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Influencemaximization in (social) networks

Markus Leitner

VU Amsterdam,The Netherlands

Abstract

Online social networks have become crucial communication channels. Millions of peo-
ple participate in such networks including entities with commercial interests such as
companies. The latter increasingly incorporate campaigns promoted via social net-
works into their marketing mix. Fundamental problems that arise in quantitative so-
cial network analysis in the context of (viral) marketing include the identification of in-
fluential network nodes that may trigger a large information propagation cascade and
the identification of (homogeneous) communities. In this talk we focus on the former
problem which is typically referred to as the influence maximization problem. We first
provide an overview over considered problem variants and recently proposed exact al-
gorithms for this problem. In the second part of the talk, we motivate several exten-
sions that have been recently introduced. These include the (explicit) consideration of
individuals who view content but do not forward it and alternative objective functions.
We discuss a generic mixed-integer non-linear programming formulation that incor-
porates these aspects and an exact linearization based on generalized Benders decom-
position. Finally, we report results from a computational study showing that the new
problem variants can lead to more effective marketing campaigns and discuss topics
for future research.

Date: Wednesday 8 June 2022
Time: 9:00-10:15
Lecture Hall I
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The Current and FutureWaves of Interdiction
Models and Algorithms

J. Cole Smith

Syracuse University,USA

Abstract

This presentation will consists of three parts. The first part will introduce concepts
related to network interdiction and robust optimization over networks, with an eye
toward describing the truly important work performed in this field in the 1960s and
1970s that could become increasingly important in future studies. The second part
will discuss a selection of contemporary interdiction studies, especially those related
to assumptions on information asymmetry,stochasticity,players’ risk preferences,and
learning. The third part will cover a sampling of some fascinating new applications
and problem variations that are currently being studied,with an eye toward forecasting
what the next wave of research in this field might address.

Date: Thursday 9 June 2022
Time: 9:00-10:00
Lecture Hall I
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Robust optimization: Concepts, results and
applications in public transportation networks

Anita Schöbel

Fraunhofer ITWM,TU Kaiserslautern,Germany

Abstract

Most real-world problems contain parameters which are not known at the time a deci-
sion is to be made. Data may not be measurable in the precision needed or may depend
on future developments. An optimal solution which does not take such an uncertainty
into account often becomes bad or even infeasible for the scenario which is finally re-
alized.
This is,e.g.,true for optimal routes or for timetables in public transport which easily be-
come infeasible if delays occur. In robust optimization one specifies the uncertainty as
a scenario set. Classical robust optimization aims at finding a solution which is feasible
for all scenarios. Such a solution comes with a high price: A robust route or a robust
timetable would have much too long nominal traveling times. The concept is hence
not suitable for many applications. There exist less conservative robustness concepts.
In the first part of this talk, several such definitions will be shown. Two of them will be
discussed in more detail: Light robustness and a scenario-based approach to recovery
robustness.
The second part of the talk goes one step further: How to handle uncertain optimiza-
tion problems in which more than one objective function is to be considered? This
yields a robust multi-objective optimization problem,a class of problems only recently
introduced.
Concepts on how to define robust Pareto solutions will be developed. Mathematical
properties will be derived as well as approaches on how to compute robust efficient
solutions. All concepts will be illustrated at routing and planning problems in public
transportation.

Date: Friday 10 June 2022
Time: 11:40-12:50
Lecture Hall I
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ABSTRACT
In this paper, we study the complexity of robust transshipment
under consistent flow constraints. We consider demand uncertainty
represented by a finite set of scenarios and characterize a subset of
arcs as so-called fixed arcs. In each scenario, we require a flow that
satisfies the respective balance constraints. In addition, we require
on each fixed arc equal flow for all scenarios. The objective is to
minimize the maximum cost occurring among all scenarios.

We show that the problem is strongly NP-hard on acyclic di-
graphs by a reduction from the (3, 𝐵2)-Sat problem. Further, we
prove that the problem is weakly NP-hard on series-parallel di-
graphs by a reduction from Partition. If in addition the number of
scenarios is constant, we suggest a pseudo-polynomial algorithm
based on dynamic programming. Finally, we present a special case
solvable in polynomial time for series-parallel digraphs.

KEYWORDS
Transshipment Problem, Minimum Cost Flow, Equal Flow Problem,
Robust Flows, Demand Uncertainty, Series-Parallel Digraphs

1 INTRODUCTION
In this paper, we consider the robust transshipment problem under
consistent flow constraints (RobT≡). The problem is motivated by
long-term decisions on transshipment that have to be made despite
uncertainties in demand. For instance, in logistic applications the
transshipment is often agreed in advance by long-term contracts
with subcontractors. A solution to the RobT≡ problem facilitates
cost-efficient decision-making which is robust against demand un-
certainty.

The RobT≡ problem is the uncapacitated version of the robust
minimum cost flow problem under consistent flow constraints
(RobMCF≡), introduced in our previous work [4]. The complexity
results for the RobMCF≡ problem rely on the existence of (tight)
capacities. Hence, the question raises whether the problem is solv-
able in polynomial time if the capacity restrictions are neglected.
This is the case for instance for the integral multi-commodity flow
problem, which isNP-hard but becomes polynomially solvable for
uncapacitated networks.
∗Supported by the Freigeist-Fellowship of the Volkswagen Stiftung and by the German
research council (DFG) Research Training Group 2236 UnRAVeL.
†Supported by the Freigeist-Fellowship of the Volkswagen Stiftung.

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th 
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen, 
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

As in the transshipment problem [8], we consider an uncapac-
itated network in the RobT≡ problem. To represent demand un-
certainty, we consider vertex balances for a discrete number of
demand scenarios. Furthermore, we characterize a subset of arcs as
so-called fixed arcs. In each scenario, we require a flow that satisfies
the respective balance constraints. In addition, we require on each
fixed arc equal flow for all scenarios. The objective is to minimize
the maximum cost that may occur among all demand scenarios.

The main contribution of this paper can be summarized as fol-
lows. We prove that finding a feasible solution to the RobT≡ prob-
lem is stronglyNP-complete on acyclic digraphs, even if only two
demand scenarios are considered. On series-parallel (SP) digraphs,
we show that the decision version of the RobT≡ problem is weakly
NP-complete. We identify the pseudo-polynomial time solvability
in the special case of a constant number of scenarios. If all demand
scenarios have the same single source and sink in SP digraphs, we
propose a polynomial time algorithm.

The outline of this paper is as follows. In Section 2, we provide
an overview of related work. In Section 3, we define the problem
and introduce the notations of this paper. In Sections 4 and 5, we
analyze the complexity of the RobT≡ problem on acyclic and SP
digraphs, respectively. In Section 6, we conclude our results.

2 RELATED WORK
In the literature, there are several extensions to the maximum flow
(MF) and minimum cost flow (MCF) problem that consider equal
flow requirements on specified arc sets. Sahni [11] introduces the
integral flow with homologous arcs problem (homIF). In addition
to the set-up of the MF problem, the flow value has to be equal on
specified arcs. Sahni proves the NP-hardness of the problem by
a reduction from the Non-Tautology problem. The MCF version
of the homIF problem is known as the (integer) equal flow prob-
lem (EF). Using standard techniques, the complexity results can be
transformed from the homIF to the EF problem [1].

Meyers and Schulz [10] discuss the transshipment version of
the EF problem. For instance, they prove the strong NP-hardness
of the problem by a reduction from the Exact Cover by 3-sets
problem, even in the case of a single source and sink. Furthermore,
they prove the strong NP-hardness for the special case where
all sets have cardinality two, which was first investigated for the
capacitated version by Ali et al. [2].

Unlike the research referenced above, we do not consider only
one demand scenario in the RobT≡ problem. Like in the RobMCF≡
problem, we consider several demand scenarios. We stress that the
equal flow requirements are only of importance across more than
two different demand scenarios. The flow value of a specified arc
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has to be equal among all scenarios. In turn, the flow value of two
specified arcs may differ in one scenario.

To the best of our knowledge, equal flow requirements and de-
mand uncertainty are combined in our previous study [4] for the
first time. Demand uncertainty is frequently studied in the context
of (uncapacitated) network design. Three examples are as follows.
Gutiérrez et al. [5] present a robustness approach to uncapacitated
network design problems. Lien et al. [9] provide an efficient and
robust design for transshipment networks by chain configurations.
Holmberg and Hellstrand [6] concentrate on finding an optimal
solution to the uncapacitated network design problem for com-
modities with a single source and sink by a Lagrangean heuristic
within a branch-and-bound framework.

3 DEFINITION & NOTATIONS
The RobT≡ problem is the uncapacitated version of the RobMCF≡
problem.We define the problem on the basis of our previouswork [4].
Let digraph 𝐺 = (𝑉 ,𝐴) with vertex set 𝑉 and arc set 𝐴 be given.
The set of arcs 𝐴 is divided into two disjoint sets 𝐴fix and 𝐴free,
termed fixed and free arcs, respectively. If not explicitly defined,
we specify the sets of vertices, arcs, fixed arcs, and free arcs of a
digraph 𝐺 by 𝑉 (𝐺), 𝐴(𝐺), 𝐴fix (𝐺), and 𝐴free (𝐺), respectively. Let
arc cost 𝑐 : 𝐴 → Z≥0 be given. The demand uncertainty is repre-
sented by the finite set of discrete scenarios Λ. For every scenario
𝜆 ∈ Λ, vertex balances 𝑏𝜆 : 𝑉 → Z with

∑
𝑣∈𝑉 𝑏𝜆 (𝑣) = 0 that

define the supply and demand realizations are given, denoted by
𝒃 = (𝑏1, . . . , 𝑏 |Λ |). A vertex with a positive or negative balance is
termed source or sink, respectively. In general, the source (sink)
vertices do not necessarily have to be the same in every scenario.
If all scenarios have only one vertex with a positive (negative) bal-
ance and if it is the same vertex in all scenarios, we say that the
problem has a unique source (sink). In sum, we obtain the network
(𝐺 = (𝑉 ,𝐴 = 𝐴fix ∪𝐴free), 𝑐, 𝒃).

For a single scenario 𝜆 ∈ Λ, a 𝑏𝜆-flow in digraph 𝐺 is defined by
a function 𝑓 𝜆 : 𝐴→ Z≥0 that satisfies the flow balance constraints∑︁

𝑎=(𝑣,𝑤) ∈𝐴
𝑓 𝜆 (𝑎) −

∑︁
𝑎=(𝑤,𝑣) ∈𝐴

𝑓 𝜆 (𝑎) = 𝑏𝜆 (𝑣)

at every vertex 𝑣 ∈ 𝑉 . The cost of a 𝑏𝜆-flow 𝑓 𝜆 is defined by

𝑐 (𝑓 𝜆) =
∑︁
𝑎∈𝐴

𝑐 (𝑎) · 𝑓 𝜆 (𝑎).

For the entire set of scenarios Λ, a robust 𝒃-flow 𝒇 = (𝑓 1, . . . , 𝑓 |Λ |)
is defined by a |Λ|-tuple of 𝑏𝜆-flows 𝑓 𝜆 : 𝐴→ Z≥0 that satisfy the
consistent flow constraints 𝑓 𝜆 (𝑎) = 𝑓 𝜆′ (𝑎) on all fixed arcs 𝑎 ∈ 𝐴fix

for all scenarios 𝜆, 𝜆′ ∈ Λ. The cost of a robust 𝒃-flow 𝒇 is defined
by

𝑐 (𝒇 ) = max
𝜆∈Λ

𝑐 (𝑓 𝜆) .
Finally, the RobT≡ problem is defined as follows.

Definition 3.1 (RobT≡). Given a network (𝐺 = (𝑉 ,𝐴 = 𝐴fix ∪
𝐴free), 𝑐, 𝒃), the robust transshipment problem under consistent flow
constraints aims at computing a robust 𝒃-flow 𝒇 = (𝑓 1, . . . , 𝑓 |Λ |) of
minimum cost.

We note that in the case of a single scenario, i.e., |Λ| = 1, the
RobT≡ problem corresponds to the transshipment problem [8].

Analogously to the RobMCF≡ problem, we stress that the integral
flow property of the transshipment problem (uncapacitated MCF
problem) does not hold for the RobT≡ problem. In general, the
solution of the continuous relaxation of the RobT≡ problem is not
integral.

4 COMPLEXITY FOR ACYCLIC DIGRAPHS
In this section, we investigate the complexity of the RobT≡ problem
for networks based on acyclic digraphs. The reduction is performed
from the strongly NP-complete (3, 𝐵2)-Sat problem, introduced
by Berman et al. [3]. The (3, 𝐵2)-Sat problem is a special case of
the 3-Sat problem where every literal occurs exactly twice. We use
the notation [𝑛] := {1, . . . , 𝑛}.

Theorem 4.1. Deciding whether or not a feasible solution exists to
the RobT≡ problem for networks based on acyclic digraphs is strongly
NP-complete, even if a unique source and a unique sink are given
and only two scenarios are considered.

Proof. The RobT≡ problem is contained inNP as we can check
in polynomial time whether the flow balance and consistent flow
constraints are satisfied for every scenario. Let {𝑥1, . . . , 𝑥𝑛} be the
set of variables and 𝐶1, . . . ,𝐶𝑚 be the clauses of the (3, 𝐵2)-Sat
instance I. For a set of two scenarios Λ = {1, 2}, we construct a
RobT≡ instance Ĩ = (𝐺, 𝑐, 𝒃). An example of a RobT≡ instance
corresponding to a (3, 𝐵2)-Sat instance with four clauses and three
variables is visualized in Figure 1. In general, the instance is based on
a digraph𝐺 = (𝑉 ,𝐴) defined as follows. The vertex set𝑉 consists of
one vertex 𝑣𝑖 per variable 𝑥𝑖 , 𝑖 ∈ [𝑛], one dummy vertex 𝑣𝑛+1, and
one vertex𝑢 𝑗 per clause𝐶 𝑗 , 𝑗 ∈ [𝑚]. For every literal 𝑥𝑖 (𝑥𝑖 ), 𝑖 ∈ [𝑛],
four auxiliary vertices𝑤 ℓ𝑖 (𝑤

ℓ
𝑖 ), ℓ ∈ [4] are included. Furthermore,

set 𝑉 consists of one auxiliary vertex 𝑡 and vertices 𝑟ℓ for ℓ ∈
[2(2𝑛 + 2)]. Arc set 𝐴 contains arcs that connect two successive
variable vertices 𝑣𝑖 , 𝑣𝑖+1, 𝑖 ∈ [𝑛] by two parallel paths 𝑝𝑖 and 𝑝𝑖
defined along the auxiliary vertices, i.e., 𝑝𝑖 = 𝑣𝑖𝑤1

𝑖 𝑤
2
𝑖 𝑤

3
𝑖 𝑤

4
𝑖 𝑣𝑖+1 and

𝑝𝑖 = 𝑣𝑖𝑤
1
𝑖𝑤

2
𝑖𝑤

3
𝑖𝑤

4
𝑖 𝑣𝑖+1 for 𝑖 ∈ [𝑛]. Path 𝑝𝑖 represents the positive

literal 𝑥𝑖 and path 𝑝𝑖 the negative literal 𝑥𝑖 of instance I. As each
literal occurs exactly twice, we identify two arcs of paths 𝑝𝑖 and 𝑝𝑖
each with the literals. More precisely, let 𝑥𝑘𝑖 (𝑥𝑘𝑖 ) denote literal 𝑥𝑖
(𝑥𝑖 ) which occurs the 𝑘-th time, 𝑘 ∈ [2] in the formula. Literal arc
(𝑤2𝑘−1
𝑖 ,𝑤2𝑘

𝑖 ) ((𝑤2𝑘−1
𝑖 ,𝑤2𝑘

𝑖 )) corresponds to literal 𝑥𝑘𝑖 (𝑥𝑘𝑖 ). Using
this correspondence, we add arc (𝑤2𝑘

𝑖 , 𝑢 𝑗 ) ((𝑤2𝑘
𝑖 , 𝑢 𝑗 )) for every

literal 𝑥𝑘𝑖 (𝑥𝑘𝑖 ), 𝑖 ∈ [𝑛], 𝑘 ∈ [2] included in clause𝐶 𝑗 , 𝑗 ∈ [𝑚]. In the
next step, we create a path 𝑝 from vertex 𝑣𝑛+1 =: 𝑟0 along vertices
𝑟ℓ , ℓ ∈ [2(2𝑛 + 2) − 1] to vertex 𝑧 := 𝑟2(2𝑛+2) . Before introducing
the last arcs, we identify all literal arcs and every second arc of path
𝑝 as the only fixed arcs in the network, i.e.,

𝐴fix =
{(𝑤 ℓ𝑖 ,𝑤 ℓ+1𝑖 ), (𝑤 ℓ𝑖 ,𝑤 ℓ+1𝑖 ) | ℓ ∈ {1, 3}, 𝑖 ∈ [𝑛]

}
∪ {(𝑟ℓ , 𝑟ℓ+1) | ℓ ∈ {1, 3, . . . , 2(2𝑛 + 2) − 1}} .

