Combinatorial Optimization inspired by Uncertainties

Arie M.C.A. Koster

Operations Research 2018

Brussels, September 14, 2018
Take away message

Uncertainties complicates Optimization

but

understanding the complexity increase helps (and is fun)

- **Case I:** developing *polyhedral theory* further
- **Case II:** reformulating to known problems
- **Case III:** determining *complexity border*

Joint works with Christina Büsing, Timo Gersing, Alexandra Grub, Manuel Kutschka, Wlademar Laube, Nils Spiekermann, Martin Tieves
1. Case I: Combinatorial Optimization under Uncertainty
2. Case II: Uncertainty-driven Generalizations
4. Concluding Remarks
Motivation: Bandwidth Packing Problem

Given network topology, link dimensioning, demands

Find routing

Observations:
- single path routing
- binary decision on single link → 0-1 Knapsack Problem
- demand values are uncertain
Motivation: Bandwidth Packing Problem

Given network topology
link dimensioning
demands

Find routing

Observations:
- single path routing
- binary decision on single link → 0-1 Knapsack Problem
- demand values are uncertain
Robust Optimization according to Ben-Tal and Nemirovski:

Uncertain Linear Program

An Uncertain Linear Optimization problem (ULO) is a collection of linear optimization problems (instances)

\[
\left\{ \min \{ c^T x : Ax \leq b \} \right\}_{(c,A,b) \in U}
\]

where all input data stems from an uncertainty set \(U \subset \mathbb{R}^n \times \mathbb{R}^{m \times n} \times \mathbb{R}^m \).

Robust Knapsack Problem

\[
\max \left\{ c^T x : \{ a^T x \leq b, x \in \{0, 1\}^n \} \right\}_{a \in U}
\]

How to define \(U \)?
How to define the uncertainty set?

- Uncertainty set is an *ellipsoid*, e.g.,

\[\mathcal{U} = \{ a \in \mathbb{R}^n : \| a - \bar{a} \| < \kappa \} \]

- Uncertainty set is a *polyhedron*, e.g.,

\[\mathcal{U} = \{ a \in \mathbb{R}^n : D \cdot a \leq d \} \]

with \(D \in \mathbb{R}^{k \times n}, \ d \in \mathbb{R}^k \) for some \(k \in \mathbb{N} \).

equivalent: set of discrete scenarios (extreme points of polyhedron)

special case: \(\Gamma \)-Robustness;

\[\mathcal{U}(\Gamma) = \left\{ a \in \mathbb{R}^n : a_i = \bar{a}_i + \hat{a}_i \delta_i, \sum_{i=1}^{n} \delta_i \leq \Gamma, \delta \in \{0, 1\}^n \right\} \]
Γ-Robust Knapsack polytope:

\[
\text{conv}\left\{ x \in \{0, 1\}^{|N|} : \sum_{i \in N} a_i \bar{a}_i x_i + \sum_{i \in S} \hat{a}_i x_i \leq b \ \forall S \subseteq N, |S| \leq \Gamma \right\}
\]

Cover inequalities for Knapsack:
Set \(C \) with \(a(C) > b \):

\[
x(C) \leq |C| - 1
\]

Extended Cover inequalities:

\[
E(C) := C \cup \{i : a_i \geq \max_{j \in C} a_j\}:
\]

\[
x(E(C)) \leq |C| - 1
\]

How to define covers for Γ-robust knapsack?
\(C \subseteq N \) is a Γ-robust cover: \(\exists S \subseteq C \) with \(|S| \leq \Gamma \) and \(\bar{a}(C) + \hat{a}(S) > b \)

What about the extension?
Scenario Extension

(\(C, S\)) a cover-pair if \(S \subseteq C\), \(|S| \leq \Gamma\), and \(\bar{a}(C) + \hat{a}(S) > b\).

