Robust Optimization & Network Design
Lecture 5

Arie M.C.A. Koster
koster@math2.rwth-aachen.de

PhD course, Uppsala Universitet — February 26 - March 2, 2018

B s | RWTHAACHEN
Mathomatlk UNIVERSITY




@ | IR Outline

Arie Koster — RWTH Aachen University 2/20



This lecture:

m A connection between chance-constrained optimization and I-robustness.

m Solving robust combinatorial problems by a sequence of deterministic
problems
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@y | [-Robust Counterpart

Robust Counterpart For I € Z:

n
ajjxj + max aijixj | < b; 1
Z U scqa,nhisi<r Z vy = (1)
j=1 JGS
Let J C {1,..., n} be the set of uncertain coefficients of the constraint
alx < b.
Define

SCJ|s|<r

B(x*,T) = max Z ajx;
JeSs

as maximum added value to the left hand side of a;x* < b.
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@ Connection with Chance-constraints

Let ¢j = aj;‘sj be random variables with values in [-1, 1].
J

Theorem 1 (Bertsimas and Sim, 2004)

Let x* > 0 be an optimal solution of an ULO containing the robust counterpart

Zijj +/8(X’ r) < b

j=1

Further, let S* be the index set defining S(x*,T"). Then,

P (i apxt > b) <P (Zngj > r)

Jj=1 jed
1 if je §*
with v; = < ax* and r = arg minjcs« &;x7.
e ;
% if je J\S*

Moreover, v; < 1 for all j € J\ S*.
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@ ['-Robustness — Theory

Theorem 2 (Bertsimas and Sim, 2004)

Let (j, j € J be independent and symmetriccally distributed random
variables in [—1,1]. Then,

|-2
Zngj>r <exp( 2“')

jed

Example: |J| =100, ' = 10 = P(violation) < exp(—%) ~ 0.6
|J| =100, ' = 20 = P(violation) < exp(—2) ~ 0.13

Markov's Inequality

For a random variable X with finite expectation, it holds that

P (X2 5) < 210

for all a > 0.
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@ ['-Robustness — Theory

A better bound:
Theorem 3 (Bertsimas and Sim, 2004)

Let (j, j € J be independent and symmetriccally distributed random variables in [—1,1]. Then,

P (Z = r) < B(k,T) )

j€J
with k = |J| and
K
awn-F{u-n()s = 0l
=|v]|+1

where v = %(F+ k) and p=v — |v].
Moreover, the bound (2) is tight whenever (; has a discrete probability distribution with
PG =1) = % and P((; = —1) = %, F>1andT + k even.

For T = 0v/k: limy_0 B(k,T) = 1— ®(0) with ®(6) = A= [ exp (,%) dy, the

cumulative distribution function of the standard normal distribution.
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@ ['-Robustness — Theory

Corollary 4 (Bertsimas & Sim, 2004)

Let x* be an optimal solution of the T-robust counterpart. If aj,

j=1,...,n, are independent and symmetric distributed random variables in
[§J' = §j, aj+ éj], then

P Zajx,-* >b| < B(n,T)
j=1

fim B(n,T)=1-0 (%)

where ®(.) is the CDF of the standard normal distribution.

with

Instead of the limit: B(n,M) ~1— ¢ ('—\751)
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@ | N Choice of T

Choice of T as a function of n so that the
probability of constraint violation is less than p%:

r
n p=1 p=05 p=0.1
5 5.0 5.0 5.0

10 8.4 9.1 10.0

100 243 26.8 31.9
200 339 37.4 447
1,000 746 825 98.7
2,000 105.0 116.2 139.2

Note: Result is independent of actual distribution of random variables aj;,
only symmetry and independence are required.
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Violation vs. Price

I

& | RWTH
: ‘

Optimal value of the robust knapsack formulation as a function of the probability bound of constraint violation
given in Equation (18).
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& Combinatorial Optimization

Definition 5

Let X C {0,1}" for some n € Z;. A combinatorial optimization problem is
a problem of the form

min{c'x:xeX
{ j

Assumption (for the moment):
X does not contain any uncertainty. Only c is uncertain!