We add arcs that connect vertex 𝑣1 with every literal arc and every
literal arc with auxiliary vertex 𝑡 , i.e., (𝑣1,𝑤 ℓ𝑖 ), (𝑣1,𝑤 ℓ𝑖 ) for ℓ ∈ {1, 3}
and (𝑤 ℓ𝑖 , 𝑡), (𝑤 ℓ𝑖 , 𝑡) for ℓ ∈ {2, 4}. The clause vertices are connected
with the first𝑚 fixed arcs of path 𝑝 , i.e., (𝑢 𝑗 , 𝑟2𝑗−1) for all 𝑗 ∈ [𝑚].
The auxiliary vertex 𝑡 is connected with the successive 2𝑛 − 𝑚
fixed arcs of path 𝑝 by (𝑡, 𝑟ℓ ), ℓ ∈ {2𝑚 + 1, 2𝑚 + 3, . . . , 4𝑛 − 1}. We
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𝑣1 𝑣2 𝑣3 𝑣4

𝑡

𝑧

𝑢1 𝑢2 𝑢3 𝑢4

𝑣1 𝑣2 𝑣3 𝑣4

𝑡

𝑢1 𝑢2 𝑢3 𝑢4

𝐶1 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3
𝐶2 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3
𝐶3 = 𝑥1 ∨ 𝑥1 ∨ 𝑥3
𝐶4 = 𝑥2 ∨ 𝑥2 ∨ 𝑥3

𝐴fix

𝐴free
Balances 𝑏1
Balances 𝑏2

1 −1
−2𝑛 − 22𝑛 + 2

𝑤ℓ
𝑖 vertices

𝑤ℓ
𝑖 vertices

𝑟ℓ vertices

Figure 1: Construction of RobT≡ instance Ĩ.

add arcs (𝑣1,𝑤4
𝑛), (𝑣1,𝑤4

𝑛), (𝑤4
𝑛, 𝑟4𝑛+1), and (𝑤4

𝑛, 𝑟4𝑛+3). Finally, we
connect all 2𝑛+2 fixed arcs of path 𝑝 with vertex 𝑧, i.e., (𝑟ℓ , 𝑧) for all
ℓ ∈ {2, 4, . . . , 4𝑛 + 2}. We set the cost 𝑐 ≡ 0 and define the balances
𝒃 = (𝑏1, 𝑏2) by

𝑏1 (𝑣) =



1 if 𝑣 = 𝑣1,
−1 if 𝑣 = 𝑧,
0 otherwise,

𝑏2 (𝑣) =



2𝑛 + 2 if 𝑣 = 𝑣1,
−(2𝑛 + 2) if 𝑣 = 𝑧,
0 otherwise.

Overall, we obtain a feasible RobT≡ instance Ĩ = (𝐺, 𝑐, 𝒃) that is
constructed in polynomial time. Hence, it remains to show that I is
a Yes-instance if and only if for instance Ĩ a feasible robust 𝒃-flow
exists.

Let 𝑥1, . . . , 𝑥𝑛 be a satisfying truth assignment for instance I.
We define the first scenario flow 𝑓 1 of instance Ĩ as follows

𝑓 1 (𝑎) =



1 for all 𝑎 ∈ 𝐴(𝑝𝑖 ) if 𝑥𝑖 = True,
1 for all 𝑎 ∈ 𝐴(𝑝𝑖 ) if 𝑥𝑖 = False,
1 for all 𝑎 ∈ 𝐴(𝑝),
0 otherwise.

Flow 𝑓 1 uses either path 𝑝𝑖 or 𝑝𝑖 , 𝑖 ∈ [𝑛] to send one unit from
source 𝑣1 to vertex 𝑣𝑛+1. The unit is forwarded from vertex 𝑣𝑛+1 to
sink 𝑧 along path 𝑝 . As 𝑥1, . . . , 𝑥𝑛 is a satisfying truth assignment,
there exists one designated verifying literal 𝑥𝑘𝑖 or 𝑥𝑘𝑖 , 𝑘 ∈ [2],
𝑖 ∈ [𝑛] for each clause 𝐶 𝑗 , 𝑗 ∈ [𝑚]. Using this, we define the first
part of the second scenario flow 𝑓 2 as follows

𝑓 2 (𝑎) =




1 for all 𝑎 ∈ 𝐴(𝑞𝑘𝑖 ) with 𝑞𝑘𝑖 = 𝑣1𝑤2𝑘−1
𝑖 𝑤2𝑘

𝑖 𝑢 𝑗𝑟2𝑗−1𝑟2𝑗𝑧
if 𝑥𝑘𝑖 ∈ 𝐶 𝑗 is verifying,

1 for all 𝑎 ∈ 𝐴(𝑞𝑘𝑖 ) with 𝑞𝑘𝑖 = 𝑣1𝑤2𝑘−1
𝑖 𝑤2𝑘

𝑖 𝑢 𝑗𝑟2𝑗−1𝑟2𝑗𝑧
if 𝑥𝑘𝑖 ∈ 𝐶 𝑗 is verifying,

0 otherwise.

Flow 𝑓 2 sends 𝑚 units from the source 𝑣1 to the clause vertices
𝑢1, . . . , 𝑢𝑚 along the literal arcs corresponding to the verifying
literals. The𝑚 units are forwarded via the subsequent fixed arc to
sink 𝑧. Further, we define the second part of the second scenario
flow 𝑓 2 that sends 2𝑛 −𝑚 units along the remaining literal arcs to

vertex 𝑡 . The flow is forwarded to sink 𝑧, i.e., 𝑓 2 (𝑎) = 1 for all



𝑎 ∈ 𝐴(𝑝𝑘𝑖 ) with 𝑝𝑘𝑖 = 𝑣1𝑤2𝑘−1
𝑖 𝑤2𝑘

𝑖 𝑡 if 𝑥
𝑘
𝑖 = True

and 𝑥𝑘𝑖 is not chosen as a clause-verifying literal,
𝑎 ∈ 𝐴(𝑝𝑘𝑖 ) with 𝑝𝑘𝑖 = 𝑣1𝑤2𝑘−1

𝑖 𝑤2𝑘
𝑖 𝑡 if 𝑥𝑘𝑖 = False

and 𝑥𝑘𝑖 is not chosen as a clause-verifying literal,
𝑎 ∈ 𝐴(𝑝ℓ ) with 𝑝ℓ = 𝑡𝑟ℓ𝑟ℓ+1𝑧, ℓ ∈ {2𝑚 + 1, 2𝑚 + 3, . . . , 4𝑛 − 1}.

Finally, one unit is sent along path 𝑣1𝑤4
𝑛𝑟4𝑛+1𝑟4𝑛+2𝑧 and one along

path 𝑣1𝑤4
𝑛𝑟4𝑛+3𝑧. We have constructed a feasible robust 𝒃-flow

𝒇 = (𝑓 1, 𝑓 2).
Conversely, let 𝒇 = (𝑓 1, 𝑓 2) be a feasible robust 𝒃-flow. Flows

𝑓 1 and 𝑓 2 send one and 2𝑛 + 2 units from source 𝑣1 to sink 𝑧,
respectively. By construction of the network, the only option to
reach the sink requires the usage of at least two fixed arcs, namely
one literal arc and one fixed arc of path 𝑝 (except for the two paths
𝑣1𝑤4

𝑛𝑟4𝑛+1𝑟4𝑛+2𝑧 and 𝑣1𝑤4
𝑛𝑟4𝑛+3𝑧 which include only one fixed arc

of path 𝑝). Due to the integral flow 𝑓 1 sending one unit within the
acyclic digraph, it holds 𝑓 1 (𝑎) = 𝑓 2 (𝑎) ∈ {0, 1} for all fixed arcs
𝑎 ∈ 𝐴fix. Consequently, flows 𝑓 1 and 𝑓 2 use at least 4𝑛+2 fixed arcs
in order to meet the demand of flow 𝑓 2. To use sufficient fixed arcs
in the first scenario, flow 𝑓 1 sends the unit along either path 𝑝𝑖 or 𝑝𝑖
(but due to the integrality requirement and the acyclic construction
never both simultaneously) for all 𝑖 ∈ [𝑛] and subsequently along
path 𝑝 . If flow 𝑓 1 sends flow along path 𝑝𝑖 , 𝑖 ∈ [𝑛], we set 𝑥𝑖 =
True. If flow 𝑓 1 sends flow along path 𝑝𝑖 , 𝑖 ∈ [𝑛], our choice is
𝑥𝑖 = False. To use sufficient fixed arcs in the second scenario,
flow 𝑓 2 sends one unit via each clause vertex and 2𝑛 −𝑚 units
via vertex 𝑡 . Accordingly, flow 𝑓 2 sends one unit along either path
𝑣1𝑤 ℓ𝑖𝑤

ℓ+1
𝑖 𝑢 𝑗𝑟2𝑗−1𝑟2𝑗𝑧 or 𝑣1𝑤 ℓ𝑖𝑤

ℓ+1
𝑖 𝑢 𝑗𝑟2𝑗−1𝑟2𝑗𝑧, ℓ ∈ {1, 3}, 𝑖 ∈ [𝑛]

for all 𝑗 ∈ [𝑚] but never both simultaneously due to the consistent
flow constraints. In the former case, clause 𝐶 𝑗 is verified due to
the previous assignment 𝑥𝑖 = True induced by flow 𝑓 1 and the
fact that 𝑥𝑖 ∈ 𝐶 𝑗 holds. In the latter case, clause 𝐶 𝑗 is verified due
to the previous assignment 𝑥𝑖 = False induced by flow 𝑓 1 and
the fact that 𝑥𝑖 ∈ 𝐶 𝑗 holds. Two extra units are sent along paths
𝑣1𝑤4

𝑛𝑟4𝑛+1𝑟4𝑛+2𝑧 and 𝑣1𝑤4
𝑛𝑟4𝑛+3𝑧 using the last two fixed arcs on

path 𝑝 . The two extra units sent are needed as otherwise, there
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might exist a feasible robust flow whose second scenario flow sends
a unit along path 𝑣1𝑤3

𝑛𝑤
4
𝑛𝑣𝑛+1𝑟1𝑟2𝑧 or 𝑣1𝑤3

𝑛𝑤
4
𝑛𝑣𝑛+1𝑟1𝑟2𝑧 which in

turn allows one unsatisfied clause. Overall, 𝑥1, . . . , 𝑥𝑛 is a satisfying
truth assignment for instance I. □

We note that the construction of our previous work’s reduc-
tion [4] exploits (tight) capacities. For this reason, the adjusted
construction containing path 𝑝 is essential for the proof of Theo-
rem 4.1. Otherwise, without capacities, we cannot control that one
flow unit is sent via every clause vertex.

5 ROBT≡ PROBLEM ON SP DIGRAPHS
In this section, we consider the RobT≡ problem on SP digraphs. In
Section 5.1, we show the weak NP-completeness of the problem.
In Section 5.2, we provide two algorithms running in polynomial
time for the special case of networks with a unique source and a
unique sink.

We consider SP digraphs based on the edge SP multi-graphs
definition of Valdes et al. [12]. In short, SP digraphs are recursively
composed serially or in parallel by SP digraphs, where a single
arc itself is defined as an SP digraph. The corresponding SP tree
represents its individual arcs (𝐿-vertices) and the order of its se-
ries (𝑆-vertices) and parallel (𝑃-vertices) compositions by a binary
decomposition computable in polynomial time [12].

5.1 Multiple Sources & Sinks Networks
Before discussing the case of networks based on SP digraphs with
multiple sources andmultiple sinks, we concentrate on the complex-
ity of the RobT≡ problem in case of a unique source. We perform
a reduction from the Partition problem, which is known to be
weakly NP-complete [7].

Theorem 5.1. The decision version of the RobT≡ problem on net-
works based on SP digraphs with a unique source and multiple sinks
is weakly NP-complete, even if only two scenarios are considered.

Proof. Let I be a Partition instance with positive integers 𝑠𝑖 ,
𝑖 ∈ [𝑛] such that

∑𝑛
𝑖=1 𝑠𝑖 = 2𝑤 holds. For a set of two scenarios Λ =

{1, 2}, we construct a RobT≡ instance Ĩ = (𝐺, 𝑐, 𝒃) as visualized
in Figure 2. The network is based on an SP digraph 𝐺 = (𝑉 ,𝐴).
Vertex set𝑉 consists of two auxiliary vertices 𝑣0, 𝑡 and two vertices
𝑡𝑖 , 𝑣𝑖 per integer 𝑠𝑖 , 𝑖 ∈ [𝑛]. Arc set 𝐴 consists of two parallel
arcs 𝑎1𝑖 , 𝑎

2
𝑖 that connect vertices 𝑣𝑖−1, 𝑡𝑖 , 𝑖 ∈ [𝑛]. Furthermore, arcs

𝑎3𝑖 = (𝑡𝑖 , 𝑣𝑖 ) and 𝑎4𝑖 = (𝑣𝑖−1, 𝑣𝑖 ) for 𝑖 ∈ [𝑛] and arc 𝑎𝑛+1 = (𝑣𝑛, 𝑡) are
included. The fixed arcs of set 𝐴 are defined by arcs 𝑎2𝑖 = (𝑣𝑖−1, 𝑡𝑖 ),
i.e., 𝐴fix = {𝑎2𝑖 | 𝑖 ∈ [𝑛]}. All other arcs are included in set 𝐴free.
The subgraph induced by vertices 𝑣𝑖−1, 𝑡𝑖 , 𝑣𝑖 represents integer 𝑠𝑖 ,
𝑖 ∈ [𝑛]. The cost 𝑐 is given such that the use of arcs 𝑎1𝑖 and 𝑎2𝑖
cost two and one times the integer value 𝑠𝑖 , 𝑖 ∈ [𝑛] per flow unit,
respectively. The use of arc 𝑎𝑛+1 costs 2𝑤 per flow unit. The use of
all other arcs causes zero cost. We define balances 𝒃 = (𝑏1, 𝑏2) by

𝑏1 (𝑣) =



1 if 𝑣 = 𝑣0,
−1 if 𝑣 = 𝑡,
0 otherwise,

𝑏2 (𝑣) =


𝑛 if 𝑣 = 𝑣0,
−1 if 𝑣 = 𝑡𝑖 , 𝑖 ∈ [𝑛],
0 otherwise.

Overall, we obtain a RobT≡ instance Ĩ = (𝐺, 𝑐, 𝒃) that is con-
structed in polynomial time. Hence, it remains to show that I is

a Yes-instance if and only if for instance Ĩ a robust 𝒃-flow exists
with cost of at most 3𝑤 .

Let 𝑆1 and 𝑆2 be a feasible partition for instance I. We define
the first scenario flow 𝑓 1 for instance Ĩ by

𝑓 1 (𝑎) =



1 for arcs 𝑎 = 𝑎4𝑖 ∈ 𝐴, 𝑖 ∈ [𝑛] if 𝑠𝑖 ∈ 𝑆1,
1 for arcs 𝑎 ∈ {𝑎2𝑖 , 𝑎3𝑖 } ⊆ 𝐴, 𝑖 ∈ [𝑛] if 𝑠𝑖 ∈ 𝑆2,
1 for arc 𝑎 = 𝑎𝑛+1 ∈ 𝐴,
0 otherwise.

The cost is
𝑐 (𝑓 1) =

∑︁
𝑎∈𝐴fix

𝑐 (𝑎) 𝑓 1 (𝑎) +
∑︁

𝑎∈𝐴free\{𝑎𝑛+1 }
𝑐 (𝑎) 𝑓 1 (𝑎) + 𝑐 (𝑎𝑛+1) 𝑓 1 (𝑎𝑛+1)

= 𝑤 + 0 + 2𝑤 = 3𝑤.