Extension for cover-pair \((C, S)\):

\[
E(C, S) := C \cup \left\{ i \in N \setminus C : \bar{a}_i \geq \max_{j \in C \setminus S} \bar{a}_j, \bar{a}_i + \hat{a}_i \geq \max_{j \in S}(\bar{a}_j + \hat{a}_j) \right\}.
\]

Lemma (Büsing, K., Kutschka (2011))

\[
\sum_{j \in E(C, S)} x_j \leq |C| - 1 \text{ is a valid inequality for all cover-pairs } (C, S).
\]
Scenario Extension

\[E(C, S) := C \cup \left\{ i \in N : \bar{a}_i \geq \max_{j \in C \setminus S} \bar{a}_j, \; \bar{a}_i + \hat{a}_i \geq \max_{j \in S}(\bar{a}_j + \hat{a}_j) \right\} . \]

- \(n = 6 \) items
- \(b = 21 \) capacity
- \(\Gamma = 2 \) robustness budget

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{a}_i)</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>(\hat{a}_i)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

- \(C = \{1, 2, 3, 4\} \) robust cover
- \(S_1 = \{1, 2\} \) and \(S_2 = \{3, 4\} \) build cover-pairs with \(C = \{1, 2, 3, 4\} \)
- extensions \(E(C, S_1) = C \cup \{5\} \) and \(E(C, S_2) = C \cup \{6\} \)
- but also \(\sum_{j \in C \cup \{5,6\}} x_j \leq 3 = |C| - 1 \) is valid
- does there exist an extension \(E(C) = C \cup \{5, 6\} \)?
Union of Extensions

\[S(C) := \{ S \subseteq C \mid (C, S) \text{ is a cover-pair} \} \] all cover-pairs with cover \(C \):

\[E(C) := \bigcup_{S \in S(C)} E(C, S). \]

Theorem (Gersing, 2017)

Let \(C \subseteq N \) be a \(\Gamma \)-robust cover. Then

\[\sum_{j \in E(C)} x_j \leq |C| - 1 \]

is a valid inequality for the \(\Gamma \)-robust knapsack.
1. Case I: Combinatorial Optimization under Uncertainty
2. Case II: Uncertainty-driven Generalizations
4. Concluding Remarks
Energy System schematically

Source: ProCom
Simultaneous production of heat and power in exchange for fuel

- Fixed ratio ρ between heat and power generation
- Heat can be stored for future use, power cannot be stored
- Heat storage has limited capacity and loss factor

Power has to be bought/sold at day-ahead market!
Lot-Sizing with Storage Deterioration

LS-DET:

\[
\begin{align*}
\text{min} & \quad f(q, z) + \sum_{t=1}^{T} h_t u_t \\
\text{s.t.} & \quad \alpha u_{t-1} + q_t = u_t + d_t & \forall t \in [T] \\
& \quad U_t \leq u_t \leq U_t & \forall t \in [T] \\
& \quad Qz_t \leq q_t \leq Qz_t & \forall t \in [T] \\
& \quad q_t, u_t \geq 0 & \forall t \in [T] \\
& \quad z_t \in \{0, 1\} & \forall t \in [T]
\end{align*}
\]

Lot-Sizing with

- Production limitations
- Storage limitations
- Deterioration of storage
- Concave cost function
- No backlogging

Complexity

- in general: open
- if \(Q = 0, \overline{Q} = \infty, \alpha = 1, f \) linear: \(\text{LS-DET} \in \mathcal{P} \) (Love, 1973; Atamtürk & Küçükyavuz, 2008)
- if \(U = 0, \overline{U} = \infty, \alpha = 1 \): \(\text{LS-DET} \in \mathcal{P} \) (Hellion et al., 2012)
- both cases still in \(\mathcal{P} \) if \(0 < \alpha < 1 \) (Schmitz, 2016)

What about uncertain demands?
Forecast & Actual Heat Demands

Heat demands for week 45, 2007

Forecast error of up to 20% (average: 4.1%)
Find solutions that are feasible \textit{with high probability}!
Uncertainty Set: \(\mathcal{U} \) of possible demand realizations \((d_t)_{t \in [T]}\)

