
L.,k —1}} U {{vk,v1}}), then a k-cycle inequality, £ > 3, is given by

k—1
Z ('Z(Uia Avia Vi+1, Avi+1) + Z(Uiﬂ va Vit1, B’Ui+1))
1=1
+Z(U07A’anvk;B’uk)+Z(U07BvoavkaA’uk) S E—1

(3.11)
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'R &)

b b

6’)—-— «—"\Q GMG

<2 <3

FIGURE 3.3: Cycle Inequalities

Figure 3.3 shows a 3-cycle inequality and a 4-cycle inequality. The a-dot represents the
A-subset of the domain; the b-dot represents the B-subset of the domain. A line between
two dots indicates that the coefficient corresponding to the indicated subsets is equal to
one.

THEOREM 3.9
The k-cycle inequalities, k > 3, are valid and facet defining for X (PCSP).

PRrROOF. By Theorem 3.5 and Theorem 3.8, it is sufficient to prove that the k-cycle
inequalities are valid and facet defining for X (PCSP) defined by the k-cycle constraint
graph and A,, = {a,,}, By, = {by,}, i =1,... k.

Consider an arbitrary solution x. Each edge of the cycle in the constraint graph con-
tributes at most one to the left hand side of (3.11). So, if at least one edge does not con-
tribute to the left hand side, (3.11) is satisfied by z. If all edges {v;, v; 41} fori =1,...,k—1
contribute 1 to the left hand side, then either a,, is selected, for i = 1,...,k or b,, is se-
lected, for i = 1,..., k. But, then the edge {vy,v;} does not contribute to the left hand
side. Hence, x satisfies (3.11).

A k-cycle inequality is satisfied with equality if exactly one edge of the cycle does not
contribute 1 to the left hand side. The k solutions (j € {1,...,k}) in which a,, is selected
for 1 <i < jand b, for j +1 < i <k satisfy (3.11) with equality. Also, the & solutions
(7 € {1,...,k}) in which b,, is selected for 1 < i < j and a,, for j+1 < i < k satisfy (3.11)
with equality. These 2k = dim X (PCSP) solutions are affinely independent. [
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3. THE PARTIAL CONSTRAINT SATISFACTION FORMULATION

3.4.2 THE CLIQUE-CYCLE INEQUALITIES

A second class of facet defining valid inequalities are the clique-cycle inequalities. Let
the induced subgraph G[C] = (C, E[C]) be a k—clique, then a k—clique-cycle inequality,
k > 3, is defined by

ZZ(UZ',AU“WH, D,,.,) + ZZ’(% By, v, By,) >k —1 (3.12)

i=1 1<j

with k£ + 1 = 1. Note that, the inequality (3.12) is equivalent to

ZQ(U,AU) + Z 2(v, By, w, By) >k — 1

veld {v,w}eE[C]

Figure 3.4 shows clique-cycle inequalities for £k = 3 and k£ = 4.

FIGURE 3.4: Clique-Cycle Inequalities

It should be noted that for a subset of 3 vertices of the constraint graph the clique-cycle
inequality and the cycle inequality describe the same facet.

THEOREM 3.10
The k-clique-cycle inequalities, k > 3, are valid and facet defining for X (PCSP).

PROOF. By Theorem 3.5 and Theorem 3.8, it is sufficient to prove that the k-clique-cycle
inequalities are facet defining for X (PCSP) defined by the k-clique constraint graph and
Ay, ={ay}, By, = {by,},i=1,...,k.

Consider an arbitrary solution z. Whenever a,, is selected for some 7, then the edge
{vi,viz1} (or {vg,v1} whenever i = k) contributes exactly one to the left hand side
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3.4. NON-TRIVIAL CLASSES OF FACETS

of (3.12), independent of the element selected for v;y;. If both b,, and b,; are selected,
then the edge {v;,v;} contributes exactly one to the left hand side of (3.12). Hence, if
b, is selected for p vertices (and consequently a, is selected for k — p vertices), the total

contribution to the left hand side is (}) + (k —p) > k — 1 for all integer p.

A clique-cycle inequality is satisfied with equality, if b, is selected for either 1 or 2 vertices.

These (]f) + (g) = k+ 3k(k — 1) = dim X (PCSP) solutions are affinely independent. M

We can extend this result to (7, k)-clique-cycle inequalities. Let the induced subgraph
G[S] be a k-clique, then a (v, k)-clique-cycle inequality, k > 3, 1 <y < k — 1 is defined
by

Y yw A+ Y 2, Byw,By) > vk — Sy(y+1) (3.13)

vel {v,w}eE[C]

>3y — y(v+1) >4y — y(y+1)

FIGURE 3.5: (v, k)-Clique-Cycle Inequalities

For v = 1, inequality (3.13) is equivalent with (3.12). Figure 3.5 shows (v, k)-clique-cycle
inequalities for £ = 3, and k = 4.
THEOREM 3.11

The (v, k)-clique-cycle inequalities, k > 3, are valid for 1 < v < k — 1, and facet defining
for1 <~y <k—2 for X(PCSP).

PROOF. First, we prove validity. Let C' be a clique of £ verticesin G, and let 1 < v < k—1.
According to Theorem 3.5 and Theorem 3.8 it suffices to prove the theorem for G = G|[C],
A, ={a,}, and B, = {b,} for all v € C. Consider a solution x of X(PCSP). Let b, be

selected for p vertices, and consequently a, for k — p vertices. Then

Y oy, A)+ Y z(v,Byw,B,) = y(k—p)+3pp—1)
veC {v,w}eE[C]

= yk+1ipP—(v+1)p (3.14)
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3. THE PARTIAL CONSTRAINT SATISFACTION FORMULATION

The function f(p) = $p* — (y+ 5)p attains its minimum at p = v+ 3. Since p is restricted
to integral values, the minimum is attained for p € {7, 4+ 1}. Substitution of p by v or
v+11in (3.14) gives the right hand side of (3.13), which proves that the (v, k)-clique-cycle

inequality is valid X (PCSP).

We continue with the proof that (3.13) defines a facet. A solution satisfies (3.13) at
equality if and only if p € {v,7 + 1}. Consider the case v = k — 1. If vy = k — 1, then
the solutions in which b, is selected k — 1 or k times satisfy (3.13) at equality. Hence,
in total £ + 1 solutions satisfy (3.13) at equality, whereas the dimension of X (PCSP) is
k+3k(k—1) > k+1for k> 3. So, in case v =k — 1, (3.13) does not define a facet.

Forvy € {1,...,k—2}, we prove that the face of X (PCSP) defined by (3.13) has dimension
dim X (PCSP)—1 by the identification of dim X (PC'SP)—1 linearly independent vectors
in the face. We construct k vectors r; (i = 1,...,k), and 3k(k — 1) — 1 vectors s;;
(t,j=1,...,k, j>1i,and (i,j) # (1,2)) that (i) are linearly independent, and (ii) are in
the face of X (PCSP) defined by the (v, k)-clique-cycle inequality (3.13).

The vectors r; (and s;;) are defined by the components r;(v,d,) corresponding to the
y(v,d,) variables, and the components r;(v, d,, w,d,,) corresponding to the z(v, d,, w,d,)
variables. Let C' = {vy,..., v} be the vertices that define the clique. For i € {1,...,k},
let r; be a vector with the properties that

1 ifi=j
(i, b,.) = ’ 3.15
ri(vj; boy) { 0 otherwise ( )

Fori,j=1,...,k, j>1, (i,5) # (1,2), let s;; be a vector with the properties that

sij(v, by) =0 Yvel (3.16)
1 if(l,m) =(1,2),

54 (V1 buys Vs b, = ¢ —1 if (I,m) = (4,4), and (3.17)
0  otherwise

The vectors r; and s;; are linearly independent since (a) each vector r; has an unique
non-zero element (i.e., r;(v;, by,)), and (b) among all s;;, each vector s;; has an unique
non-zero element (i.e., 54;(vs, by, , vj, by,)).

To prove that r; and s;; are vectors in the hyperplane defined by X (PCSP) and (3.13),
we construct them through the subtraction of solutions that satisfy (3.13) at equality.

Let Vi(z) be the subset of V' for which b, is selected in the solution z, i.e., V,(z) = {v €
V :y(v,by) = 1}. Fori=1,... k, the vector r; is constructed by taking the difference
of two solutions x;o and x;;. Let z; be an arbitrary solution with |Vj(z;)| = v and
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v; & Vi(zi). Now, let z;; be defined by V,(x;1) = Vi(xio) U {v;}. Then r; = z; — x4
satisfies the properties (3.15).

Moreover, for i, j,1 € {1,...,k}, let x;j0, Tio, Tij1, Tin be 4 solutions that satisfy (3.13) at
equality. Choose arbitrarily v — 1 vertices S from V' \ {v;,v;,v}. Define the solutions

L3505 T405 Tij1, Till by

Vi(zijo) = S U {v;},
Vi(wiji) = S U{wi, 05} = Vo(wij0) U {vi},

V;)(l‘ilo) = S U {Ul}, and

Vi(zin) = S U{v, v} = V(i) U {vi }

Clearly, all solutions have  or y+1 vertices for which b, is selected, and thus satisfy (3.13)
at equality. Now, let 7;;; = (751 —Tij0) — (i1 —Tao), then 755 is a vector in the hyperplane.
Finally, s;; = 71,2 — 71, satisfies the properties (3.16)-(3.17). [ |

3.5 SEPARATION OF NON-TRIVIAL FACETS

In the previous section we introduced two classes of facet defining valid inequalities.
The accompanying separation problems are the topic of this section. We focus on the
complexity of the separation problems that have to be resolved within a cutting plane
approach. The separation problem for a class of valid inequalities F can be stated as
follows: Given a vector Z either find an inequality in F that is violated by Z, or conclude
that all inequalities in F are satisfied. Within a cutting plane approach, the vector z is a
solution of the linear programming relaxation of (3.1)-(3.5) (completed with already added
inequalities). We formulate the separation problem for both classes of valid inequalities,
and discuss the question whether these decision problems can be solved in polynomial
time or not.

Compared with other decision problems, the input of a separation problem is restricted.
Since 7 is an LP solution that satisfies certain (in)equalities the input of the separation
problem contains in many cases some special structure, which probably can be used to
solve the separation problem. Therefore, from the formulation of a separation problem as
an AP-hard problem we cannot conclude automatically that the separation is N/P-hard.
To guarantee that the separation problem itself is NP-hard given an LP solution, one
should really reduce an AN'P-hard problem to the separation problem with the condition
that the input satisfies the (in)equalities of the LP relaxation. In the literature, this topic
is discussed rarely. An exception is Klabjan, Nemhauser and Tovey [116]. They prove
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3. THE PARTIAL CONSTRAINT SATISFACTION FORMULATION

that the separation of cover inequalities for the knapsack problem is NP-hard if 7 is an
LP solution, but can be solved in polynomial time if the LP solution is an extreme point
as well. Another example is the separation of cut-set inequalities for capacitated network
design problems. Bienstock [19] proved that this problem is NP-hard even if the input
is restricted to a vector that satisfies all model equations (see also Brockmiiller, Giinliik
and Wolsey [30]). A similar result is proved by Rutten [164] for the separation of the
2-partition inequalities for the clique partitioning polytope.

In the Sections 3.5.1 and 3.5.2 we discuss the complexity of the separation problems for
the cycle and clique-cycle inequalities, respectively. We prove that some special case of the
separation problem for cycle inequalities can be solved in polynomial time. Based on this
polynomially solvable case, we propose a heuristic for the general case. The complexity
of the separation problem in which the input is restricted to an LP solution remains
open. For the clique-cycle inequalities we show that the separation problem can only be
solved in polynomial time if either we can construct an algorithm that uses the additional
information that ¥ is a solution of the linear programming relaxation of (3.1)-(3.5), or in

case P = NP.

3.5.1 THE CYCLE INEQUALITIES

First of all, we calculate the number of different facets obtained by the cycle inequali-
ties (3.11).

LEMMA 3.12
Let C = {vy,...,vx} be a chordless cycle in G. Then the number of cycle inequali-
ties (3.11) that define different facets is 1 [, .- (2!"*l — 2)

| Dy

PROOF. A domain D, can be partitioned in non-empty A, and B, in 2!”*! — 2 ways. We

have to partition the domain for every v € C, which results in [T, (2" — 2) partitions.
However, given a partition 4,, B, for all v € C, the partition 4, := B,, B, = A,
describes the same cycle-inequality (3.11). So, for a cycle C' the number of different facets

is given by L [T, (2P —2). |

Note that, the facets defined by two cycles C' = {vy,..., vz} and C = {vo,...,vp, v, } are
the same. Consider the two cycle inequalities (3.11), defined by

(i). the chordless cycle C' = {vy,..., v} and the partition A,, B,, v € C, and

(ii). the chordless cycle C' = {vs,..., v, v1}, and the partition A,, B,, v € C, with
A, =B, B,, ;== A,,,and A, := A,, B, := B, forallv e C\ {v}.
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3.5. SEPARATION OF NON-TRIVIAL FACETS

Then, the two cycle inequalities are exactly the same, and hence, they define the same
facet. In other words, the starting point of the cycle does not influence the number of
different cycle inequalities / facets.

From Lemma 3.12 we conclude that the number of cycle inequalities that represent dif-
ferent facets is exponentially large, and therefore enumeration of all these inequalities
to detect violated inequalities is not possible. Before we introduce the decision problem
CYCLE SEPARATION PCSP, we first state the following lemma:

LEMMA 3.13

Let C be a chordless cycle, and let A,, B, be a partition of D, for all v € C. Moreover,
let & be a vector satisfying (3.2) and (3.3). If there is av € V with A, = () or B, = 0,
then the left hand side of the cycle inequality (3.11) is less than or equal to k — 1.

PROOF. Suppose there is a v € C with either A, = () or B, = (). By the symmetry of the
A, and B, subset, we may assume that A4, = (). Moreover, we may assume that v = v;.
Let for i = 1,...,k, oy = Z(vs, Ay, Vig1, Bo,,,) and §; = Z(v;, By, viy1, Ay, ). Note that,
a1 =0, B = 0, and that the following equation is valid

g(vi+17 A’Ui+1) - ?j(vi; Avl) — Q; + /81

Then

k—1
w(s) = Zl_at ﬁz + oy + B
=1

k-1

= k—1-— Z(Oéz + ﬁz) + g(vkv A'Ulc)
i=1
k—1
= k—1-— Z(ozi + Bi) + J(Vk—1, Av,_,) — 01 + Br—1

1=1
k-1 k-1

= k—1- Z(Ozi + Bi) + §(vi, Ayy) — Z(az’ —B)

=1 =1
k—1
= k-1-2) a;<k-1
=1

which completes the proof. [ |

So, in our search to a partition that violates the cycle inequality, we do not have to request
that A, and B, are both non-empty. In case there exists a violated cycle inequality, the
conditions that A, and B, are both non-empty will automatically be satisfied.
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3. THE PARTIAL CONSTRAINT SATISFACTION FORMULATION

CYCLE SEPARATION PCSP

INSTANCE: Partial Constraint Satisfaction Problem (G, D, p,q). Chordless cycle C' =
{v1,..., v} of k vertices. Fractional solution vector z.

QUESTION: Does there exist a partition of the domains D, in A, and B, for all v € C
such that the cycle inequality (3.11) is violated, i.e.,

k—1

Z (2(’01;7 A’U,‘) Ui-l—la A’U,‘_H) + g(via Bvia Ui-l—la B’Ui+1))
i=1
—|—§(U1,Avl,7}k,ka)—|—§(U1,Bvl,?}k,Avk) > k—l 7

We model this problem as a {0,1} quadratic programming problem. For each v € C,
d, € D, we define

(v, dy) 1 ifd, € B,
S\U, y) =
0 otherwise

Then, a {0, 1} quadratic programming formulation of the cycle separation problem reads

k—1
W = max E E E Z(Ui; dvia Vit1, dvi+1)'

i=1 dy; €Dy, dv; 1 EDv,; 4

{S(Uia dvi)S(UiJrla dvi+1) + (1 - S(Uiﬂ dvz))(l - S(UiJrla d’Ui+1))}

+ Z Z Z(Ulad’ulavkadvk)'

d’Ul ED‘UI dvk eD’Uk.
{8(7)1, d'Ul)(]‘ - S(Uk? d'Ulc)) + (1 - S(Ul, dvl))s(vka dvk)}
s.t. s(v,dy,) € {0,1} Yo e C,d, € D,
which is equivalent with the unconstrained quadratic {0, 1} programming problem
w=4k—14+max{g's+s"Hs:se {0,1}>vec!Pl} (3.18)
where

=2y(v,d,) fv=v;,2<i<k-1
g(vadv) :{

0 otherwise
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forallv e C,d, € D, and

22(v,dy, w,dy,) if {v,w} ={vj,vis1},i€{1,...,k—1}
H(v,dy, w,dy)= < —22(v,dy,w,dy,) if {v,w} = {v1, v}

0 otherwise

for all {v,w} € E[C], d, € D,, dy, € Dy,. If w > k — 1 then a violated inequality is found.
If w < k —1, then no violated k-cycle inequality exists for the cycle C.

The problem (3.18) can be simplified by the following observations. Let w(s) denote the
value of the objective for a solution vector s.

LEMMA 3.14
Let s be an arbitrary binary vector, and let §j(v,d,) = 0 for some v € C, d, € D,. Define
a new solution 5 equivalent to s except for 5(v,d,) := 1 — s(v,d,). Then w(s) = w(5).

PROOF. Trivial. |

Let D, = {d, € D, : §j(v,d,) > 0} denote the subset of domain elements which can influ-
ence the value w. Then, we can replace D, by D, in (3.18). Combination of Lemma 3.13
and Lemma 3.14 leads to the following corollary.

COROLLARY 3.15
If there is a vertex v € C' with |D,| =1, then w < k — 1.

PROOF. Follows directly from the fact that (3.11) can only be violated if for all v € V
both subsets A, and B, are non-empty. [ |

So, if the solution 7 is integral for one of the vertices in the cycle, there does not exist a
violated cycle inequality. In general, the unconstrained quadratic {0,1} problem is N'P-
hard [62], except for the special case in which all elements of H are non-negative (see
Balinski [14], Rhys [159], Picard and Ratliff [156] or Hansen [79]) or the support graph
G/(H) is is series-parallel (see Barahona [15]). In our case the matrix H is neither neither
non-negative nor series-parallel. However, in case there is a vertex v € V for which only
two gy variables are fractional, i.e., |bv| = 2, the separation problem can be rewritten to
an unconstrained {0, 1} quadratic program with non-negative matrix H:

THEOREM 3.16
If there is a vertex v € C with |D,| = 2, then the problem CYCLE SEPARATION PCSP
can be solved in polynomial time.

ProOOF. Without loss of generality we may assume that D,, = {a,,, b, }. Since, the
cycle-inequality is symmetric in A, and B,, and both A, and B, have to be non-empty
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in case of a violated inequality, we may assume that A, = {a,,} and B,, = {b,, }. This
implies that s(vy,a,,) = 1 and s(vy, by, ) = 0. The resulting {0, 1} quadratic program can
be written as

max{g’ s+ s Hs: s € {0, I}Zvec\{vl} |D”|} (3.19)
with for v € C'\ {w}, d, € D,

—2y(v,d,) if3<i<k-—1
g(vvdv) = _2§(Uadvavlabvl) ifi =2
—2Z(v,dy,v1,ay,) ifi=k

and for all {v,w} € E[C], d, € D,, d, € D,

I:I(U,dv,w,dw): { QE(U,dv;w,dw) if {U,UJ} = {Ui,UH_l}, 1€ {2, .. .,k — ]_}

0 otherwise

So, all elements of H are non-negative, and hence (3.19) can be solved in polynomial time.
[ |

COROLLARY 3.17
If for a vertex v € C' the partition A,, B, is given, then the problem CYCLE SEPARATION
PCSP can be solved in polynomial time.

PROOF. In case the partition A,, B, is given for a vertex v € V', the variables s(v,d,)
can be replaced by s(v, A,) = >, .4 s(v,dy) and s(v, B,) = >, cp s(v,dy). As a
consequence, the problem reduces to a problem with |D,| = 2, which can be solved in
polynomial time with Theorem 3.16. [ |

COROLLARY 3.18
If d = minyec |D,|, then the problem CYCLE SEPARATION PCSP can be solved by solving
24=1 unconstrained quadratic programs with non-negative cost matrix.