According to flow 𝑓 1 and the partition, we define the second sce-
nario flow 𝑓 2 by

𝑓 2 (𝑎) =



1 for arcs 𝑎 = 𝑎1𝑖 ∈ 𝐴, 𝑖 ∈ [𝑛] if 𝑠𝑖 ∈ 𝑆1,
1 for arcs 𝑎 = 𝑎2𝑖 ∈ 𝐴, 𝑖 ∈ [𝑛] if 𝑠𝑖 ∈ 𝑆2,
𝑛 − 𝑖 for arcs 𝑎 = 𝑎4𝑖 ∈ 𝐴, 𝑖 ∈ [𝑛],
0 otherwise.

The cost is
𝑐 (𝑓 2) =

∑︁
𝑎∈𝐴fix

𝑐 (𝑎) 𝑓 2 (𝑎) +
∑︁

𝑎∈𝐴free

𝑐 (𝑎) 𝑓 2 (𝑎) = 𝑤 + 2𝑤 = 3𝑤.

Consequently, we have constructed a robust 𝒃-flow 𝒇 = (𝑓 1, 𝑓 2)
with cost 𝑐 (𝒇 ) = 3𝑤 .

Conversely, let 𝒇 = (𝑓 1, 𝑓 2) be a robust 𝒃-flow with cost 𝑐 (𝒇 ) =
max{𝑐 (𝑓 1), 𝑐 (𝑓 2)} ≤ 3𝑤. The first scenario flow 𝑓 1 sends one unit
from source 𝑣0 to sink 𝑡 . To reach sink 𝑡 , arc 𝑎𝑛+1 = (𝑣𝑛, 𝑡) with cost
of 2𝑤 is used. If all arcs 𝑎4𝑖 , 𝑖 ∈ [𝑛] of cost zero were used to reach
vertex 𝑣𝑛 , no fixed arc could be used in the second scenario due
to the consistent flow constraints. This in turn means that flow 𝑓 2

would have to use all arcs 𝑎1𝑖 , 𝑖 ∈ [𝑛] to send one unit from source
𝑣0 to each of the sinks 𝑡1, . . . , 𝑡𝑛 . However, the cost would be

𝑛∑︁
𝑖=1

𝑐 (𝑎1𝑖 ) =
𝑛∑︁
𝑖=1

2𝑠𝑖 = 4𝑤 > 3𝑤 ≥ max{𝑐 (𝑓 1), 𝑐 (𝑓 2)}.

Thus, flow 𝑓 2 uses at least as many fixed arcs 𝑎2𝑖 , 𝑖 ∈ [𝑛] as cost of
𝑤 is saved. In return, flow 𝑓 1 uses as many fixed arcs 𝑎2𝑖 , 𝑖 ∈ [𝑛] as
cost of at most𝑤 is caused. Consequently, to reach sink 𝑡 , flow 𝑓 1

uses either arc 𝑎4𝑖 or the two successive arcs 𝑎2𝑖 , 𝑎
3
𝑖 , 𝑖 ∈ [𝑛] of each

subgraph but due to the integrality requirement and the acyclic
construction never simultaneously. As a result, the sets

𝑆1 := {𝑠𝑖 | 𝑓 1 (𝑎4𝑖 ) = 1 for 𝑖 ∈ [𝑛]},
𝑆2 := {𝑠𝑖 | 𝑓 1 (𝑎2𝑖 ) = 1 and 𝑓 1 (𝑎3𝑖 ) = 1 for 𝑖 ∈ [𝑛]}

form a feasible partition for instance I. □

Corollary 5.2. The decision version of the RobT≡ problem on net-
works based on SP digraphs with multiple sources and multiple sinks
is weakly NP-complete, even if only two scenarios are considered.

In the special case of a constant number of scenarios, we can
solve the RobT≡ problem on networks based on SP digraphs with
multiple sources and multiple sinks by the pseudo-polynomial algo-
rithm presented in our previous work [4]. As the algorithm is based
on dynamic programming, it needs arc capacities as input to limit
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𝑣0 𝑡1 𝑣1 𝑡2 𝑣2 . . . 𝑣𝑛−1 𝑡𝑛 𝑣𝑛 𝑡
𝑠1

0

2𝑠1

0 𝑠2

0

2𝑠2

0 𝑠𝑛

0

2𝑠𝑛

0 2𝑤1
𝑛 −1 −1 −1

−1 𝐴fix

𝐴free
Balances 𝑏1

Balances 𝑏2

𝑣𝑖 𝑣𝑗
𝑐

Figure 2: Construction of RobT≡ instance Ĩ.
the number of occurring labels. We can simply set the capacity for
every arc to the maximum total demand among all scenarios.

5.2 Unique Source & Unique Sink Networks
For the special case of networks based on SP digraphs with a unique
source and a unique sink, we can solve the RobT≡ problem by the
polynomial time algorithm presented in our previous work [4]. We
set the capacities required for the input to the maximum source’s
balance among all scenarios. The algorithm reduces to the compu-
tation of two shortest paths – one in digraph 𝐺 and one in digraph
𝐺 −𝐴fix.

In the following, we discuss an alternative polynomial algorithm
which provides further insight into the RobT≡ problem on SP di-
graphs. Exploiting the SP structure of the digraph, we introduce
two shrinking procedures, the parallel- and the series-shrinking
procedure. Applying these procedures, we only need to solve the
RobT≡ problem on a resulting digraph consisting of one multi-arc.

Without loss of generality, we assume a digraph 𝐺 with multi-
arcs of the form 𝑎 = (𝑎1, . . . , 𝑎𝑟 (𝑎) , 𝑎𝑟 (𝑎)+1, . . . , 𝑎𝑘 (𝑎) ) with 𝑟 (𝑎) ∈
Z≥0 fixed and 𝑘 (𝑎) − 𝑟 (𝑎) ∈ Z≥0 free arcs, i.e., 𝑎1, . . . , 𝑎𝑟 (𝑎) ∈
𝐴fix (𝐺) and 𝑎𝑟 (𝑎)+1, . . . , 𝑎𝑘 (𝑎) ∈ 𝐴free (𝐺), ordered by their costs
𝑐 (𝑎1) ≤ . . . ≤ 𝑐 (𝑎𝑟 (𝑎) ) and 𝑐 (𝑎𝑟 (𝑎)+1) ≤ . . . ≤ 𝑐 (𝑎𝑘 (𝑎) ). We define
the parallel-shrinking procedure as visualized in Case 1 of Figure 3.
The procedure shrinks a multi-arc to a multi-arc consisting of at
most one fixed and one free arc.
1: Require: SP digraph 𝐺 = (𝑉 ,𝐴), cost 𝑐 , multi-arc 𝑎
2: Ensure: Reduced SP digraph 𝐺 = (𝑉 ,𝐴 \ {𝑎} ∪ {𝑎})
3: procedure Parallel-Shrinking(𝐺 , 𝑐 , 𝑎)
4: if 𝑘 (𝑎) = 𝑟 (𝑎) then
5: Set 𝑎 := (𝑎1)
6: else if 𝑟 (𝑎) = 0 or 𝑐 (𝑎𝑟 (𝑎)+1) ≤ 𝑐 (𝑎1) then
7: Set 𝑎 := (𝑎𝑟 (𝑎)+1)
8: else
9: Set 𝑎 := (𝑎1, 𝑎𝑟 (𝑎)+1)
10: return 𝐺 := (𝑉 ,𝐴 \ {𝑎} ∪ {𝑎})
Applying the parallel-shrinking procedure, we obtain the following
result.

Lemma 5.3 (Parallel-Shrinking). Let I = (𝐺, 𝑐, 𝒃) be a RobT≡
instance where 𝐺 is an SP digraph. Further, let Ĩ = (𝐺, 𝑐, 𝒃) be the
RobT≡ instance where digraph 𝐺 results from applying the parallel-
shrinking procedure on arc 𝑎 ∈ 𝐴(𝐺). The problem of finding an
optimal robust 𝒃-flow for instance I can be reduced to the problem of
finding an optimal robust 𝒃-flow for instance Ĩ.

Proof. Let𝒇 be an optimal robust 𝒃-flow for instance Ĩ. Assume
flow 𝒇 is not an optimal robust 𝒃-flow for instance I. There exists
a 𝒃-flow 𝒇 with less cost, i.e., 𝑐 (𝒇 ) < 𝑐 (𝒇 ). Flow 𝒇 uses at least

Case 1: 𝑣0 𝑣1
𝑐2
𝑐4
𝑐6

𝑐3

𝑐5

𝑐1
𝑣0 𝑣1

𝑐4

𝑐1

Case 2: 𝑢 𝑣 𝑤

𝑐2

𝑐1

𝑐4

𝑐3

𝐴fix 𝐴free
𝑐

𝑢 𝑤

𝑐2 + 𝑐4

𝑐1 + 𝑐3

Case 3: 𝑢 𝑣 𝑤

𝑐2

𝑐1

𝑐4

𝑢 𝑤

𝑐2 + 𝑐4

𝑐1 + 𝑐4

Case 4: 𝑢 𝑣 𝑤

𝑐2

𝑐1 𝑐3

𝑢 𝑤

𝑐1 + 𝑐3

Figure 3: Parallel- and series-shrinking.

one arc of set 𝐴 := 𝐴(𝐺) \ 𝐴(𝐺). If 𝑓 𝜆 (𝑎) > 0 holds for a fixed or
free arc 𝑎 ∈ 𝐴 = {𝑎2, . . . , 𝑎𝑟 (𝑎) , 𝑎𝑟 (𝑎)+2, . . . , 𝑎𝑘 (𝑎) } in one scenario
𝜆 ∈ Λ, we shift the flow to arc 𝑎1 or arc 𝑎𝑟 (𝑎)+1 (provided they
exist), respectively. This results in a feasible robust 𝒃-flow 𝒇 for
instance Ĩ with cost 𝑐 (𝒇 ) ≤ 𝑐 (𝒇 ) < 𝑐 (𝒇 ), which contradicts the
assumption. □

In the next step, we define the series-shrinking procedure. Let
𝑎𝑢𝑣 ∈ 𝐴(𝐺) denote a multi-arc directed from vertex 𝑢 to vertex 𝑣
with𝑢, 𝑣 ∈ 𝑉 (𝐺). Further, let 𝑎𝑢𝑣 and 𝑎𝑣𝑤 be multi-arcs that consist
of at most one fixed and one free arc, indicated by the labels ‘fix’
and ‘free’. By the parallel-shrinking procedure, we assume without
loss of generality that multi-arcs are of the form 𝑎𝑢𝑣 = (𝑎fix𝑢𝑣, 𝑎free𝑢𝑣 )
with 𝑐 (𝑎fix𝑢𝑣) < 𝑐 (𝑎free𝑢𝑣 ). The series-shrinking procedure reduces a
series composition of multi-arcs 𝑎𝑢𝑣 and 𝑎𝑣𝑤 associated with an
𝑆-vertex in the corresponding SP tree to a single multi-arc 𝑎𝑢𝑤 .
Depending on whether multi-arc 𝑎𝑣𝑤 consists of a fixed and/or a
free arc, the series-shrinking procedure is visualized in Cases 2 − 4
of Figure 3.
1: Require: SP digraph 𝐺 = (𝑉 ,𝐴), cost 𝑐 , SP tree 𝑇 , 𝑆-vertex
𝑠 ∈ 𝑉 (𝑇 ) with associated subgraph𝐺𝑠 = ({𝑢, 𝑣,𝑤}, {𝑎𝑢𝑣, 𝑎𝑣𝑤 })

2: Ensure: Reduced SP digraph 𝐺 = (𝑉 \ {𝑣}, 𝐴 \ {𝑎𝑢𝑣, 𝑎𝑣𝑤 } ∪
{𝑎𝑢𝑤})

3: procedure Series-Shrinking(𝐺 , 𝑐 , 𝑎𝑢𝑣 , 𝑎𝑣𝑤 )
4: if 𝑎𝑣𝑤 = (𝑎fix𝑣𝑤 , 𝑎free𝑣𝑤 ) then
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5: Set 𝑎𝑢𝑤 := (𝑎fix𝑢𝑤 , 𝑎free𝑢𝑤 )
6: Set 𝑐 (𝑎fix𝑢𝑤) = 𝑐 (𝑎fix𝑢𝑣) + 𝑐 (𝑎fix𝑣𝑤)
7: and 𝑐 (𝑎free𝑢𝑤 ) = 𝑐 (𝑎free𝑢𝑣 ) + 𝑐 (𝑎free𝑣𝑤 )
8: else if 𝑎𝑣𝑤 = (𝑎free𝑣𝑤 ) then
9: Set 𝑎𝑢𝑤 := (𝑎fix𝑢𝑤 , 𝑎free𝑢𝑤 )
10: Set 𝑐 (𝑎fix𝑢𝑤) = 𝑐 (𝑎fix𝑢𝑣) + 𝑐 (𝑎free𝑣𝑤 )
11: and 𝑐 (𝑎free𝑢𝑤 ) = 𝑐 (𝑎free𝑢𝑣 ) + 𝑐 (𝑎free𝑣𝑤 )
12: else
13: Set 𝑎𝑢𝑤 := (𝑎fix𝑢𝑤)
14: Set 𝑐 (𝑎fix𝑢𝑤) = 𝑐 (𝑎fix𝑢𝑣) + 𝑐 (𝑎fix𝑣𝑤)
15: return 𝐺 := (𝑉 \ {𝑣}, 𝐴 \ {𝑎𝑢𝑣, 𝑎𝑣𝑤} ∪ {𝑎𝑢𝑤})
Lemma 5.4 (Series-Shrinking). Let I = (𝐺, 𝑐, 𝒃) be a RobT≡

instance where 𝐺 is an SP digraph. Let 𝑎𝑢𝑣, 𝑎𝑣𝑤 ∈ 𝐴(𝐺) be multi-
arcs consisting of at most one fixed and one free arc. Further, let
𝑎𝑢𝑣, 𝑎𝑣𝑤 ∈ 𝐴(𝐺) be arcs whose series composition is associated with
an 𝑆-vertex in the SP tree of digraph 𝐺 . Let Ĩ = (𝐺, 𝑐, 𝒃) be a RobT≡
instance where digraph 𝐺 results from applying the series-shrinking
procedure on arcs𝑎𝑢𝑣, 𝑎𝑣𝑤 ∈ 𝐴(𝐺). The problem of finding an optimal
robust 𝒃-flow for instance I can be reduced to the problem of finding
an optimal robust 𝒃-flow for instance Ĩ.

Proof. Let 𝑎𝑢𝑤 ∈ 𝐴(𝐺) denote the shrunk arc. Let 𝒇 be an
optimal robust 𝒃-flow for instance Ĩ. We define a corresponding
robust 𝒃-flow 𝒇 for instance I as follows. For all arcs 𝑎 ∈ 𝐴(𝐺) \
{𝑎𝑢𝑣, 𝑎𝑣𝑤 }, we set 𝒇 (𝑎) = 𝒇 (𝑎). For multi-arcs 𝑎𝑢𝑣, 𝑎𝑣𝑤 ∈ 𝐴(𝐺),
we distinguish between the following three cases, assuming 𝑎𝑢𝑣 =
(𝑎fix𝑢𝑣, 𝑎free𝑢𝑣 ) without loss of generality.

Case 1: 𝑎𝑣𝑤 = (𝑎fix𝑣𝑤 , 𝑎free𝑣𝑤 )

𝒇 (𝑎) =
{
𝒇 (𝑎fix𝑢𝑤) for arcs 𝑎 ∈ {𝑎fix𝑢𝑣, 𝑎fix𝑣𝑤},
𝒇 (𝑎free𝑢𝑤 ) for arcs 𝑎 ∈ {𝑎free𝑢𝑣 , 𝑎

free
𝑣𝑤 }.

Case 2: 𝑎𝑣𝑤 = (𝑎free𝑣𝑤 )

𝒇 (𝑎) =


𝒇 (𝑎fix𝑢𝑤) for arc 𝑎 = 𝑎fix𝑢𝑣,

𝒇 (𝑎free𝑢𝑤 ) for arc 𝑎 = 𝑎free𝑢𝑣 ,

𝒇 (𝑎fix𝑢𝑤) + 𝒇 (𝑎free𝑢𝑤 ) for arc 𝑎 = 𝑎free𝑣𝑤 .