Applying Robust Optimization:

\[\alpha u_{t-1} + q_t = u_t + d_t \quad (1b) \]

Impossible to find \((q, z, u)\) such that (1b)–(1f) are satisfied \(\forall d \in \mathcal{U}\)

Theorem (folklore)

Every (implicit) equality in \(Ax \leq b \) allows for the elimination of a variable involved in the equality.

\[\Rightarrow \text{In robust optimization, elimination of variable } x \text{ implies that this variable is moved 2nd stage, i.e., after the uncertain input is known!} \]
Robust Lot-Sizing with Deterioration

RLS-DET:

\[
\begin{align*}
\text{min} & \quad f(q, z) + \eta \\
\text{s.t.} & \quad \alpha u_{t-1}(d) + q_t = u_t(d) + d_t \quad \forall t \in [T], d \in \mathcal{U} \\
& \quad U \leq u_t(d) \leq \overline{U} \quad \forall t \in [T], d \in \mathcal{U} \\
& \quad \eta \geq \sum_{t \in [T]} h^t u_t(d) \quad \forall d \in \mathcal{U} \\
& \quad Qz_t \leq q_t \leq \overline{Q}z_t \quad \forall t \in [T] \\
& \quad q_t, u_t(d) \geq 0 \quad \forall t \in [T] \\
& \quad z_t \in \{0, 1\} \quad \forall t \in [T] \\
& \quad \eta \geq 0
\end{align*}
\]

- storage \(u_t(d) \) per scenario \(d \in \mathcal{U} \)
Solving RLS-DET as LS-DET instance

Theorem

For an uncertainty set \mathcal{U} over which a linear function can be optimized in polynomial time, RLS-DET can be **polynomially reduced** (w.r.t. production plans) to an instance of LS-DET with $d = d'$ and $\overline{U} = \overline{U}'$ thus defined:

$$d'_t := \max_{d \in \mathcal{U}} \left\{ d_t - \sum_{i=1}^{t-1} \alpha^{t-i} (d'_i - d_i) \right\} \quad \forall t \in [T] \quad (3a)$$

$$\overline{U}'_t := \overline{U}_t - \max_{d \in \mathcal{U}} \left\{ \sum_{i=1}^{t} \alpha^{t-i} (d'_i - d_i) \right\} \quad \forall t \in [T]. \quad (3b)$$
Corollary

Given an uncertainty set \mathcal{U} over which a linear function can be optimized in polynomial time, RLS-DET is in \mathcal{P} (resp., \mathcal{NP}-hard) if and only if the corresponding version of LS-DET is in \mathcal{P} (resp., \mathcal{NP}-hard).

Robustness models satisfying precondition:

- polyhedral uncertainty sets, Γ-robustness
- discrete scenarios
- ellipsoidal uncertainty sets
Distribution of running times for $|\mathcal{U}| = 50$:

Speed-up factor between 1.82 and 85.67 with average 29.00
Outline

1. Case I: Combinatorial Optimization under Uncertainty
2. Case II: Uncertainty-driven Generalizations
4. Concluding Remarks
Capacity of optical fibre is huge, but limited!

Idea: More efficient usage of optical channels

Technology: Fixed grid vs. Flexgrid

1 Figure taken from “Innovative Future Optical Transport Network Technologies” by T. Morioka et al., NTT Technical Review, 9 (2011).
Idea: fixed spectrum-block size → flexible block-size

- Spectrum is divided into smaller slots (e.g. 6.25GHz)
- Demands request a custom amount of these slots (‘size’)
 ⇒ Less spectrum wasted by custom-tailored slot sizes
- “Freedom” is paid for: contiguity of assigned slots required

- In future, demands will be dynamic over time
 ⇒ flexible slot allocation needed
- Question: How to allocate spectrum such that demands can “breath”?
Definition (*Spectrum Allocation Problem* (SA))

Given a simple undirected graph $G = (V, E)$ and a set R of pairs $R_i = (P_i, d_i) \in \mathcal{P} \times \mathbb{N}$, $1 \leq i \leq l$, determine

1. for every R_i an interval $I_i = [a_i, b_i]$ with $a_i \leq b_i \in \mathbb{N}$ and $b_i - a_i = d_i$, such that $\max\{b_i | i = 1, \ldots, l\}$ minimal, where $I_i \cap I_j = \emptyset$ if paths P_i and P_j share an edge in G.