PROOF. There exist 2! non-empty partitions A,, B, for the vertex v that attains the
minimum mingec |Dy). [ |

The unconstrained {0, 1} quadratic program with non-negative cost matrix can be solved
via a transformation to the minimum cut problem. However, the separation problem can
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also be formulated directly as a minimum cut problem. By (3.2) and (3.3) we can rewrite
the cycle-inequality (3.11) to

k—1
Z (Z(Ui; AU“ Vit1, Bvi+1) + Z(Ui; B’Ui; Vit1, Avi+1))
i=1
+Z(UU;AvoavkaAvk) + Z(U07Bvoavkank) Z 1 (320)

Let D, = {ay,, by} and let (N, A) define a digraph. For every d, € D,, v € C\
{vi} we define a node, and for both a,, and b, two nodes, i.e., N = (U,cc 0, D,) U
{@v,, @y, , by, , by, }. For every Z(vj, dy,, viz1,dy,,,) > 0,4 € {1,...,k — 1}, we define an arc
between d,, and d,,, ), and for every Z(vy, d,, ,v1,dy,) > 0,

we define an arc between d,, and d,, with weight Z(vg, d,,,v1,d,,) (see Figure 3.6). Then

with weight Z(v;, dy,, viy1, d

Vi41

U1 V2 U3 ... Vi U1

FIGURE 3.6: Digraph for the separation of cycle inequalities

the optimal solution of the separation problem is equivalent to a minimum weighted
subset of the arcs that separates both the pairs (a,,,@,,) and (b,,, by, ). In case the 2-pair
minimum cut is < 1 then a violated inequality is found, otherwise there does not exist
a violated inequality for this cycle. Lemma 3.13 (page 65) can be helpful in this case as
well. Since |D,,| = 2 each cut with value < 1 automatically separates a,, and b,, (and
also @,, and b,, ). This implies that an 1-pair minimum cut between a,, and a,, either has
value > 1 or also separates b,, and b,,. So, we simply have to find an 1-pair minimum
cut between a,, and a,,. If the minimum cut is less than 1, we have found a violated
cycle-inequality, if the minimum is greater than or equal to 1, all cycle inequalities (for
this cycle) are satisfied by the solution Z.

If |D,| > 2 for all v € C, we can construct a digraph similar to Figure 3.6. However, in this
case we have to find a minimum set of arcs that separates all pairs {d,,, Jvl },d, € D,. This
problem is known as the multi-pair cut problem (see Hu [90]). The related multiterminal
cut problem is discussed in Dahlhaus et al. [43]. One of their results implies that the 3-
pair cut problem is N'P-hard for general graphs. Unfortunately, we cannot conclude that
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CYCLE SEPARATION PCSP is N'P-hard, since the digraph has a special structure, and
the weights have the property that they correspond with a solution of the LP relaxation.

In addtion to exact solution methods for the separation problem, we can also apply
heuristics to the problem. Based on Corollary 3.17 and the minimum cut representation
of the separation problem, we propose the following heuristic to find a violated cycle-
inequality. Let v; be a vertex on the cycle for which |D,|, is minimal. Construct an
initial partition A,,, B,,. Given this partition for v;, the separation problem can be
solved in polynomial time, either via the unconstrained quadratic program (3.19) or via
the minimum cut representation of Figure 3.6. Next, we can move a domain element
d,, € Dvl from A,, to B,, or vice versa. For the new partition we can again calculate
the value of the separation problem. If the objective is improved we keep the change,
otherwise we restore the original partition. The procedure can be repeated as long as
there exist profitable moves.

3.5.2 THE CLIQUE-CYCLE INEQUALITIES

Like in the previous subsection, we first state the number of different facets defined by
the class of clique-cycle inequalities.

LEMMA 3.19
Let C be a clique in G of k > 4 vertices, and let v € {1,...,k —2}. Then the number of
(v, k)-clique-cycle inequalities (3.13) that define different facets is [, . (2!P"! — 2)

veC

PROOF. The number of different non-empty partitions for a vertex is again 2P+l — 2.
In contrast with the cycle inequalities each partition gives an unique inequality, which
implies that the total number of different facets is equal to the total number of different
partitions. |

Note however that the (v, k)-clique-cycle inequalities are equivalent with the (k—1—+~, k)-
clique-cycle inequalities. Moreover, note that for £k = 3 the number of different facets
equals 3 HU€C(2‘D“‘ — 2), since the 3-clique is equivalent with a 3-cycle (cf. Lemma 3.12).
We now define the decision problem CLIQUE-CYCLE SEPARATION PCSP.

CLIQUE-CYCLE SEPARATION PCSP

INSTANCE: Partial Constraint Satisfaction Problem (G, D, p, q). Clique C of k > 4 ver-
tices. Integer v € {1,...,k — 2}. Fractional solution vector Z.

QUESTION: Does there exist a partition of the domains D, in A, and B, for all v € C
such that the (v, k)-clique-cycle inequality (3.13) is violated, i.e.,

’yZy(v,Av) + Z z(v, By, w, By) < vk — 37v(y + 1) ?

velC {v,w}eE[C]
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Also this problem can be formulated as a {0,1} quadratic program. Again we define
variables s(v,d,) for all v € C, d, € D,

1 ifd, € B,
s(v,dy) = { '

0 otherwise

Then the problem CLIQUE-CYCLE SEPARATION PCSP reads as

w =min Z Z Z Z(v,dy, w, dy)s(v, dy)s(w, dy,)

{v,w}EE[C] du GD’U dw EDw

_|_Z Z ’yg(v,dv)(l - S(Uadv))

veC dyED,
st 1< > s(v,dy) <Dy -1 Yo € C
dy €Dy
s(v,d,) € {0,1} Vv e C,d, € D,

which is equivalent with

w=7vk+ min ¢gTs+ sTHs (3.21)
st 1<) s(udy) < Dy — 1 Yo € C (3.22)

dy€D,
s(v,d,) € {0,1} Vv e C,d, € D, (3.23)

with for allv € C, d, € D,
9(v,dy) = —79(v, dy)

and for all {v,w} € FE[C], d, € D,, d,, € Dy,
H(v,d,,w,dy,)= Z(v,d,, w,d,)

If w < vk — 37(y + 1) then a violated (v, k)-clique-cycle inequality is found, else there
does not exist any violated (v, k)-clique-cycle inequality for this clique.

LEMMA 3.20
Let s be an arbitrary solution that satisfies (3.22)-(3.23). Let g(v,d,) = 0 for some v € C,
d, € D,. Let 5 be equivalent to s except for 5(v,d,) =1 — s(v,d,). Then w(s) = w(3).
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PROOF. Trivial. |

Let D, = {d, € D, : (v, d,) > 0}.

COROLLARY 3.21
If |D,| = 2 for all v € C, then CLIQUE-CYCLE SEPARATION PCSP is equivalent with a
PCSP defined on C with 2 domain elements.

PROOF. In case |D,| = 2 for all v € C, the constraints (3.22) reduce to constraints
similar to (3.2). Linearization of the objective (3.21) gives the desired result. |

As a consequence, if we do not have additional information on (v, d,) and z(v, d,, w, dy,)
then the problem CLIQUE-CYCLE SEPARATION PCSP is N'P-hard. However, we know
that (3.2) and (3.3) hold for every LP solution . The question whether this additional
information changes the complexity of the problem remains open. The number of clique-
cycle separation problems that have to be solved can be reduced by the following lemmas.

LEMMA 3.22
Let s be a {0, 1} vector. If Y-, 5 s(u,d,) = 0 for someu € C, then w(s) < yk—3y(y+1)
if and only if there exists a violated (v, k — 1)-clique-cycle inequality for the k — 1 clique

PROOF. If }, 5 s(u,d,) = 0, then g(u, A,) = 1, which implies that the (v, k)-clique-
cycle inequality (3.13) reduces to

Y Y oy A+ Y 20, Buw,By) 2 y(k—1) =y +1)
vecn(u) (o} B0\ (u)]

which is a (7, k — 1)-clique-cycle inequality for C'\ {u}. [ |

LEMMA 3.23

Let s be a {0,1} vector. If Y, 5 s(u,d,) = |D,,| for some u € C, then w(s) < vk —
+7(v +1) if and only if there exists a violated (y — 1, k — 1)-clique-cycle inequality for the
k —1 clique C \ {u}.

PROOF. If ), 5 s(u,d,) = |D,|, then §(u, A,) = 0, and z(u, By, v, B,) = y(v, B,) for
all v € C'\ {u}. This implies that the (v, k)-clique-cycle inequality (3.13) reduces to

(v—1) Z y(v, Ay) + Z 2(v, By, w, By) >

veC\{u} {v,w}eE[C\{u}]
Yk=1)=gy(v+1)—(k=1) = (y=1(k-1) = 3(v—1)y

which is a (v — 1,k — 1)-clique-cycle inequality for C'\ {u}. [ |
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COROLLARY 3.24
If there is a vertex v € C' with |D,| = 1, then there does not exist a proper (v, k)-clique-

cycle inequality that is violated.

COROLLARY 3.25

Let w = vk + min{g”s + s"Hs : s € {0,1}Zvec!Dv}. Then w < vk — sv(y + 1) if and
only if there exists a violated (o,l)-clique-cycle inequality for some S C C, with |S| =,
and max{1l,y — (k — )} < o < min{y,l — 2}.

As a consequence, we only have to solve the clique-cycle separation problem for maximal
cliques C. Although, the maximum clique problem is A/P-hard in general, in practice
all maximal cliques in the constraint graph can be generated efficiently by enumeration
schemes.

Besides the exact solution of (3.21)-(3.23), we can also use heuristics to solve the clique-
cycle separation problem. A simple local search algorithm consists of an initialization of
the subsets A,, B, for all v € C, and local optimization by moves of domain elements
from A, to B, or vice versa as long as improvements are obtained.

3.6 THE BOOLEAN QUADRIC POLYTOPE AND THE PCSP

In this section we describe the relation between the PCSP and the boolean quadric poly-
tope (BQP). The BQP is defined by the unconstrained {0,1} quadratic program in n
variables

max{c'z + 2" Qz : z € {0,1}"}

which is already mentioned in the previous section on the separation of valid inequalities.
Linearization of the quadratic terms leads to a formulation with both z; variables and
Yij = x;x; variables

max >, %+ i €igYij (3.24)
s.t. Ti+x;—yi; <1 Vi<j (3.25)
—; +Yi; <0 Vi< j (3.26)
—2;+y;; <0 Vi< j (3.27)
2 € {0,1} Vi (3.28)
yi; € {0,1} Vi < j (3.29)
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Then, the boolean quadric polytope is defined by
QP = conv {(z,y) : (x,y) satisfies (3.25) — (3.29)}

In case the matrix () is sparse, many of the y;; variables can be removed from the formu-
lation. The resulting problem can be associated with a graph G = (V| F) with vertices
and edges that correspond to the nonzero coefficients of ¢ and @. Similar QP is defined
by

QP = conv {(z,y) € RVIHFl: (z,y) satisfies (3.25) — (3.29) for all {i,5} € E}

The boolean quadric polytope is studied from a polyhedral point of view by Padberg [152].
Proposition 3.26 state the relation between the PCSP and the QP¢.

PROPOSITION 3.26
Let X(PCSP) be defined by (G, D,p,q) with D, = {d},d?} for allv € V. Then there is

v v

a one-to-one correspondence between X (PCSP) and QPC.

PROOF. Let 2 = (y, 2) € X(PCSP). Define (7, 2) € RV a5
o =ylv,d) and Z,, =z(v,d*,w,d>)

)

then (7,2) € QPC. On the other hand, if (7, 2) € QP¢, then (y, z) € R2IVIHIPI with

y(va dzlj) =1-17, y(va d?;) = Uy
z(v,dw,dl) =14 Zyw — o — T z(v,dw, d2) = G — Zow
z(v, d?,w,d) =Ty — Zpw (v, d?,w, d%) = Zyw
is an element of X (PCSP). |

COROLLARY 3.27
Let X(PCSP) be defined by (G, D,p,q) with D, = {d!,d?} for allv € V. Let at < @

v v

be a facet defining inequality for the related QPY. Then ax < aqy is a facet defining
inequality for X (PCSP), with

a(v, dy)
a(v, dy)

v a(v,d?, w,d%) = Gy

) o)

a(v,d:, w,d.) a(v,dl, w,d?) = a(v,d* w,d.) =0

)y Yo ) o) y o)

I
Q
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So, every facet defining inequality for QPY can be transformed to a facet defining in-
equality for the PCSP with 2 elements per domain. With Theorem 3.8 (page 57) these
inequalities can be extended to general domains. We do not have to use Theorem 3.5,
since Padberg [152| proved a similar theorem about the extension of the graph. In the
same paper several classes of facet defining inequalities are presented.

PRroPOSITION 3.28 ([152], Proposition 3, 4 and 5)
The inequalities (3.25)-(3.27) for {i,j} € E define facets of QPC.

The transformation of these inequalities to the PCSP results in z(v,d,,w,d,) > 0, the
trivial facets of X (PCSP).

THEOREM 3.29 ([152], Lemma 2 and Theorem 4)
Let C be a clique in G, |C| > 2, and let y be an integer. The clique-inequality

WY = > pw < (v +1) (3.30)

vel {v,w}€E[C]
is valid for v € {1,...,|C| — 1} and defines a facet of QP for v € {1,...,|C| — 2}.

Transformation of (3.30) leads to a (v, |C])-clique-cycle inequality (3.13).

THEOREM 3.30 ([152], Lemma 3 and Theorem 5)
Let SUT be a clique in G with |S| > 1, |T| > 2. Then the cut inequality

“Sm— > Gt D Bw— Y Y <O (3.31)

vES {v,w}€E[S] {v,w}€ds(S,T) {v,w}€E[T]

is valid and facet defining for QPY.

Transformation of these inequalities and application of Theorem 3.8 results in a new class
of valid inequalities for the PCSP, the cut inequalities.

COROLLARY 3.31
Let SUT be a clique in G with |S| > 1, |T| > 2, and let A,, B, be a partition of D, for
allv € SUT. Then the cut inequality

Z 2(v, By, w, By,) + Z 2(v, By, w, By,)

{v,w}eE[S] {vw}eE(T]
+3 y(w,B) > > z(v,By,w,By) (3.32)
veS {v,w}ed(s,1)

is valid and facet defining for X (PCSP).
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3. THE PARTIAL CONSTRAINT SATISFACTION FORMULATION

Padberg [152] generalized the cut inequality (3.31) via a symmetry argument.

THEOREM 3.32 ([152], Corollary 1)

Let SUT be a clique in G with s = |S| > 1, t = |T| > 2. Then the generalized cut
inequality

(s—t)Z:L‘i—i-(t—s—l)va

veS veT
— Y Gt Y Y Y Yew £ t-s)(t-s—1) (3.33)
{v,w}eE[S] {v,w}ed(S,T) {vw}eE(T]

is valid and facet defining for QPC.

The equivalent generalized cut inequality for the PCSP is given by Corollary 3.33.

COROLLARY 3.33
Let SUT be a clique in G with s = |S| > 1,t = |T| > 2, and let A,, B, be a partition of
D, for allv € SUT. Then the generalized cut inequality

(t=5)D> yw,B))+(s—t+1)Y y(w,B)+ Y 2v,Byw,By)

veES veT {v,w}€E[S]
+ Y 2w, Bhw,By)— Y z2(v,Byw,By) > (t—s)(s—t+1) (3.34)
{v,w}€E[T] {v,w}€d(S,T)

is valid and facet defining for X (PCSP).

Concluding, the clique-cycle inequalities can be explained by a transformation of the clique
inequalities of Padberg [152], and several other classes of inequalities can be generated
in the same way. The cycle inequalities cannot be explained by a direct transformation
of inequalities in [152| for the boolean quadric polytope to the PCSP. Even more facets
for X(PCSP) can be obtained via the results of Sherali, Lee and Adams [168|, and De
Simone [169]. Sherali, Lee and Adams [168] used a simultaneous lifting strategy to iden-
tify a class of facets that subsume the clique, cut, and generalized cut inequalities of
Padberg [152]. De Simone [169] showed that the boolean quadric polytope and the cut
polytope are equivalent. As a consequence, every facet of the cut-polytope can be trans-
formed to a facet for the boolean quadric polytope, which in its turn can be transformed
to a facet for X(PCSP). In fact, the facets identified by Sherali, Lee and Adams [168§]
belong to the class of linear hypermetric inequalities of De Simone [169, 170].
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3.7 COMPUTATIONAL RESULTS

The results of the polyhedral analysis are tested on several types of instances. First of
all, a test of the quality of the valid inequalities described above is done on 11 instances
with |D,| = 2 for v € V. These instances are subproblems of the CELAR 08 instance of
the CALMA-project (see Sections 2.2 and 2.6). For these frequency assignment problems,
Kolen [118] described a genetic algorithm in which the crossover is optimized, i.e. given
2 solutions (the parents) we would like to obtain the best possible solution among all
solutions that can be generated with these parents. So the crossover problem corresponds
to a PCSP with at most 2 values per domain. By applying the cycle and clique-cycle
inequalities these subproblems can be solved efficiently. To illustrate the efficiency of the
classes of inequalities, we have selected the already mentioned 11 subproblems. We used
the callable library of CPLEX 4.0 to solve the linear programming relaxation (v;p), the
integer programming problem (v;p) as well as the linear programming relaxation with
3-cycle valid inequalities (v3). The separation of violated valid inequalities was done by
enumeration of all valid inequalities with & = 3 (i.e., 4 valid inequalities for each 3-cycle
were available). As mentioned in Section 2.2.4 the number of vertices of the constraint
graph can be reduced to half the original number, due to the equality constraints. Hence,
for all instances |V| = 458 and |E| = 1655. The results are presented in Table 3.1. The
program written in C++ was running on a DEC 2100 A500MP workstation with 128 Mb
internal memory. The table shows that for all instances the LP relaxation with 3-cycle
valid inequalities gives an integer solution. The number of violated inequalities which had
to be added is given in the last column. The computation times were on average reduced
by 76.4%.

Another instance with a large gap between LP and IP is p1. This instance has 708 vertices
and 1677 edges (again all domains contain 2 values). The 3-cycle inequalities close 92.6%
the gap between LP and IP. With these valid inequalities CPLEX needed 113 branch-
and-bound nodes to obtain and prove the optimal value. CPLEX was not able to solve
this instance to optimality without adding valid inequalities.