Case 3: 𝑎𝑣𝑤 = (𝑎fix𝑣𝑤)

𝒇 (𝑎) =
{
𝒇 (𝑎fix𝑢𝑤) for arcs 𝑎 ∈ {𝑎fix𝑢𝑣, 𝑎fix𝑣𝑤},
0 for arc 𝑎 = 𝑎free𝑢𝑣 .

As the flow balance and consistent flow constraints are still satisfied,
flow 𝒇 is a feasible robust 𝒃-flow for instance I. Furthermore, flow
𝒇 causes in every scenario 𝜆 ∈ Λ the same cost as flow 𝒇 . Assume
flow 𝒇 is not an optimal 𝒃-flow for instance I. There exists a robust
𝒃-flow 𝒇 with less cost, i.e., 𝑐 (𝒇 ) < 𝑐 (𝒇 ) = 𝑐 (𝒇 ). We can transform
flow 𝒇 to a feasible flow 𝒇 ′ for instance Ĩ. By definition of the
shrinking procedure, flow 𝒇 ′ causes the same cost as flow 𝒇 , i.e.,
𝑐 (𝒇 ′) = 𝑐 (𝒇 ) < 𝑐 (𝒇 ) = 𝑐 (𝒇 ), which contradicts to the assumption
that 𝒇 is an optimal flow for instance Ĩ. □

Using the shrinking procedures, we obtain the following result.

Theorem 5.5. The RobT≡ problem can be solved in polynomial
time on networks based on SP digraphs with a unique source and a
unique sink.

Proof. We construct SP digraph 𝐺 with its unique source 𝑜 ∈
𝑉 (𝐺) by instructions from the SP tree. If we apply the series- and
the parallel-shrinking procedure after each parallel and each series
composition of two subgraphs, we obtain a reduced digraph 𝐺 =
({𝑢̃, 𝑣}, {𝑎}). We consider the RobT≡ problem on digraph 𝐺 . For
determining a robust 𝒃-flow 𝒇 , we distinguish between three cases.

If 𝑎 = (𝑎fix), there exists no feasible solution to the RobT≡
problem as the consistent flow constraints cannot be satisfied (un-
less the demand of all scenarios is equal). If 𝑎 = (𝑎free), we set
𝑓 𝜆 (𝑎) = 𝑏𝜆 (𝑜) for all scenarios 𝜆 ∈ Λ. If 𝑎 = (𝑎fix, 𝑎free), we set

𝑓 𝜆 (𝑎) =
{
min𝜆∈Λ 𝑏𝜆 (𝑜) for arc 𝑎 = 𝑎fix,

𝑏𝜆 (𝑜) −min𝜆∈Λ 𝑏𝜆 (𝑜) for arc 𝑎 = 𝑎free,

for scenario 𝜆 ∈ Λ. The retransformation of the reduced digraph 𝐺
to digraph 𝐺 and the analog transformation of flow 𝒇 (cf. proof of
Lemmas 5.3 and 5.4) result in a robust minimum cost 𝒃-flow 𝒇 for
digraph𝐺 . Considering the runtime, we can construct an SP tree in
O(|𝐴(𝐺) |) time. The series- and parallel-shrinking procedures as
well as the (re-)transformation are done in O(1) time for all vertices
of the SP tree. In total, the algorithm runs in O(|𝐴(𝐺) |) time. □

6 CONCLUSION
In this paper, we considered the RobT≡ problem. On acyclic net-
works, we proved that finding a feasible solution is strongly NP-
complete, even if a unique source and sink are given and only two
scenarios are considered. On networks based on SP digraphs, we
proved the weakNP-completeness, even if a unique source is given
and only two scenarios are considered. For the special case of a
constant number of scenarios, we showed how to solve the problem
in pseudo-polynomial time. For the special case of a unique source
and sink, we presented two algorithms running in polynomial time.

For the future work, we will study the complexity of the RobT≡
problem on networks based on SP digraphs with a unique source
and one sink per scenario (but not a unique sink). Furthermore, we
will consider the case if the number of scenarios is part of the input.
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ABSTRACT
An ever increasing amount of data is being processed by par-
allel computation frameworks such as MapReduce [9] in data
centers. In this context, the coflow scheduling problem aims
at accelerating the completion of data processing tasks. In par-
ticular, it consists in scheduling individual flows according to
their relationship at application level, i.e. their membership to
coflows, such that the total average weighted coflow comple-
tion time is minimized. In this paper, we propose a compact
mixed integer linear formulation for the problem and apply a
Branch-and-Benders-Cut algorithm to efficiently solve it. On
a diverse set of instances, we show that our algorithm signifi-
cantly improves the CPU time computation compared to the
solution of the compact model.

1 INTRODUCTION
Most cloud providers nowadays feature the provisioning of
cluster computing as a service. Customers can launch their
compute-intensive tasks on big data frameworks such asMapRe-
duce [9] or Spark [21]. Such software frameworks rely on the
so called dataflow computing model for large-scale data pro-
cessing. It consists in a distributed computing paradigm where
each intermediate computation stage is distributed over a set
of nodes and its output is transferred to nodes hosting the next
stage. In between two computation stages, these dataflows are
producing a set of flows, called a coflow [5], that are bound
together by the same application task. Coflows represent a
standard traffic pattern abstraction in datacenters. In MapRe-
duce for instance, a coflow is a set of concurrent flows sent
from mapper nodes, i.e., senders, to a set of reducer nodes, i.e.,
receivers. Such flows are launched after mappers have com-
pleted their computing tasks. The data transfer phase between
mappers and reducers is called the shuffle phase and completes
only when all constituent flows are over.

The research line on datacenter coflow scheduling has been
initiated by the the seminal work of Chowdhury and Stoica [5,
8]. They observed that traffic management policies accounting
for the coflow structure significantly improve application-level
performance. Since then coflow scheduling is a mainstream
topic in network traffic engineering. The main challenge lies

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 
10th International Network Optimization Conference (INOC), June 7-10, 2022, 
Aachen, Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative 
Commons license CC-by-nc-nd 4.0.

in the fact that computing frameworks can generate simultane-
ously thousands of flows per job [8]. When many jobs run in
parallel, network congestion occurs due to concurrent coflows.

In general, the coflow scheduling problem to minimize the
Coflow Completion Time (CCT) is strongly NP-hard and exact
solutions based on time-indexed MILPs (Mixed Integer Linear
Programs) suffer obvious scalability issues. Furthermore, it has
been proved recently that, for a related open-shop scheduling
problem, approximating the optimal solution is only possible
by a factor of 2−𝜖 , for any 𝜖 > 0 [4]. In other words, this renders
not viable to provide tight approximations of the optimal solu-
tion in a short amount of time. In fact, to date, the best deter-
ministic approximation ratio equals to 4 (and 5 if coflows have
release times) [1, 19, 20]. Even schedulers relying on relaxation
of time-indexed programs face issues related to the number
of variables [4, 15, 19]. Several types of schedulers have been
proposed [4] in the literature. Clairvoyant schedulers work
under perfect information on traffic sources, i.e., engaged ports,
flow volumes and flow release times. Semi-clairvoyant sched-
ulers [23] are robust to the lack of information, in particular
on exact flow volumes. Non-clairvoyant methods have been
studied as well in [8, 10, 11, 22] when prior knowledge is not
available, e.g., flow volumes, coflow release times or even the
coflow structure per flow is unknown [22].

One popular idea appearing in many research works sug-
gests to equalize flow transfer times per coflow [6] to let all
flows of a coflow finish at the same time. In fact, finishing some
flows before the bottlenecked one is irrelevant w.r.t. the CCT
of a coflow. In standard flow scheduling, shortest-flow-first
heuristics grant average flow service time minimization [17].
Varys [7] is a baseline reference for clairvoyant heuristics.
Even though recent scheduling algorithms like Sincronia [1]
have better performance, Varys has introduced several key
concepts at once. First, it combines shortest-flow-first, with
coflow equalization. Furthermore, it works based on the notion
of bottleneck link of a coflow, that is the link of the fabric which
experiences the maximal data transfer time. The schedule is
performed using a priority order: the priority of coflows is as-
signed dynamically and given to the coflow that would end
the soonest in isolation (i.e, if alone in the network). Hence,
its traffic on the bottleneck link is served in priority, possibly
pre-empting lower-priority coflows.

Sincronia [1, 20] resorts to a related primal-dual problem
and provides a greedy algorithm which is a (2 − 2

𝑛+1 ) approx-
imation for the primal problem. It relies on the results for
concurrent open shop scheduling on parallel machines de-
scribed in [16]. At each iteration, it computes the total load

Session 1A: network flows

INOC 2022 13 Aachen,7–10 June 2022



of each link and finds the link with the heaviest load. It then
chooses the coflow using the Smith rule, i.e., the minimum
ratio of weight and load on the bottleneck. It iterates on the
unsorted coflows until a sorting of all the coflows is obtained.
Once the order it decided by Sincronia, it has been shown that
any work-conserving rate allocation mechanism achieves a
weighted coflow completion time within 4 of the optimal as
long as coflows are prioritized respecting the order.

While a number of good heuristics and approximation algo-
rithms have already been proposed for the Weighted Coflow
Completion Time Minimization (WCCTM) problem, little has
been done on exact methods to attempt to solve optimally the
problem at larger scale. In this context, we model the problem
as an integer linear program to capture the case of a general
network topology where routes can be selected, i.e., multi-
ple routes are possible for flows of a coflow having the same
source-destination pairs. Furthermore, we derive a Branch-
and-Benders-Cut algorithm (BBC) to decouple the decisions
for completion times (Master problem) and individual flow
rates (Sub-problem). Based on completion time decisions, we
show how the sub-problems can be pre-processed, by removing
redundant constraints and variables. Our extensive numerical
exploration indicates that the proposed Branch-and-Benders-
Cut algorithm accelerates the solving time compared to the
compact model.

The paper is organized as follows. Sec. 2 introduces some
definitions and notations. Sec 3 presents a compact model
for the WCCTM problem. Sec. 4 describes the Branch-and-
Benders-Cut algorithm. Sec. 5 reports numerical results and
Sec. 6 concludes the paper.

2 NOTATIONS
In this section we give some definitions and notations used
throughout this paper. Consider a directed graph 𝐺 = (𝑉 ,L)
where 𝑉 is a set of nodes and L is a set of arcs with capacity
𝑏𝑙 ∈ R+, for all 𝑙 ∈ L. We consider that 𝐾 coflows are running
in parallel C = {𝐶1,𝐶2, ...,𝐶𝐾 }. Each coflow𝐶𝑘 is composed of
𝑛𝑘 flows with 𝐹𝑘 = {𝑓 𝑘1, 𝑓 𝑘2, .., 𝑓 𝑘𝑛𝑘 }. Each constituent flow
𝑓 𝑘 𝑗 is defined by a 4-tuple (𝑠𝑘 𝑗 , 𝑑𝑘 𝑗 ,P𝑘 𝑗 , 𝑣𝑘 𝑗 ) where 𝑠𝑘 𝑗 , 𝑑𝑘 𝑗 ∈
𝑉 are source and destination nodes, respectively. We denote
P𝑘 𝑗 the set of paths between 𝑠𝑘 𝑗 to 𝑑𝑘 𝑗 , and 𝑣𝑘 𝑗 the flow
volume, i.e., the total amount of data to be transferred by flow
𝑓 𝑘 𝑗 . A coflow is considered completed only when all its flows
are over and the last time when the coflow is active is called
the Coflow Completion Time (CCT) for coflow 𝐶𝑘 . We use𝑤𝑘 to
denote the weight, i.e., the importance of each coflow 𝐶𝑘 ∈ C,
that is typically given by the application scheduler.

3 COMPACT MODEL
We now present a time-indexed compact model for the WC-
CTM problem (based on the discretization of a time horizon).

Let 𝑇 be a time-horizon that we partition into 𝑇𝑠 disjoint
slots of duration Δ units of time, denoted by 𝑢. Let T =
{1, . . . ,𝑇𝑠 }. The model computes the fraction of the total vol-
ume to be transferred by each flow at each time slot together
with the completion time of each coflow. We suppose that
𝑏𝑙 represents the link capacity associated with 𝑙 ∈ L, in 𝑀𝑏

per time slot. For this model, three types of variables are re-
quired: 𝑥𝑘 𝑗𝑝 (𝑡) ∈ [0, 1], which represents the fraction of the
total volume of flow 𝑓 𝑘 𝑗 , associated with coflow 𝐶𝑘 ∈ C sent
during time-slot 𝑡 ∈ T on path 𝑝 ∈ P𝑘 𝑗 ; 𝑦𝑘 (𝑡) ∈ {0, 1}, which
equals 1 if time-slot 𝑡 ∈ T is the final time-slot used by coflow
𝐶𝑘 ∈ C, 0 otherwise; 𝛾𝑘 (𝑡) ∈ [0, 1], which represents the un-
used percentage of the final time-slot 𝑡 ∈ T (the last where
coflow 𝐶𝑘 ∈ C is active). Note that for a coflow 𝐶𝑘 ∈ C, the
completion time 𝐶𝑇𝑘 equals

∑
𝑡 ∈T

Δ(𝑡𝑦𝑘 (𝑡) − 𝛾𝑘 (𝑡)). Hence the
WCCTM problem writes as the following MILP:

min
∑

𝐶𝑘 ∈C
𝑤𝑘

∑
𝑡∈T

Δ(𝑡𝑦𝑘 (𝑡 ) − 𝛾𝑘 (𝑡 )) (1)

∑
𝑡∈T

𝑦𝑘 (𝑡 ) = 1 ∀𝐶𝑘 ∈ C, (2)

∑
𝑡∈T

∑
𝑝∈P𝑘 𝑗

𝑥𝑘 𝑗
𝑝 (𝑡 ) = 1 ∀𝐶𝑘 ∈ C, ∀𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , (3)

𝛾𝑘 (𝑡 ) ≤ 𝑦𝑘 (𝑡 ) ∀𝐶𝑘 ∈ C, ∀𝑡 ∈ T (4)∑
𝐶𝑘 ∈C

∑
𝑓 𝑘 𝑗 ∈𝐹𝑘

𝑣𝑘 𝑗
∑

𝑝∈P𝑘 𝑗 :𝑙∈𝑝
𝑥𝑘 𝑗 (𝑡 ) ≤ 𝑏𝑙 ∀𝑙 ∈ L, ∀𝑡 ∈ T, (5)

𝑇𝑠∑
𝑡′=𝑡
(

∑
𝑝∈P𝑘 𝑗

𝑥𝑘 𝑗
𝑝 (𝑡 ′) − 𝑦𝑘 (𝑡 ′)) ≤ 0 ∀𝐶𝑘 ∈ C, ∀𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , ∀𝑡 ∈ T, (6)

∑
𝑓 𝑘 𝑗 ∈𝐹𝑘

𝑣𝑘 𝑗
∑

𝑝∈P𝑘 𝑗 :𝑙∈𝑝
𝑥𝑘 𝑗 (𝑡 ) ≤ (1 − 𝛾𝑘 (𝑡 ))𝑏𝑙 ∀𝐶𝑘 ∈ C, ∀𝑙 ∈ L, ∀𝑡 ∈ T, (7)

0 ≤ 𝑥𝑘 𝑗 (𝑡 ) ≤ 1 ∀𝐶𝑘 ∈ C, ∀𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , ∀𝑡 ∈ T,
0 ≤ 𝛾𝑘 (𝑡 ) ≤ 1 ∀𝐶𝑘 ∈ C, ∀𝑡 ∈ T,
𝑦𝑘 (𝑡 ) ∈ {0, 1} ∀𝐶𝑘 ∈ C, ∀𝑡 ∈ T .

Constraints (2) select exactly one final time-slot for each
coflow. Constraints (3) guarantee that all flows are served.
Constraints (4) link𝑦 and 𝛾 variables. Constraints (5) represent
the port capacity constraints. Constraints (6) ensure that, for
every coflow, all flows are sent before the final time-slot. Finally,
Constraints (7) decreases the port capacity during the final
time-slot. This allows to compute the unused part of the final
time-slot of each coflow.