Let $SA(G, R)$ denote the value of an optimal solution.
Lemma (Büsing et al., 2017)

Spectrum Allocation is \mathcal{NP}-hard on general networks as well as on star networks

Proof for star networks: wavelength assignment ($d_i = 1$) is \mathcal{NP}-hard by a reduction from edge coloring.

Lemma (Büsing et al., 2017)

Spectrum Allocation is already \mathcal{NP}-hard on path networks and $d_i \in \{1, 2\}$

Proof: Spectrum Allocation on a path is equivalent to Dynamic Storage Allocation, which is known to be \mathcal{NP}-hard (GJ, 1979). Proof for $d_i \in \{c, d\}$ by Ślusarek (1987), corrected by Laube (2017).
Theorem (Büsing et al., 2017)

SA is at least weakly \(\mathcal{NP} \)-hard, even if \(G \) is a path of 5 edges.

Proof: Reduction from **Partition**, \(\sum_{i \in N} a_i = B \).

Note: If \(G \) is a path of \(\leq 3 \) edges, then SA can be solved in polynomial time.
Robust Spectrum Allocation: Given a number of demand scenarios $d^1, \ldots, d^K \in \mathbb{Z}^{R}$, allocate in every scenario the required number of slots such that the total number of slots across the scenarios is minimized.
⇒ discrete uncertainty set

Applications:
- Prepare for the future: one of the K scenarios will realize, but unknown which one
- Demand will fluctuate between the considered scenarios
- Multi-period Spectrum Allocation with breathing demands

Allocations can breath, but not move (service interruption):
Allocations between scenarios are interwoven!

Any Impact on Optimization?
Robust Spectrum Allocation Strategies

Five (technology) variants:

(a) RobSA-A: one joint slot

(b) RobSA-B: min. joint slots

(c) RobSA-C: nested joint slots

(d) RobSA-D: aligned (left/right)

(e) RobSA-E: overlap in central slot

Lemma

\[RobSA_A(G, R) \leq RobSA_B(G, R) \leq RobSA_C(G, R) \leq \min\{RobSA_D(G, R), RobSA_E(G, R)\} \]
Lemma

There exists instances with $\text{RobSA}_A(G, R) < \text{RobSA}_B(G, R) < \text{RobSA}_C(G, R) < \text{RobSA}_D(G, R)$, $\text{RobSA}_C(G, R) < \text{RobSA}_E(G, R)$

Proof by example:

(a) A

(b) B

(c) C

(d) D

(e) E
Obviously: $RobSA_\ast(G, R)$ is \mathcal{NP}-hard to compute in general networks.

What about cases where $SA(G, R)$ is still polynomial solvable?

Polynomial solvable cases:

- $|E| = 1$, i.e., single edge case: $SA(G, R) = d(R)$
Theorem (Büsing et al., 2017)

Given a $C \in \mathbb{Z}_+$, the problems whether $\text{RobSA}_B(G, R) \leq C$ and $\text{RobSA}_C(G, R) \leq C$ are strongly NP-complete, even if $|E| = 1$ and $|K| = 2$.

