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iy | P Robust Maximum Flow Revisited

Maximum Flow in directed graph G = (V/, A) with uncertain capacities u,
What flow value z can be guaranteed without fixing the flow?

1st Stage: Fix z independent of realization v € U
2nd Stage: Find flow x of value at least z for every u € U

max z
z v=s
s.t. Z x5(u) — Z x(u)=4 -z v=t VYueld,veV
acst(v) aci—(v) 0 otherwise
xa(u) < wy(uw) VuelU,ac A

z>0,x(u) >0

Note: 2nd stage does not mean this is done afterwards; optimization
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@iy | W Robust Maximum Flow

Theorem 1 (Minoux, 2010)

The robust maximum flow problem is solvable in polynomial time

m for a fixed number of K scenarios

m forld =iy — 01, 01] X U2 — lp, Go] X+« X [lUm — Om, Um] (with
A={1,...,m}), i.e., interval scenarios

The problem is strongly NP-hard if U is defined budget uncertainty

(T -robustness)
The latter problem is polynomial time solvable if G is planar.

The results® can be extended to general LPs with uncertain
right-hand-side.?

M. Minoux. On robust maximum flow with polyhedral uncertainty sets.
Optimization Letters, 3:367-376, 2009

2M. Minoux. On 2-stage robust LP with RHS uncertainty: complexity results and
applications.
Journal on Global Optimization, 49:521-537, 2011
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@ | A Energy System schematically
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CHP case study

Simultaneous production of heat and power in exchange for fuel

gl
Fuels .
.
i ;9—>”§ @ power demand
it
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o
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I heat storage

Source: ProCom

m Fixed ratio p between heat and power generation
m Heat can be stored for future use, power cannot be stored

m Heat storage has limited capacity and loss factor

Power has to be bought/sold at day-ahead market!
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Forecast & Actual Heat Demands

Heat demands for week 45, 2007
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Forecast error of up to 20% (average: 4.1%)
Find solutions that are feasible with high probability!

hours
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i Production Planning

heat
storage

qt,

heat
demand
df power
demand

Time horizon T (T = 24)
Demand for power df and heat d!

Fuel f; to operate CHP costs c/ per unit

Generation at time t: pf (power), g; (heat), z: (on/off)

|
|
|
m Power bought p’/sold p; on day-ahead market at ¢/ per unit
]
m Heat can be stored with loss factor o per time unit

|

Storage at end of period t: u;
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@ | The nominal problem

-
min > (e fulsqe + hze) + cE(pb — pif — par)) (12)
t=1
s.t. aui 1+ gy = up+df vt e [T] (1b)
pEpae + p¢ = df + p; vte[T] (1o
U<u <U vt e [T] (1d)
Qz: < q: < Qz Vte [T] (le)
ft = Sqt + th Vvt S [T] (1f)
Pt = pq: vee[T] (lg)
Ge, U, fr, P§, P, P} > 0 vte[T] (1h)
z €{0,1} vte [T] (1)
m Lot-Sizing Problem with Storage Deterioration
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iy | T Lot-Sizing with Storage Deterioration
LS-DET: T
min f(q,z)Jrthut (2a)
t=1
s.t. au_1+ qs = Ut + dt Vt € [T] (2b)
th UtSUt vVt € [T] (2C)
ta <q:t < 6Zt vt € [T] (2d)
ge,ur > 0 Vt e [T] (2e)
z € {0,1} vVt e [T] (2f)
Lot-Sizing with Complexity
m Production limitations m in general: open
m Storage limitations mif Q= 0,Q = o0, =1, f linear:
u Deterioration of storage LS-DET€ P (Love, 1973; Atamtiirk & Kiigiikyavuz, 2008)
m Concave cost function m if U=0,U=c0,a =1: LS-DETE P (Hellion et al., 2012)
 No backlogging m both cases still in P if 0 < a < 1 (Schmitz, 2016)

What about uncertain demands?
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iy | ST Robust Lot-Sizing

Uncertainty Set: U of possible demand realizations

Applying Robust Optimization:
Due to equalities (2b): Impossible to find (g, z, u) such that (2b)—(2f) are
satisfied Vd € U

Theorem (folklore) Every (implicit) equality in Ax < b allows for the
elimination of a variable involved in the equality.