Model (1)-(7) is composed of one family of integer variables
and two families of continuous variables. The number of con-
tinuous variables is huge (𝑂 ( |C| × 𝑛max × 𝑝max × 𝑇𝑠 ) where
𝑛max = max

𝐶𝑘 ∈C
{𝑛𝑘 } and 𝑝max = max

𝐶𝑘 ∈C
max
𝑓 𝑘 𝑗 ∈𝐹𝑘

{P𝑘 𝑗 }).

(a) Coflow 0, Time Slot 0 (b) Coflow 1, Time Slot 0

(c) Coflow 0, Time Slot 1 (d) Coflow 1, Time Slot 1

Figure 1: Example of two coflows where each row repre-
sents 1 time slot of duration 1𝑢.

2
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In time-indexed coflow scheduling models, setting the time
slot to a smaller duration Δ provides finer rate control variables.
But, since the number of controlled variables used in the MILP
increases it would be preferable to set it to a larger value. An
example is reported in Fig. 1 with two coflows of weight 1, each
one having 1 flow of volume 1𝑀𝑏. Their traffic is sent over a
single link of capacity 1𝑀𝑏/𝑢 and the length of time horizon
is 2 units of time (2𝑢). Coflow 1 needs to wait until coflow 0
finishes to start sending traffic, due to capacity constraints.
Therefore, coflow 0 finishes after 1𝑢, and coflow 1 finishes
after 2𝑢. Then, the weighted average CCT is 1.5, which is the
optimal solution. One may argue that the model should not
be necessarily time-indexed discretized and only 1 time slot of
duration 2𝑢 allows to solve the problem optimally. In this case,
the total traffic of 2𝑀𝑏 (1Mb per coflow) can be sent in 1𝑢 as
the capacity constraints are for the single time slot, leading
to a weighted average CCT of 1, for a possibly unfeasible rate
allocation. Thus, we obtain just a lower bound of the exact
weighted average w.r.t. the CCT under a discretization with
steps of 1 time units. In general, the model accuracy increases
with the granularity of the time discretization, i.e., the smaller
the duration of time slots, the more the model is accurate.

Also, we observe that variables 𝛾𝑘 (𝑡) ∈ [0, 1] allows finer
tuning on the effective time slot size: if coflow 2 has volume
0.5𝑀𝑏, standard models in literature predict again a weighted
average CCT of 1.5 under steps of 1 time units, whereas our
model correctly reports 0.75.

We illustrate how solutions of Model (1)-(7) look like, Fig. 2
shows a bubble plot where each line represents a flow, each
color represents a coflow and each column represents a time
slot. The size of each bubble represents the volume of traffic
sent by one flow at the associated time slot. We notice that
one coflow starts at time slot 0 and finishes at time slot 20.
Also, we observe that the optimal solution is obtained in the
class of pre-emptive schedulers, where some flows may send
part of their volume during the initial time slots, whereas the
remaining volume is sent later on thus prioritizing the flows
of some other coflow. In the example this is the case of coflows
red and orange, which complete at the end of the time horizon.

Figure 2: Example with 10 Coflows with 10 flows each.
Each line represents a flow, each basic color represents
a coflow.

4 BRANCH-AND-BENDERS-CUT
Benders decomposition [3] is a well-known method for solving
large-scale combinatorial optimization problems [2]. It consists
in decomposing the original problem into one master problem
and several sub-problems. The first-stage variables are deter-
mined by solving the master problem: the sub-problems check

whether they represent a feasible optimal solution. If not, new
constraints, called Benders cuts, are added to the master prob-
lem, and the procedure is repeated. Otherwise, it stops. When
sub-problems are linear programs, the approach is guaranteed
to converge to an optimal solution.

The Benders decomposition [3] is, generally, effective when
the number of integer variables is much smaller than the num-
ber of continuous variables. This leads to a master problem
with a much smaller dimension than the original one. In the
WCCTM problem, the number of coflows is typically much
smaller than the number of flow per coflow, i.e., |C| << 𝑛𝑘 for
all C𝑘 ∈ C. Hence, the gap between the number of integer and
continuous variables is often very high.

In this paper we develop a Branch-and-Benders-Cut (BBC)
algorithm where, in contrast with the Benders decomposition
that solves the master problem at every iteration, a single
Branch-and-Cut tree is constructed and the Benders cuts are
added during the exploration of the Branch-and-Cut tree.

Developing Branch-and-Benders-Cut algorithm for WC-
CTM allows to decouple the two types of variables, keeping the
integer variables in the master problem, and the continuous
variables in the sub-problem (1 sub-problem in our case). The
master problem selects the final time-slot for every coflow and
the sub-problem checks if all flows can be sent.

Consider an integer solution 𝑦∗ ∈ {0, 1}𝐾 . The sub-problem
is equivalent to the following linear program

min −
∑

𝐶𝑘 ∈C
𝑤𝑗

∑
𝑡∈T

Δ𝛾𝑘 (𝑡 ) (8)

∑
𝑡∈T

∑
𝑝∈P𝑘 𝑗

𝑥𝑘 𝑗
𝑝 (𝑡 ) = 1 ∀𝐶𝑘 ∈ C, ∀𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , (9)

𝛾𝑘 (𝑡 ) ≤ 𝑦∗𝑘 (𝑡 ) ∀𝑡 ∈ T, ∀𝐶𝑘 ∈ C. (10)∑
𝐶𝑘 ∈C

∑
𝑓 𝑘 𝑗 ∈𝐹𝑘

∑
𝑝∈P𝑘 𝑗 :𝑙∈𝑝

𝑣𝑘 𝑗𝑥𝑘 𝑗
𝑝 (𝑡 ) ≤ 𝑏𝑙 ∀𝑙 ∈ L, ∀𝑡 ∈ T . (11)

𝑇𝑠∑
𝑡′=𝑡
(

∑
𝑝∈P𝑘 𝑗

𝑥𝑘 𝑗
𝑝 (𝑡 ′) − 𝑦∗𝑘 (𝑡 ′)) ≤ 0 ∀𝐶𝑘 ∈ C, ∀𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , ∀𝑡 ∈ T,

(12)∑
𝑓 𝑘 𝑗 ∈𝐹𝑘

∑
𝑝∈P𝑘 𝑗 :𝑙∈𝑝

𝑣𝑘 𝑗𝑥𝑘 𝑗
𝑝 (𝑡 ) ≤ (1 − 𝛾𝑘 (𝑡 ))𝑏𝑙 ∀𝐶𝑘 ∈ C, ∀𝑙 ∈ L, ∀𝑡 ∈ T,

(13)

0 ≤ 𝑥𝑘 𝑗 (𝑡 ) ≤ 1 ∀𝐶𝑘 ∈ C, ∀𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , ∀𝑡 ∈ T,
0 ≤ 𝛾𝑘 (𝑡 ) ≤ 1 ∀𝐶𝑘 ∈ C, ∀𝑡 ∈ T .

Constraints (9)-(13) are exactly the same constraints as (3)-(7)
respectively, after fixing the values of 𝑦 using 𝑦∗. The sub-
problem can be solved in a polynomial time since all variables
are continuous. The goal of the sub-problem is to check if there
exists a feasible allocation of traffic that respects the comple-
tion times of all coflows given by the master.

Let𝛼, 𝜁 , 𝜎,𝛾, 𝜃 be the dual variable vectors of the sub-problem
associated with Constraints (9), (10) (11), (12) and (13), respec-
tively. Let 𝑧 ∈ R be an additional variable representing the
objective value of the sub-problem, i.e., 𝑧 = − ∑

𝐶𝑘 ∈C
𝑤 𝑗

∑
𝑡 ∈T

Δ𝜆𝑡𝑗 .
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The master problem consists in minimizing:∑
𝐶𝑘 ∈C

𝑤𝑘Δ
∑
𝑡 ∈T

𝑡𝑦𝑘 (𝑡) + 𝑧

under Constraints (2) and the following Benders cuts:
∑

𝐶𝑘 ∈C

∑
𝑓 𝑘 𝑗 ∈𝐹𝑘

(𝛼𝑘 𝑗 −
∑
𝑡∈T

𝛾𝑘 𝑗 (𝑡 )
𝑇𝑠∑
𝑡′=𝑡

𝑦𝑘 (𝑡 ′)) −
∑
𝑡∈T
(
∑
𝑙∈L

𝜎𝑙 (𝑡 )𝑏𝑙

+
∑

𝐶𝑘 ∈C
(
∑
𝑙∈L

𝜃𝑘𝑙 (𝑡 )𝑏𝑙 + 𝜁𝑘 (𝑡 )𝑦𝑘 (𝑡 ))) ≤ 𝑧 ∀(𝛼,𝛾, 𝜎, 𝜃, 𝜁 ), (14)

∑
𝐶𝑘 ∈C

∑
𝑓 𝑘 𝑗 ∈𝐹𝑘

(𝛼𝑘 𝑗 −
∑
𝑡∈T

𝛾𝑘 𝑗 (𝑡 )
𝑇𝑠∑
𝑡′=𝑡

𝑦𝑘 (𝑡 ′)) −
∑
𝑡∈T
(
∑
𝑙∈L

𝜎̂𝑙 (𝑡 )𝑏𝑙

+
∑

𝐶𝑘 ∈C
(
∑
𝑙∈L

𝜃𝑘𝑙 (𝑡 )𝑏𝑙 + 𝜁𝑘 (𝑡 )𝑦𝑘 (𝑡 ))) ≤ 0 ∀(𝛼,𝛾, 𝜎̂, 𝜃 ), (15)

𝑦𝑘 (𝑡 ) ∈ {0, 1} ∀𝐶𝑘 ∈ C, ∀𝑡 ∈ T .

where (𝛼,𝛾, 𝜎̂, 𝜃, 𝜁 ) represents the extreme rays of the sub-
problem. Note that Constraints (14) are of the form 𝑔(𝑦) ≤ 𝑧
where 𝑔(𝑦) is the objective function associated to the dual
of the sub-problem (8)-(13) and non-negativity inequalities.
Constraints (15) are used in the case where the sub-problem is
unfeasible and then no Constraint (14) can be generated.

4.1 Sub-problem pre-processing
Once integer decision variables 𝑦∗ are fixed for the main prob-
lem, several pre-processing operations are possible to reduce
the size of the sub-problem, thus reducing its computational
cost. Let 𝑡∗

𝑘
be the completion time slot of coflow 𝐶𝑘 ∈ C, i.e.,

𝑦∗𝑘 (𝑡∗
𝑘
) = 1. Let 𝑡∗𝑚𝑎𝑥 = max

𝐶𝑘 ∈C
{𝑡∗
𝑘
}. The following results hold.

Proposition 1. Constraint (11) associated with time-slot
𝑡 ∈ {𝑡∗𝑚𝑎𝑥 + 1, . . . ,𝑇𝑠 } and arc 𝑙 ∈ L are redundant.

Proof. Bymultiplying every constraint (12) associatedwith
𝑡 by 𝑣𝑘 𝑗 and summing all resulting constraints, we obtain

∑
𝐶𝑘 ∈C

∑
𝑓 𝑘 𝑗 ∈𝐹𝑘

𝑇𝑠∑
𝑡 ′=𝑡

∑
𝑝∈P𝑘 𝑗

𝑣𝑘 𝑗𝑥
𝑘 𝑗
𝑝 (𝑡 ′) ≤ 0 ≤ 𝑏𝑙

Every constraint (11) associated with 𝑡 can be obtained by
summing the above inequality with the following trivial con-
straints
−𝑣𝑘 𝑗𝑥𝑘 𝑗𝑝 (𝑡 ′) ≤ 0 ∀𝐶𝑘 ∈ C, 𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , 𝑝 ∈ P𝑘 𝑗 , 𝑡 ′ ∈ {𝑡 + 1, . . . ,𝑇𝑠 }
and the result follows. □

Proposition 2. For all 𝐶𝑘 ∈ C, Constraints (12) associated
with 𝑓 𝑘 𝑗 ∈ 𝐹𝑘 and time-slot 𝑡 ≤ 𝑡∗

𝑘
are redundant.

Proof. The upper bound of any Constraint (12) associated
with time-slot 𝑡 ≤ 𝑡∗

𝑘
is equal to 1. It follows that any Con-

straint (12) associated with time-slot 𝑡 ≤ 𝑡∗
𝑘
can be obtained

by summing Constraint (9) with trivial inequalities

−𝑥𝑘 𝑗𝑝 (𝑡 ′) ≤ 0, ∀𝑡 ′ ≤ 𝑡,∀𝑝 ∈ P𝑘 𝑗

and the result follows. □

Proposition 3. For all 𝐶𝑘 ∈ C, Constraints (12) associated
with 𝑓 𝑘 𝑗 ∈ 𝐹𝑘 and time-slot 𝑡 ∈ {𝑡∗

𝑘
+ 2, . . . ,𝑇𝑠 } are redundant.

Proof. Constraint (12) associated with time-slot 𝑡 ∈ {𝑡∗
𝑘
+

2, . . . ,𝑇𝑠 } can be obtained by summing constraint (12) associ-
ated with time-slot 𝑡∗

𝑘
+ 1 and trivial inequalities

−𝑥𝑘 𝑗𝑝 (𝑡 ′) ≤ 0, ∀𝑡 ′ ∈ {𝑡∗𝑘 + 1, . . . , 𝑡 − 1},∀𝑝 ∈ P𝑘 𝑗

and the result follows. □

Proposition 4. Constraints (13) associated with Coflow𝐶𝑘 ∈
C, time-slot 𝑡 ∈ T \ {𝑡∗

𝑘
} and arc 𝑙 ∈ L are redundant.

Proof. By constraint (10), 𝛾𝑘 (𝑡) = 0 for all 𝑡 ∈ T \ {𝑡∗
𝑘
}.

Then Constraint (13) associated with Coflow 𝐶𝑘 ∈ C, time-
slot 𝑡 ∈ T \ {𝑡∗

𝑘
} and arc 𝑙 ∈ L can by obtained by summing

Constraint (11) associated with time-slot 𝑡 and arc 𝑙 with the
following trivial constraints

−𝑣𝑘 𝑗𝑥𝑘 𝑗𝑝 (𝑡) ≤ 0 ∀𝐶𝑘′ ∈ C \ {𝐶𝑘 }, 𝑓 𝑘 𝑗 ∈ 𝐹𝑘′, 𝑝 ∈ P𝑘
′ 𝑗

and the result follows. □

Proposition 5. For all 𝐶𝑘 ∈ C, flow 𝑓 𝑘 𝑗 ∈ 𝐹𝑘 and path
𝑝 ∈ P𝑘 𝑗 , variables 𝑥𝑘 𝑗𝑝 (𝑡) associated with 𝑡 ∈ {𝑡∗𝑚𝑎𝑥 +2, . . . ,𝑇𝑠 }
can be removed.

Proof. By definition,𝑦∗𝑘 (𝑡) = 0 for all 𝑡 ∈ {𝑡∗𝑚𝑎𝑥+2, . . . ,𝑇𝑠 }.
Therefore, by Constraints (12), 𝑥𝑘 𝑗𝑝 (𝑡) = 0 for all 𝐶𝑘 ∈ C, flow
𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , path 𝑝 ≤ P𝑘 𝑗 and 𝑡 ∈ {𝑡∗𝑚𝑎𝑥 + 2, . . . ,𝑇𝑠 }. □

Note that, there must exists an optimal dual solution for the
sub-problem where all dual variables associated with redun-
dant constraints are equal to 0.

5 NUMERICAL RESULTS
In this section we present the numerical results obtained from
the compact model and BBC algorithm. The algorithms have
been implemented in C++ using Cplex 12.6 [12] as MILP-solver
on a machine with Intel(R) Xeon(R) CPU E5-4627 v2of 3.30GHz
with 504GB RAM, running under Linux 64 bits. A maximum
of 1 thread has been used. A time limit is set to 3 hours and a
memory limit for the B&B tree is set to 5Gb.

In BBC algorithm, constraints (14) and (15) are exponential
in number. They are generated dynamically thanks to the lazy
constraint callback of Cplex. Each time an integer solution is
found for the master problem, the sub-problem is solved. If
it is feasible, an optimality Benders cut (14) is added. Other-
wise, a feasiblity Benders cut (15) is added. All Benders cuts
in the master problems are separated iteratively. In order to
avoid starting the Branch-and-Benders-Cut algorithm without
Benders cuts, some of them can be added to the first master
problem which help the convergence of the algorithm. The
procedure we propose consists in supposing that all coflows
finish before a tagged time slot 𝑡 ∈ T . Therefore, by solving
the sub-problem for each 𝑡 ∈ T , we may generate 𝑇𝑠 Benders
cuts for the master problem.