The separation of the cycle inequalities has been done in an exact way. We simply
enumerated the 4 different 3-cycle inequalities for every 3-cycle in the graph. For problems
with more than 2 elements per domain, the separation problem can be solved either via
the quadratic program (3.18), or via the heuristic described in Section 3.5.1. We tested
both methods on a set of 5 instances with 100 vertices, 350 edges, and 2, 3, 4, 5, or 6
elements in each domain. These instances are obtained by arbitrarily selecting a subset
of the domain elements from the instance CELAR 06 of the CALMA-project. In each
iteration of the cutting plane algorithm, we added at most 1 violated cycle inequality for
every 3-cycle in the graph. If no violated inequalities were found anymore, we started the
branch-and-bound procedure of CPLEX. For the exact separation problems, we solved the
linearization of the quadratic program (3.18) via the standard branch-and-bound routine
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instance vLpP vy Urp CPU vLpP CPU V3 CPU UV3+I1P CPU vrp #V.i.

c8_1 848.5 986 986 8.8 18.1 18.1 78.0 1,104
c8_2 721 836 836 8.7 11.4 114 48.4 497
c8_3 630.5 747 747 7.8 13.1 13.1 63.1 771
c8_4 802 834 834 8.0 10.9 10.9 354 1,243
c8_5 627.5 729 729 7.5 11.3 11.3 35.7 608
c8_6 695 717 717 8.6 12.0 12.0 31.5 907
c8_7 836 894 894 8.2 9.9 9.9 39.1 267
c8_8 757 835 835 7.2 10.5 10.5 71.2 47
c8_9 769 866 866 9.2 12.6 12.6 54.9 610
c8_10 768.5 812 812 8.1 10.0 10.0 37.7 215
c8_11 622 814 814 7.3 16.0 16.0 187.1 1,259
pl 35.5 104.5 110 6.6 25.5 152.4 - 266

TABLE 3.1: Computational results |D,| = 2

of CPLEX. Table 3.2 shows for each instance the percentage the gap between LP and IP
that is closed, and the cpu-times for both the cutting plane phase (v3) and the complete
procedure (vs;rp). The gap is closed with more than 90% in all cases. The difference in
quality between the exact and heuristic separation is negligible. Also, the difference in
speed between the algorithms does not provide us with a preference for either the exact
or the heuristic way of separation. For all but the last instance the heuristic separation
routine is substantially faster. However, due to the inferior lower bound (part of) the
benefit is nullified in the branch-and-bound procedure that have to be applied afterwards.
This is especially true for instance celar6c, where the cutting plane closed ‘only’ 90%
of the gap. For this case, we also applied another approach, in which we separate the

instance |D,| CPU exact separation heuristic separation
time gap closed CPU-time for gap closed CPU-time for

LP by (%) v3 V3LIP by (%) v3 V3LIP
celar6a 2 0.7 99.75 9.2 9.9 99.75 2.5 2.9
celar6b 3 1.6 98.80 196.5 216.0 98.66 34.7 414
celar6c 4 3.1 90.96 784.2  1,309.6 90.41 488.3  1,486.4
celar6d 5 3.9 97.78 10,550.8 13,198.0 97.35 9,308.3 12,149.0
celarBe 6 4.5 97.00 29,771.3 35,234.8 96.88 68,3154 74,1425

TABLE 3.2: Comparison of exact and heuristic separation for instances with |D,| > 2
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inequalities heuristically, except when no violated inequalities were found anymore. Then,
exact separation is applied to improve the result of the cutting plane phase. In this way,
we reached the same lower bound as in the exact case in only 494 seconds.

method celarBa celar6b celarfc celar6d celarBe
Dy | 2 3 4 5 6
CPU-time LP 0.7 1.6 2.9 3.8 4.4
value LP 395075 26,678 10,763.3 2,492 374
value IP 60,342.0 45,053 30,113 13,498 11,582
value cuts 60,200.5 44,831.8 28,381.8 13,253.6 11,243.6
gap closed by (%) 99.75 98.80 90.96 97.78 96.98
CPU-time LP + vi 2.8 61.2 471.2  21,120.1  89,568.2
3-eyeles b time 1P 3.2 67.7  1,390.0 22,833.0 96,298.9
# sep. rounds 1 21 31 827 748
# B&B nodes 4 13 180 22 50
value cuts 60,290.5 44913.3 28,836.8 13,2544 11,528.3
gap closed by (%) 99.75 99.24 93.31 97.79 99.52
CPU-time LP + vi 2.8 42.9 633.7 23,422.9 78,440.6
3H4-cyeles (b time 1P 3.2 52.3 12445 24,9584 84.893.3
# sep. rounds 1 16 67 768 629
# B&B nodes 4 12 104 32 92
value cuts 60,342.0 45,053 30,113 13,498 11,582
gap closed by (%) 100.00 100.00 100.00 100.00 100.00
CPU-time LP + vi 10.6 614.0 21,044.0 163,230 67,1348
all CPU-time TP 10.6 614.0 21,0459 163,236 67,1355
# sep. rounds 9 70 215 274 352
# B&B nodes 0 0 2 3 1

TABLE 3.3: Separation of 3-cycle, 4-cycle and clique-cycle inequalities

Up to now, we have only separated 3-cycle inequalities in our cutting plane approach,
whereas other k-cycle and clique-cycle inequalities are available as well. In Table 3.3
we compare the results of separation of 3-cycle inequalities only, separation of 3-cycle
and 4-cycle inequalities, and separation of 3-cycle, 4-cycle as well as maximal (1,k)-
clique-cycle inequalities. All separation algorithms are done in a heuristic way, unless
no violated inequalities are found in this way, then we applied exact separation. From
other experiments we have concluded that separation of k-cycle inequalities for k& > 4
has no added value. For the clique-cycle inequalities, we know from Lemma 3.22 that
we only have to separate maximal cliques to obtain all violated clique-cycle inequalities.
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Table 3.3 shows that in case of separating 3-cycle and 4-cycle inequalities as well as
maximal (1, k)-clique-cycle inequalities the gap between LP and IP is closed completely
in all cases, which grounded our separation of only (1, k)-clique-cycle inequalities instead
of the general (v, k)-clique-cycle inequalities. Table 3.3 also shows that although a larger
part of the gap between LP and IP is closed when more valid inequalities are taken into
account, the overall computation time is not reduced in this way. Especially the exact
separation of clique-cycle inequalities causes a substantial increase of the computation
time for the larger instances.

Finally, we tested the cycle inequalities (3.11) on a subgraph of the instance CELAR 06.
In contrast with the previous experiments, the size of the domains is 44. The subgraph
consists of 4 vertices and 6 edges. We separate cycle inequalities for all 3-cycles (i.e., 4
cycles). Table 3.4 shows the results. They indicate that in case of large domains the cycle

instance vrp CPUwrp vy CPUws # sep. rounds wv3prp CPUwsyirp  # B&B
Cé6_v4a 0 1 300 552,303 5,337 300 552,366 1

TABLE 3.4: Results on a subgraph problem with |D,| = 44.
inequalities (3.11) are strong enough to close the gap as well. However, the computation

time involved in solving this instance is huge. This shows the impracticability to solve
real-life instances with the polyhedral method.

3.8 CONCLUDING REMARKS

In this chapter we modeled the MI-FAP as a partial constraint satisfaction problem. We
introduced an integer programming formulation for the PCSP, and analyzed the problem
from a polyhedral point of view. Two lifting theorems made it possible to derive classes of
facet-defining inequalities from a single inequality. Two classes of facet defining inequal-
ities, the cycle inequalities and clique-cycle inequalities, were obtained in this way. Due
to the relation with the boolean quadric polytope several other classes of facets could be
derived. For the cycle inequalities and clique-cycle inequalities we discussed the accompa-
nying separation problems. For a special case we could prove that the separation problem
for cycle inequalities can be solved in polynomial time. Based on this result we described
a heuristic for the general case. For the clique-cycle inequalities the complexity of the
separation problem remains open. If we cannot use the additional information that the
input is an LP solution, then the problem is N'P-hard.

Computational experiments indicated that for instances with small domains the 3-cycle
and 4-cycle inequalities close the gap between LP and IP substantially. Moreover, if also
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the clique-cycle inequalities are separated the gap is closed completely for our instances
with small domains. The separation of these inequalities can be done in a heuristic or exact
way. A combination of both strategies resulted in the best performance. For instances
with large domains, the cutting plane approach did not lead to desirable results. Already
for a very small graph, it is very time consuming to increase the objective value in this
way. It seems that, although the inequalities are facet defining, many inequalities are
necessary for an increase of the objective in case of large domains.
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4. A TREE DECOMPOSITION
APPROACH

Forced by the limited success of the polyhedral method (and other exact solution ap-
proaches) for real-life instances, we try to exploit the structure of the constraint graph
more directly in this chapter. Instances of the MI-FAP have a geographical nature, since
each antenna is placed in a two-dimensional map. Moreover, this geography influences the
interference, since pairs of antennae have no interference if their distance is far enough.
Finally, concentrations of antennae are found in densely populated areas. These areas are
connected with one another with a limited number of edges. This led to believe that many
instances have a constraint graph with a tree-like structure, and thus may be solved using
a tree decomposition of the constraint graph with small treewidth. The notions treewidth
and tree decomposition are introduced by Robertson and Seymour [162] in their funda-
mental work on graph minors. Besides the major role they play in graph theory, many
NP-hard problems on graphs have been shown to be solvable in polynomial (linear) time
on graphs with bounded treewidth. For instance, for list coloring Jansen and Scheffler [94]
showed that the problem can e solved in polynomial time. Bodlaender [21] presented an
overview of AN'P-hard problems that can be solved if the treewidth is bounded by a con-
stant. We used this idea, together with sophisticated processing techniques, on a set of
instances for which the previous techniques generated only few significant results, i.e.,
only for a small set of instances non-trivial lower bounds were computed (cf. Section 2.6).
We are now able to solve many of these instances to optimality. Moreover, in an iter-
ative version of our algorithm we are able to generate good lower bounds on the very
difficult instances. The algorithm is applicable on many instances. The only serious lim-
itation is the treewidth of the constraint graph. Finally, we mention that the approach
is not restricted to MI-FAPs but can also applied to the more general partial constraint
satisfaction problem with binary relations (PCSP).

The main purpose of this chapter is twofold. In the first place, our goal is to find bench-
marks for a set of publicly available MI-FAPs. Secondly, our purpose is to show that the
concept of tree decomposition is not only of theoretical value, but can really be used to
solve combinatorial optimization problems to optimality. We do not have the intention to
demonstrate this method as the method to solve MI-FAPs. For that purpose the method
is not competitive compared with available heuristics.

The remainder of this chapter is organized as follows. In Section 4.1 we introduce the
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graph theoretic concepts we use in the chapter, such as treewidth. For a description of the
MI-FAP, we refer to Section 3.1 and Section 3.2. In Section 4.2 we describe the heuristic
method we use to obtain a tree decomposition of the constraint graph, and in Section 4.3
we propose the dynamic programming algorithm based on the tree decomposition of
the constraint graph. The practical utility of the algorithm can be improved via the
use of (pre)processing techniques, which are described in Section 4.4. We present an
iterative extension of the algorithm that provides lower bounds for the original problem
in Section 4.5. The computational results obtained with these methods are the topic of
Section 4.6. This chapter is based on [123]. A preliminary version is published in [122],
whereas also an extended abstract appeared in [124].

In the sequel of this chapter we use the following notation. Let N(v) = {w € V :
{v,w} € E} denote the set of vertices adjacent to v € V, whereas N(S) ={w e V\ S :
Jpes{v,w} € E} denotes the neighbors of the vertices in the subset S C V. Moreover,
let 6(S,T) denote the set of all edges between the vertices in S C V and T C V| i.e.,
(S, T) = {{v,w} € E:v € S;w e T} We use §(S) as short version of §(S,V \ 9).
With E[S] we denote all edges with both vertices in S, i.e., E[S] = §(S,S). By G|[W]| =
(W, E[W]) we denote the subgraph of G = (V, E) induced by W.

4.1 GRAPH THEORETIC CONCEPTS

In this section we introduce the graph theoretic concepts used in our solution method.
We define the notions tree decomposition and treewidth, together with some (well-known)
properties of these notions. We also define the concept separating vertex set, which will
be used in the heuristic to construct a tree decomposition.

Before we introduce the notion of tree decomposition of a graph we start with the simpler
notion of path decomposition (Robertson and Seymour [161]). A path decomposition
decomposes the graph in a sequence ¢ = 1, ..., r of subgraphs induced by subsets X; C V.
All vertices and edges have to be in at least one subgraph. Moreover, if a vertex is part
of two induced subgraphs, then all the subgraphs in between these two in the sequence
should also contain this vertex. Or equivalently, the subgraphs for which the vertex sets
contain a certain vertex should be a subsequence of the total sequence. The width of a
path decomposition is given by the maximum size of the vertex sets of the subgraphs minus
one. The pathwidth of a graph G is the minimum width over all path decompositions of
G. Formally,

DEFINITION 4.1 (Robertson and Seymour [161])

Let G = (V, E) be a graph. A path-decomposition is a sequence X1, ..., X, of subsets of
V', such that
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=1,ay

(ii). for every edge {v,w} € E, there is an i € I with v € X; and w € X;, and

(iii). for all i,j,k € {1,...,r}, ifi <j <k, then X; N X} C X;.

(a) graph

@@

(b) path decomposition

FIGURE 4.1: Example of a path decomposition with width 3

In Figure 4.1 an example of a graph and an optimal path decomposition with width 3
is given. For special classes of graphs the pathwidth is known in advance (cf. [21]). For
example, if the graph consists of a single path, the pathwidth is equal to one. For trees the
pathwidth is O(d), where d is the length of the longest path in the tree. Robertson and
Seymour developed a variant of the path decomposition concept called tree decomposition
in [162]. Instead of a decomposition of the graph into a path, the graph is decomposed
into a tree of induced subgraphs. The width of a tree decomposition is the maximum
cardinality of the subgraphs minus one. Formally,

DEFINITION 4.2 (Robertson and Seymour [162])

Let G = (V, E) be a graph. A tree-decomposition is a pair (T, X), where T = (I, F) is a
tree with nodes I and edges F, and X = {X; : i € I} is a family of subsets of V, one for
each node of T', such that

(i). Uie[ X =V,
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(ii). for every edge {v,w} € E, there is an i € I with v € X; and w € X;, and

(iii). for all i,j,k € I, if j is on the path from i to k in T, then X; N X} C X.

The width of a tree decomposition is max;cr|X;|—1. The treewidth of a graph G, denoted
by tw(G), is the minimum width over all possible tree decompositions of G.

The third condition of the tree decomposition is equivalent to the condition that for all
v € V, the set of nodes {i € I : v € X;} is connected in T. Note that, since each path
decomposition is also a tree decomposition, tw(G) < pw(G).

eoh

FIGURE 4.2: Example of a tree decomposition with width 2 for the graph of Figure 4.1(a)

In Figure 4.2 an optimal tree decomposition of the graph of Figure 4.1 is given. The width
of this decomposition is 2. A connected graph has treewidth 1 if and only if the graph is
a tree. The complexity of the construction of a tree decomposition (path decomposition)
of minimal treewidth (pathwidth) is discussed in the next proposition.

PROPOSITION 4.3

(). The problem ‘Given a graph G = (V, E) and an integer k, is the treewidth (path-
width) of G at most k’ is NP-complete.

(ii). Given a constant integer k, the problem ‘Given a graph G = (V, E), is the treewidth
(pathwidth) of G at most k’ can be solved in polynomial time.

So, if the integer k is part of the input of the problem, the problem is NP-complete whereas
it can be solved in polynomial time in case k is fixed. The NP-completeness results
for treewidth and pathwidth are due to Arnborg, Corneil and Proskurowski [13]. An
algorithm that solves the problem in linear time for constant k is given by Bodlaender [22].
However, this algorithm is exponential in &, and is therefore impractical for graphs with
larger treewidth. Therefore, we use a heuristic to construct tree decompositions.

In a tree decomposition we can remove nodes for which the corresponding vertices form a
subset of the vertices of another node. As a consequence, every tree decomposition can be
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transformed to a tree decomposition in which the vertex-sets of all internal nodes separate
the constraint graph in at least two components, i.e., the vertices form a separating vertex
set.

DEFINITION 4.4
An st-separating set of G = (V, E) is a set S C V' \ {s,t} with the property that any path
from s to t passes through a vertex of S. The minimal separating vertex set of GG is given

by the st-separating set with minimum cardinality over all combinations {s,t} ¢ E.

Note that the separating vertex sets in a tree decomposition are not necessarily minimal.
The property that every internal node correspond with a separating vertex set forms the
basis of our heuristic, which is the topic of the next section.

4.2 (CONSTRUCTION OF A TREE-DECOMPOSITION

Since the algorithm we want to use for solving MI-FAPs heavily depends on the width
of the tree decomposition of the constraint graph, we need a tree decomposition with
small width. Finding a tree decomposition with optimal width is NP-hard. Therefore,
we implemented a sequential improvement heuristic. The algorithm aims at decreasing
the cardinality of the nodes in a given tree decomposition based on the property that the
vertices that correspond to internal nodes of the tree are separating vertex sets in the
graph. We try to replace a node in an existing tree decomposition by a number of new
nodes for which the maximum cardinality is smaller than the cardinality of the original
node. To achieve this goal, we search for small separating vertex sets. In Section 4.2.1 we
describe the algorithm to find a minimum separating vertex set in a graph, whereas the
heuristic itself is the topic of Section 4.2.2.

4.2.1 MINIMUM SEPARATING VERTEX SET IN A GRAPH

For any combination of 2 non-adjacent vertices, the st-separating set with minimal car-

dinality can be found efficiently using Menger’s theorem (see also Ahuja, Magnanti, and
Orlin [9]).

THEOREM 4.5 (Menger [144])

Given a graph G = (V, E) and two distinct non-adjacent vertices s,t € V', the minimum

number of vertices in an st-separating set is equal to the maximum number of vertex-
disjoint paths connecting s and t.

So, we have to calculate the maximum number of vertex-disjoint paths. This problem is
solvable in polynomial time by standard network flow techniques. First, we construct a
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directed graph D = (V, A), in which each edge {v,w} is replaced by two arcs (v, w) and
(w,v) both with weight co. Next, we construct an auxiliary directed graph D’ by

e replacing each vertex v by two vertices v' and v”,

e redirecting each arc with head v to v/,

e redirecting each arc with tail v to v”, and

e adding an arc from v’ to v” with weight 1.
Then, the minimum number of vertices in an st-separating set in GG is equal to the mini-
mum weight of an s” — ¢’ cut in D’. So, if we calculate the minimum s” — ¢’ cut for every
combination s,t € V, {s,t} ¢ E, we obtain the minimum separating vertex set. Note that
since the graph D’ is a directed graph, we have to solve O(n?) minimum cut problems.
In other words, we cannot use the algorithm of Gomory and Hu [75], which solves the

all pairs minimum cut problem for undirected graphs by solving only O(n) minimum cut
problems.

4.2.2 HEURISTIC

The heuristic we use to obtain a tree decomposition can be described as follows. We
start with the trivial tree decomposition in which we have one node corresponding to
the complete graph. During the process we have a tree decomposition (7, X’). We select
the node i € I with |X;| maximum. This node is replaced by m + 1 nodes iy, ..., iy,

with vertex sets X; ., X; . The nodes i1,...,1, all are connected with 75. Each node

0 - -
k € N(i) is connected to exactly one node j € {iy,..., iy}, such that all conditions of a

tree decomposition are satisfied again.

The sets Xj,,...,X;, are defined as follows. We construct a graph G; = (V;, E;) that
consist of the induced subgraph G X;] and the additional edges Uyen(;)C(X;N X}), where
C(X) denotes a complete graph on the vertices X (i.e., C(X) is a clique). If G; is a
complete graph, then X, := X, and m = 0, i.e., we do not change the tree decomposition.
If G; is not a clique, then we calculate a minimum separating vertex set S C V;. Let
Yi,, ..., Y, be the vertex sets of the m > 2 components of G;[V;\ S]. We define X;, := S,
and X;, :=Y; US forall j €1,...,m. The set X has a non-empty intersection with at
most one set Yj,, j =1,...,m: Let v,w € X;N Xy, then {v,w} € C(X;NXy) C Ej, which
implies that v and w cannot be separated by S. So, either v,w € S or v,w € Y;, US
for only one j € {1,...,m}. Therefore, we connect each neighbor k € N (i) with the
node i, j € {1,...,m} for which the intersection of X} and Y, is non-empty, or in
case there is none with ig. As a consequence, the new construction is a tree again (see
Figure 4.3). In the new tree the conditions for a valid tree decomposition again hold. Since
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X; Xig
X,-].,jzl,...,m

Xi, k€ N(i) Xi, k€ N(i)

FIGURE 4.3: Improvement step of a tree decomposition

o X, = (UfLYi,)US = X; condition (i) is satisfied. To satisfy condition (ii) we have to

13
prove tjhat for each edge {v, w} € E[X;] one of the new vertex sets X;,,..., X; contains
both vertices. If v, w € S, then this is trivially true. Otherwise, suppose v € Y;, for some
je{l,...,m}. fw €Y, k#j, then S does not separate Y;, and Y;,; a contradiction.
And thus, w € ¥;; US = X;,. Condition (iii) states that all nodes in the tree that contain
the same vertex v must form a subtree. We only need to check this for v € X;. If v € S
then v is contained in all new nodes and the condition is trivially satisfied. Otherwise, let
v €Yj, for some j € {1,...,m}. By construction, nodes k& € N (i) and i; are connected if

Xy and Y, intersect. Hence, all nodes that contain v form a subtree again.

Note that, if G; is not a clique, then there exist vertices v,w € X; with {v,w} ¢ F;.
Thus S = X; \ {v,w} separates G; in two components; ¥;, = {v} and V;, = {w}. So,
max{|Y;, US|, |Y;, US|} = |X;| =1 < |X;|. As a consequence, the width of the tree
decomposition may decrease. Figure 4.4 shows the heuristic in a flowchart.