= In robust optimization, elimination of variable x implies that this variable
is moved 2nd stage, i.e., after the uncertain input is known!
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@ | A Robust Lot-Sizing with Deterioration

RLS-DET:
min  f(q,2) +7 (3a)
s.t. au—1(d) + qr = ue(d) + d; Vte[T],del (3b)
U<u(d)<U Vte[T],delU (3¢)
n> Y htu(d) vd e U (3d)
te[T]
Rz < q: < Qz vt € [T] (3e)
Ge, ue(d) > 0 VYt € [T] (3f)
z €{0,1} vt e [T] (3g)
n=0 (3h)
m storage u:(d) per scenario d € U
m minimization of worst-case storage cost
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iy | ST Solving RLS-DET as LS-DET instance

Theorem 2

For an uncertainty set U over which a linear function can be optimized in
polynomial time, RLS-DET can be polynomially reduced (w.r.t. production
plans) to an instance of LS-DET with d = d’ and U = U' thus defined:

t—1
d; := max {dt - Zat_i (dj — d,-)} Vt € [T] (4a)

U, .= U, — max {Z ot~ (d! - d,-)} vVt e [T]. (4b)

Corollary 3

Given an uncertainty set U over which a linear function can be optimized in
polynomial time, RLS-DET is in P (resp., N'P-hard) if and only if the
corresponding version of LS-DET is in P (resp., N'P-hard).

Robustness models satisfying precondition:
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N Robust CHP Planning

Without Day-ahead Solve ILP

Uncertainty forecast (1a)-(1i)
With Scenarios Solve Robust Evaluate
Uncertainty 1,..., K Robust ILP CHP plan CHP plan

m Operating CHP according to forecast may result in storage violations

m Robust CHP plan will be more costly than forecast-based CHP plan

m Evaluation of CHP reveals real benefits
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Computational Setting

Uncertainty Set:

m Discrete Scenarios and I'-Scenarios based on historical data

m historical data for one year, forecasts available for next 232 days
m = 232 instances with 24h planning horizon

m = 229 instances with 96h planning horizon

Discrete Scenarios:

m K=1,...,70 considered heat demand scenarios

m k = 1: current forecast

m k > 1: current forecast + forecast error for similar days in the past
-Scenarios:

m classify forecast on basis of hour, outside temperature, weekday

m determine deviations by similar historical data
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o Running times (96h)

Distribution of running times for K = 50:
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Speed-up between 1.82 and 85.67 with average 29.00
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iy | TNERERSE Storage violations

Evaluation of robust solutions with real heat demand values (U = 120)
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K—1 discrete scenarios

g I\ ——  T-scenarios

=

<

c

o

=

iy

.Q

S

()

o 10 e
©

o

o]

8

wn

£

3

(8]

)

& 5 a

relative cost increase (%)

Arie Koster — RWTH Aachen University 17 / 26



@ | N Affine Decision Model

Idea: let production g; anticipate upon higher/lower demands

m Multi-stage approach: g; can only anticipate on dy,...,d; 1
m Affine decision rule (with nominal demand dj):

t—1

qe(d) = (dj — dj)ql + ¢

j=1

For fixed production plan: q{ =0,j=1,...,t—1.
Production of power now depends on considered demand:

pt(d) = pae(d)
Hence, power balance cannot be guaranteed anymore
pE(d)+p; =df +p; VdelU

m Difference has to be bought/sold on reserve market:

-
F1pE(d) — df + p? — p;
min +gw§&<{;ct ‘pt() F+p;—p;