To evaluate our algorithm, we use two types of network
instances. We first consider public instances from SNDLib [18]
and the Internet Topology Zoo [13] that are a mix of real (e.g.,
Abilene, BtEurope, Geant) and synthetic networks 1. We also
1All instances with topology and traffic information will be made public here:
https://github.com/MagYou/coflow-scheduling-benders
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Figure 3: Numerical results on BigSwitch instances for
the CPU time and the number of branching nodes.

generate instances following the standard abstraction for data
center topologies, called the Big-Switch model [7]. This model
captures the fact that congestion only occurs at Top-of-Rack
(ToR) switches and that the core of the fabric is largely over-
provisioned [14].

More precisely, we have considered the three following
types of instances in the rest if this paper:
• Big-Switch instances, where the coflow sources are con-
nected (by arcs) to ingress ports of a Big-Switch fabric that
connects to all coflow destinations, attached to outgoing ports.
We consider several instance sizes:
− 8 ports and 64 flows : 4 coflows and 16 flows/coflow
− 12 ports and 144 flows : 8 coflows and 18 flows/coflow
− 14 ports and 196 flows : 7 and 28 flows/coflow
• SNDLib instances with the following traffic patterns:
− 30 flows : 3 coflows and 10 flows/coflow
− 50 flows : 5 coflows and 10 flows/coflow
− 60 flows: 3 coflows and 20 flows/coflow
− 100 flows flows: 5 coflows and 20 flows/coflow
• Internet Topology Zoo instances with 150 flows : 6 coflows
and 25 flows/coflow.

The length of the horizon time is set to 30 units of times. On
SNDLib and Internet Topology Zoo instances, 3 paths are com-
puted for every flow (if they exist). All coflows have been gen-
erated randomly (sources, destinations, volumes and paths).

The following figures display the comparison of the CPU
time and the number of branching nodes between the BBC
algorithm and the compact model.

Fig. 3 reports on the results of Big-Switch instances. We can
note that the compact model reaches the time limit on 60%
of the instances while the BBC algorithm reaches it on only
two instances. However the compact model generates much
less branching nodes (around 19000 in average) than the BBC
algorithm (around 550000 in average). This can be explained
by the fact that the compact model reaches the maximum

Figure 4: Optimality gaps of Varys [7] and Sincronia [1]
(state of the art heuristics) on Big-Switch instances.

time limit on all instances where it has a lower number of
branching nodes. Hence, the branching algorithm did not finish
generating all nodes. Clearly, the Branch-and-Benders-Cut
algorithm performs much better as, in practice, a small master
problem is solved at each iteration (around 910 Benders cuts
are generated on average at the end of the optimization).

Fig. 4 compares the optimality gaps for state of the art
heuristic algorithms such as Varys [7] and Sincronia [1] on Big-
Switch instances. As we can see the gap for Varys is quite high,
26.17% in average, while it is much lower for Sincronia, 6.18%
in average. While the exact method based on Benders can be
used in practice on some of the instances with a reasonable run-
ning time, it can also be used to evaluate heuristic algorithms
for benchmarking and assess their relative performance.

Figure 5: Numerical results on SNDLib instances for the
CPU time and the number of branching nodes.

Fig. 5 shows results on SNDLib instances. We can observe
that the BBC algorithm did not reach the time limit while
the compact model reaches it on 5 instances. The number of
branching nodes generated by the BBC algorithm is slightly
higher than for the compact model (for the same reason as
for Big-Switch instances) since it is around 3500 nodes on
average for the BBC algorithm and around 1500 in average for
the compact model. The number of Benders cuts generated is
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Figure 6: Numerical results on Internet Topology Zoo in-
stances for the CPU time and the number of branching
nodes.

also small over all the instances since it is around 600 cuts in
average.

Finally, Fig. 6 shows the results for the Internet Topology
Zoo instances with 150 flows. We can see that the BBC algo-
rithm gives better results since the compact model reaches
the time limit multiple times. Similarly to previous instances,
the number of generated nodes in slightly higher for the BBC
algorithm. The number of generated Benders cuts is around
2700 cuts on average.

6 CONCLUSION
In this paper, we have addressed exact solution methods for
the Weighted Coflow Completion Time Minimization prob-
lem, which is NP-hard. The literature on coflows has mostly
addressed heuristics and approximation algorithms, and exact
solution methods are not discussed in depth to the best of the
authors’ knowledge. We have proposed a new compact model
for the CCTM problem and a Branch-and-Benders-Cut algo-
rithm has been developed which decouples continuous and
integer variables. This decomposition permits to pre-process
every sub-problem and remove a significant number of use-
less constraints and variables in advance. Our computational
results indicate that the Branch-and-Benders-Cut algorithm
for he CCTM improves significantly the CPU time compared
to the compact model and thus represents an important contri-
bution to assess the relative performance of coflow schedulers
existing in the coflow literature.
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ABSTRACT
Collaborative usage of resources is becoming increasingly popular
in various fields. One common example are coworking spaces —
office rooms with work places that can be rented by individuals
on hourly basis. We consider the problem of assigning all booking
requests for a day to equivalent office rooms with different but fixed
opening times and fixed interchangeable closing times. The closing
times are flexible due to daily maintenance, e.g. cleaning, which
must be done in all rooms in an arbitrary order.

This problem is related to the known Interval Scheduling Prob-
lem with Machine Availabilities (ISMA), where each machine has
a contiguous availability interval, and each job presents a specific
time interval which has to be scheduled. According to our cowork-
ing scheduling application, we extend ISMA to Flexible Multithread
ISMA (FlexMISMA) by introducing machine capacities that model
the number of work places per room and by allowing to permute
the end times of machines’ availability periods.

In this paper, we determine a tight classification of necessary
conditions for the existence of a polynomial time algorithm for
FlexMISMA, assuming P ≠ NP. More specifically, we develop
a network flow model and present polynomial time algorithms
for instances (i) with two machines, and (ii) with arbitrarily many
machines of capacity one each. In the same time, we prove that in-
creasing the machine capacity to two renders FlexMISMANP-hard
for arbitrarily many machines. Furthermore, we complement result
(i) by showing that the problem is NP-hard already for instances
with three machines as a special case of the Vertex-Disjoint Paths
problem.
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1 INTRODUCTION
Collaborative usage of resources is becoming increasingly popu-
lar in various fields, presenting new challenges for planning and
scheduling. For example, small businesses rent parts of storage
facilities or computer clusters for fixed time intervals when owning
a whole facility is not economical. One further example of such
collaboration are coworking spaces – office spaces typically con-
sisting of several office rooms, with work places that can be rented
by individuals on an hourly basis. Consider a coworking space
with several identical office rooms. The customers can book single
desks for an arbitrary continuous time period during the day, and
they are guaranteed not to be required to change the room during
their stay. Every day at the beginning and at the end of the official
opening hours, a cleaning team must visit all the rooms one by one.
Cleaning every room takes the same amount of time, thus the times
at which the team switches to another room are fixed (these times
are equal to the start time of the cleaning phase plus multiples of
the cleaning duration). The order in which the rooms are cleaned
is flexible. Since the rooms must be empty during the cleaning, the
order of room cleaning defines the effective availability periods of
rooms to the customers. When a new booking comes in, the planner
needs to decide whether it can be accepted, i.e. whether there is a
cleaning sequence and an assignment of all received bookings to
rooms which respects the rooms’ capacity and does not interfere
with the cleaning.

It is easy to recognize that this problem presents a variant of
Interval Scheduling with restricted machine availabilities, where
machines represent the rooms, intervals represent single bookings,
and restricted availability periods of machines are caused by room
cleaning in the morning and in the evening. Note that the rooms
accommodate several desks, which corresponds to machines being
able to process several jobs at a time.

1.1 Related work
There have been many approaches to extend Interval Scheduling by
restricted machine availabilities, cf. [8]. Brucker and Nordman [3]
introduce a variant of Interval Scheduling, the 𝑘-track assignment
problem, in which every machine is available only for a given time
interval. The authors consider both the case of identical machines
and a generalization where machines can process only given sub-
sets of jobs. Later, Kolen et al. [8] studied this problem using the
name Interval Scheduling with Machine Availabilities (ISMA). They
showed that the problem isNP-complete if the number of machines
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is part of the input but polynomially solvable for a fixed number of
machines.

There are several approaches to allow for multitasking machines
in ISMA. Mertzios et al. [9] consider a variant, called Interval Sched-
uling with Bounded Parallelism, in which all machines can concur-
rently process up to a given number of jobs. The authors consider
two objectives: minimizing the total active time of the machines
needed to process all jobs, and maximizing the number of processed
jobs given a number of machines. Another approach to allow for
multitasking machines was presented by Angelelli and Filippi [1].
They introduce Interval Scheduling with a Resource Constraint
(FISRC), where every machine and every job is additionally charac-
terized by a resource supply or demand.

Generalizations of interval scheduling include the well-studied
Unsplittable Flow problem on a path (UFP). In UFP, instead of ma-
chines we have a resource capacity that can be used by all scheduled
jobs and jobs have individual demands. While it is easy to decide
whether all jobs can be scheduled, the optimization problem where
we have to select a maximum cardinality or maximum weight sub-
set of jobs is NP-hard (generalizing Knapsack) and the currently
best result is a 5/3-approximation algorithm [7].

UFP has a geometric version called the Storage Allocation Prob-
lem (SAP) [2, 10] where all scheduled jobs have to be drawn as
non-overlapping axis-parallel rectangles. SAP with uniform job
demands corresponds to a multithread version of ISMA, where for
each pair of machines either the availability interval of one machine
is contained in the interval of the other or the two intervals are
disjoint.

1.2 Our Contribution
To model the coworking scheduling problem, we propose a twofold
generalization of the Interval Scheduling problem with Machine
Availabilities (ISMA) [8].

For one thing, we switch to multithread machines, i.e., we allow
machines to process several jobs at a time. In order to keep the
machines equivalent, we require all machines to have the same
capacity. Note that in this case, we may assume that the machines’
end times are interchangeable.

In the setting of coworking scheduling, we assume that all rooms
are identical, and that the transition time between the rooms for the
cleaning team can be neglected, so the rooms can be cleaned in any
order. However, every time the cleaning crew enters a new room
in the evening, the room becomes unavailable for the customers.
This implies that the periods during which the rooms are available
for bookings are not fixed, since the cleaning start times can be
permuted; the number of available rooms, in contrast, is fixed for
any point in time.

Therefore, the second adjustment to ISMA is the possibility to
permute the machine end times. In other words, the start and end
timesmainly depict information about when and how the number of
available machines changes. However, we may still assume without
loss of generality that every machine is preassigned a start time.
The task is to assign every machine an end time and to schedule
all jobs, or to decide that there is no such end time assignment
and schedule. Due to the increased flexibility, we call the problem
Flexible Multithread ISMA (FlexMISMA). Interestingly, despite the

added flexibility, FlexMISMA turns out to be at least as hard as
ISMA.

In this paper, we determine a tight classification of conditions
that are required to obtain a polynomial time algorithm for
FlexMISMA assuming P ≠ NP.

We start with analyzing the hardness depending on the number
of machines. In Section 3.1 we provide a network flow interpretation
of the problem. With its help we show that FlexMISMA can be
solved in polynomial time if the number of machines is at most
two. The general idea consists in computing a schedule for only
one machine at a time using a MaxFlow Algorithm to find vertex-
disjoint paths in a special graph. In a second step, we then transform
the solution to a feasible solution for both machines.

However, this technique does not work if the number of ma-
chines is at least three. We show in Section 3.2 that such instances
are NP-hard for FlexMISMA.

We continue by considering the case of machines with fixed ca-
pacity and show in Theorem 2 that FlexMISMA is NP-hard for ma-
chine capacity equal to two. To this end, we show that FlexMISMA
is at least as hard as ISMA, which is known to be NP-hard [8]. For
FlexMISMA with unit machine capacities, however, we show in
Theorem 3 that the problem essentially boils down to solving an
interval coloring instance and is thus solvable in polynomial time.

2 PROBLEM FORMULATION
We formulate the problem of coworking scheduling in terms of
classical machine scheduling.

Interval Scheduling with Machine Availabilities (ISMA) is a known
scheduling problem that incorporates a machine availability con-
straint into the Interval Scheduling problem. Specifically, ISMA
assumes that every machine has a fixed availability period. Kolen
et al. define ISMA as follows [8].

Definition 1 (ISMA). Given 𝑚 machines that are available in
periods [𝑠𝑖 , 𝑓𝑖 ) for 𝑖 ∈ [𝑚], and 𝑛 jobs that require processing in the
periods [𝑎 𝑗 , 𝑏 𝑗 ) for 𝑗 ∈ [𝑛], ISMA asks for a schedule that respects
the availability of each machine and schedules no two jobs with
overlapping processing intervals onto the same machine.

Since ISMA assumes that every machine processes at most one
job at a time, it is insufficient for modeling the entire coworking
scheduling problem. We extend the formulation of ISMA to allow
for multithread machines that can process several jobs simultane-
ously, which models the coworking offices hosting several desks.

Further, we integrate the interchangeability of the machines’
end times (which represent the start times of the evening room
cleaning). We formulate the problem in a general way by allowing
arbitrary, not necessarily equidistant, start and end times. This
leads to the following variant of Interval Scheduling where each
machine has an assigned start time, and the end times are given
but not preassigned to the machines.

Definition 2 (The Flexible Multithread ISMA problem
(FlexMISMA)). An instance of the Flexible Multithread ISMA
(FlexMISMA) problem is given by 𝑚 machines, their capacity
𝐶 ∈ N, start times (𝑠𝑖 )𝑖∈[𝑚] for every machine, 𝑚 end times
(𝑓𝑖 )𝑖∈[𝑚] that still have to be assigned to a machine, 𝑛 jobs, and
the jobs’ processing intervals [𝑎 𝑗 , 𝑏 𝑗 ) for 𝑗 ∈ [𝑛]. FlexMISMA
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(c) solution with 𝜏 = (2, 3)

Figure 1: An example of a FlexMISMA instance with𝑚 = 3
machines of capacity 𝐶 = 2.

asks for two assignments: a bijective assignment 𝜏 : [𝑚] → [𝑚]
of machines to end times with 𝑠𝑖 ⩽ 𝑓𝜏 (𝑖 ) for all 𝑖 ∈ [𝑚], and an
assignment 𝛼 : [𝑛] → [𝑚] of jobs to machines such that every
machine 𝑖 ∈ [𝑚] processes at most 𝐶 jobs simultaneously and only
between its start and end time, i.e.,

��{ 𝑗 ∈ 𝛼−1 (𝑖) | 𝑡 ∈ [𝑎 𝑗 , 𝑏 𝑗 )}�� ⩽ 𝐶
for all 𝑡 ∈ [𝑠𝑖 , 𝑓𝜏 (𝑖 ) ), and 𝑠𝑖 ⩽ 𝑎 𝑗 < 𝑏 𝑗 ⩽ 𝑓𝜏 (𝑖 ) for all 𝑗 ∈ 𝛼−1 (𝑖).

All input parameters are assumed to be integer. Without loss
of generality, we assume that the earliest start time is 0, i.e., 0 =
min𝑖∈[𝑚] 𝑠𝑖 , and we define the latest end time as 𝑇 := max𝑖∈[𝑚] 𝑓𝑖 .

Observe that we can consider every multi-thread machine of
capacity𝐶 as a group of𝐶 single-thread machines that are required
to have the same start and end times. Hence, FlexMISMA is an
extension of ISMA in which the machines are partitioned into
groups by availability and the end times must be equal within each
group, but can be permuted between the groups.

Figure 1 shows an exemplary instance of FlexMISMA. This
instance is given by three machines with capacity 𝐶 = 2, and by
the job set with start and end times as displayed in the figure. One
feasible solution for the example instance is presented in Figure 1c.

The bijective function 𝜏 can also be interpreted as a permutation
on set [𝑚]. Therefore, we use in the following the permutation
representation. For example, in the solution presented in Figure 1c,
the end time assignment is given by the permutation 𝜏 =

(
2, 3

)
.