The width of the resulting tree decomposition approximates the minimal treewidth. How-
ever, as long as the separating vertex sets S form cliques in the original graph, the algo-
rithm operates in an exact way, since the optimal tree decomposition will contain a node
for every clique that separates the graph in multiple components.

4.3 DYNAMIC PROGRAMMING ALGORITHM

The algorithm that solves the MI-FAP in polynomial time (given that the treewidth is at
most a constant k) is based on the following idea. Let S C V' be a separating vertex set of
G with G[V'\ S| = G[V1]UG[V2]. Then the optimal assignment in V; (or V3) only depends
on the assignment in S. So, given an assignment of S the problem decomposes in two
MI-FAPs on G[V;] and G[V;]. Thus, the MI-FAP can be solved by solving the two MI-
FAPs on G[V}] and G[V3] for all possible assignments in S. This idea can be formulated
as a dynamic programming algorithm using a tree decomposition of the graph. For every
internal node ¢ € I, X; is a separating vertex set, which implies that given an assignment
for X;, the MI-FAP decomposes in smaller MI-FAPs for every branch in the tree.
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INPUT:
Graph G = (V, E)

Construct (7, X)
with |[I|=1and X; =V

OUTPUT: current

tree-decomposition

3¢ € I with
G not a clique

Calculate minimal separating
vertex set S for Gj;:
m components Y; ,...,Y;

'

Define X;, := S
Xi; =Y, uS forj=1,....m

'

Construct new (T, X)

m

FIGURE 4.4: Heuristic for construction of a tree decomposition

Before we describe the algorithm in more detail, we first introduce some additional no-
tation. In the sequel of the chapter we assume that the tree is rooted and binary. Let
Y; ={v € V :3j € I,j descendant of i and v € X} denote the set of vertices that is
represented by the subtree rooted at node 7. Given a subset S C V, we denote with
ds = (dy)yes an assignment of domain elements d, € D, for every vertex v € S. Similar,
Dg denote the complete set of all assignments for a set S.

Now, we can describe the dynamic programming algorithm as follows. In a bottom-to-top
way we compute for every node ¢ € I all assignments for the subset Y;, Dy,. Starting
with a leaf ¢ € I of the tree, the algorithm stores all assignments for the vertices in
X;. The computation of all assignments takes O(Il,ex,|D,|) = O(d™i) time, where
d = maxyey |D,|. Next, given all assignments for two nodes j,k € I with common
predecessor ¢ € I, we can compute all assignments Y; by combining every assignment of
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Y;, every assignment of V), that has the same assignment for the vertices in X; N X,
and every assignment of domain elements to the vertices in X; \ (X; U X;). However,
since X; is a separating vertex set in the graph, we do not have to store all assignments
for the vertices in Y;, but only the assignments that differ for the vertices in X;. For an
assignment of the vertices in X, we only have to store the best assignment for the vertices
in Y; \ X;. In other words, we have to store at most I,¢cx,|D,| assignments for node i € T
instead of Il,ey,| D, | assignments to obtain the overall optimal solution. The computation
of these assignments can be done in O(Iyex,ux,ux,|Dy|) = O(dXiHXiHXk) - Finally, for
the root node r € I of the tree T', Y, = V', and so we only have to store one solution which
gives the desired optimal solution for the problem. The overall computation time of this
algorithm is given by O(nd®*), where k is the width of the tree decomposition (T, X) of
G that is used. So, for graphs with treewidth bounded by a constant k, this algorithm
solves the MI-FAP in time polynomial in n and d, but exponential in k. In Figure 4.5 the
algorithm is represented in a flowchart, where we assume that the nodes are numbered
1,...,|I| in a topological order from top to bottom.

The performance of the algorithm highly relies on additional techniques to reduce the size
of the sets of assignments Dy,. These techniques are described in the next section.

4.4 REDUCTION TECHNIQUES

Quick ways to remove vertices and edges from the constraint graph or to remove frequen-
cies from the domains of the vertices may speed up any solution technique for the MI-FAP
applied afterwards. Our technique for solving the MI-FAP, a dynamic programming al-
gorithm based on the tree decomposition of G, computes all non-redundant assignments
for subsets of vertices. The number of different assignments grows exponentially with the
cardinality of the subset, which makes the need for good reduction techniques evident. In
this section we present several such techniques. All are based on the following paradigm
for extending partial feasible solutions:

A partial feasible solution can be extended to an optimal solution only if the extension
itself is optimal with respect to the partial feasible solution. In other words, if a partial
feasible solution is not extended optimally, the resulting feasible solution is certainly not
optimal.

In the next subsection we use this paradigm directly to remove vertices, or replace them
by edges. In Subsection 4.4.2 we present a penalty shifting procedure, which is mainly
used to obtain lower bounds on the value of the instances, but can sometimes remove
edges from the constraint graph as well. In Subsection 4.4.3, we present techniques to
remove frequencies from the domains of vertices, and to remove non-optimal partial fea-
sible solutions. This is done in two ways: by using upper bounding techniques, and by
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INPUT:
Problem P = (G = (V, E), D, p, q)
Tree-decomposition (T, X)

Y

no yes

Y Y

Let ¢ be the predecessor of j,k € T
Compute all assignments for Y; Compute all assignments for X;
from assignments for Y; and Y

yes

FIGURE 4.5: Dynamic programming algorithm

using dominance criteria.

4.4.1 CONSTRAINT GRAPH REDUCTION

In this subsection we describe how we can remove vertices v € V with |D,| = 1 or
|IN(v)| < 2 from G. First of all, for vertices v with D, = {d}} we do not have a choice
for the frequency. Therefore v can be removed from the constraint graph, provided that
q(v,d?) is added to the solution value, and that for every w € N(v), d,, € D,, the penalty
p(v,d:, w,dy,) is added to the vertex penalty ¢(w,d,). Vertices with degree zero can also

be removed from the constraint graph. For a vertex v € V' with |N(v)| = 0, the optimal
choice of a frequency is argming, cp, ¢(v,d,). So, the vertex can be removed from the
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graph, provided that the value of the optimal solution in the remaining problem will be
increased with ming, ¢p, q(v, d,).

Next, let v € V' be a vertex with |N(v)| = 1, and let N(v) = {w}. Consider a partial
solution in which v is the only vertex without a frequency assigned to it. We should assign
a frequency to v, that has minimal penalty with respect to the partial solution. To do so,
we only need to consider the frequency assigned to w, say d}, since the other vertices are
not connected to v in GG, and, thus, do not influence the penalty incurred by any choice
of frequency for v. Therefore, it suffices to compute the smallest penalty incurred by the
frequencies of v, i.e., ming,ep,{q(v,d,) + p(v,d,, w,d%)}, and extend the partial feasible
solution with a frequency d;, that attains this minimum. Although d; may differ among
all partial solutions, we can determine the best extension of any partial feasible solution
beforehand by, for all d,, € D,,, computing the value

q,(w7 dw) = mindvEDv{Q(”? dv) + p(”? d'U) w? dw)}

and subsequently adding ¢'(w, d,,) to q(w, d,,). This, in effect, adds to each d,, the optimal
choice in D, at the beginning of the algorithm, allowing us to remove the vertex v and
the edge {v, w} from the instance. At the end of the algorithm an optimal solution found
for the problem instance restricted to G[V \ {v}], can then be extended by selecting the
optimal choice d; € D, given the chosen frequency d; of w.

We can generalize this idea to vertices with degree two as follows. Let v be such a
vertex, and let N(v) = {u,w}. To extend a partial solution in which v is the only node
without a frequency, we should assign a frequency to v, that is optimal with respect
to the frequencies of u and w. Let d} and d; be the selected frequencies. We then
select d¥ = arg ming, cp, {p(u, d%, v, d,) + q(v,d,) + p(v, dy, w, d)}. Again, we can do this

beforehand by, for all d, € D,,d, € D,, computing the value

p,(u7 dUJ w) d’LU) — mindveDu {p(u7 du? U’ d’U) + q(UJ d'U) + p(”) dv? w7 d’LU)}

and subsequently adding p'(u, d,,w,d,) to p(u,d,,w,d,). This, in effect, adds to each
combination {d,,d,} the optimal choice in D,, allowing us to remove the vertex v and
its two incident edges from the instance. Note that possibly the edge {u,w} may have to
be inserted in the constraint graph.

We can repeat the reduction process until all vertices with degree at most two are removed.
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4.4.2 PENALTY SHIFTING - LOWER BOUNDING

In this subsection we present a technique to obtain a lower bound on the optimal value of
the instances by shifting penalties from edges to vertices and back, and from vertices to the
objective and back. We first illustrate the technique by the example in Figure 4.6(a). We
have three vertices, each with 2 domain elements. The non-zero edge-penalties are given
by edges. We can transform this part of the instance by moving penalty from the penalty
matrix to the penalties on frequencies (Figure 4.6(b)), and even from the frequencies to
the objective (Figure 4.6(c)).

(a) original (b) shift to vertex v (c) shift to objective

FIGURE 4.6: Example shifting penalties

If for an edge {v,w} € E we have a penalty matrix such that given d! € D, for all
dy € Dy, p(v, d’, w,d,) > 0 then by model equality (3.3) we can decrease these penalties,
and simultaneously increase ¢(v,d’) with the same amount. The same procedure works
on vertices. Suppose that we have a positive penalty ¢(v,d,) for all d, € D,. Then
by (3.2) we can decrease the penalty ¢(v,d,) with the minimum vertex penalty and add
the same value to the objective. The condition that all penalties should be nonnegative

is not really crucial, but allows us to maintain a lower bound on the objective value.

A special case are penalty matrices with the property that p(v,d,,w,d,) = §(v,d,) +
d(w,dy), i.e., the elements are the sum of values corresponding to the rows and columns.
Then we can reduce all edge-penalties to zero, and thus remove the edge from the con-
straint graph by shifting all edge-penalties to the frequencies of the two corresponding
vertices.

4.4.3 DOMAIN REDUCTION

In this section we devise methods to reduce the number of partial feasible solutions to the
ones that are candidates to be used in optimal solutions. We describe two ways of doing
so, namely upper bounding (in Section 4.4.3.1), and dominance (in Section 4.4.3.2).
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4.4.3.1 UPPER BOUNDING

Upper bounding in its simplest form is performed on vertices as follows. Consider a
vertex v and its neighbors N(v). We want to derive an upper bound u(v,d(v)) on the
total penalty incurred by node v in the optimal solution of the FAP, i.e., an upper bound
on the vertex-penalty of v and the edge-penalties of the edges incident with v.

Consider an arbitrary partial solution dﬂzfv(v) € Dy(v). Then we compute the frequency for
v with the lowest penalty:

P(d?\f(v)) = mindveDv {q(v7 d'U) + Z’LUEN(’U) p(”? d’U) w? dz;)}
Among all possible choices for dﬂz‘\r(v) € Dy(,) we take the one with highest penalty, i.e.
U’(U7 5(U)) = maXd}(v(v)eDN(v) P(d*N(’U))

Then the value u(v,d(v)) is certainly an upper bound on the penalty incurred by an
optimal choice of frequency for v.

p(v, d’U’ w’ d’l.U1)

Dv q(v, dv) le

1 0 D, [1 2

2 0 1 2 0

-GV A\ {v}] 3 0 2 |0 2

3 |1 1
w1

v wo p(v,dvawadwz) p(vad’v’wadwg,)

D, Do,

D, 1 2 D, [1 2

ws 1 [0 2 1|1 o0

2 12 0 2 |0 1

311 1 310 0

FIGURE 4.7: Example upper bounding and dominance

We illustrate this upper bounding technique with the following example, see Figure 4.7.
Let v be a vertex in the constraint graph G. Its domain contains three frequencies: 1, 2,
and 3. Tt is connected to three vertices wy, we, and ws each of which has two frequencies:
1 and 2. For all d, € D,, the total penalty is ¢(v,d,) + Zweé(v)p(v,dv,w,d;‘jj) where
dy, is the frequency chosen for w. In Table 4.1 we have computed for any combination
of (duw,, dw,, dw,) the best frequency df for v, i.e., the one such that the total penalty
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Q(’U, dv) + EwGN(v) p(’U, dU7 w, dw)

Qw dwy wg =TT 0 28 best
1 1 1 5 0 2 0
1 1 2 4 1 2 1
1 2 1 3 2 2 2
1 2 2 2 3 2 2
2 1 1 3 2 2 2
) 1 2 2 3 2 2
2 2 1 1 4 2 1
2 2 2 0 5 2 0

TABLE 4.1: Penalties example upper bounding and dominance

is minimal among all possible frequencies for v. Table 4.1 shows that for this example
the upper bound is 2, the maximum of the last column. In general, though not in this
example, any frequency d, € D, with ¢(v,d,) > u(v,d(v)) can be removed from D,.

For arbitrary v € V, we can compute this upper bound by solving an integer linear
program. For all w € N(v), d,, € D,, we introduce a binary variable

y(w, dy) = { 1 ifd, G'Dw is assigned to w € N(v)
0 otherwise

If the variable z denotes the actual upper bound, the integer linear program reads as

u(v,d(v)) =max z (4.1)
s.t. z2<q(v,d,) + Z p(v,dy, w,dy)y(w,d,) Yd, € D, (4.2)
weN (v)
Z y(w,dy,) =1 Vw € N(v) (4.3)
y(w,dy) € {0,1} Vw € N(v),d, € D,, (4.4)

The constraints (4.3) and (4.4) enforce that for each neighbor of v exactly one frequency is
chosen. For a given choice of frequencies dy,) the right-hand sides of constraints (4.2) are
the penalties incurred with each of the corresponding frequencies for v. Thus, a frequency
d, with smallest penalty determines the highest value z can obtain for the particular
choice of frequencies for the neighbors of v. For each possible assignment of frequencies
to the neighbors of v we determine this value. The worst choice of dRT(v) is one for which
this value is maximal. This choice determines the value of z, and so u(v,0(v)).
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Frequencies d, € D, for which ¢(v,d,) > u(v,d(v)) can be removed from the domain. In
the preprocessing phase such frequencies are removed for all vertices. Also, partial feasible
solutions dg € Dg, v € S, for which the penalty incurred by the frequency assigned to v
and its incident edges is higher than u(v,§(v)) need not be considered.

The above technique can be generalized to sets of vertices, instead of single vertices.
Consider a set S C V' with its set of assignments Dy.

u(S,9(S)) = max z (4.5)
st 2<q(Sds)+ Y. Y pv, dy, w, dy)y(w, dy)
wWEN(S) dw€EDy vEN (w)NS
Vds € Dg (46)
> ylw,d,) =1 Vw € N(S) (4.7)
y(w,dy) € {0,1} Vw e N(5),d, € D, (4.8)

Here, ¢(S, ds) denote the total penalty involved by an assignment dg, i.e.,

q(Sa dS) = Zves q(va dv) + Z{v,w}eE[S} p(?}, dva w, dw)

This value is a lower bound on the total penalty involved in any complete assignment based
on the partial assignment dg. So, if ¢(S,ds) > u(S,0(S)), then this partial assignment
cannot be extended to an optimal complete assignment. Hence, it can be removed from
the set of assignments Dg. An even better lower bound on the penalty in any complete
assignment is given by the total penalty incurred by the subgraph G[S] and the edges
5(S), i.e.

1(S,8(S),ds) = 4(S, ds) + e n(s) Minayenn { uenuyns PO, dos 0, du) |

Whenever [(S,6(S),ds) > u(S,d(S)), we can remove dg from our set of assignments for
S. We will call an assignment non-redundant if [(S, §(S), ds) < u(S,6(S5)).

The upper bound u(S,4d(S)) is especially powerful if the number of edges in the cut-set
d(S,) is small, or if the sum of the maximum penalties incurred by the cut-set edges is
not too large. If the upper bound « (S, §(S)) = 0 for a subset S, then we know that given
any assignment to the vertices V'\ .S, the partial solution can be extended to a complete
solution without additional penalty. This implies that we can remove the subset S and
the edges 6(S) from the constraint graph.
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4. A TREE DECOMPOSITION APPROACH

A similar upper bounding technique can be applied to a small extension of the set S and
the edges in its cut-set, i.e., an upper bound for the induced subgraph G[S], the edges
§(S) and the vertices N(S5).

Note that, if T C S, u(T,§(T")) < u(S,(S)), which implies that the upper bound for S is
also valid for T'. The upper bound u(S,§(S)) can also be used in combination with lower
bounds. Let S,T C V be disjoint subsets, and let [(S) be a lower bound on the penalty
incurred by G[S]. Then, an upper bound u(7T, (7)) is given by u(T,0(T)) = u(T,6(T)) —
[(S). Similarly, if 1(S,d(S)) is a lower bound on the penalty incurred by G[S] and the
edges 6(95), then an upper bound for G[T] is given by u(T") = u(SUT, §(SUT))—I(S, (S5)).

The main problem with u(S,§(S)) is that it may take quite some time to compute it.
It may be preferable to compute the value of some relaxation of (4.5)-(4.8). The LP-
relaxation does not generate really powerful upper bounds. Our choice is therefore to
relax (4.5)-(4.8) by taking a subset of the constraints (4.6), i.e., a number of partial
feasible solutions with low ¢(S,ds). In case we restrict ourselves to one good partial
solution dg for S we can solve the relaxed problem by inspection, and use this as an
upper estimate of u(S,d(5)):

u(S,6(8)) < q(S.dy)+ > > Z p(v, di,w, dy)y(w, d,)

wGN ) dweDw 'UEN

= ¢q(S,d%) Z max Z p(v,d;, w,d,) (4.9)

weN(S Y veN(w)nS

Note that good partial solutions are usually available through heuristics, or are generated
in the dynamic programming algorithm.

4.4.3.2 DOMINANCE

Upper bounding techniques are a quick way to eliminate the worst partial feasible solu-
tions, but these techniques sometimes only remove a small fraction of the solutions that
are redundant. In this subsection we develop techniques that remove partial solutions for
which there exist better alternatives. Consider again the example of Figure 4.7. Though
frequency 3 could not be removed from D, using the upper bound, we can verify in Ta-
ble 4.1 that for no choice of frequencies for the neighbors of v frequency 3 is the unique
optimal choice. In other words, in any solution where frequency 3 is chosen we can replace
it by another frequency without obtaining a worse solution. Therefore, we maintain at
least one of the optimal solutions by removing this frequency from D,.

The abstract concept of dominance is as follows. Let v € V. Consider all partial solutions
of N(v). If these solutions can be extended with a frequency of D, \ {d}} to solutions
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at minimum cost, then d; is not necessary to obtain an optimal solution. Therefore d
can be removed from D,. We say that d} is dominated by the frequencies in D, \ {d}}.
This concept can also be generalized to sets of vertices, similar to the generalization of
the upper bounds to sets S C V. Let d¢ be an assignment to S, then d§ is dominated by
the other non-redundant assignments Dg \ {d%} if every partial feasible solution of N(S5)
can be extended to a solution at minimum cost with an assignment of Dg \ {d%}.

To find out whether d% is dominated by Dg \ {d%}, we formulate the following feasibility
problem, which has a feasible solution if and only if d% is the unique minimum for some
choice of frequencies of the neighbors. Therefore, it is dominated if and only if this
problem has no solution. The binary variables y(w, d,,) used in this formulation have the
same meaning as in the previous subsection: y(w,d,) = 1 if frequency d,, is chosen for
node w, and 0 otherwise. Then the feasibility problem reads

oS, ds)+ Y 3 Y, plodyw,dy) py(w,dy)

weN(S) | véeN(w)NS
dy €Dy

<q(S.ds)+ Y > p,dyw,dy) py(w,dy,) ¥ds € Ds\ {d5}  (4.10)

weN(v) | veN(w)NS

> y(w,dy) =1 Vw € N(S) (4.11)
y(w,dy) € {0,1} Yw € N(S)Vd, € Dy, (4.12)

For any solution of N(S) the constraints (4.10) state that the penalty of d¥%, the left hand
side (LHS), should be smaller than the penalty of each dg € Dg\ {d%}, the right hand side
(RHS). In other words, if there is a solution of N(S) with this property, then d% is the
unique optimum for this solution, and thus it is not dominated by the other frequencies

in Dg \ {d%}.

