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wy Uncertain LPs

Observation

In the knapsack example, normal distribution of the weights was assumed.
What if, the weights are distributed differently, or unknown?

Uncertain Linear Program

An Uncertain Linear Optimization problem (ULO) is a collection of linear
optimization problems (instances)

in{c’ : <
{mln{c x+d:Ax < b}}(c,d,A,b)eL{

where all input data stems from an uncertainty set ¢ C R™T1xn+1,
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@iy | W Uncertain LPs

Perturbation Set

The uncertainty set U is usually described by an affine parameterization: a
perturbation vector ¢ from a perturbation set Z describes all possible

T

.. : . c

deviations from a nominal matrix Dy = o 0 ).
Ao bo

L
U= {DG]R’”“X”“ : D:DO+ZQD,3:<63cRL}
/=1

The perturbation set Z describes how the deviations can be combined.
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& Example: production planning

Products: Drugl, Drugll containing an active agent A

Parameter Drugl Drugll
Selling price, $ per 1000 packs 6,200 6,900
Content of agent A, g per 1000 packs 0.5 0.6
Manpower required, hours per 1000 packs 90 100
Equipment required, hours per 1000 packs 40 50
Operational costs, $ per 1000 packs 700 800

Contents of Raw material:
Raw material Purchasing price, $ per kg  Content of Agent A, g per

kg
Rawl 100.00 0.01 + 0.5%
Rawll 199.90 0.02 + 2%
Resources:
Budget, § Manpower, Equipment, Capacity of raw materials stor-
hrs hrs age, kg
100,000 2,000 800 1,000
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iy | Example: production planning

Decision vector: x = [Rawl; Rawll; Drugl; Drugll|
Nominal data:

100 199.9 5500 —-6100 0

—-0.01 -0.02 0.5 0.6 0
1 1 0 0 1000
0 0 90 100 2000
Do — 0 0 40 50 800
100.0 199.9 700 800 100000
-1 0 0 0 0
0 -1 0 0 0
0 0 -1 0 0
0 0 0 -1 0
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Example: production planning

Perturbation matrices:
0

D; =5.0-107°. , Dy =4.0-107%.

O O OO OO OoOomH
O O OO OO OoOoOoOo
O O OO OO OoOoOoOo
OO OO OO0 oOoOo
OO OO OO0 oOoo
O O OO OO OoOoOoo
OO O OO0 O0OoO+HOo
OO OO OO0 oOoOo
OO OO OO0 oOoOo
OO OO OO0 oOoo

Perturbation set:
Z={CeR?:-1<Q,<1}
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@ | A Typical Perturbation Sets

Typical perturbation sets are:

m the unit box (interval uncertainty)
{CGRL 1< <1 wzl,...,L}

m the discrete scenarios

L
{geRL;Z@gLogggg vezl,...,L}

(=1

m the Eucledian ball with unit radius

{cert:icr=¢Tc <1}
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@ | Uncertain Linear Optimization

In One-Stage Robust Optimization, we only consider ULOs with the

following characteristics:

1. All decision variables represent here and now decisions; they should be
assigned specific numerical values as a result of solving the problem
before the actual data “reveals itself.”

2. The decision maker is fully responisble for consequences of the decisions
to be made when, and only when, the actual data is within the
prespecified uncertainty set .

3. The constraints Ax < b are hard — we cannot tolerate violations of
constraints, even small ones, when the data is in U.
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iy | RNERRY Example

Xo —3x1 +4x2 < 4

—2x1\¢ <4 2x1 —xp <5

X1
2.75x1 + 2.75x, < 11
3x1 +2x <11

ax) + 4xp < 4 with a € [-3, 2]
bx; + cxp < 11 with b € [2.75,3] and ¢ € [2,2.75]

Select optimal solution among robust solutions!
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y | T Robust Counterpart

in{c’ : <
ULO {mln{c x+d:Ax < b}}(c,d,A,b)eu

Robust feasible solution
A vector x € R” is robust feasible for ULO if

Ax<b Y(c,d,Ab)elU

Robust solution value
Given a vector x € R”, the robust solution value €(x) is defined as

é(x):=  sup (ch + d)
(c,d,A,b)eU

Robust Counterpart
The robust counterpart of an ULO is the optimization problem

min {&(x) : x is robust feasible}
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by | RWTH Example

Let {min{ch tAx < b, x > 0}} be an ULO with uncertain
(c,A,b)eld
right-hand-side o
b e [b,b+ bl
uncertain matrix A,
ajj € [ay, 3 + 3]

but certain objective vector c.

The robust counterpart can be written as
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@y | T Exercise

Let A be a m x n matrix. Consider the following uncertain linear
optimization problem:

min{c”x : Ax < b},

under the uncertainty:
U={(c,ADb):|c— gl <oj |Aj— Aj| < i, |bi — bi| < B, Vi, j},

where ;, etc. denotes the nominal data.
Reduce the robust counterpart of the problem to a linear program with

m m constraints (not counting the non-negativity constraints) and
m 21 nonnegative variables.