Theorem 6 (Bertsimas and Sim, 2003)

Letcie[c —¢,6+ &) (e N={1,...,n}) and uncertainty budget

I € Z define an -uncertain combinatorial optimization (UCO) problem.
Then, the robust counterpart of max{cx : x € X} can be solved by
solving n + 1 deterministic problems of the form max{d ' x : x € X}.
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i Robust Counterpart of -UCO

AN
oy

Robust Counterpart:

n n
min Z Gixi+Im—+ Zp,'
i=1 i=1

s.t. 7T+p,'26,'X; Vie N
m,pi >0 Vie N
x € X

n

Question: Given x € X, what is the minimum contribution of 'r + Zp,- ?

i=1

Answer:
1. Find a permutation o of the items such that

Cor(1)Xo(1) = Eo(2)X(2) = - -+ = Co(n)Xo(n)
2. Set 7 := 3a(r)Xa(r)
3. Set p;j := max (0, &x; — m)

le., pi=0foralli:c71(i)>T,and &x; —wif o7 1(i) < T

13 /20
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i Robust Counterpart of -UCO

1. Find a permutation o of the items such that
Co(1)%o(1) Z €o(2)%0(2) Z -+ Z () Xa(n)

. Set 7= fa(r)Xa(r)

3. Set p;j := max (0, &ix; — )

Corollary 7

Given x € X C {0,1}", the optimal value of 7 is one of the values
{0} U {é, ..., G}

N

Corollary 8
Given x € X C {0,1}", the optimal solution value is determined by

n n n
E Cix; + max { E Cixi, . rqax {Fék F E (& — ek)+x,-}}
=1,...,n
i=1 i=1 Y i=1

where (a)T := max{0, a}.
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iy | ST Robust Counterpart of -UCO

Theorem 9 (Bertsimas and Sim, 2003)

The UCO min{cx : x € X} can be solved by solving for all
m €{0,é,...,E,} the following CO problem

r+min{> (& + (& —m)")xi: x € X}
=1l

and selecting the cheapest solution.

Corollary 10

m /f a CO problem can be solved in polynomial time (e.g., shortest path,
min spanning tree, min cost flow, max matching) the UCO (with
uncertain objective) can be solved in polynomial time

m The knapsack problem with uncertain objective can be solved in O(n?B).
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iy | T Exercise 1

Consider the I-robust knapsack problem
n n
max {Z CiX; : Z aix; < b, x; € {0, 1}}
i=1 i=1

where ¢; are random variables, ¢; € [¢; — &, & + &

50 18 61
30 8 67
Let n=5 b=250,c=|45|,&é=|15|,anda=| 64
25 4 52
70 33 113

Determine the optimal solution for ' = 0,1,2,3,4, and 5.
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@y | T Robust Counterpart of -UCO

Corollary 11

The knapsack problem with uncertain objective can be solved in O(n?B).

Theorem 12

The knapsack problem with uncertain weight can be solved in O(n*B).

Theorem 13 (Monaci et al. (2013))
The knapsack problem with uncertain weight can be solved in O(nl B).
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@y | T Exercise 2

The knapsack problem max{c”x:a"x < B,x € {0,1}"} can be solved by
a dynamic programming algorithm in O(nB) time. For this, the function

K k
f(k,d) := max {Z CiXi : Za,-x,- =d,x; € {0, 1}}
i=1

i=1

is solved for all k € {0,...,n} and d € {0,..., b}.
Develop a dynamic programming algorithm for the -robust knapsack
problem with uncertain weights. What is the running time?
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i Approximating I-UCO

Theorem 14 (Bertsimas and Sim, 2003)

If a CO problem can be approximated in polynomial time with
approximation factor o, the UCO (with uncertain objective) can be
approximated in polynomial time with approximation factor c.

Remark: The approximation should hold for all possible inputs. In case of
the symm. TSP under triangle inequality, o = % but it has to be
guaranteed that also with (some of) the deviations, the triangle inequality
still holds.
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