To transform (4.10)-(4.12) into an integer linear program we introduce a variable z, which
denotes the maximum difference between the RHS and LHS of (4.10), i.e., it is a measure
of the “minimality" of d%.

max 2z (4.13)
st 2<q(S,ds) —q(S,de)+ Y > A Z Apv dy, d%,w, dy) Yy (w, dy)

WEN (v) dwEDw vEN (w)
Vds € Dg\ {d3}  (4.14)
> ylw,dy) =1 Yw € N(S) (4.15)

dw €Dy
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y(w,d,) € {0,1} (4.16)

where Ap(v,d,, d:, w,dy,) = p(v,dy, w,dy,) — p(v,d, w,dy). Clearly, if z > 0, then d%
is not dominated, since the feasibility problem has a solution; otherwise, if z < 0, d§ is

dominated.

The formulation (4.13)-(4.16) resembles the upper bound formulation (4.5)-(4.8). More-
over, this problem has to be solved for all non-redundant assignments. Therefore, we again
relax the problem by removing constraints. For a good partial solution dg we generate
the corresponding constraint (4.14). This restricted problem can then be approximated
by inspection. From (4.14) we get:

z < q(S,ds) —q(S,ds) Z Z{ Z Apvdv,dv,wd)}y(wd)

WEN(v) dwEDyw vEN(w

= q(S.ds) —q(S.d5) + Y max { Z Ap(v, dy, i, w, dy)}

dw€
wEN (v) e vEN(w)NS

< q(S.ds) —q(S,de) + max Ap(v,dy, dy, w,dy) (4.17)

{v,w}€d(S)

So, if the RHS of (4.17) is already < 0, then d¥ is dominated.

4.5 ITERATIVE VERSION ALGORITHM

Both time and memory are insufficient to solve large instances with the dynamic pro-
gramming algorithm described in Section 4.3, even if we use the reduction techniques of
Section 4.4. During the algorithm, the number of non-redundant assignments explodes
for these instances. We can point out two reasons. On the one hand, the width of our
tree decomposition is too large. On the other hand, the number of frequencies available
for a vertex is too large. In this section we focus on this last reason. Instead of assigning
frequencies to the vertices, we propose to assign subsets of frequencies. So, we partition
the domain of a vertex in a number of subsets, and assign one of them to the vertex. To
handle these subsets as frequencies of a new MI-FAP, we have to harmonize the vertex
and edge-penalties for all frequencies in a subset. We take as penalty the minimum of
the individual penalties. In this way the solution value of the new MI-FAP is a lower
bound for the original problem. We can extend this idea to an iterative method which
provides a sequence of lower bounds for the original instance. The dynamic programming
algorithm is used as a subroutine to solve the MI-FAPs with the substantially smaller
domains. Contrary to the original MI-FAP, time and memory are sufficient to solve these
MI-FAPs, because they are much smaller.
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4.5. ITERATIVE VERSION ALGORITHM

The idea of the method is that we identify a subset of the domain with each vertex.
The vertex- and edge-penalties for these subsets are estimated from below. For example,
consider the matrix of edge-penalties given in Figure 4.8(a). The level of interference
on this edge is 10 if the difference between the frequencies is less than 2. If we divide
the frequencies in two groups {1, 2}, and {3,4}, we obtain 4 blocks in the table of edge-
penalties with (almost) the same values. In most cases there is no difference between
the penalties as long as the pairs of frequencies are in the same block. Therefore, let us
construct a new MI-FAP in which we have to assign either the subset {1, 2} or the subset
{3,4} to the vertices. The edge-penalties in this new MI-FAP are given by the minimum
of the values in each block (see Figure 4.8(b)). Solving this substantially smaller problem
provides a lower bound for the optimal value of the original problem. The quality of the
lower bound depends on the size of the blocks: many small blocks will provide a better
lower bound than a small number of large blocks. In most real-life instances the block
structure of the penalty matrices arises naturally, since the available frequencies for an
antenna can be divided in groups of frequencies that are in the same part of the spectrum.

dy, dy 1 2| 3 4

1 10 10| 0 0 d, du | {1,2} | {3,4}
2 10 1010 O {1,2} 10 0
3 0 10|10 10 {3,4} 0 10
4 0 0jio 10 (b) new penalty matrix

(a) original penalty matrix

FIGURE 4.8: Example to illustrate the idea behind the iterative algorithm

This idea can be formalized in the following algorithm. We start with the original problem
P = (G,D,p,q) and we partition for every vertex v € V the domain D, in an initial
number of n, subsets D), ..., D™. This partition is, for example, based on a natural
partition of the frequencies in groups of frequencies that are in the same part of the
spectrum.

Next, we construct a new MI-FAP P' = (G, D',p',¢’), with

e domains D! = {1,...,n,} for all vertices v € V,
e vertex-penalties ¢'(v, ) = ming, cp: q(v, d,) for every vertex v € V, i € D, and

e edge-penalties p'(v,i,w,j) = ming,cp; min, pi p(v,dy, w,dy) for all {v,w} € E,
ie D, j€D,.
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4. A TREE DECOMPOSITION APPROACH

So, P’ is defined on the same graph as P, and the domains of P’ correspond with the
subsets D!, i =1,...,n,. Since the vertex and edge-penalties in P’ are the minimum of
the penalties in the corresponding subset(s), the optimal value of the problem P’ provides
a lower bound for the optimal value of the original problem P.

Our way to obtain a sequence of non-decreasing lower bounds is based on an iterative
refinement of the domain-subsets. A partition D}, ..., D™ of a domain D, is called a
refinement of another partition D!, ..., D", if for every subset ij, 1 = 1,...,m, there
exists a subset DJ, j € {1,...,n} in the second partition for which D! C DJ. If P and P
are MI-FAPs corresponding to these partitions, then the value of the optimal solution of
P will be at least as high as the value of the optimal solution of P, which implies that P
provides a lower bound that is greater than or equal to the lower bound provided by P.

Now, we can extend the algorithm to obtain a lower bound to an algorithm that provides
a sequence of non-decreasing lower bounds as follows. We construct a problem P’ which
provides us with the first lower bound. Next, we refine the partition of the subsets, and
again construct a MI-FAP P’ which hopefully provides us with a better lower bound. We
can repeat the refinement of the partition as long as the efforts to solve the problem P’
is reasonable in both time and memory. A flowchart of this algorithm is presented in
Figure 4.9.

Whatever refinement procedure (i.e., for which vertices do we refine the partition, and
how do we refine the partition) we apply, a guarantee that the new lower bound will be
strictly greater than the old lower bound cannot be given in general. However, if for all
vertices v € V, the domain-subset that corresponds to the optimal solution of P’ is not
partitioned in the refinement procedure, then the ‘old’ optimal solution is still optimal in
the new problem P’. This implies that a refinement can only be effective if at least one
selected domain-subset is refined. Therefore, for each refinement we select one vertex v,
for which we partition the assigned subset. To speed up the process in practice, we do
not apply the dynamic programming algorithm after each single refinement, but after the
refinement of the domains for a subset of the vertices S C V.

For a partition of the assigned subset for a vertex v € V' we can compute an upper bound
on the increase of the value of P’. This upper bound is used as criteria to select a partition.
Consider the example of Figure 4.10. Let D! = {d}, d?} be the assigned subset to v, and
let D!, and D, be the assigned subsets to the neighbors u and w, respectively. The total
penalty incurred by this assignment is 0. However, if we either assign d! or d? to v, then
the total penalty will be one. Hence, partition of the subset may lead to an increase of
the value of P'. It cannot be guaranteed however, since the new optimal assigned may

select a subset other than {d.} or {d2}.

In general, an upper bound on the increase of the optimal value by a partition of the
assigned subset can be computed as follows. We restrict ourselves to a partition of the
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INPUT:
Problem P = (G = (V,E), D,p,q)
Tree-decomposition (T, X), tree T = (I, F)
Lower bounds l;*, i € I, upper bound: u
Subsets Di, Yo € V, i€ {1,...,n,}

Y

Construct new instance P’ = (G, D',p’,q')

Y

Apply Heuristic on P’: upper bound v/’

Y

Apply Dynamic Programming Algorithm on P’: I’

Best-known solution
is optimal

Refine the partition of the domains

FIGURE 4.9: Iterative version of the algorithm

assigned domain-subset in two domain-subsets, but the procedure can easily be extended
to a partition in more than two domain-subsets. The procedure can also be generalized
to subsets of vertices instead of single vertices. Let v € V', and D; be the domain-subset
that corresponds to the optimal assignment. If we partition D/ in A, and D) \ A,, then
the value of the problem P’ will increase with at most Az (v, 4,),

Ar(v, A,) = min{r(v, A,), 7 (v, D\ A,)} — (v, D))

penalties || D! || Di, || total
v o | 1] o 1
v v d2 0 1 1
w minimum || 0 0 1

FIGURE 4.10: Example to illustrate the partition of assigned subsets
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where

(v, D) = ming,ep q(v, dy) + 3, () Mila,ep Ming,epy, P(v, do, w, du)

Among all partitions A,, D! \ A,, the best partition, according to the value Ar (v, A,),
is Ay = argmaxa,cp, Am(v, A,). If Ar(v,A}) = 0 then no single refinement of the
partition for vertex v will result in an increase of the lower bound for P. Therefore, the

subset S for which we will partition the assigned subset is given by the vertices for which
Ar(v, A%) > 0.

The iterative method can be separated from the dynamic programming algorithm. In
principle we can use any exact algorithm to solve the consecutive MI-FAPs. However, the
use of the dynamic programming algorithm of Section 4.3 enables us to use information
of previous solved problems. More precisely, during the computation of the optimal
solution of a previous problem P’, we obtain for all ¢ € I a lower bound (Y}, d(Y;)) for
the penalty incurred by G[Y;] and the edges 6(Y;). These values are also lower bounds
on the penalty in the new problem P’, which implies that we can compute upper bounds
u(V\Y;) =o' —1(Y;,0(Y;)) for all i € I. Here, v is a general upper bound for the new
problem P’ which can be computed by one of the heuristics available for the MI-FAP. If
the increase of u' is not too large for two consecutive problems P’, then the upper bounds
for the subsets are often relatively strong.

4.6 COMPUTATIONAL RESULTS

In this section we report on the results we have obtained using the approach described
in the previous sections. We tested the methods described in this chapter on real-life
instances obtained from the CALMA-project (cf. the Sections 2.2.4 and 2.6). The set
of instances consists of two parts. The CELAR instances are real-life problems from
a military application. The GRAPH instances are randomly generated problems with
the same characteristics. We only used the 11 so-called penalty-instances, since for the
other instances the objective is either to minimize the frequency span, or the minimize
the number of frequencies used. In this section we solve 7 out of the 11 instances to
optimality and we obtain good lower bounds for the other instances.

The solution procedure can be divided in four parts, each of which is analyzed in the
forthcoming subsections. In Section 4.6.1 we report on the results obtained with the
preprocessing techniques of Section 4.4. The results of the heuristic to construct a tree
decomposition of Section 4.2 are presented in Section 4.6.2. In Section 4.6.3, we show that
some of the instances of the CALMA-project can be solved to optimality with the dynamic
programming algorithm of Section 4.3. Furthermore, we compare the performance of the
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dynamic programming algorithm with the polyhedral approach on 5 small test instances
that have been constructed from one of the CELAR instances. Section 4.6.4 is devoted to
the lower bounds which were obtained with the iterative version of the algorithm described
in Section 4.5. Finally, in Section 4.6.5 we combine the iterative algorithm of Section 4.5
with the integer programming techniques of Chapter 3 in order to improve the lower
bounds even further.

All implementations have been carried out in C++. The programs for the dynamic
programming algorithm and the iterative version of the algorithm were running on a DEC
2100 A500MP workstation with 128 Mb internal memory. The programs for preprocessing,
for the construction of a tree decomposition, and for the computation of upper bounds for
single vertices were executed on a Pentium II - 233 Mhz Personal Computer with 32Mb
internal memory. We used the callable library of CPLEX 4.0 to solve (integer) linear
programming problems.

4.6.1 PREPROCESSING

We start our computations with the application of the graph and domain reduction tech-
niques described in Section 4.4. The following procedure is repeated as long as the size
of the problem is reduced. First of all, we apply penalty shifting from edges to vertices
and from vertices to the objective. Next, we apply the graph reduction techniques: the
removal of vertices with only one domain element, the removal of edges with only zero
penalty, and the removal of vertices of degree less than or equal to two. Then, we calculate
the upper bound (4.9) for every vertex, and we apply the dominance test (4.17) for single
vertices. If a frequency is dominated, then we remove this frequency from the domain.
The dominance test (4.13)-(4.16) with S = {v} yields no additional reduction. If, due
to the upper bound and dominance test, a vertex with only one frequency occurs, we
remove the vertex. We apply the same upper bound (4.9) and dominance test (4.17) for
adjacent vertices. Contrary to the dominance test for a single vertex we cannot remove
the frequencies of the combination in case it is dominated. Therefore, we increase the
edge-penalty of this combination with an amount that guarantees that it will never occur
in a non-redundant assignment. Moreover, if given a frequency d, € D,, the combination
(dy,dy) is dominated for all d,, € D,,, we can remove the frequency d, from the domain
D,.

In the Table 4.2 statistics for all penalty-instances before and after preprocessing are
reported. Successively, we report the number of vertices (|V'|) and the number of edges
(|E|) in the constraint graph, and the average number of domain elements (|D]). In
addition, we report the value that is fixed by the preprocessing phase, the best known
value (see Kolen [118]), and the best known lower bound (cf. Aardal et al. [1] and Hurkens
and Tiourine [184]). For the GRAPH instances this lower bound is not available. Table 4.2
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before preprocessing after preprocessing best previous
instance V| |E| |D| V| |E| |D| fixed wvalue lower bound
CELAR 06 100 350 39.9 82 327 39.9 0 3,389 b}
CELAR 07 200 817 39.9 162 764 34.6 0 343,592 5
CELAR 08 458 1,655 39.5 365 1,539 394 0 262 0
CELAR 09 340 1,130 39.5 67 165 35.6 11,391 15,571 14,969
CELAR 10 340 1,130 39.5 0 0 - 31,516 31,516 31,204
GRAPH 05 100 416 37.1 0 0 - 221 221 -
GRAPH 06 200 843 37.7 119 348 16.2 4,112 4,123 -
GRAPH 07 200 843 36.7 0 0 - 4,324 4,324 -

GRAPH 11 340 1425  37.7 340 1425 326 2553 3,080 _
GRAPH 12 340 1,255  37.6 61 123 15.3 11,496 11,827 :
GRAPH 13 458 1877 384 456 1874 38.1 8,676 10,110 _

TABLE 4.2: Statistics and preprocessing CALMA-instances

shows that 3 out of the 11 penalty-instances are solved by preprocessing only. For the
instances CELAR 10 and GRAPH 07 this is mainly due to the vertex penalties, that cause
the removal of many frequencies. The graph reduction in the instances CELAR 09 and
GRAPH 12 can be explained in the same way. Table 4.2 also shows that there is a major
difference between the real-life CELAR instances and the randomly generated GRAPH
instances. The fixed value for the CELAR instances without vertex-penalties is simply
zero, whereas for the GRAPH instances 80% or more of the best known value can be
fixed. This difference can be explained by the effectiveness of the different preprocessing
rules. For the CELAR instances, the main part of the reduction is due to the removal of
vertices with degree less than or equal to two, whereas the main part of the reduction for
the GRAPH instances is due to penalty shifting (fixing) and the dominance test (4.17)
for single vertices. In fact, for the instance GRAPH 05, a first round of shifting penalties
resulted in a lower bound of 220. As a consequence, many domain elements could be
removed from the problem, and the constraint graph reduced substantially. A new round
of shifting penalties resulted in the proof of optimality of the best known solution. The
running time of the preprocessing phase is within a minute for all penalty-instances.

4.6.2 CONSTRUCTION OF TREE-DECOMPOSITIONS

The second step in solving a MI-FAP is the construction of a tree decomposition of the
preprocessed constraint graph. In Table 4.3 we report on the results of the heuristic of
Section 4.2. We also report the maximum clique size minus one. Since every clique should
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instance \4 |E| width max clique -1 cpu-time (sec)
CELAR 06 82 327 11 10 17
CELAR 07 162 764 17 10 176
CELAR 08 365 1,539 18 10 802
CELAR 09 67 165 7 7 0
GRAPH 06 119 348 17 5 137
GRAPH 11 340 1,425 104 7 19,749
GRAPH 12 61 123 4 4 6
GRAPH 13 456 1,874 133 6 63,586

TABLE 4.3: Construction of a tree decomposition

be in at least one node of the tree, this value is a lower bound for the treewidth of a graph.
Table 4.3 shows that the gap between the width and the lower bound varies from zero
for small instances to very large for the large GRAPH instances. For these instances
it is not clear which bound is poor. We have tried several variants of our heuristic to
improve the width of the tree decomposition, but without any success. Based on the tree
decomposition we were able to represent the constraint graph of CELAR 06 in Figure 4.11.
The figure shows that the graph can be decomposed by several small separating vertex
sets, which validates the ideas behind the heuristic of Section 4.2.

4.6.3 DYNAMIC PROGRAMMING ALGORITHM

In this subsection we report the computational results obtained with the dynamic pro-
gramming algorithm of Section 4.3. The order in which we calculate all non-redundant
assignments for the subsets Y;, i € I is based on the available upper bounds (4.9) for
S =Y. The sets Y; are ordered according to non-decreasing u(Y;, §(Y;)). During the dy-
namic programming algorithm the upper bounds for the subsets are updated every time
we obtain a new lower bound for a subset by computing all non-redundant assignments.
If an upper bound for a subset decreases and all non-redundant assignments are already
computed, we remove all assignments with penalty larger than the new upper bound.
The dynamic programming algorithm is used with and without applying a dominance
test for the subsets Y;. As dominance test, we solve the linear programming relaxation
of (4.13)-(4.16) with a limited number of constraints (4.14).

A first test of the dynamic programming algorithm is performed on 5 instances with size
of the domains between 2 and 6 for all vertices. These instances were constructed from
the instance CELAR 06 by taking a subset of the domain elements of predefined size. In
Koster, van Hoesel and Kolen [121] the polyhedral approach is tested on these instances.
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FIGURE 4.11: Graphical representation CELAR 06 based on computed tree decomposi-

tion

The tree decomposition approach is tested on these instances with and without using
the dominance test (4.13)-(4.16). In Table 4.4 the computation times of the polyhedral
method and the tree decomposition approach are compared. Without using dominance
the dynamic programming algorithm cannot solve the largest instance. At some point
during the dynamic programming algorithm the number of non-redundant assignments
for a subset is too large to store into the memory of our computer. The table shows
that both dynamic programming algorithms are competitive or substantially faster than
the polyhedral method. We also may conclude that the use of the dominance test in the
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dynamic programming algorithm speeds up the process for these instances.

The dynamic programming algorithm is also performed on the original penalty-instances.
The polyhedral method is not able to solve these instances, or even to generate non-
trivial lower bounds. Table 4.5 shows the results that are obtained with the dynamic
programming algorithm without dominance. Experiments with the dominance test did not
result in a better performance of the algorithm for these instances. The instances CELAR
09, GRAPH 06 and GRAPH 12 can be solved very efficiently with this method. After more
than 7.5 hours the algorithm was able to prove that the best known solution was optimal
for this instance as well. Figure 4.12 shows the number of non-redundant assignments

during the process compared with the theoretical number.

The optimal value for all
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instance | D,| CPU-time for

polyhedral method DP without dominance DP with dominance

CELARGa 2 3.5 3.8 8.8
CELAR6b 3 84.1 38.4 35.1
CELAR6c 4 11,785.5 408.6 219.2
CELAR6d ) 22,501.2 2,306.5 992.9
CELARGe 6 75,570.5 - 2,399.4

TABLE 4.4: Computational results dynamic programming algorithm test instances

instance  optimal value CPU-time (sec)

CELAR 06 3,389 27,102
CELAR 07 . :
CELAR 08 - ;
CELAR 09 15,571 23
GRAPH 06 4,123 29
GRAPH 11 - -
GRAPH 12 11,827 11
GRAPH 13 - -

TABLE 4.5: Computational results dynamic programming algorithm

these instances is equal to the best known. The instance CELAR 06 is more difficult to
solve. Mainly due to limitations in computer memory, we are not able to solve the other
instances.