Answer: x is free, and has to be replaced by x = x* — x~ with x™ > 0,
x~ >0
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@ Robust Counterpart

Observation

If the objective is certain, the robust counterpart can be constructed
row-wise, i.e.,

m keep the objective

m replace every constraint a] x < b; by its robust counterpart
a,-Tx < b; V(a;, b)) € U;
where
U = {(5,-, b)) € R™1: 3(A, b) € U with A;, = 5, by = B,-}

Note: the robust counterpart does not change if i = Uy X Us X ... X Up,
instead of U is used.
Wilog: Objective vector c is certain!
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@ Robust Counterpart

Corollary

If only the right hand side b is uncertain, the robust counter part reads
Ax < b

with b; = min{b; : (A, b, c) € U}.

Max-Flow with uncertain capacities:

m Take minimum capacity on every arc, and solve the max flow problem.

Min-Cut with uncertain capacities:

m Objective vector c is uncertain! Requires solving of a new problem.

Corollary: Robust Max-Flow # Robust Min-Cut
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iy | T General framework

By the earlier observation, we can focus on a single uncertainty-affected
linear inequality

{a"x < b}apjeu (1)
with uncertainty set
L
U= {[a; b = [a°;b°]+Z@[af;b‘]:§ez} (2)
=1

The robust counterpart reads

L
a’x<b V ([a; b] = [a°% b°] + Z@[af; bl : ¢ € Z) (3)

(=1
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iy | Interval Uncertainty

Let
Z={CeR":|[¢llo < 1}

thus a box around the origin, also called interval uncertainty.
In this case, (3) reads

L L
[0 x + ) Gla’]Tx < B0+ bt V¢ |[¢]]o < 1

/=1 ~
@XL:Q {[aE]TX_ bﬂ < B0 — [ x VC: |Gl <1,6=1,...,L
Eil
o3, (o[- b <8 -

L
&) |[aTx = b < % — [ x
(=1
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y | Interval Uncertainty

Now,

L
S x - b < b0 — [ Tx
/=1

can be easily reformulated by a system of linear inequalities:

L
[aO]Tx+ZUg < p°
/=1
—uy <[a]"x—b'<u WV=1,..L
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iy | ST Knapsack with Interval Uncertainty

Knapsack with n Items, profits ¢;, uncertain weights a; € [a;, 3;], and
capacity b

Exercise:

1. Define [a%; b’] for all £ =1,...,L (how large is L?)

2. Simplify max_1<¢,<1 ([a°]Tx — b°)

3. How does the Robust Counterpart look like?
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Ellipsoidal Uncertainty Set

Let
Z={CeRt: ||l <}

thus a ball of radius € around the origin.

In this case, (3) reads

L L
[ x + > " Cela]Tx < B0+ )~ ¢obt V¢ [¢l € Q
/=1 /=1
L
T YA 0 01T
@Ilcn\?zaéﬂ ;Q[[a] x—b} < b’ —[a’]"x

L
@QJ D ([ 7x — b2 < b° — [a%] T x

(=1
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Polyhedral Uncertainty Set

Let

Z={CeR:P¢(<q}
with P € RM*L g c RM ie., Zis described by a polyhedron.
In this case, (3) reads

L L
[ 5+ ) Gla’]Tx < B0+ b V(:P(<gq
/=1 =1
L

G [1a7x = b | < 80— 12" (4)

Given x (fixed), feasability of (4) can be checked by solving the LP:

L
z(x) = maxz [[az] Tx — bq q
(=1
s.t.P( < q

If z(x) < b® — [a°] " x, then x is robust feasible, otherwise not.
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Discrete Uncertainty Set

Let [a; b] be taken from a discrete set of N possible realizations
{[a" bl =1,

Approach 1:

m Define [a!; b'] as the nominal case
m Set [5; b :=[a —a';b' —b'|foralli=2,... N

m Define the perturbation set

N
zZ= {C € RN-1: Gi € {Oa 1}[0 1]7Z</ < 1}
=2

m Construct Robust Counterpart
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iy | ST Discrete Uncertainty Set
Let [a; b] be taken from a discrete set of N possible realizations

{[a" b'l}im1,v

Approach 2:

m Compute a polyhedral description of the convex hull of
{[a";b'],i=1,...,N}

m le, {¢ €R™: P < g} has as extreme points [a'; b']

m Define the perturbation set

Z={CeR":P(<q}
and the uncertainty set
U= {[a; b] = [0;0] + Zci[ei; 0] + Cn1[0, 1]}
i=0
m Construct Robust Counterpart
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@ | A Discrete Uncertainty Set

Let [a; b] be taken from a discrete set of NV possible realizations
{[a"; b']}i=1,...N-

Approach 3:

m Replace a’x < b by

[]"x<b" VYi=1,...,N

Definition of Z and U is sometimes unnecessarily difficult!
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