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Robustness Concepts

Recall: In many problems, all decisions have to be made in advance.

I' Scenarios (Bertsimas & Sim 03/04)

_ . = demand d* € [d¥, d* + d¥] with .
Discrete Scenarios nominal demand d* and deviation d*
m limited number of scenario vectors m due to statistical multiplexing

m solution should be valid for all only few simultaneous peaks

scenarios m assume at most [ peaks at same time

m solution should be valid for all
scenarios

In both cases: optimize worst-case
Drawback: “almost always” good solutions might be infeasible
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@ Recoverable Robustness

Two-Stage RO: some decisions are only taken at 2nd stage
Recoverable robustness: repair 1st stage decisions

® uncertainty as two-stage process:
1st stage: a-priori decision
2nd stage: recovery:
limited change of first-stage decision
after realization of uncertainty is known

m optimize worst-case w. r.t. recovery

In this lecture: Recoverable Robust Knapsack problem (RRKP) with

m Discrete Scenarios!

m [ Scenarios?

1C. Biising, A. M. C. A. Koster, and M. Kutschka. Recoverable robust knapsacks: the
discrete scenario case. Optimization Letters, 5(3):379-392, 2011

2C. Biising, A. M. C. A. Koster, and M. Kutschka. Recoverable robust knapsacks:
gamma-scenarios. In Proceedings of INOC 2011, volume 6701 of Lecture Notes on
Computer Science, pages 583-588, 2011
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(k,0)-RRKP with Discrete Scenarios

Given m

|
|
|
Find m
Such that m
n

|

items N = {1,...,n},

first stage: profits p°, weight w?, capacity c°,

scenarios S € Sp with profits p°, weight w®, capacity ¢,
recovery set X'(X): delete < k items, add < 7 items
subset X C N

w0(X) < 9,

for all S € Sp there exists X° € X(X) with w>(X?) < ¢°,
total profit

_ 0 : S S
pr(X) = p (X) + min max p*(X7)

is maximized.

First S_1 S 2
@) xm | X @
Il D E EiEaam @ .
| | | L
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RRKP with Discrete Scenarios - [LP

maxz p?x,- +w

ieN first stage
s. t.Z wx; <0 second stage
ieN removal of < k items
Z wix?® <’ VS € Sp addition of < ¢ items
ien
Xj — X; —y,s <0 VS e Sp,ieN
Zy,-s <k  VSeSpH
i—1
s s .
X7 — Xj — Z; <0 VS eSp,ieN
n
>z <l VS € Sp
i=1
n
w=Y P <0 VS € Sp
i—1
s s
xi,x7,y7.z0 €{0,1}
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L k-RRKP with I Scenarios

Given m Items N = {1,...,n},
first stage: profits p°, weights w®, capacity c°,

]
m [-scenarios: weights [w, w + W], capacity ¢, [ € N,
m recovery set X'(X): delete < k items from X C N
Find m subset X C N,
Such that m w?(X) < 9,
m for all S € S there exists X° € X (X) with WS(XS) <c,
m total profit p°(X) is maximized
First Second S_1
T DN S O RN
X I BR K 'm

I I —
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RWTH RRKP with T scenarios - MP

=N
=

Mathematical Programming formulation:
maxz pPx;
ieN

s.t. Z W,-Ox,- SCO

Z Wi X; + )rpcaﬁ(z WiX; — {pg;\;(Z w;x; + Z wix;)) <c

ieN ‘XTSF ieX \VIEk ieY iexXny
Xi € {0, 1}

Question: Compact Linear reformulation?
Answer: LP duality and enumeration of solution values!
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iy | T Max Weight Set Problem
Example:
5 Given  Items N (1st stage solution)
weight bounds [w, w + W]
parameters I (robustness)
and k (recovery)
o Find Items ZCN, |Z|<T
. 2 >< Such that  total weight of recovery set is
2 F " .. .
maximized (i.e., set after
4 11 recovery)

=2, k=1, Opt=21
m Choice of Z for [ = 2 does not include choice for I = 1!

m Reformulation by LP duality!
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RRKP with I scenarios - ILP

Let U := {O}U{V_V,‘ NS N}U{W;+Wi2i€ N}
Then, a compact reformulation is:

max E pox;

S.t.