Reduction from 3-PARTITION: $3m$ items with size a_i, bound B

Define $5m$ requests with

$$d_r^k := \begin{cases}
2a_r + 2 & \text{if } 1 \leq r \leq 3m, \ k = 1 \\
2 & \text{if } 1 \leq r \leq 3m, \ k = 2 \\
3 & \text{if } 3m + 1 \leq r \leq 5m, \ k = 1 \\
B + 3 & \text{if } 3m + 1 \leq r \leq 5m, \ k = 2
\end{cases}$$

Corollary (Büsing et al., 2017)

Given a $C \in \mathbb{Z}_+$, the problem whether $\text{RobSA}_A(G, R) \leq C$ is strongly NP-complete, even if $|E| = 1$ and $|K| = 2$.
Any good news?

Theorem (Büsing et al., 2017)

RobSA_D(G, R) can be solved in polynomial time on a single link.

Proof:

- Requests are aligned left or right!
- Slots can be saved by combining a left and right request
- Min. weighted perfect matching on complete graph K_{|R|} has to be solved

What about E?
Theorem (Büsing et al., 2017)

Let $|K| = 2$ and let d_r^k be odd for all $r \in R$ and $k \in K$. Then, $\text{RobSA}_E(G, R)$ on a single link is polynomial-time solvable.

Proof: RobSA_E can be modelled as Gilmore-Gomory-TSP: NP-complete cases of variants D and E?

Theorem (Büsing et al., 2017)

Given a $C \in \mathbb{Z}_+$, the problem whether $\text{RobSA}_D(G, R) \leq C$ is strongly NP-complete, even if $|E| = 2$ and $|K| = 2$.

Reduction from **3-PARTITION**

Theorem (Büsing et al., 2017)

Given a $C \in \mathbb{Z}_+$, the problem whether $\text{RobSA}_E(G, R) \leq C$ is strongly NP-complete, even if $|E| = 1$ and $|K| = |R|$ or $|E| = 2$ and $|K| = 2$.

Reductions from **HAMILTONIAN PATH** and **3-PARTITION**, respectively.
Without uncertainty:

| Graph G | $d_r = c$ | $d_r \in \{c, d\}$ | $|P_r| \leq k$, $k \geq 3$ | $|P_r| = 3$ | $|P_r| \leq 2$ |
|-----------|------------|------------------|-------------------|-----------|----------------|
| $S_{1,n}$ | str. NP-c | str. NP-c | str. NP-c | - | str. NP-c |
| P_n | \mathcal{P} | str. NP-c | weak NP-c | weak NP-c | \mathcal{P} |
| P_n, $n = 6$ | \mathcal{P} | open | weak NP-c | \mathcal{P} | \mathcal{P} |
| P_n, $n = 5$ | \mathcal{P} | open | open | \mathcal{P} | \mathcal{P} |
| P_n, $n \leq 4$ | \mathcal{P} | \mathcal{P} | \mathcal{P} | \mathcal{P} | \mathcal{P} |

With uncertainty:

| Graph G | $|K| = 2$ | $|K| = |R|$ | general |
|-----------|-----------|-----------|---------|
| $|E| = 1$ | str. NP-c | \mathcal{P} | str. NP-c |
| $|E| \geq 2$ | str. NP-c | str. NP-c | str. NP-c |
1. Case I: Combinatorial Optimization under Uncertainty
2. Case II: Uncertainty-driven Generalizations
4. Concluding Remarks
Incorporation of Uncertainties in Optimization pays off!

- ProCom @E-world 2017: BoFiT Optimierung 7.0 – Robust Optimization

but impacts solution process

Different ways to model uncertainties yield different results:

- Multi-Stage Robustness, Recoverable Robustness, Chance-Constrained Models, Affine Models, etc.
- Evaluation determines feasibility of approach

New theory:

- Robust valid inequalities for knapsack, network design, etc.
- Robust Lot-Sizing can be solved as deterministic Lot-Sizing
- Complexity border yields useful insights on robust concepts

Optimization under Uncertainties: just do it!
Combinatorial Optimization inspired by Uncertainties

Arie M.C.A. Koster

Operations Research 2018

Brussels, September 14, 2018