}
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iy | TNERERSE Computations

Discrete Scenarios: Affine Decision Rules
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iy | TNERERSE Computations

-Scenarios: Affine Decision Rules

20 ‘ ;

fixed decision rule

o affine decision rule

avg. cum. storage violation (MWh)

relative cost increase (%)
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R Classical Network Design Model

7
@

Integer Linear Programming formulation:

H m_m
mlng E Ky X5

acA meM
st Y ff— > =d° Vkek
acdt(sk) acd—(sk)
STk ST =0 VkeK,\VieV,i#s
a€s+(i) acs—(i)
Zcmxgv_ij >0 Vac A
meM keK

XM e Zy, fk>0

Uncertain demand values d* in right hand side
For robust solution, worst case d* value have to be taken, say d* + d*
Can't we do better? What about dynamic routing?
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o Dynamic Routing Model

For d € U, fX(d) denotes the flow on arc a.

minE E Koxy

acA meM
st > fi(d)— Y fi(d) =d"d) VdelU keK
acdt(sk) acd—(sk)
Yo )= > ffd) =0 Vd el ke K,ieV\{s"
acs+ (i) aes—(i)
D CTx =K (d) >0 VdclUd,ac A
meM keK

Xefn € Z—l—: fak(d) >0

Extremely large model!
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Projection on Capacity Space

Reduction model size by projection on capacity space
For fixed demand, we have:

P* = proj, P
= conv{x € Zf' :3f €[0,1]”! such that (f,x) € P}
= conv{x € Zf' : x satisfies (5) for all £y, € Met(G)}

where

D tm(e)xe = D diim(sk, ), (5)

ecE keK

and Met(G) denotes the cone of metrics in G.

Note, for static (template) routing this result did not hold!
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Metric Inequalities for Dynamic Routing

Metric Inequalities for Dynamic Routing3

ZZM(e)xe > r;wadekﬁM(sk,tk), (6)
keK

cu
ecE

Theorem 4 (Mattia, 2013)

P*(U) = conv{x € Z'f' . x satisfies (6) for all £y, € Met(G)}

Theorem 5 (Mattia, 2013)

If ax > b is valid for P*(U), then there exists a metric {y; € Met(G) such
that {px > b is still valid and ¢p(e) < ae for all e € E.

3S. Mattia. The robust network loading problem with dynamic routing.
Computational Optimization and Applications, 54:619-643, 2013
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Summary Dynamic Routing

Dynamic Routing is just one example of two-stage robust optimization:

m At the first stage, some decisions have to be made before the uncertain
data is known

m Af the second stage, the uncertain data becomes available and the
remaining decisions have to be taken.

Two-stage Robust Optimization vs. Two-stage Stochastic Optimization

min g’z min q'z
min ch+max Bz=h— Tx minch+E Bz =h— Tx
z>0 z>0
s.t. Ax=5>b s.st. Ax=0>b
x>0 x>0
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@ Static vs. Dynamic Routing

Static Routing:
m Capacities have to be installed in integer amounts

m Routing templates fixes percentual distribution of traffic volume along
paths

Dynamic Routing:
m Capacities have to be installed in integer amounts

m Routing can be adapted to actual traffic volumes (realization from
uncertainty set)

Do there exist routing models in between static and dynamic routing?
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Affine Routing Function

Robust Network Design with Affine Routing:*
m Capacities have to be installed in integer amounts

m Routing follows a linear function of all traffic values

FE(d) =m0+ > hikd
kek
where hgo, hij eRforall ij€ A k. keK.
Theorem (Poss & Raack, 2011)
Let D be an arbitrary demand uncertainty set. Then

OPT4yn(D) < OPT,4(D) < OPTtat(D)

“M. Poss and C. Raack. Affine recourse for the robust network design problem:
between static and dynamic routing.
Networks, 61(2):180-191, 2013
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