Resulting compact model contains O(n?) variables and constraints

ZW,-OX,' <c°

ieN

Z Wix; + Z ux,-+r§“+26’,-“ <c+ku YueU
ieN: ieN: ieN

w;<u W >u
min{—w; + u, W; }x; — & — ¢

§,607 >0
Xi € {Oa 1}

<0 Yue U
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& Complexity of Robust Knapsack

Theorem 1 (Karp 72, Bellman 57)

The knapsack problem is weakly NP-hard, i.e., it can be solved in O(nc)
time.

Theorem 2 (Yu 96, Kalai & Vanderpooten 06)

The robust knapsack problem with bounded number of scenarios can be
solved in pseudo-polynomial time.

Theorem 3 (Yu 96, Aissi et al. 07)

The robust knapsack problem with discrete scenarios is strongly NP-hard
and not approximable, unless P = NP.

Theorem 4 (Bertsimas & Sim 03/04, Klopfenstein & Nace 08)

The T-robust knapsack problem can be solved in pseudo-polynomial time.
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(0 Complexity of RRKP with Discrete Scenarios

Theorem 5

The (k, £)-rrKP is strongly NP-hard for unbounded sets of discrete
scenarios even if either p° = 0 or p> =0 for all S € Sp holds.

Reductions from 3SAT.
Corollary 6

The (k, £)-rrKP cannot be approximated within “‘1, unless P = NP. In
particular, for ¢ = 0, the problem cannot be approx1mated.

Theorem 7

The (k, £)-rrKP can be solved in pseudo-polynomial time for a bounded
number of scenarios.

Generalization of dynamic programming for robust knapsack (Yu, 1996).
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iy | T Complexity of RRKP with " Scenarios

Theorem 8
The RRKP with I scenarios is at least weakly NP-hard.

Open Problem

Is the RRKP with I' scenarios strongly NP-hard or does there exist a
pseudo-polynomial time algorithm?
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W) Projection of Discrete Scenarios

Let p°> =0 for all S € Sp.
= The number ¢ of items added do not play a role

Definition 9 (RRK Polyhedron)

Kp(k) := conv{x €{0,1}" :Z wPx; < c® and
ieN
7mc|r,b Z w,~5x,- <cSVSe SD}

|T|<k IEN\T

Projection on original variables

If p> = 0, the (k, £)-RRKP with discrete scenarios can be formulated as

max {Z poxi i x e ICD(k)}

ieN

Arie Koster — RWTH Aachen University 14 / 26



& Projection of [ Scenarios

Definition 10 (I'-RRK Polyhedron)

Kr(k) := conv{x € {0,1}" :Z w?x; < c® and
ieN
min Z W,-Sx,- <cVSe Sr}

TCN
| TT<k iEN\T

Projection on original variables
The IT'-RRKP can be formulated as

max {Z pxi x € ICr(k)}
ieN

How do Kp and Kr look like?
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@ | Cover Inequalities for Knapsack

Non-robust Knapsack Polytope:

n
K := conv{x € {0,1}" : Z wlx; < %)
=1

m Cover C: > w?>c%+1
ieC
m Cover inequality :

d x<|Cl-1

ieC

i
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iy | Cover Inequalities for Kp

Non-robust cover: If >°;_cw? > c®+1, then Y, - x; < |C| — 1.