4.6.4 ITERATIVE VERSION

Table 4.5 in the previous subsection shows that the dynamic programming algorithm is
not able to solve several instances. For these problems we apply the iterative version of
the algorithm of Section 4.5. Before we start our computations we have to partition all
domains in an initial number of subsets. In our experiments we start with either 2 or 4
subsets for every vertex. The partition of the subsets is based on a natural partition of
the frequencies in the radio spectrum.

In each iteration of the algorithm, first a heuristic is applied to obtain an upper bound for
the instance. In our computational experiments we used the genetic algorithm developed
by Kolen [118]. Then, we apply the dynamic programming algorithm in the same way as
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FIGURE 4.12: Number of non-redundant assignments CELAR 06

in the previous subsection. As last step in an iteration, we partition the selected domain-
subset of the vertices in the set S. As described in Section 4.5, we base our selection
of S and the actual partitions on the values Ax(v, A¥). We limit the set S to at most
20 vertices. Moreover, we do not compute Ax (v, A,) for every partition of the selected
domain-subset D}, but only for partitions of the form {1,...,i},{i+1,...,|Dj,|}.

In Table 4.6 we report the results we obtained in this way for the instances that we could
not solve with the original dynamic programming algorithm. For CELAR 07 we obtain a
lower bound that is within 12.5% of the best known value. Both for CELAR 07 and CELAR
08 the values are the first non-trivial lower bounds. For the instances GRAPH 11 and GRAPH
13, the width of the tree decomposition is too large to apply the dynamic programming
algorithm with any success. We also apply the iterative version to the instance CELAR 06.
If we either start with an initial number of subsets of 2 or 4, we obtain a lower bound
that is one away from optimal in third the time (or half the time) that is needed to solve
the problem to optimality with the original dynamic programming algorithm. Figure 4.13
shows the improvement of the lower bound during the process. In case we start with 2
subsets per vertex we need 38 iterations to achieve the lower bound of 3388, whereas if
we start with 4 subsets per vertex we need 35 iterations. Figure 4.14 shows a histogram
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4.6. COMPUTATIONAL RESULTS

instance initial lower bound lower bound upper  CPU-time
# subsets after preprocessing iterative algorithm bound (sec)
P 3.388 13,734
CELAR 06 { ) 0 3355 3399 042
P 243,066 959,022
ceLar o7 { 4 0 300,000 992 975 736
2 87 313,168
ceLAR 08 { ) 0 a2 e
GRAPH 11 4 2553 - 3,080 -
GRAPH 13 4 8,676 - 10,110 -

TABLE 4.6: Computational results iterative version of the algorithm

with the vertices as a function of the number of subsets after the last iteration. It shows
that only for a restricted number of vertices the domain is refined during the process.
In Figure 4.15 the maximum number of non-redundant assignments is displayed for each
iteration. The figure shows that the algorithm that started with 4 domain subsets needs
in the end substantially more non-redundant assignments to compute the lower bound
than the algorithm that started with 2 domain elements.

4.6.5 ITERATIVE ALGORITHM AND INTEGER PROGRAMMING

As mentioned in Section 4.5, the iterative algorithm can be separated from the dynamic
programming algorithm. In this section we present the results of preliminary computa-
tional experiments to combine the iterative algorithm with the polyhedral approach of
Chapter 3. From the computational results of Chapter 3 we know that the MI-FAP /
PCSP can be solved through integer programming as long as the domains are small. The
problem P’ that has to be solved within an iteration of the iterative algorithm, contains
many small domains, and therefore suits to be solved by integer programming. A straight-
forward implementation of this idea resulted in the lower bounds presented in Table 4.7.
Table 4.7 shows that especially for the instances where tree decomposition fails (GRAPH
11 and GRAPH 13), the integer programming approach can improve the lower bounds. If
we start with a partition in 4 subsets for all vertices, lower bounds of 98% of the best
known value are obtained for both GRAPH 11 and GRAPH 13. Also for the instance CELAR
08, we can improve the lower bound substantially, from 33% to 57% of the best known
solution. For the other instances the results are competitive with the iterative version of
the dynamic programming algorithm.
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FIGURE 4.13: Lower bounds CELAR 06

4.7 CONCLUDING REMARKS

In this chapter we described a computational study to use the concept of tree decom-
position to solve frequency assignment problems to optimality. We showed that the
method, although theoretically polynomial in both time and space requirements, can
only be applied to real-life problem instances if we use additional reduction techniques.
The reduction techniques used include graph reduction, upper bounding and dominance
of domain elements / partial assignments. Even with these techniques, it is not sure that
the instances can be solved. Therefore, we presented an iterative version of the algorithm
which can be used to obtain lower bounds for most of the instances. For a set of real-
life instances, we proved optimality for several instances, whereas we obtained the first
non-trivial lower bounds for the other instances. The iterative version of the algorithm
can also be combined with the polyhedral approach of Chapter 3 resulting in even better
lower bounds for the instances with large treewidth.

Based on these results, we state four directions for further research. One way is to embed
either the dynamic programming algorithm or the iterative algorithm in a branch-and-
bound framework. Hopefully, this results in even better lower bounds or even optimal
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# vertices
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FIGURE 4.14: Number of vertices as function of number of domain-subsets for CELAR

06 at the end of the iterative algorithm.

solutions. Another way for further research is the application of this method to other hard
combinatorial optimization problems. It is worthwhile to investigate the possibilities of
this method for problems that are based on a graph, and which cannot be solved by the
current solution methods.

A third direction for further research is the iterative algorithm. The preliminary computa-
tional results of Section 4.6.5 showed the potential power of this method for the MI-FAP.
More sophisticated implementations of the algorithm may lead to even better results for
the MI-FAP. Also application of the iterative method to other combinatorial optimization
problems should be considered. Finally, research in the direction of (practical) algorithms
to find a tree-decomposition with small treewidth should be carried out. The results of
this chapter show that decreases in the width of tree decompositions will result in perfor-
mance improvements of the dynamic programming algorithm. Both heuristics and exact
methods should be considered to improve the tree decomposition of a graph.
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instance initial lower bound lower bound upper  CPU-time
# subsets tree decomposition integer programming bound (sec)
2 3,388 2321 69,470
CELAR 06 { 4 3,388 2146 3389 67,904
2 243,066 180,525 256,418
CELAR 07 { ) 300,000 | 343502 ]
2 87 125 346,318
CELAR 08 { A 74 150 292 180,326
2 2898 70,864
GRAPH 11 { ) 2553+ sorg 3080 113
2 9925 23,211
GRAPH 13 { ) 8676 orgg 10,110 7,600

TABLE 4.7: Computational results iterative algorithm combined with the integer pro-

gramming techniques of Chapter 3. Values indicated with a * are obtained by preprocess-

ing (cf. Table 4.6).
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5. LOCAL SEARCH APPROACHES

Up to now, we have concentrated on exact solution methods for the minimum interference
frequency assignment problem (MI-FAP). The methods of the Chapters 3 and 4 provide
(in theory) optimal solutions to the MI-FAP, or more general to the Partial Constraint
Satisfaction Problem (PCSP). However, the computational results of both chapters show
that the techniques are not strong enough to solve the more difficult (larger) real-life
benchmark instances. In view of these results and the A/P-completeness of the problem,
we cannot expect that the even larger real-world instances can be solved to optimality
within the foreseeable future. Nevertheless, this does not mean that the techniques derived
in the previous chapters can only be used to obtain lower bounds and to solve small
instances. In this chapter we show that both methods, the polyhedral techniques, and
the tree decomposition approach can be useful for the development of heuristics that
generate solutions of high quality to the problem.

The heuristics we propose, are local search algorithms. In Section 5.1 we introduce the
necessary notation. Next, in Section 5.2 we propose a local search algorithm that uses the
integer programming results of Chapter 3. In Section 5.3, we show that also the results of
the tree decomposition approach of Chapter 4 can be incorporated within a local search
algorithm. For both algorithms preliminary computational results are presented. The
chapter is closed with some concluding remarks in Section 5.4.

5.1 PRELIMINARIES

Before we describe the actual local search approaches for the MI-FAP, we have to in-
troduce some general notation that defines a local search algorithm. Any combinatorial
optimization problem can be defined by a pair (S, f) where S is the set of solutions and f
a cost function f : & — Z that adds to each solution s € S a cost f(s). We assume that
the objective is to find a solution with minimal cost. A local search framework is defined
by its neighborhood function N : & — 25. A solution s € S is called locally optimal
with respect to its neighborhood function N if f(s) < f(s') for all & € N (s). A local
search algorithm changes a given solution s to a locally optimal solution ¢. Starting with
a solution s, either there exists an s' € N'(s) with f(s') < f(s) or s is locally optimal. In
case there exists an s’ € N (s) with f(s') < f(s), then the solution s is replaced by ¢,
and the search for a better solution in the new neighborhood N (s) is applied. In case no
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5. LOCAL SEARCH APPROACHES

s’ exists, s is returned as the locally optimal solution.

In many implementations of local search, the framework is complemented with a distur-
bance function D : S — 2°. This function is used to escape from local minima: let s € S
be a locally optimal solution and the best solution found so far, then s is stored, and the
local search algorithm is applied to an arbitrary s’ € D(s). In case the new local optimum
s" has objective value f(s”) < f(s), then the solution s is removed, and s" is stored as
new best solution. The algorithm stops if no better local minimum is found in the last
K iterations (disturbances and local optimizations), or the maximum computation time
/ maximum number of iterations is achieved. For an overview on local search we refer to
Aarts and Lenstra [8].

For the PCSP the set of solutions S contains all possible assignments (d,),cy of domain
elements d, € D, to the vertices. So, the number of solutions, |S|, equals IT,cv|D,|. The
cost function f is just defined by the total sum of vertex and edge penalties. A simple
neighborhood function for the PCSP maps an assignment s = (d,),ey to all assignments
s" = (d)yey that differ from (d,)yey for only one vertex, i.e. s € N (s) if and only if
there is a u € V with d], # d,, and for all v € V'\ {u}, d| = d,. For reasons of conformity
with local search approaches to other combinatorial optimization problems, we refer to
this neighborhood function in the sequel as 1-OPT. In the next sections we describe more
sophisticated neighborhood functions, and compare them with the neighborhood function
1-OPT.

Disturbance functions for the PCSP disturb either the assignment of a fixed number of
the vertices, the assignment of a fixed percentage of the vertices, or the assignment of
every vertex with a fixed probability. In our local search algorithms we use a disturbance
function that changes the assignment of two arbitrarily selected vertices to a randomly
generated domain element.

5.2 LOCAL SEARCH AND INTEGER PROGRAMMING

The computational results of Chapter 3 show that PCSPs with 2 elements per domain
can be solved efficiently by integer programming techniques. Therefore, it is possible to
incorporate this method within a heuristic to obtain good solutions. In fact, Kolen [118|
first implemented this idea within a genetic algorithm. For the CALMA benchmark
instances the best known solutions are obtained in this way (cf. Section 2.6). In this
section we use the same idea within a local search framework. In Section 5.2.1 we propose
two neighborhood functions based on this idea, whereas in Section 5.2.2 these functions
are tested for the CALMA instances.
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5.2. LOCAL SEARCH AND INTEGER PROGRAMMING

5.2.1 NEIGHBORHOOD

In the local search algorithm to be described in this section, we would like to obtain a
neighbor of the current assignment (d}),ey by solving a PCSP with 2 domain elements for
every vertex. Let P, denote this optimization problem. For every v € V' we have to select
two domain elements of the original problem. If for all v € V' one domain element of P,
is given by d!, then we guarantee that the new solution is at least as good as the current
assignment. So, to construct P, one additional domain element is necessary for every
vertex. The second domain elements can be seen as a second solution s? that differs from
s for all vertices. As a consequence, the construction of a neighborhood problem P, for
the current solution s is simply defined by the choice of a second solution s2. This second
solution can be generated in many different ways. We propose two different procedures
for the generation of s’ which will be called BEST NEIGHBOR, and RANDOM.

BEST NEIGHBOR In the procedure BEST NEIGHBOR we generate the second assignment
(d%)yev by selecting for every vertex v € V, the domain element d? that would
increase the value of the assignment (d.),cy as little as possible, i.e.,

d? = arg min q(v,dy) + Z p(v,dy, w,d.)

dv€Du\{dy} wEN (v)

This solution is in general not 1-optimal. Computational experiments have shown
that the best results are obtained in case first 1-OPT is applied to (d?),ey before
the construction of P,. Based on the same experiments the solution (d}),cy is also
supposed to be 1-optimal.

RANDOM In the procedure RANDOM we just generate the second assignment (d2),ecy by
randomly generating another domain element for every vertex. Again, we suppose
that the first assignment (d}),ev is 1-optimal, and that before P; is constructed, we
apply 1-OPT to the second solution (d,),cy as well.

5.2.2 COMPUTATIONAL RESULTS

The two neighborhood functions described in the previous subsection are applied to the
CALMA benchmark instances. The local search algorithms are implemented in C++ and
run on a DEC 2100 A500MP workstation with 128Mb internal memory. We used the
callable library of CPLEX 4.0 to solve the integer linear programming problems. Since all
vertices have 2 domain elements, the separation of 3-cycle inequalities has been carried out
by enumeration of the 4 different inequalities for every 3-cycle. Only 3-cycle inequalities
are separated.
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instance 1-OpT IP-OpT - BEST N. IP-OpT - RANDOM GA [118] best  cpu-time
average best average best average best average best known (sec/run)

CELAR 06 4,566 3,730 5,032 3,643 3,476 3,402 3,406 | 3389] | 3,389] 177
CELAR 07 2,502,232 1,404,410 5,314,174 2,495,854 380,173 344,093 343,604 343,593 343,592 345
CELAR 08 472 324 271 262 274 263 262 262 262 967
CELAR 09 18,714 15,740 15573 [ 15571 [ 15571] | 15571| | 15,571 | 15,571] | 15,571| 146
CELAR 10 31,620 | 31,516] |[31,516] | 31,516) | 31,516] | 31,516] | 31,516] | 31,516] 144
5,455 787 1,998 316 1,817 280 233 233 123

GRAPH 05 { - - - - 238 221 - - - 250
. 11,826 8,410 6,805 4,297 6,213 4,373 4,133 4,133 371
RAPH 06 { i i i i 4099 4134 i ] i 750
GRAPH 07 6,215 4,328 4,325 | 4324] | 4324) [ 4324 128
18,076 14,720 6,254 4,991 6,308 3,812 3,104 3,104 3,080 861

GRAPH 11 { - - - - 4,045 3,093 - - - 1725
GRAPH 12 14,855 \ 11,827\ \ 11,827\ \ 11,827\ \ 11,827\ \ 11,827\ \ 11,827\ \ 11,827\ 196
25,753 21,352 17,047 13,513 17,324 14,355 10,354 10,339 10,110 680

GRAPH 13 { - - - - 14,341 10,155 - - - 1360

TABLE 5.1: Results local search algorithms based on integer programming results of Chapter 3. Framed values indicate the
optimal solution.
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5.3. LOCAL SEARCH AND TREE DECOMPOSITION

Table 5.1 shows the results of the local search algorithms 1-OpPT, IP-OPT - BEST NEIGH-
BOR, and IP-OPT - RANDOM, as well as the results of the genetic algorithm of Kolen [118].
Like in [118], the population size of the genetic algorithm was set to 150. For the CELAR
instances 10 new generations were computed, whereas for the GRAPH instances 15 gener-
ations were computed. For a fair comparison we have implemented the genetic algorithm
with the same data structures as the local search algorithms. The time needed by the
genetic algorithm has been taken as the maximum computation time for 10 runs of the
local search algorithm, i.e. each run was limited by a tenth of the time needed by the
genetic algorithm. Each run of the local search algorithm consists of (i) the generation
of a random solution, (ii) the local improvement of the current solution according to the
selected neighborhood function, and (iii) the disturbance of the best solution so far and
re-application of the local improvement step. For the compared local search algorithms,
Table 5.1 reports the average and best solution value obtained in 10 runs of the local
search algorithms. The computation times in seconds per run are presented in the last
column of table.

Table 5.1 shows that compared with 1-OpPT, both IP-OPT algorithms provide a better
best solution in most cases. Also the average values decrease substantially compared
with the 1-OPT routine. The best results are obtained with the IP-OPT - RANDOM.
For the 4 instances with vertex penalties the algorithm outputs the optimal solution in
almost all cases. For the other CELAR instances the best known / optimal solution
is approached within 1%. For the more difficult GRAPH instances, the results are less
satisfactory. Therefore, we applied the IP-OPT- RANDOM algorithm with a time limit
of two times the original limit. The results improve in this way substantially to optimal
or near-optimal ones. In comparison with the genetic algorithm, the IP-OPT - RANDOM
algorithm generates competitive results.

5.3 LOCAL SEARCH AND TREE DECOMPOSITION

In this section we describe a neighborhood structure that can take advantage of the tree
decomposition approach described in Chapter 4. The computational results of Chapter 4
show that the dynamic programming algorithm can solve problems to optimality as long
as the width of the tree decomposition is small. Therefore, we present in this section a
neighborhood function in which the best neighbor is obtained by the solution of a PCSP
on an induced subgraph with small treewidth. The neighborhood function is fairly general
and can be seen as an extension of the 1-OPT function. In Section 5.3.1 the neighborhood
function is defined, whereas Section 5.3.2 reports on preliminary computational results.
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5.3.1 NEIGHBORHOOD

A neighbor of a solution s in the 1-OpPT-neighborhood differs from s for at most one vertex.
The idea behind 1-OPT can be generalized to a neighborhood in which a neighbor of the
solution differs for only a limited number of vertices. Since, the reassignment of domain
elements to multiple vertices only leads to better results in case the vertices are connected,
we can formalize the idea as follows. Let V = {Vi,...,V,} be a collection of n vertex
subsets. Moreover, let the neighborhood function N be defined by N(s) = U=y, 2 Ni(s),
where N;(s) maps to all solutions s’ € S that differ from s only for vertices v € V;.
For instance, V = {{v} : v € V'} is equivalent to the 1-OPT neighborhood. Another well
known neighborhood is called 2-OPT and allows for reassignment of two adjacent vertices,
ie,V=FE.

For 1-OPT the question whether there exists a neighbor with smaller objective value can
be solved by inspection. Also for 2-OPT the question can be answered efficiently. On the
contrary, for the neighborhood with ¥V = {V'}, the neighborhood problem is equivalent
to the original problem and therefore NP-hard. For general collections V the search
whether there exists a neighbor with smaller objective value than the current solution can
be carried out with the dynamic programming algorithm of Chapter 4. For every subset V;,
1 =1,...,n, dynamic programming answers the question in time polynomial with respect
to |V;| and |D,|, but exponential with respect to the width of a tree decomposition of the
induced subgraph G[V;]. So, if w(V;) denotes the width of a tree decomposition for the
induced subgraph G[V;], then w(V) = max;—,_,w(V;) determines the complexity of the
algorithm. For 1-OPT and 2-OPT it is obvious that w()) = 0 and w(V) = 1, respectively.
However, the results of Chapter 4 show that as long as w()) is small the neighborhood
can be applicable in practice. This validates the search for a collection V of subsets with
the property that w(V) < K, for some value K, e.g. K =4 or K =5.

The determination of subsets V; with w(V;) < K is a question that certainly requires
further investigation. For now, we restrict ourselves to 4 collections of subsets that can
be determined easily: 1-OpPT, 2-OPT, CYCLE-OPT, and CLIQUE-OPT:

1-OPT As already mentioned V = {{v} : v € V}. Le., the assignment can be changed
for only one vertex at a time. The value w(V) equals 0 in this case.

2-OpPT1 The assignment can be changed simultaneously for two adjacent vertices: V = E.
The value w(V) =1 in this case.

CYCLE-OPT The assignment can be changed simultaneously for all vertices on a chord-
less cycle: V = {C C V' : G[C] is a chordless cycle}. For a chordless cycle we can
construct a tree decomposition with width 2, which implies that w(V) = 2. In our
preliminary experiments only cycles of size 3 are taken into account.
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CLIQUE-OPT The assignment can be changed simultaneously for all vertices that form a
clique of size at most K: V = {C C V : G[C] is a clique with |C'| < K}. For cliques
the tree decomposition simply consists of a single node containing all vertices. As
a consequence, w(V) = K — 1. In our experiments we set K = 4.