The time scale of an instance of both ISMA and FlexMISMA
can be compressed so as to contain only the significant time units
– the time units which are start or end times of machines or jobs.
The number of such time units is at most 2𝑛 + 2𝑚. Hence, we may
assume that 𝑇 ⩽ 2𝑛 + 2𝑚. Rescaling an instance in this manner
takes O((𝑛 +𝑚) log(𝑛 +𝑚)) time.

Hence, we can check in polynomial time whether, at some point
in time, more jobs need to be processed than there are machine

threads available, as the number of available machines at each
point in time can be derived from the start and end times. If that is
the case, the instance is automatically infeasible. We thus assume
in the following that at no point in time more jobs need to be
processed than there are threads available. Note that this does not
automatically imply feasibility. In the same way, we can verify in
polynomial time whether all machines are utilized to full capacity.
If this is not the case, we transform the instance by adding auxiliary
jobs with processing intervals of length one for the respective
underutilized time periods. This transformation has no influence
on the feasibility of a solution and needs only a polynomial number
of auxiliary jobs. Thus, we assume without loss of generality that
everymachine is utilized to full capacity in the available time period.

Finally, note that if there exist 𝑖, 𝑘 ∈ [𝑚] so that 𝑠𝑖 = 𝑓𝑘 , we can
simply remove them from the instance and reduce the number of
machines by one. Otherwise, depending on the assignment of end
times 𝜏 , we obtain either one machine with an empty availability
period or two machines with adjoining availability periods. In the
latter case, we can then combine those twomachines to onemachine
with a longer availability period. Thus, we assume in the following
𝑠𝑖 ≠ 𝑓𝑘 for all 𝑖, 𝑘 ∈ [𝑚].

The size of an instance of FlexMISMA is defined by three pa-
rameters: the number of jobs 𝑛, the number of machines𝑚 and the
machine capacity 𝐶 . Remarks above imply that the number of jobs
is bounded from below by the total machine capacity, i.e., 𝑛 ⩾ 𝑚 ·𝐶 .
We observe that the number of jobs is the main determinant of the
size of an instance of FlexMISMA. In the following complexity
study, we will focus on cases differentiated by values of parameters
𝑚 and 𝐶 , while the number of jobs remains unbounded.

3 COMPLEXITY FOR A CONSTANT NUMBER
OF MACHINES

In this section, we start studying the complexity of FlexMISMA.
We consider the case of a fixed number of machines, which corre-
sponds to scheduling a coworking space with a constant number of
rooms. The case of one machine is trivial, as it reduces to Interval
Scheduling; therefore, we proceed with the case of two machines,
which represents a coworking space with two equivalent rooms.

3.1 Polynomial-time algorithm for two
machines

The assumption of full machine utilization implies that in any
feasible solution for FlexMISMA, every machine processes exactly
𝐶 jobs at any time unit of its availability period. We call a non-
empty subset J of jobs feasible for machine 𝑖 ∈ [𝑚] and end time
𝑓 ∈ [1,𝑇 ], if for every time unit 𝑠𝑖 ⩽ 𝑡 < 𝑓, the set J contains
exactly 𝐶 jobs that must be processed at time 𝑡 , i.e., if for all 𝑡 ∈ N

��{ 𝑗 ∈ J | 𝑡 ∈ [𝑎 𝑗 , 𝑏 𝑗 )}�� =
{
𝐶, if 𝑠𝑖 ⩽ 𝑡 < 𝑓,

0, otherwise.

Note that all constraints of FlexMISMA are satisfied for a machine
with some assigned end time if the jobs of a corresponding feasible
set are assigned to it. In general, finding a feasible job set for one
machine and some end time is not sufficient to solve FlexMISMA.
However, this is sufficient if an instance of FlexMISMA has only
two machines.
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Lemma 1. For an instance of FlexMISMA with𝑚 = 2 machines, 𝑛
jobs and end times (𝑓1, 𝑓2), let the subset J1 ⊆ [𝑛] of jobs be feasible
for machine 1 with end time 𝑓𝑖 ∈ {𝑓1, 𝑓2}. Denote by 𝑓𝑖′ the unique
remaining end time, where 𝑖′ ≠ 𝑖 . Then the set J2 := [𝑛] \ J1 is
feasible for machine 2 with end time 𝑓𝑖′ .

We omit the straightforward but technical proof of this Lemma.
As a consequence of Lemma 1, it suffices to find a feasible job

set for one machine and end time in order to solve FlexMISMA
for two machines. Therefore, we continue by proposing a method
based on network flow for finding such a feasible job set.

First, observe that the assumption of full utilization implies that
every job is immediately followed by another job, unless the former
ends at some machine’s end time, i.e., for a job 𝑗 ∈ [𝑛] holds 𝑏 𝑗 = 𝑓𝑖
for some 𝑖 ∈ [𝑚] or there exists a job 𝑗 ′ with 𝑎 𝑗 ′ = 𝑏 𝑗 . If the latter
holds true, we call job 𝑗 ′ a successor of 𝑗 .

We use this connection between jobs to construct a directed
graph 𝐺 = (𝑉 ,𝐴) that represents the FlexMISMA instance. This
graph is called the successor graph and contains three types of nodes:
a source vertex 𝑢 for every machine, a target vertex 𝑤 for every
end time, and a transit 𝑣 vertex for every job, i.e.,

𝑉 := {𝑢𝑖 ,𝑤𝑖 | 𝑖 ∈ [𝑚]} ∪ {𝑣 𝑗 | 𝑗 ∈ [𝑛]}.
The arcs of the network 𝐺 reflect the succession relationship: For
machine 𝑖 ∈ [𝑚], we construct arcs between the source vertex 𝑢𝑖
and all vertices 𝑣 𝑗 whose corresponding jobs start at the same time
as 𝑖 becomes available, i.e., 𝑠𝑖 = 𝑎 𝑗 . For end time number 𝑖 ∈ [𝑚],
we construct arcs between the target vertex 𝑤𝑖 and every vertex
𝑣 𝑗 whose corresponding job ends at 𝑓𝑖 , i.e., 𝑏 𝑗 = 𝑓𝑖 . For every two
transit vertices 𝑣 𝑗 and 𝑣 𝑗 ′ , we construct an arc from 𝑣 𝑗 to 𝑣 𝑗 ′ if and
only if 𝑗 ′ is a successor of 𝑗 , i.e., 𝑏 𝑗 = 𝑎 𝑗 ′ . Therefore,

𝐴 :={(𝑢𝑖 , 𝑣 𝑗 ) | 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛], 𝑠𝑖 = 𝑎 𝑗 }
∪{(𝑣 𝑗 ,𝑤𝑖 ) | 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛], 𝑏 𝑗 = 𝑓𝑖 }
∪{(𝑣 𝑗 , 𝑣 𝑗 ′ ) | 𝑗, 𝑗 ′ ∈ [𝑛], 𝑏 𝑗 = 𝑎 𝑗 ′ }.

An exemplary FlexMISMA instance and its corresponding succes-
sor graph are shown in Figure 2. Remark that the successor graph
is acyclic and has |𝑉 | = 2 ·𝑚 + 𝑛 vertices and |𝐴| = O (

𝑛2 +𝑚 · 𝑛)
arcs. Therefore, its construction requires time polynomial in the
size of the underlying FlexMISMA instance.

We use the successor graph to construct feasible job sets for
the machines by computing families of vertex-disjoint 𝑢𝑖 -𝑤𝑖′ -paths.
Here, we use the term disjoint for internally vertex-disjoint paths.

Lemma 2. Let𝐶 vertex-disjoint𝑢𝑖 -𝑤𝑖′ -paths in the successor graph
of a FlexMISMA instance be given, where 𝑢𝑖 is a source node and𝑤𝑖′
is a target node. Then the set of jobs represented by the nodes that are
traversed by these paths is a feasible set for machine 𝑖 ∈ [𝑚] and end
time 𝑓𝑖′ . Conversely, if there is a feasible job set for machine 𝑖 and end
time 𝑓𝑖′ , then the successor graph contains 𝐶 disjoint 𝑢𝑖 -𝑤𝑖′ -paths.

Proof. Let 𝐶 𝑢𝑖 -𝑤𝑖′ -paths P1, . . . ,P𝐶 be given in the successor
graph, where 𝑖, 𝑖′ ∈ [𝑚]. For each path P𝑙 , with 𝑙 = 1, . . . ,𝐶 , let
𝐽𝑙 ⊆ [𝑛] be the set of corresponding jobs, i.e., 𝐽𝑙 = { 𝑗 ∈ [𝑛] | 𝑣 𝑗 ∈
P𝑙 }. Let J denote the union of all these job sets:

J B
𝐶⋃
𝑙=1

𝐽𝑙 .
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Figure 2: Successor graph for the FlexMISMA instance with
𝑚 = 3 and 𝐶 = 2.

We show that the job set J satisfies the conditions of a feasible
set for machine 𝑖 . Since the paths are vertex-disjoint, the job sets
𝐽𝑙 are pairwise disjoint as well. By construction of the successor
graph, for each 𝑙 = 1, . . . ,𝐶 , the jobs in 𝐽𝑙 have disjoint processing
intervals that cover in total exactly the interval [𝑠𝑖 , 𝑓𝑖′ ), i.e., for all
𝑠𝑖 ⩽ 𝑡 < 𝑓𝑖′ there exists exactly one job 𝑗 ∈ 𝐽𝑙 with 𝑡 ∈ [𝑎 𝑗 , 𝑏 𝑗 ) and
[𝑎 𝑗 , 𝑏 𝑗 ) ⊆ [𝑠𝑖 , 𝑓𝑖′ ) for all 𝑗 ∈ 𝐽𝑙 . As a result,

��{ 𝑗 ∈ J | 𝑡 ∈ [𝑎 𝑗 , 𝑏 𝑗 )}�� =
{
𝐶, if 𝑠𝑖 ⩽ 𝑡 < 𝑓,

0, otherwise,

holds true and J is a feasible set for machine 𝑖 .
Conversely, let J ⊆ [𝑛] be a feasible job set for machine 𝑖 ∈ [𝑚]

and end time 𝑓𝑖′ . We explicitly construct the corresponding disjoint
paths. First, we color the jobs in J with𝐶 colors so that intersecting
jobs have different colors. Such a coloring exists by definition of a
feasible job set. Next, we color the corresponding transit vertices
in the successor graph accordingly. In addition, for easier notation,
we assign all 𝐶 colors to vertices 𝑢𝑖 and𝑤𝑖′ .

Next, we show that every color class 𝐽𝑙 , where 𝑙 ∈ [𝐶], yields a𝑢𝑖 -
𝑤𝑖′ -path. Notice that by definition of a feasible set for machine 𝑖 , for
every time unit 𝑡 the set J contains𝐶 jobs spanning 𝑡 . Therefore, at
any time unit of the machine’s availability period and for each color
𝑙 ∈ [𝐶], there is a job colored with color 𝑙 . Thus, in the successor
graph, every transit vertex of color 𝑙 is adjacent to exactly two other
vertices of color 𝑙 , to one by an outgoing and to one by an incoming
arc. Additionally, the source vertex 𝑢𝑖 and the target vertex𝑤𝑖′ are
adjacent each to exactly one transit vertex of color 𝑙 . As a result,
the vertices corresponding to job set 𝐽𝑙 form a 𝑢𝑖 -𝑤𝑖′ -path in the
successor graph. Since the color classes are pairwise disjoint, so are
the paths constructed from distinct color classes of J . □
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Lemma 1 and Lemma 2 imply that to solve FlexMISMA with
two machines, it suffices to find a family of 𝐶 disjoint paths with
common source and target vertices in the successor graph, or to
show that no such family exists. We suggest using a MaxFlow
subroutine to search for such disjoint paths. A flow in a graph
with unit edge capacities corresponds in general to a family of
edge-disjoint paths. We use the commonly known transformation
in order to ensure that the paths are also vertex disjoint: We split
every transit vertex 𝑣 𝑗 into two vertices 𝑣−𝑗 and 𝑣+𝑗 connected by
an arc (𝑣−𝑗 , 𝑣+𝑗 ), and make all incoming arcs of the original vertex
incident to 𝑣−𝑗 whereas the outgoing arcs of the original vertex
become incident to 𝑣+𝑗 .

We use a subroutine that, given two vertices 𝑢 and 𝑤 and an
integer 𝐶 , finds a 𝑢-𝑤 -flow of value exactly 𝐶 . It can be easily
derived from MaxFlow solvers and runs in polynomial time. The
procedure solving FlexMISMAwith twomachines works as follows
after the successor graph is constructed. First, ask for a 𝑢1-𝑤1-flow
of value𝐶 . If there is no such flow, repeat the request for the target
𝑤2 instead of𝑤1. If again no flow was found, abort — the instance
is infeasible. Once a 𝑢1-𝑤𝑖 -flow 𝜙1 of value 𝐶 was found for some
𝑖 ∈ {1, 2}, assign to machine 1 the end time 𝑓𝑖 and all jobs 𝑗 ∈ [𝑛]
for which the corresponding node 𝑣 𝑗 was traversed by the flow.
Next, delete the sub-graph induced by the flow 𝜙1 from the network.
The remaining graph, called reduced, contains exactly one source
node, 𝑢2, and one target node, say 𝑤 ′. The remaining end time,
as well as all remaining jobs, are assigned to machine 2. In this
manner, the procedure not only finds two families of disjoint paths
in the successor graph, but also directly constructs a solution for
FlexMISMA.

The runtime of the procedure is determined by the runtime of the
MaxFlow subroutine, which, for𝑚 = 2, is called at most two times.
Hence, the procedure runs in polynomial time, and its correctness
follows from Lemmata 1 and 2.

Naturally, the algorithm can be applied to instances with any
constant number of machines while preserving the polynomial
runtime. However, since Lemma 1 does not hold for three or more
machines, the algorithm is not guaranteed to find a feasible solution.
An example for which the algorithm fails is shown in Figure 2: If the
highlighted flow is selected in the first iteration, then the reduced
graph contains no further 𝑢-𝑤 -flow of value 𝐶 . Nevertheless, due
to its polynomial runtime and partial correctness, our algorithm is
a promising heuristic for FlexMISMA.

3.2 FlexMISMA is NP-complete for three or
more machines

In the previous section, we saw a polynomial time algorithm
for FlexMISMA with two machines which loses its complete
correctness for three or more machines. In fact, FlexMISMA is
NP-complete for more than two machines.

Theorem 1. FlexMISMA is NP-complete if the number of ma-
chines is fixed and greater than two.

We prove the NP-completeness by a three-staged reduction. Due
to the page limit, we present only a sketch of the proof. While the
main ideas of the proof were already used by Garey et al. [6], we
have to take care of some small but important differences.

First, we show that FlexMISMA is at least as hard as Multithread
ISMA (MISMA) — an extension of ISMA which allows machines
to have different capacities greater than one (but preserves fixed
availability periods). The reduction is similar to the one presented
further in Theorem 2. Next, we show that MISMA is at least as hard
as the Permutation Partition problem (PPP), which is a decision
problem on symmetric groups and is inspired by the Word problem
for Products of Symmetric Groups introduced by Garey et al. [6].

PPP receives as input𝑚 numbers 𝐶𝑖 ∈ N, 𝑖 ∈ [𝑚], a partition
L := {𝐿1, . . . , 𝐿𝑚} of [𝑘], where 𝑘 =

∑
𝑖∈[𝑚] 𝐶𝑖 and |𝐿𝑖 | = 𝐶𝑖 , as

well as 𝑡 arbitrary subsets 𝑃𝑢 ⊆ [𝑘] for 𝑢 ∈ [𝑡]. We further define
the canonical partitionM := {𝑀1, . . . , 𝑀𝑚} of [𝑘] via 𝑀𝑖 := {𝑟 ∈
N | ∑𝑖−1𝑙=1 𝐶𝑙 < 𝑟 ⩽

∑𝑖
𝑙=1𝐶𝑙 } ⊂ [𝑘] for 𝑖 ∈ [𝑚] and the embedded

permutation groups 𝐺𝑢 := Stab( [𝑘] \ 𝑃𝑢 ) ⊆ 𝑆𝑘 for 𝑢 ∈ [𝑡]. Here
Stab(𝑈 ) denotes the pointwise stabilizer of a set 𝑈 ⊆ [𝑘], and 𝑆𝑘
the symmetric group on 𝑘 elements. PPP then asks whether there
exists a permutation 𝜋 ∈ 𝐺𝑡 ◦ . . . ◦𝐺1 such that 𝜋 (𝑀𝑖 ) = 𝐿𝑖 for all
𝑖 ∈ [𝑚].