Definition 11

A set C C N is called an rrKP cover if

first stage cover: w%(C) > c® +1 or

scenario cover: w°(C) — w®(max, C, k) > ¢° + 1,

where w®(max, C, k) := max w°(B).
BCC

|B]<k

Theorem 12
Given a rrKP cover C, the rrKP cover inequality

Y x<ICl-1

ieC
is valid for Kp.
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@ Cover Inequalities for ICr

C C N nominal items (w; = w;)

JC N peak items (w; = w; + W;)
K1 C C recovered(=removed) nominal
items

Kz C J recovered(=removed) peak K_I| \

items C J

Definition 13 (A quadruple (C, J, K1, K2) is a [-rrKP cover if)

m |[J|<T, CNJ=0, and |Ki| + |K2| = k and
m wO(CUJ) > c®+1 (first stage cover)

m or (C,Ki,J, K2) is a second stage cover:

D.oWm+ Y (Witw) e+l

ieC\Ky i€\Ka

Theorem 14
Given a [-rrKP cover (C, K1, J, K2), the T-rrKP cover inequality

E x; < |C ] J| -1
iecuJ
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@ Sufficiency of Cover Inequalities

Theorem 15

Let x € {0,1}". Then x € Kp (x € Kr) if and only if x satisfies all
minimal (T-)rrKP cover inequalities.

l.e., the minimal cover inequalities provide a formulation of the problem.

But, they do not provide a complete description of the convex hull of binary
solutions.
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i Extended Cover Inequalities

Non-robust knapsack: Let E(C) := {j eN : WJQ > max W,Q} U C. Then
e
the Extended Cover inequality for non-robust knapsack reads:

Y ox<IC-1

i€E(C)

rrKP with discrete scenarios: A cover C w.r.t. scenario S can be extended
with items whose weights exceed

(canonical extension) the weight of the k + 1 highest-weight-item in C
(advanced extension)

1. the residual capacity according to the weights of the first
|C| — k — 1 lowest-weight-items
2. the weight of the k + 2 highest-weight-item in C

Theorem 16

Let S be a cover w.r.t scenario S and E>(C) its extension. Then
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Extended Cover Inequalities

SN
S/

rrKP with I scenarios:

E(C,Ki,J, K?) ::{jGN : w; > max w; and w; + W; > max v'v,-+v“v,-}
ieC\Ky i€ )\Kz

u{cun

Theorem 17
Let (C,Ki,J,K2) be aT cover and E(C, K1, J, K2) its extension. Then

Y x<ICud-1
i€E(C,K1,J,Ka)

is valid for Kr.
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Gap closed by cover inequalities:

11

10
X 9
§ 8
o 7
3 6 M covers
S s I ext. covers
c (canonical)
c 4
] M ext. covers
E_ 3 (advanced)
E 2
8
o 1

0 —

0 1 5 10 25 50 100
k(%)

Note: the complete ILP formulation is used
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L [ Scenarios
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m exact separation by ILP

Gain of Recovery:

50% 100%

40% 80%
g g
Z 30% k =25% 3 60% k = 25%
§ k = 20% 3 k =20%
5 20% Hk=15% o 40% Wk =15%
£ Bk =10% £ Wk =10%
S 10% i ' ' Wk=5% 5 20% H WK=5%

00/0 0%
0% 5% 10% 15% 20% 25% 0% 5% 10% 15% 20% 25%
gamma gamma
geometric mean observed maximum

For each instance, I',and k, the gain of recovery is determined by the objective value normalized

to the corresponding case with kK = 0 %.
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o Further Robustness Concepts

Light Robustness: bound price of robustness of budget uncertainty and
minimize weighted sum of constraint violations

Distributionally Robust Optimization: given historical data, find solutions
that are robust whatever probability distribution the data follows.
Marriage between stochastic and robust optimization

Minimax Regret Optimization or Robust deviation: Minimize largest
possible difference between observed objective value of robust solution
and optimal solution value (knowing uncertain parameters in advance)

Relative robust deviation: Minimize largest possible ratio of robust
deviation to the optimal objective value

Multi-Band Robustness Multiple nested intervals with multiple decreasing
I values
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