Note that, N_opr C No.opr € NoLique-Opt: and Nz cyore-orr € NoLique-Opr-

5.3.2 COMPUTATIONAL RESULTS

We present preliminary computational results for the local search algorithms based on
tree decomposition. Due to the property that heuristics based on tree decomposition are
more time consuming than other algorithms, we limit ourselves to a demonstration of the
potential power of the above described local search algorithms. For all CALMA bench-
mark instances we randomly generated 10 solutions. Next, we applied 1-OpT, 2-OPT,
CycLE-OPT with 3-cycles, and CLIQUE-OPT with K < 4 to the solutions. In Table 5.2
we report the average and best solution for each of these local improvement algorithms.
Table 5.2 shows that for one of the easy instances (the ones with vertex penalties) the
optimal solution is found after application of 2-OPT, and for two other instances after
the application of CYCLE-OPT. For the other instances, the best and average values
decrease substantially after application of 2-OpPT, CYCLE-OPT, and CLIQUE-OPT. From
the results in Table 5.2, and taking into account that the algorithms are time consuming,
we may conclude that it is worthwhile to consider the 2-OpPT, CYCLE-OPT, and CLIQUE-
OPT improvement heuristics as top-end heuristics to improve solutions obtained by other
heuristics.

5.4 CONCLUDING REMARKS

In this chapter we have presented two local search algorithms that take advantage of the
results of the previous chapters on exact solution methods. In Section 5.2 we presented
a local search algorithm, that takes advantage of the polyhedral results of Chapter 3.
The computational results, as well as the results of Kolen [118] show that (very) good
solutions can be obtained in this way. In Section 5.3 we have proposed a local search
framework where induced subgraphs are solved to optimality with the tree decomposition
algorithm of Chapter 4. Preliminary computational results show the potential power of
the algorithm. Local optimal solutions can substantially be improved by the use of the
new neighborhood functions CYCLE-OPT and CLIQUE-OPT. Therefore, it is certainly
worthwhile to study neighborhood functions with small w()) more thoroughly. A more
efficient implementation of the tree decomposition algorithm for small subgraphs will
reduce the computation times, and hence improve the results.
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instance V| |E| 1-OpT 2-OpT CYCLE-OPT CLIQUE-OPT best known

average best average best average best average best (optimal)
CELAR 06 100 350 13,054 10,084 7,645 4,576 6,515 3,646 5,961 3,646
CELAR 07 200 817 1.7-107 1.2.107 7,269,132 4,758,558 5,043,744 1,606,955 4,602,491 1,566,834 343,592
CELAR 08 458 1,655 944 754 654 418 511 388 463 356 262
CELAR 09 340 1,130 25,246 15,954 18,556 15,591 18,141 15976 [ 15,571] [ 15,571]
CELAR 10 340 1,130 32,514 31,526 | 31,516] | 31,516| | 31,516] | 31,516| | 31,516] | 31,516
GRAPH 05 100 416 14,382 9,381 6,077 3,047 5,012 1,924 4,299 1,924 221
GRAPH 06 200 843 27,268 20,598 19,887 16,188 17,258 12,301 14,076 7,810
GRAPH 07 200 843 12,012 6,517 4,811 4,364 4,654 4,654
GRAPH 11 340 1,425 42,687 34,219 26,021 19,232 21,124 13,310 15,150 7,783 3,080
GRAPH 12 340 1,255 27,754 23973 15,516 13,042 12,324 12,227 | 11,827] | 11,827
GRAPH 13 458 1,877 61,319 58,660 40,566 30,519 33,408 27,569 27,363 22 557 10,110

TABLE 5.2: Results local search algorithms based on tree decomposition approach of Chapter 4. Framed values indicate the
optimal solution.
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6. DIRECTIONS FOR FURTHER
RESEARCH AND CONCLUDING REMARKS

In this concluding chapter, we briefly investigate several directions for further research on
the minimum interference frequency assignment problem (MI-FAP). We close this thesis
with some overall concluding remarks concerning frequency assignment problems.

6.1 DIRECTIONS FOR FURTHER RESEARCH

In this thesis we described two exact solution methods to solve the MI-FAP. We dis-
cussed integer programming and tree decomposition. However, in the literature several
other exact solution techniques are available for combinatorial optimization problems. In
this section, we briefly investigate a couple of promising other methods and relaxations.
Successively, we discuss Benders Decomposition, Lagrangean Relaxation, and a Semi-
Definite Programming relaxation. The last subsection is devoted to a new integer linear
programming formulation for the MI-FAP.

6.1.1 BENDERS DECOMPOSITION!

In 1962, Benders [17] proposed a decomposition algorithm for mixed integer programs.
For several specially structured mixed integer programs, with different classes of vari-
ables, successful application of Benders Decomposition is reported in the literature. Also
the Partial Constraint Satisfaction formulation of the MI-FAP lends itself to the use of
Benders Decomposition. For the PCSP, the variables can be divided in two classes: the
vertex variables y(v,d,), and the edge variables z(v,d,,w,d,). Application of Benders
Decomposition to the formulation (3.1)-(3.5) (see page 53), results in a Benders master
problem on the y variables, and a Benders subproblem that involves the dual of the edge
constraints (3.3). The Benders subproblem decomposes along the edges of the constraint
graph to the dual of a transportation problem for each edge, which implies that the sub-
problem can be solved in polynomial time. The master problem, however, cannot be
solved efficiently in general.

' The discussion of Benders Decomposition is joint work with Olaf E. Flippo.
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Moreover, a disadvantage of Benders Decomposition is that straightforward implementa-
tion of the algorithm leads in most cases to algorithms that converge very slowly: an ex-
orbitant number of master problems have to be solved before optimality has been proved.
Magnanti and Wong [136] discussed the problem of slow convergence in a general setting,
and applied their ideas for acceleration to facility location. One of the aspects that cause
the slow convergence is the degeneracy of the subproblem. Also the PCSP subproblems
are renowned for their degeneracy. Magnanti and Wong introduced in this context the
concept of Pareto optimal cuts. Without going into details, a Pareto optimal cut is a so-
lution to the Benders subproblem, that dominates the other optimal solutions. Magnanti
and Wong proved that such a Pareto optimal solution can be found by solving a second
linear program, that selects among all optimal solutions of the Benders subproblem a
Pareto optimal solution.

Limited computational experiments on the instances of Chapter 3 with |D,| = 2 (Ta-
ble 3.1, page 78), indicate that, although we add Pareto optimal cuts, the convergence
rate of the algorithm is still very slow. Especially, solving the master problem by branch-
and-bound becomes very time consuming after a couple of iterations. The addition of
valid inequalities for either the original problem or the Benders master problem can prob-
ably resolve this problem. For the PCSP several classes of valid inequalities are derived
in Chapter 3, which can be added to the formulation. However, adding these inequalities
to the formulation leads to the loss of the decomposition of the subproblem to the dual of
a transportation problem for every edge in the constraint graph. Therefore, derivation of
valid inequalities for the Benders master problem should be considered as an alternative.

To conclude, the application of Benders Decomposition to solve PCSPs has not been a
great success so far. Research in the direction of valid inequalities for the Benders master
problem may result in an improved convergence rate. Moreover, the Pareto optimal cuts
should be the topic of further research. Are Pareto optimal cuts the best we can do in case
of the PCSP, or are there other possibilities that converge faster to the optimal solution?

6.1.2 LAGRANGEAN RELAXATION

Whereas Benders Decomposition takes advantage of the different classes of variables in
a mixed integer program, Lagrangean Relaxation focuses on the different classes of con-
straints. Lagrangean relaxation was developed by Held and Karp [82, 83| in connection
with the traveling salesman problem, and provides lower bounds for integer linear opti-
mization problems. A survey on Lagrangean relaxation methods for solving integer linear
programs is given by Fisher [55].

For the PCSP, either the constraints (3.2) or the constraints (3.3) can be relaxed through
Lagrangean relaxation. Relaxation of the constraints (3.2) that guarantee the selection of
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exactly one domain element does not lead to a Lagrangean relaxation problem that can be
solved efficiently. Relaxation of the constraints (3.3), that connect the y and z variables,
results in a Lagrangean relaxation problem that can be solved by its linear programming
relaxation. This implies that the lower bound obtained through Langrangean relaxation
is of the same quality as the linear programming relaxation of the original problem (3.1)-
(3.5) (cf. Geoffrion [64]). By the results of Chapter 3 we know that for real-life instances
this lower bound is very poor.

Nevertheless, relaxation of the constraints (3.3) is a direction that should be investigated
further. In Chapter 4 we showed that for graphs with small treewidth the PCSP can
be solved in polynomial time, whereas the linear programming relaxation of the PCSP
does not equal the optimal solution. This implies that for subgraphs with small treewidth
the PCSP can be solved in polynomial time. Hence, we relax only the constraints (3.3)
involving a subset of the edges F \ E’. Then for fixed Langrangean multipliers )\, a
PCSP P’()\) remains on the graph G' = (V| E’) as Lagrangean optimization problem. If
the treewidth of G’ is less than or equal a constant k, then P’'(\) can be solved with
the dynamic programming algorithm of Chapter 4. For k£ > 1, it holds that the linear
programming relaxation of P’'(\) does not equal the optimal solution in general, which
implies that the lower bound obtained in this way can be better than the lower bound
derived by the linear programming relaxation of the original problem P. A special case
occurs whenever the remaining PCSP P’()\) can be solved with the constraint graph
reduction techniques of Section 4.4.1.

Concluding, at first sight Lagrangean relaxation will not lead to good lower bounds.
However, Lagrangean relaxation applied to only a subset of the edges may lead to lower
bounds that are better than the linear programming relaxation. Therefore, it would be
worthwhile to investigate the relation between the Lagrangean relaxation lower bounds
and the treewidth k of the graph G’. The determination of the subgraph G’ with treewidth
k, however, introduces a (new) optimization problem: Select a maximum (weighted)
subset E' of the edges E such that the subgraph (V) E’) has treewidth at most k. For k = 1
a (maximum weighted) spanning tree solves the problem. For general k, graph-theoretic
results concerning the characteristics of graphs with limited treewidth can hopefully be
helpful to determine such subgraphs.

6.1.3 SEMI-DEFINITE PROGRAMMING RELAXATION

In the last decade, a substantial part of the mathematical programming research has been
devoted to interior point methods for semi-definite programming (cf. Nesterov and Ne-
mirovski [149]). In recent years not only results of theoretical nature were published, but
also computational experience on solving combinatorial optimization problems with semi-
definite programming was reported (see for instance Helmberg [84] and his references).
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The MI-FAP (or PCSP) can also be formulated as a semi-definite program. Let y =
[y(v, dy)]vevia,ep, be the vector containing all y variables. Moreover, let Z = yy” =
(2(v, dy, w, dy) ]y wevidye Dy dwe D, e the matrix with z variables. Note that, Z also contains
variables for non-adjacent vertices. Finally, let

By definition the matrix X is positive semi-definite. Moreover, rank(X) = 1. A feasible
solution has to satisfy y(v,d,) € {0,1}, which is equivalent with y(v,d,) = (y(v,d,))?, or
in matrix notation x;; = z;; for all 4. Altogether, the MI-FAP (or PCSP) reads

min tr (% ( Z i ) X) (6.1)

Z y(v,d,) =1 YoeV (6.3)
dy €Dy

rank(X) =1 (6.4)
X0 (6.5)

where tr (.) denotes the trace of a matrix, and X > 0 denotes that the matrix X has to
be positive semi-definite. The objective (6.1) is the sum product of the vertex and edge
penalties and the matrix X. The constraints (6.2) model that the y variables have to be
integral, whereas (6.3) model the assignment of exactly one frequency to every vertex.
The formulation is completed with the constraints (6.4) and (6.5), that model the rank
requirement, and the positive semi-definiteness of the matrix X, respectively.

Relaxation of (6.1)-(6.5) by removing the rank constraint (6.4) provides a semi-definite
program, that can be solved within € of optimal in polynomial time with interior point
methods [149]. The semi-definite programming relaxation can be better / worse than
the linear programming relaxation. For instance, negative variables z(v, d,, w, d,,) are not
forbidden by the semi-definite relaxation. To improve the relaxation z(v,d,,w,d,) > 0
can be added to (6.1)-(6.3), (6.5). Also constraints like

S avdyw,dy) =1 (6.6)

d’UGD’U dwEDw

for {v,w} € E can improve the relaxation. Finally, valid inequalities like those of the
integer linear programming formulation of Chapter 3 can be added to the formulation
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D, = {a'uybv} YveV
V2
q(v,dy) =0 Vv € V,dy, € D,
p(U’ dva ’lU, dw):
V1 v3
{Ulvvz} | Aoy b‘Uz {1]1,’03} | Aoy b‘Us {’1)2,1)3} | Aoy bva
G=(V,E) Ao, 0 1 o, 1 0 o, 0 1
bvl 1 0 bvl 0 1 bv2 1 0

FIGURE 6.1: Example of PCSP with good semi-definite relaxation compared to linear
programming relaxation

to improve the lower bound. An example of a PCSP in which the semi-definite relax-
ation is better than the linear programming relaxation is given by Figure 6.1. Using
the semi-definite programming solver SeDuMi [177|, Sturm [178] reported a semi-definite
relaxation bound of 0.75, whereas the linear programming relaxation equals 0 and the
optimal solution is 1.

To conclude, the semi-definite relaxation is a promising direction for further research.
With the ongoing development of software to solve semi-definite programs, the positive
semi-definite relaxation of (6.1)-(6.5) seems to be an attractive alternative for the lin-
ear programming relaxation of (3.1)-(3.5) within the near future. Probably the most
important obstacle will be the size of the matrix X.

6.1.4 FREQUENCY ASSIGNMENT FORMULATION

The approaches described in the previous chapters and sections are based on the formu-
lation of the MI-FAP as a Partial Constraint Satisfaction Problem. In this section we
propose a new integer linear programming formulation that is more specialized for the
MI-FAP. The formulation has fewer variables and constraints than the PCSP formulation,
and therefore hopefully performs better in practice. Although the new formulation is not
inspired by the formulation of Borndorfer et al. [24], it can be seen as a refinement and
extension of their model.

In most MI-FAPs, given an edge {v,w} € E, the penalty given by the domain elements
d, € D, and d,, € D,, can be specified by

p(v, dy, w, dy) = {pvw if |d, - doy| < By
0 otherwise

where p,, is an edge-dependent constant, and d,, is a constant specifying the minimum
reuse distance between the frequencies of v and w. So, depending on the edge {v,w} € E
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and the distance between the frequencies, the penalty is either zero or a constant value. In
fact, the distance in between the frequencies can be divided in 3 intervals (i) (d, — dy,) <
— Oy, (1) =0y < (dy — dy) < Spw, and (iii) (dy — di) > Opuw- More general, we assume

that for every edge {v,w} € E we can specify n,, intervals [I!  jui ] for the difference

’U’LU’

between the frequencies. These intervals cover all possible dlfferences (ie., I}, = —oo,
u™v = oo, and I, = u'-l + 1, for i = 2,...,n,,). For every interval the penalty is fixed:
p(v,dy, w,d,) = ', if 18 <dy—dy <ul,,i=1,..., N

Note that p(v,d,, w, d,) need not be symmetric in general. The MI-FAP can be modeled
as an integer linear program that takes advantage of this penalty structure. For every
edge {v,w} € F and every i = 1,...,n,, we introduce a binary variable x!

i { 1 if we assign frequencies d, € D,, d,, € D,,, lfjw <d,—d, < uf,w
o 0 otherwise

Moreover, we introduce binary variables yJ for all vertices v € V', j € {1,...,|D,|}

i = { 1 if j element of D, is assigned to v € V
! 0 otherwise

Finally, we need integer variables d, denoting the selected frequency for all vertices v € V.
So, d, is not an index this time, but a variable. Then an integer linear programming
formulation reads

Nyw |Dv
min Y P, + YD Ay (6.7)
{v,w}eFE i=1 VeV j=1
s.t. Zx;w =1 V{v,w} € FE (6.8)
D]
Zyv =1 Yo eV (6.9)
D]
dy = de]yv Yo eV (6.10)
dy > d, — Zuvw Ty V{v,w} € E (6.11)
dy > dy+ Y 1,20, V{v,w} € E (6.12)
=1

130



6.1. DIRECTIONS FOR FURTHER RESEARCH

d, €7 YoeV (6.13)
zt € {0,1} V{v,w} € Ei=1,..., 0w (6.14)
yl € {0,1} YoeV,j=1,...,|D, (6.15)

Here, ¢/ and dJ denote respectively the vertex penalty and the value (frequency) corre-
sponding to the j* domain element of D,, 1 < j < |D,|. The objective (6.7) equals
the sum of edge and vertex penalties. Constraints (6.8) model the fact that for an edge
{v,w} € F the difference between the assigned frequencies is contained in exactly one
|. Constraints (6.9) enforce that exactly one domain element is selected,
whereas the selected frequency is given by (6.10). Given a vector x satisfying (6.8), the
assignment (d,),ey has to satisfy I} < d, —d, < i, if 2, =1 for all {v,w} € E.

interval [I° , u’

vw?I vw

This restriction can be split up in two restrictions d,, > d, — u’,, and d, > d,, + l%,, for
each {v,w} € E. Combined with the variables ¢  these restrictions are modeled by the

constraints (6.11) and (6.12), respectively.

Compared to the Partial Constraint Satisfaction formulation (3.1)-(3.5), the number of
constraints and variables is reduced substantially. The number of binary variables however
is increased. In Table 6.1, we have compared the number of variables and constraints for
some of the CALMA benchmark instances.

instance number of variables number of constraints
(3.1)-(3.5) (6.7)-(6.15)

continuous binary binary (8:1)-(3:5) (6.7)-(6.15)
CELAR 06 585,914 4,010 7,876 28,628 4,366
CELAR 07 1,331,048 7,976 16,371 65,928 9,395
CELAR 08 2,518,664 18,100 34,874 128,886 19,064
GRAPH 11 2,032,792 12,820 23,211 107,688 12,631
GRAPH 13 2,798,400 17,588 32,949 145,034 17,651

TABLE 6.1: Number of variables and constraints for the different integer programming
formulations

Summarized, the formulation (6.7)-(6.15) seems to be a profitable alternative to the partial
constraint satisfaction formulation of Chapter 3. Directions of further research include
study of the polyhedral structure of the corresponding polytope (cf. Borndorfer et al. [24]),
and further improvements of the formulation in special cases.
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6.2 CONCLUSIONS

In this Ph.D. thesis, we have discussed models and algorithms for the Frequency Assign-
ment Problem. After an introduction of the topic in Chapter 1 we first presented a survey
concerning the different approaches presented in the recent literature in Chapter 2. Four
different models can be distinguished: minimum order frequency assignment, minimum
span frequency assignment, minimum blocking frequency assignment, and minimum in-
terference frequency assignment. For each of these models we compared the wide variety
of approaches as far as possible on the same sets of instances.

In the sequel of the thesis we have concentrated on the minimum interference frequency
assignment, problem (MI-FAP). Successful lower bounds and exact solution techniques
are rarely known for this problem. Therefore, we applied two exact solution methods
to the problem in the Chapters 3 and 4, respectively. Other lower bounding and exact
solution techniques were discussed in Chapter 6. In Chapter 3 we formulated the MI-FAP
as a partial constraint satisfaction problem, and studied this problem from a polyhedral
point of view. We derived two general lifting theorems, and two classes of facet defining
valid inequalities. Problems with small domains can be solved effectively with these
inequality in a cutting plane algorithm. For real-life instances, however, this method
is not powerful enough to solve the problems. However, in Chapter 5 we showed that
the polyhedral results can be used in a heuristic that provides fairly good solutions to
the benchmark instances. Moreover, Kolen [118] showed that a genetic algorithm, which
uses the polyhedral results of Chapter 3, outperforms all other proposed heuristics on the
benchmark instances. The results of Chapter 4 show that for 7 of the 11 instances the
solutions obtained in this way are optimal.

