Algorithm Graph Theory: How hard is your combinatorial optimization problem?

Short Course – Lecture 6 June 9, 2017

Slides available at:

https://www.math2.rwth-aachen.de/de/mitarbeiter/koster/agtclemson

Two types of preprocessing

- Reduction rules (Simplification) [39]
 - Rules that change G into a smaller `equivalent' graph
 - Maintains a lower bound variable for treewidth low
- Safe separators (Divide and Conquer) [32]
 - Splits the graph into two or more smaller parts with help of a separator that is made to a clique

Reduction

- Safe rules that
 - Make G smaller
 - Maintain optimality...
- Use for preprocessing graphs when computing treewidth

Reduction rules

- Uses and generalizes ideas and rules from algorithm to recognize graphs of treewidth ≤ 3 from Arnborg and Proskurowski
- Example: Series rule: remove a vertex of degree 2 and connect its neighbors

Safe for graphs of treewidth ≥ 2

Example

Type of rules

- Variable: low (integer, lower bound on treewidth)
- Graph G
- Invariant: value of max(low, treewidth(G))
- Rules
 - Locally rewrite G to a graph with fewer vertices
 - Possibly update or check low
- We say a rule is safe, when it maintains the invariant.
- Use only safe rules.

Rule 1: Simplicial rule

- Let v be a simplicial vertex in G
- Remove v.
- Set low := max (low, degree(v))

Simplicial = Neighbors form a clique

- Simplicial rule is safe.
- Special cases: islet rule (singletons), twig rule (degree(v) = 1)

Rule 2: Almost Simplicial rule

- Let v be a almost simplicial vertex
 in G and low ≥ degree(v)
- Remove *v*,
- turn neighbors into clique

Almost Simplicial = Neighbors except one form a clique

Almost Simplicial rule is safe.

Increasing *low*

Further rules: buddy/buddies rule, (extended) cube rule

Arnborg and Proskurowski [12]:

- tw(G)=1 if and only if G is reduced to the empty graph by islet rule (vertices of degree 0) and twig rule (vertices of degree 1)
- tw(G)=2 if and only if G is reduced to the empty graph by islet,
 twig, and series rule (vertices of degree 2)
- tw(G)=3 if and only if G is reduced to the empty graph by islet,
 twig, series, triangle, buddy, and cube rule

Low can be increased to 2, 3, and 4 respectively if these rules cannot be applied anymore and graph is not empty yet.

Results for probabilistic networks

	original		preprocessed				original		preprocesse		sed
instance	۷	E	۷	E	low	instance	۷	E	٧	E	low
alarm	37	65	0	0	4	oesoca+	67	208	14	75	9
barley	48	126	26	78	4	oesoca	39	67	0	0	3
boblo	221	328	0	0	3	oesoca42	42	72	0	0	3
diabetes	413	819	116	276	4	oow-bas	27	54	0	0	4
link	724	1738	308	1158	4	oow-solo	40	87	27	63	4
mildew	35	80	0	0	4	oow-trad	33	72	23	54	4
munin1	189	366	66	188	4	pignet2	3032	7264	1002	3730	4
munin2	1003	1662	165	451	4	pigs	441	806	48	137	4
munin3	1044	1745	96	313	4	ship-ship	50	114	24	65	4
munin4	1041	1843	215	642	4	vsd	38	62	0	0	4
munin-kgo	1066	1730	0	0	5	water	32	123	22	96	5
						wilson	21	27	0	0	3

- → Some cases could be solved with preprocessing to optimality
- → Often substantial reductions obtained
- → Time needed for preprocessing is small (never more than a few seconds)

Graph separators

- $S \subset V$ is a *separator* of G, if G S has more than one connected component
- S is a minimal separator, if S is a separator and S does not contain another separator as proper subset

Safe separator

S is safe for treewidth, or a safe separator if and only if the treewidth of G equals the maximum over the treewidth of all graphs obtained by

- Taking a connected component *W* of *G* -*S*
- Take the graph, induced by $W \cup S$
- Make *S* into a clique in that graph

Using safe separators

- Splitting the graph for divide and conquer preprocessing
- Until no safe separators can be found
- Slower but more powerful compared to reduction
 - Most or all reduction rules can be obtained as special cases of the use of safe separators
- Look for sufficient conditions for separators to be safe

Lemma 1

Let S be a separator in G. The treewidth of G is at most the maximum over all connected components W of G of the treewidth of $G[W \cup S] + \text{clique}(S)$

Lemma 2

Let S be a separator. If for all components W of G -S, G [$W \cup S$] contains a clique on S as a minor, then S is safe.

- → Clique separators are safe
- → Separators of size 0 and 1 are safe

Safeness of minimal almost clique separators

S is almost clique when S -v is a clique for some vertex v

- If one component is contracted to the red vertex, the separator turns into a clique: minimal almost clique separators are safe!
- → Minimal Separators of size 2 are safe
- → `Almost all' minimal separators of size 3 are safe
 - only 3 independent vertices can be non-safe
- Minimal separators of size 3 that split off at least two vertices are safe

Why Lower Bounds?

- Benchmark quality of constructed tree decompositions (upper bounds)
- Speed up of branch & bound methods (e.g. Gogate & Dechter [63])
- Indicates expected performance of dynamic programming algorithms

Theorem Let $V_1, V_2 \subseteq V$ induce a complete bipartite subgraph. Then $tw(G) \ge min\{|V_1|, |V_2|\}$

Induced subgraphs

Theorem The treewidth of a graph can not increase by taking subgraphs

H subgraph of G

$$tw(H) \le tw(G)$$

$$LB(G) \le tw(G)$$

$$LB(H) \le tw(G)$$

Corollary If the LB can increase by taking subgraphs, an improved lower bound can be found by taking the maximum over all subgraphs:

$$\max_{H\subseteq G} LB(H) \le tw(G)$$

Foundations II

Theorem The treewidth of a graph can not increase by taking minors

H minor of G

$$tw(H) \le tw(G)$$

$$LB(G) \le tw(G)$$

$$LB(H) \le tw(G)$$

Corollary If the LB can increase by taking minors, an improved lower bound can be found by taking the maximum over all minors:

$$\max_{H \prec G} LB(H) \leq tw(G)$$

Degree-Based Lower Bounds I

Lemma The minimum degree of a graph is a lower bound for treewidth

$$\delta(G) \le tw(G)$$

Corollary The degeneracy of a graph is a lower bound for treewidth

$$\delta D(G) = \max_{H \subset G} \delta(H) \le tw(G)$$

Corollary The contraction degeneracy of a graph is a lower bound for treewidth

$$\delta C(G) = \max_{H \prec G} \delta(H) \le tw(G)$$

Relationships

= less than or equal

Complexity

More lower bounds

Theorem Let G=(V,E) and $tw(G) \le k$. Then, $|E| \le k|V| - \frac{1}{2}k(k+1)$

Theorem $tw(G) \ge n-\frac{1}{2} - V(n^2-n-m+1)$ with n=|V| and m=|E|

Planar Graphs

Theorem *Planarity is closed under taking minors*

G planar, H minor of G

$$\delta C(G) \le tw(G)$$

$$\delta C(G) \le 5$$

$$\delta C(G) \le 5$$

Theorem The genus of G cannot increase by taking minors

G graph of genus k, H minor of G

$$\begin{cases}
\delta C(G) \le tw(G) \\
\delta C(G) \le 5 + k
\end{cases}$$

$$\delta C(G) \le 5 + k$$

Alternative lower bound by **Brambles** [36, ESA2005]