In Chapter 4 we exploited the graph structure of the problem in order to solve the bench-
mark instances from the CALMA project, or second best obtain lower bounds for them.
The method is based on a tree decomposition of the constraint graph. Given a tree de-
composition with limited width, the MI-FAP (or PCSP) can be solved through dynamic
programming in polynomial time. However, the algorithm is exponential in the width
of the tree decomposition, which explains that additional reduction techniques are nec-
essary to solve several benchmark instances. Successful application of this technique is,
however, limited to the smaller and less difficult instances. For the larger and more diffi-
cult instances the approach is extended to an iterative algorithm that provides a series of
non-decreasing lower bounds. In this way, we obtained the first non-trivial lower bounds
for the remaining unsolved instances. The iterative algorithm can also be combined with
the integer programming techniques of Chapter 3. This combination resulted in an im-
prove of the lower bounds for the 3 most difficult instances. Finally, in Chapter 5 we
showed that the techniques of Chapter 4 can be used within a local search framework
as well. Preliminary computational results indicate that the proposed neighborhood is
substantially better than less sophisticated neighborhoods.
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In this chapter we have discussed several other exact methods to solve the MI-FAP. Espe-

cially, Lagrangean relaxation combined with tree decomposition (Section 6.1.2), and the

new integer programming formulation of Section 6.1.4 are worthwhile research directions.

Summarized, in this Ph.D. thesis, we presented a survey on frequency assignment, we
solved 7 out of the 11 CALMA MI-FAP benchmark instances to optimality, and derived
the first non-trivial lower bounds for the other instances (see Table 6.2). Moreover, we

presented two new heuristics, based on the exact methods of integer programming and

tree decomposition, respectively. Finally, we discussed four other solution methods that

can be the topic of further research.

instance  previous lower bound new lower bound upper bound gap closed by
CELAR 06 -
CELAR 07 5 300,000 343,592 87.3%
CELAR 08 0 150 262 57.3%
CELAR 09 14,969 100.0%
CELAR 10 31,204 31,516 100.0%
GRAPH 05 0 221 221 100.0%
GRAPH 06 0 4,123 4,123 100.0%
GRAPH 07 0 4,324 4,324 100.0%
GRAPH 11 0 3,016 3,080 97.9%
GRAPH 12 0 100.0%
GRAPH 13 0 9,925 10,110 98.2%

TABLE 6.2: Lower and upper bounds for the Minimum Interference benchmark instances
of the CALMA project. Framed values indicate the optimal value.
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SAMENVATTING IN HET NEDERLANDS

SUMMARY IN DUTCH

INTRODUCTIE

In 1909 ontving de Italiaan Marconi de Nobelprijs voor zijn baanbrekende werk op het
gebied van de draadloze telegraaf. Sinds het eind van de 19e eeuw experimenteerde hij
met het verzenden van boodschappen door middel van radiogolven. Sinds die tijd heeft
de draadloze communicatie een grote vlucht genomen. Reeds in 1915 was het mogelijk
om gesproken woord over de Atlantische oceaan te verzenden. Niet lang daarna werd
radio gemeengoed en al halverwege de jaren 30 werd volop geéxperimenteerd met het
verzorgen van televisie uitzendingen. Na de tweede wereldoorlog was de technologie zo
ver gevorderd dat televisie op grote schaal kon worden geintroduceerd.

Direct na de tweede wereldoorlog startte ook de exploitatie van het eerste draadloze tele-
foonnetwerk in de Verenigde Staten. Het duurde tot het begin van de jaren 80 voordat de
mobiele telefoon op grote schaal zijn intrede deed. Nadeel van de eerste mobiele netwerken
was de diversiteit aan technologieén die werden gebruikt. Daardoor was het in Europa
onmogelijk de mobiele telefoon in het buitenland te gebruiken. Standaardisatie van de
technologie werd dan ook de opdracht voor de in 1988 opgerichte Groupe Speciale Mobile
(GSM). In 1992 werd het eerste GSM-netwerk geintroduceerd in Duitsland. Inmiddels
is GSM een groot succes gebleken en beschikken wereldwijd tientallen miljoenen mensen
over een aansluiting op een GSM-netwerk (zie Figuur 1.2, pagina 4). Naast radio, televisie
en mobiele telefonie, heeft draadloze communicatie ook toepassingen in de ruimtevaart,
luchtverkeersbegeleiding en militaire communicatie systemen.

Draadloze communicatie vindt plaats met behulp van een radiozender (transmitter) en
ontvanger (receiver). De transmitter moduleert een frequentie uit het radiospectrum. De
receiver zet de modulatie van de frequentie om naar geluid en/of beeld. Wanneer twee
communicatieverbindingen in dezelfde regio gebruik maken van (bijna) dezelfde frequentie
kan interferentie van het signaal optreden. D.w.z. dat de kwaliteit van het door de re-
ceiver ontvangen signaal verslechtert. Afhankelijk van het niveau van de interferentie kan
de kwaliteit van het signaal als onacceptabel worden gekwalificeerd. In de praktijk bete-
kent dit dat voor de twee communicatieverbindingen frequenties moeten worden gebruikt
die minimaal een bepaalde afstand tot elkaar hebben. Echter, door de vele toepassingsge-
bieden van draadloze communicatie en de begrensdheid van het radiospectrum zijn slechts
een beperkt aantal frequenties beschikbaar voor elke vorm van draadloze communicatie.
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Dit betekent dat hergebruik van frequenties binnen één en dezelfde geografische regio
noodzakelijk is. Het hergebruik van frequenties kan echter leiden tot de reeds genoemde
interferentie. De toewijzing van frequenties aan communicatieverbindingen zal dan ook
zorgvuldig moeten gebeuren om de interferentie tot een minimum te beperken. De afwe-
ging tussen hergebruik van frequenties en de kwaliteit van het telecommunicatienetwerk
staat bekend als het frequentie toewijzingsprobleem. Kwantificatie van de diverse aspecten
van het frequentie toewijzingsprobleem leidt tot een wiskundig optimaliseringsprobleem
dat met behulp van technieken uit de besliskunde kan worden opgelost.

FREQUENTIE TOEWIJZING: EEN OVERZICHT

Door de sterke groei van mobiele telecommunicatie in het laatste decennium is de aandacht
voor het frequentie toewijzingsprobleem de laatste jaren sterk toegenomen. Afhankelijk
van de specifieke eigenschappen van een netwerk en de doelstelling van het onderzoek zijn
veel verschillende wiskundige modellen en besliskundige oplossingstechnieken voorgesteld.
Na de introductie in Hoofdstuk 1, geeft Hoofdstuk 2 een overzicht van de literatuur
die de laatste jaren is verschenen op het gebied van frequentie toewijzing. Hierbij kun-
nen wij onderscheid maken tussen vaste, dynamische en hybride toewijzingsschema. In
Hoofdstuk 2 beperken wij ons tot modellen en methoden voor vaste toewijzingsschema’s.
Het frequentie toewijzingsprobleem kan als een wiskundig optimalisatieprobleem worden
geformuleerd door middel van een graaf. Elke knoop in de graaf correspondeert met een
draadloze verbinding, terwijl een kant in de graaf aangeeft dat de aanliggende verbindin-
gen kunnen interfereren afhankelijk van de keuze van de frequenties. Wanneer meerdere
verbindingen tussen dezelfde geografische locaties moeten worden gerealiseerd wordt veelal
slechts één knoop voor alle verbindingen gemodelleerd. Aan deze knoop moeten dan meer-
dere frequenties worden toegewezen. Voor elke knoop is een eindige set van frequenties
beschikbaar, welke kan verschillen van knoop tot knoop. Het kan bijvoorbeeld zo zijn
dat bepaalde frequenties in de omgeving van landsgrenzen niet mogen worden gebruikt
vanwege bilaterale afspraken.

Afhankelijk van de doelstellingsfunctie kunnen de modellen voor het frequentie toewij-
zingsprobleem in 4 categorieén worden geclassificeerd:

e minimalisatie van het aantal gebruikte frequenties in een interferentievrije toewijzing
(Minimum Order Frequency Assignment Problem, MO-FAP),

e minimalisatie van het gebruikte frequentie interval in een interferentievrije toewij-
zing (Minimum Span Frequency Assignment Problem, MS-FAP),

e minimalisatie van de totale blokkeringskans van het netwerk bij een interferentievrije
toewijzing (Minimum Blocking Frequency Assignment Problem, MB-FAP), en
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e minimalisatie van de totale interferentie in een toewijzing (Minimum Interference
Frequency Assignment Problem, MI-FAP).

Het graaf kleuringsprobleem kan wiskundig als een speciaal geval van frequentie toewij-
zing worden gezien. Hieruit volgt dat elk van de bovenstaande problemen N P-moeilijk
is, hetgeen wil zeggen dat het onwaarschijnlijk is dat er optimale algoritmen bestaan met
rekentijd cq. geheugengebruik polynomiaal in de gegevens. Voor elk van de 4 modellen
wordt in Hoofdstuk 2 een probleemdefinitie, een wiskundige formulering en een overzicht
van de toegepaste technieken gegeven. Voor zover mogelijk worden de verschillende me-
thoden met elkaar vergeleken op dezelfde probleeminstanties. Voor het MO-FAP, MS-FAP
en MI-FAP zijn instanties van het CALMA-project vrij beschikbaar [32]. Daarnaast zijn
voor het MS-FAP de zogenaamde Philadelphia-instanties beschikbaar (zie Figuur 2.1,
pagina 28). Tot voor kort was het gebruikelijk om elke antenne in een mobiel telefoon-
netwerk te representeren door middel van een hexagoon. Het aantal frequenties dat moet
worden toegewezen, in zowel de CALMA- en Philadelphia-instanties als andere praktijk-
instanties, varieert tussen honderd en enige duizenden. Het beschikbare aantal frequenties
loopt uiteen van een tiental tot enkele honderden (Philadelphia-instanties).

In het MO-FAP moeten de frequenties worden toegewezen zodanig dat

(i). alle verbindingen kunnen worden gerealiseerd,
(ii). er geen interferentie ontstaat, en

(iii). het aantal gebruikte frequenties minimaal is.

De meeste moderne heuristische methoden uit de besliskunde en kunstmatige intelligentie
zijn toegepast op het MO-FAP. Meerdere studies tonen aan dat met tabu search de op-
timale oplossing regelmatig te genereren. Ook de minder bekende potentiaal reductieme-
thode gebaseerd op inwendige puntmethoden lijkt goede resultaten op te leveren. Exacte
methoden, zoals geheeltallig lineair programmeren en constraint satisfaction, blijken voor
de meeste van de beschikbare instanties krachtig genoeg een oplossing te genereren waar-
voor optimaliteit kan worden bewezen. Ook door combinatie van ondergrenzen, gebaseerd
op klieks in de graaf, met een heuristiek zoals tabu search, kan in veel gevallen optimaliteit
van de gegenereerde oplossing worden bewezen.

In het MS-FAP moeten de frequenties worden toegewezen zodanig dat

(i). alle verbindingen kunnen worden gerealiseerd,

(ii). er geen interferentie ontstaat, en
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(iii). het verschil tussen het maximum en minimum van de gebruikte frequenties minimaal
is.

Voor het MS-FAP heeft het meeste onderzoek zich gericht op ondergrenzen voor de
Philadelphia-instanties. De ondergrenzen zijn ofwel gebaseerd op graaf theoretische argu-
menten ofwel op oplossingen /ondergrenzen voor een gerelateerd handelsreizigersprobleem.
Met name de laatste grenzen (veelal toegepast op een deelgraaf) zijn vaak krachtig ge-
noeg om gecombineerd met heuristieken optimaliteit te bewijzen. De instanties van het
CALMA-project zijn helaas niet moeilijk genoeg om onderscheid te maken tussen de kwa-
liteit van de verschillende technieken.

In het MB-FAP moeten de frequenties worden toegewezen zodanig dat

(). er geen interferentie ontstaat, en

(ii). de kans op blokkering van een verbinding minimaal is.

Het MB-FAP kan worden beschouwd als een generalisatie van het independent set pro-
bleem, één van de standaardproblemen in de combinatorische optimalisering. Vandaar
dat het onderzoek voor het MB-FAP zich met name heeft gericht op exacte methoden
gebaseerd op geheeltallige formuleringen. In de meeste gevallen zijn deze exacte methoden
krachtig genoeg om de instanties tot optimaliteit op te lossen. Heuristische methoden zijn
slechts op beperkte schaal toegepast op deze variant van frequentie toewijzing.

In het MI-FAP moeten de frequenties zodanig worden toegewezen dat

(i). alle verbindingen kunnen worden gerealiseerd, en

(ii). de totale interferentie minimaal is.

Het MI-FAP blijkt niet alleen het meest algemene model te zijn, maar ook het moeilijkst
oplosbare. Vandaar dat het onderzoek voor dit probleem zich vooral op heuristieken heeft
gericht. Met name tabu search en genetische algoritmen zijn veelvuldig toegepast op
verschillende praktijkinstanties. Voor de beschikbare CALMA-instanties zijn de beste re-
sultaten behaald met een speciaal genetisch algoritme waarin oplossingen optimaal worden
gekruist. Hierbij is gebruik gemaakt van de resultaten van hoofdstuk 3 van dit proefschrift.
Voor slechts een tweetal speciale instanties zijn ondergrenzen beschikbaar. Voor de overige
instanties ontbreken ondergrenzen in het geheel of zijn zeer zwak. Voor de kleinste instan-
tie is de optimale oplossing bekend na toepassing van een zeer rekenintensieve constraint
satisfaction techniek. Voor andere praktijkinstanties zijn geen ondergrenzen beschikbaar.
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EXACTE METHODEN VOOR HET MI-FAP

Het gebrek aan goede ondergrenzen voor het minimum interferentie frequentie toewij-
zingsprobleem, is de aanleiding geweest voor het onderzoek dat gepresenteerd wordt in
de Hoofdstukken 3 en 4. In Hoofdstuk 3 wordt het MI-FAP gemodelleerd als Partial
Constraint Satisfaction Problem (PCSP). Wij bestuderen het PCSP vanuit een polyhe-
draal oogpunt. Allereerst wordt het PCSP geformuleerd als een geheeltallig lineair pro-
grammeringsprobleem. Na bepaling van de dimensie van het bijbehorende polytoop en
beschrijving van de ongelijkheden die triviale facetten beschrijven, vervolgen we de dis-
cussie met twee stellingen voor het liften van toegestane ongelijkheden. Deze stellingen
bieden de mogelijkheid om klassen van facet definiérende ongelijkheden af te leiden uit in-
dividuele ongelijkheden. Op deze wijze worden 2 klassen van ongelijkheden afgeleid. Voor
deze ongelijkheden bespreken wij de complexiteit van de bijbehorende separatieproblemen.
Nieuwe klassen van ongelijkheden kunnen ook worden afgeleid door de overeenkomsten
tussen het PCSP en het Boolean Quadric Polytope te beschouwen. Hoofdstuk 3 wordt
afgesloten met rekenresultaten die het nut van de geldende ongelijkheden aantonen. Voor
PCSP’s met domeinen van beperkte grootte kan de optimale oplossing met behulp van
een cutting plane algoritme in acceptabele tijd worden verkregen. Voor PCSPs met gro-
tere domeinen is deze methode helaas niet krachtig genoeg om in een redelijke tijd goede
resultaten op te leveren.

In Hoofdstuk 4 wordt daarom een andere methode toegepast waarin de onderliggende
graafstructuur van het probleem beter wordt benut. De methode is gebaseerd op de
boombreedte van de graaf. Voor vele combinatorische optimaliseringsproblemen gebaseerd
op een graaf bestaan optimale algoritmen die polynomiaal zijn in tijd en geheugen, zolang
de boombreedte van de graaf beperkt is tot een constante. Ook voor het MI-FAP bestaat
een dynamisch programmeringsalgoritme dat gebruik maakt van een boomdecompositie
met beperkte breedte. Voor het bepalen van een boomdecompositie van beperkte breedte
bestaat in principe een polynomiaal algoritme. Aangezien het algoritme in de praktijk van
weinig waarde is (exponentieel in de breedte), beschrijven we in Hoofdstuk 4 allereerst een
heuristiek voor het bepalen van een boomdecompositie. Vervolgens presenteren we een
dynamisch programmeringsalgoritme voor het MI-FAP. Zoals alle algoritmen gebaseerd
op een beperkte boombreedte is ook dit algoritme echter exponentieel in de breedte van
de boomdecompositie. Hierdoor kunnen praktijkinstanties alleen worden opgelost met
behulp van extra reductietechnieken. We beschrijven zowel graaf-reductietechnieken als
reductietechnieken die het aantal domeinelementen verkleinen. Deze laatste techniek kan
ook gedurende het dynamisch programmeringsalgoritme worden toegepast op toewijzingen
aan een deelverzameling van de knopen. De graaf-reductietechnieken worden met name
in de preprocesfase gebruikt. Met behulp van deze reductietechnieken en het dynamisch
programmeringsalgoritme kunnen 7 van de 11 CALMA-instanties worden opgelost.

Voor de overige 4 instanties blijkt het algoritme echter nog steeds vast te lopen op een
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tekort aan geheugen en rekentijd. Vandaar dat een iteratieve versie van het boomdecom-
positie algoritme wordt gepresenteerd. Dit algoritme genereert een niet-dalende reeks van
ondergrenzen. Allereerst wordt het domein voor elke knoop in de graaf verdeeld in een
klein aantal deelverzamelingen. Vervolgens wordt een PCSP opgelost waarin een keuze
tussen deze deelverzamelingen moet worden gemaakt. De kostencoéfficiénten voor dit
PCSP worden zodanig gekozen dat de optimale oplossing een ondergrens voor het oor-
spronkelijke probleem oplevert. Verkleining van de deelverzamelingen levert ondergrenzen
op die niet slechter zijn dan de eerste. Op deze wijze worden voor de overige 4 instanties
redelijk tot zeer goede ondergrenzen verkregen. Tot slot combineren we het iteratieve
algoritme met de geheeltallige programmeringstechnieken van Hoofdstuk 3, hetgeen in
enkele gevallen nog betere ondergrenzen oplevert.

HEURISTIEKEN VOOR MI-FAP

In Hoofdstuk 5 wordt het nut van de technieken uit de Hoofdstukken 3 en 4 voor heu-
ristische methoden besproken. Vaak kunnen exacte methoden ook worden gebruikt in een
heuristisch kader. In Kolen [118] zijn de polyhedrale resultaten van Hoofdstuk 3 reeds
gebruikt om een optimale kruising van oplossingen in een genetisch algoritme mogelijk te
maken. Op deze wijze werden de best bekende oplossingen voor alle CALMA-instanties
verkregen (in veel gevallen inmiddels bewezen optimaal door de resultaten van Hoofd-
stuk 4). In Hoofdstuk 5 worden de polyhedrale resultaten gecombineerd met een lokaal
zoekalgoritme. Wij definiéren de buurruimte van een oplossing zodanig dat de beste buur
verkregen kan worden door het oplossen van een PCSP met 2 frequenties per domein. De
resultaten van één van de geteste varianten benaderen in kwaliteit de resultaten van het
genetisch algoritme.

De resultaten van Hoofdstuk 4 kunnen eveneens met een lokaal zoekalgoritme worden
gecombineerd. In plaats van een buurruimte waarin slechts één frequentie per keer kan
worden veranderd, worden buurruimtestructuren voorgesteld waarin de toewijzing van een
deelgraaf kan worden gewijzigd. Voorwaarde is dat de deelgraaf een beperkte boombreedte
heeft. Voorlopige rekenresultaten tonen aan dat de lokaal optimale oplossingen met deze
uitgebreidere buurruimtestructuren duidelijk betere oplossingen opleveren.

RICHTINGEN VOOR NADER ONDERZOEK EN CONCLUSIES

Dit proefschrift wordt afgesloten met een aantal suggesties voor richtingen waarin nader
onderzoek op het MI-FAP mogelijk is. Mogelijkheden om Benders Decompositie, La-
grange Relaxatie en een Semi Definite Programmering Relaxatie toe te passen worden
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kort besproken. Ook wordt een nieuwe geheeltallige programmering formulering gepre-
senteerd die aanzienlijk minder variabelen en restricties heeft dan de formulering van
Hoofdstuk 3. Met name de combinatie van boomdecompositie met Langrange Relaxatie,
en de nieuwe formulering mogen worden beschouwd als waardevolle richtingen voor nader
onderzoek. Tot slot worden de resultaten van dit proefschrift samengevat (zie Tabel 6.2).
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