Finally, we prove the NP-completeness of PPP by a reduction
from the Directed Vertex-Disjoint Paths problem.

4 COMPLEXITY FOR A CONSTANT MACHINE
CAPACITY

In this section, we study FlexMISMA in the case of a fixed machine
capacity 𝐶 . We show that FlexMISMA can be solved in linear time
for 𝐶 = 1 using Interval Coloring, but is NP-complete for fixed
capacities 𝐶 ⩾ 2.

Theorem 2. FlexMISMA is NP-complete if machine capacity is
equal to 2.

Proof. We present a reduction from ISMA, which was proven to
beNP-hard [8]. Suppose that an instance of ISMA with𝑚 machines
available in periods [𝑠𝑖 , 𝑓𝑖 ) for 𝑖 ∈ [𝑚] and 𝑛 jobs with processing
intervals [𝑎 𝑗 , 𝑏 𝑗 ) for 𝑗 ∈ [𝑛] is given. We denote the time horizon
of this ISMA instance by 𝑇 := max𝑖∈[𝑚] 𝑓𝑖 .

Then, we construct an instance of FlexMISMAwith𝑚 machines,
with start times 𝑠′𝑖 := 𝑖 and with end times 𝑓 ′𝑖 := 𝑇 +𝑚+𝑖 for 𝑖 ∈ [𝑚],
and with capacity 𝐶′ := 2, see Figure 3. Note that, by construction,
all start (end) times are pairwise different, and every machine has
one thread more than its counterpart in ISMA. We further construct
𝑛′ := 𝑛 + 3𝑚 jobs with the following processing intervals. We first
shift the periods of jobs of the ISMA instance by𝑚; then, we add
𝑚 auxiliary jobs to occupy the additional threads; last, we add 2𝑚
jobs to pad the increased availability periods. We obtain

[𝑎′𝑗 , 𝑏′𝑗 ) :=




[𝑎 𝑗 +𝑚,𝑏 𝑗 +𝑚), 𝑗 ∈ [𝑛],
[𝑠′𝑖 , 𝑓 ′𝑖 ), 𝑖 ∈ [𝑚], 𝑗 = 𝑛 + 𝑖,
[𝑠′𝑖 , 𝑠𝑖 +𝑚), 𝑖 ∈ [𝑚], 𝑗 = 𝑛 +𝑚 + 𝑖,
[𝑓𝑖 +𝑚, 𝑓 ′𝑖 ), 𝑖 ∈ [𝑚], 𝑗 = 𝑛 + 2𝑚 + 𝑖 .

It remains to prove that the constructed FlexMISMA instance is
feasible if and only if the original ISMA instance is feasible.

Let 𝛼 : [𝑛] → [𝑚] represent a feasible solution to the ISMA
instance. We extend this solution to a solution for FlexMISMA as
follows: choose the end time assignment 𝜏 B id[𝑚] and extend
assignment 𝛼 to 𝛼 ′ : [𝑛′] → [𝑚] by filling the additional threads
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(a) ISMA instance

𝑠′1 𝑓 ′1

𝑠′2 𝑓 ′2

𝑠′3 𝑓 ′3

1 2

3 4 5

6 7

11

12

13

14

15

16

8

9

10
𝑡

0 1 2 3 4 5 6 7 8 9 10 11 12 𝑇 ′=13

(b) resulting FlexMISMA instance with capacity𝐶′ = 2

Figure 3: Transformation of ISMA to FlexMISMA for an
instance with three machines.

and extended availability periods with the additionally created jobs.
By construction, the assignment

𝛼 ′ ( 𝑗) :=
{
𝛼 ( 𝑗), 𝑗 ∈ [𝑛],
𝑖 ∈ [𝑚], 𝑎′𝑗 = 𝑠

′
𝑖 or 𝑏

′
𝑗 = 𝑓

′
𝑖 ,

with time assignment 𝜏 = id[𝑚] yields a feasible solution for the
FlexMISMA instance.

Conversely, let 𝛼 ′ : [𝑛′] → [𝑚] and 𝜏 : [𝑚] → [𝑚] represent
a solution for the FlexMISMA instance. We still assume that all
machines are utilized to full capacity during their entire availability
period. Moreover, all start and end times of machines are distinct
by construction. Therefore, all jobs 𝑗 with 𝑎′𝑗 = 𝑠

′
𝑖 or 𝑏

′
𝑗 = 𝑓

′
𝜏 (𝑖 ) for

an 𝑖 ∈ [𝑚] are necessarily assigned to machine 𝑖 . Remark that, by
construction, these are exactly the jobs 𝑗 ∈ [𝑛′] \ [𝑛]. In particular,
the jobs with availability periods [𝑠′𝑖 , 𝑓 ′𝑖 ) guarantee that 𝜏 = id. Note
that there exists at least one such job for every 𝑖 ∈ [𝑚]. Furthermore,
these jobs occupy their assigned machine during the complete
availability period. Therefore, every job 𝑗 ∈ [𝑛] is assigned by
𝛼 to a machine 𝑖 ∈ [𝑚] during the remaining availability period
[𝑠𝑖 +𝑚, 𝑓𝑖 +𝑚) with remaining capacity𝐶′−1 = 1. This corresponds
one to one to the availability periods and machine capacities of the
original ISMA instance. Thus, 𝛼 ′ | [𝑛] is a feasible solution for the
ISMA instance. □

It remains to consider FlexMISMA with machine capacity equal
to one. We show an efficient algorithm for this case.

Theorem 3. FlexMISMA with unit machine capacity is solvable
in time linear in the number of jobs.

Proof. In the case that every machine can process only one
job at a time, FlexMISMA can be formulated as the well-known
Interval Scheduling problem. Given an instance of FlexMISMA
with 𝑛 jobs and𝑚 machines, we transform it into an instance of
Interval Coloring with 𝑁 B 𝑛 + 2𝑚 intervals by representing

start times 𝑠𝑖 with intervals (0, 𝑠𝑖 ) and end times 𝑓𝑖 with intervals
(𝑓𝑖 ,𝑇 + 1) for all 𝑖 ∈ [𝑚].

The Interval Coloring problem is solved by a greedy algorithm in
time linear in the number of intervals, provided that the endpoints
of the intervals are sorted [4]. All interval endpoints in the instance
of Interval Scheduling are non-negative integers not greater than
𝑇 +1. Therefore, the counting sort can be applied, which has runtime
in O(2𝑁 +𝑇 + 1) = O(𝑛) [5]. □

Remark that FlexMISMA with single-thread machines differs
from ISMA only by the fact that permutations of the end times
of machines are allowed. We saw that weakening this one con-
straint transforms the NP-hard ISMA into a polynomially solvable
problem.

This observation completes the study of complexity of
FlexMISMA with fixed machine capacity. We conclude that the
coworking scheduling problem is polynomial time solvable for
single-desk offices, but becomes NP-hard if offices have two or
more desks each.

5 CONCLUSION
In this paper, we presented the interval scheduling extension
FlexMISMA and provided a tight classification of its hardness with
respect to the number of machines and their capacity. Furthermore,
we provided constructive algorithms for the polynomial-time
solvable cases.

There are natural optimization versions of the considered prob-
lem, which aim to find a maximum cardinality or maximum weight
subset of jobs that can be scheduled. An interesting direction for
future work is to find approximation algorithms for these problems.
Furthermore, due to the machine capacities, it is sensible to consider
jobs with individual demands, leading to a new problem closely
related to the Storage Allocation Problem, see Section 1.1.
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2 MATHEMATICAL MODEL

A modeling framework for designing
dynamic multi-commodity network flows
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1 Introduction
We address the problem how OR scientists may state periodic time-discrete multi-commodity network
design models in a compact human-friendly way and solve them in a single application. Ab Ovo’s
Network Designer [3] comprises a modeling framework which allows to import, view, instantiate, solve
such models, and inspect the solution and its graphical representation. In addition to the problem type
and to the model above, the input format (Excel) also supports a number of advanced constraint types
like zero-or-range, flow multipliers and convex quadratic constraints.

Dynamic networks are studied since a couple of decades and are used to model the behavior of networks
and the flows in it over time—see [4] for a survey. Typical applications are material flows and transport
logistics over time in networks with constrained capacity and varying speed and cost characteristics.
Often facilities for storage of flow (with limited capacity) are added, and additions such as integrality
constraints, parallel arcs, flow losses or minimum compulsory flow if used are not unheard of.

Network Designer came to use for instance in rail cargo empty wagon repositioning, and its versatility
came to the fore when it was used to model the effects of the COVID-19 pandemic on the North-West
German intensive care infrastructure [5]. Next to the applications just mentioned, demos exist also in
finished vehicle logistics (intermodal, worldwide), reusable plastic Container (RPC) flow and ski resort
design.

Network Designer is implemented in DELMIA Quintiq [1], a planning and optimization framework.

2 Mathematical Model
Network Designer permits to specify a multi-commodity network flow optimization problem [2] with
linear and convex quadratic side constraints. Specifically, Network Designer considers a directed graph
G = (V,A) with nodes V and a loop-free set A of arcs, as well as a horizon defined as a finite set of
periods in which the graph exists.

Hence, each node v ∈ V and each arc a ∈ A is defined periodically between a ‘from’ period a ‘to’
period within the horizon.

We further have a set C of commodities; each arc a is assigned a commodity group Ca ⊆ C, specifying
the set of commodities that can be sent over it, and costs βac for each commodity c ∈ Ca.

Network Designer has the functionality to import such graphs, roll them out over time, meaning that
each node and arc are copied for each period they are defined in. The optimization problem is then solved
as a mixed-integer quadratic program (MIQP).

In the following, we provide the MIQP that Network Designer solves, and explain in particular the
additional side constraints. For notational convenience, we omit the periods here:

min
∑

a∈A
c∈C

βacxac +
∑

a∈AF

βFa ya (1)

s. t.
∑

a=(u,v)∈A
c′∈γ−1

a (c)

mac′xac′ =
∑

a=(v,u)∈A
xac c ∈ C, v ∈ V \ (S ∪ T ) (2)
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`a ≤
∑

c∈C
xac ≤ ua a ∈ A (3)

`v ≤
∑

a=(u,v)∈AS
v

c∈C

macxac +
∑

a=(v,u)∈AS
v

c∈C

xac ≤ uv v ∈ V (4)

`Za za ≤
∑

c∈C
xac ≤ uZa za a ∈ AZ (5)

∑

c∈C
xac = faya a ∈ AF (6)

`Fa ≤ ya ≤ uFa a ∈ AF (7)

`KA′ ≤
∑

a∈A′
c∈C

xac ≤ uKA′ A′ ∈ AK (8)

∑

(α,a,c)∈Lj

αxac +
∑

(α,a1,c1,a2,c2)∈Qj

αxa1c1xa2c2 ≤ qj j = 1, . . . , J (9)

xac ≥ 0 a ∈ A, c ∈ C (10)
xac ∈ Z a ∈ A, c ∈ CI (11)
ya ∈ Z a ∈ AF (12)
za ∈ {0, 1} a ∈ AZ (13)

Variables x model the flow, which in general is nonnegative (10), but must be integer for a subset CI ⊆ C
(11). y and z model the multiplicity of the flow in constraints (6) and the choice in the zero-or-range
constraints (5), respectively. The objective coefficients βac describe the flow costs, while βFa model unit
costs per multiple, cf. (6).

We have flow conservation constraints (2) for each node which is neither in the set S of sources nor in
the set T of sinks. Furthermore, commodities can be transformed on an arc a by a function γa : C → C
and a multiplicator mac. On the left hand side, every unit of commodity c′ which flows over arc a turns
into mac′ units of commodity c when arriving at node v.

For each node v, we have a storage capacity constraint (4), limiting the amount of flow that can be
sent through it on a subset ASv ⊆ A. Zero-or-range constraints (5) for an arc set AZ ⊆ A state that the
flow over arc a must either be zero or within a range

[
`Za , u

Z
a

]
.

Flow multiplier constraints (6) for an arc set AF ⊆ A enforce the flow over a to be an integer multiple
of fa ∈ Z, where the range of multiples is given by (7). The multiplicity of is considered in the objective
function (1) by a factor βFa .

Furthermore, we have a family AK ⊆ P(A) of arc subsets A′, over which knapsack constraints (8)
limit the total amount of flow over all arcs a ∈ A′ to be within the range

[
`KA′ , u

K
A′
]
.

Finally, we have J ∈ N0 quadratic constraints (9) (required to be convex), containing linear terms Lj
(with coefficient α, arc a and commodity c) and quadratic terms Qj (again with coefficient α, but two
arcs a1 and a2 and commodities c1 and c2). Note that these are the only non-linear constraints in the
model, so if Qj = ∅ for all j, the program is a MIP.

To conclude, we consider Network Designer to be the modeler’s equivalent to the Swiss army knife.
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Unweighted Max-Cut is one of Karp’s 21 NP-complete problems; given a graph G = (V,E) it asks for a
set S ⊆ V such that the number of edges from S to V \ S is maximal. In this talk we consider an even
harder problem: (Weighted) Max-Bisection. Here we are given an undirected graph G = (V,E) and a
weight function w : E → R>0 and the task is to find a set S ⊆ V such that (i) the sum of the weights of
edges from S is maximal; and (ii) S contains roughly |V |2 vertices, that is

∣∣|S| − |V \ S|
∣∣ ≤ 1.

Preliminaries We assume that we are given a tree decomposition of width t as part of the input; a tree
decomposition is a classical decomposition of a graph into a tree structure that makes it easy to design
algorithms for problems that have a specific locality, like cut problems. To design such an algorithm, the
first step is usually to convert the decomposition into a very simple variant called nice tree decomposition,
where each node has either no child (leaf nodes), has exactly one child (introduce and forget nodes), or
has two childs (join nodes). When it has only one child, the bags corresponding to the nodes have to
differ in exactly one vertex; if, in a bottom up manner, vertex v is added compared to the child’s bag,
then we say v is introduced and the node is e introduce node; forget nodes are defined analogously.
Having obtained such a nice tree decomposition from a given tree decomposition in time O(nt2) [7], we
can obtain algorithms for cut-like problems by setting up a dynamic program.

We will use the following notation: for a node i of the tree decomposition, Xi is the corresponding
bag, Yi is the set of vertices in the subtree induced by i, that is the union of all bags associated to nodes
below i (including i); and Fi = Yi \Xi. For the sum of the edge weights of edges between two disjunct
sets A and B we write size(A,B).

Previous Algorithmic Results Jansen et al. [6] proposed an algorithm for Max-Bisection, which also
works for Max-Cut as the same table has to be computed in both cases, which is the as follows for a node
i of the decomposition:

Γi : { 0, . . . , |Fi| } × 2Xi → R>0

Γi(`, S) = max
Ŝ⊆Yi

|Ŝ|=`

S⊆Ŝ

size(Ŝ, V \ Ŝ). (1)

The idea is that for a node i the entry Γi(`, S) is the size of the largest possible cut that consists of `
vertices from Yi and includes the set S ⊆ Xi. For the root r of the tree decomposition we can compute
our objective(s) by going through all entries of Γr and picking the best value (restricted to a subset
of the in the case of Max-Bisection). A simple analysis of the algorithm yields the running time of
O(2tn3); for every node of the decomposition, there might be O(2tn) entries to be stored, and in join
nodes results of the left and the right subtree have to be combined, which might take time Ω(n2) in the
worst case. Eiben et al. [4] improved this algorithm in its dependence on n by observing that for join
node one basically has to compute the (max,+)-convolution of two sequences. They modify the nice
tree decomposition such that its height is bounded and use convolution (computable in O(n2) for two
sequences of length ≤ n) to compute the entries in join nodes. While this might still cost Ω(n2) for
a single join node, the accumulated running time for all join nodes is significantly better; their overall
running time is O(2tt5n2 logn). Hanaka et al. [5] improved the analysis of the algorithm of Jansen et al.
[6], yielding a running time of O(2t(nt)2). Again, the idea is that at a single join node might take time
Ω(n2) to compute its values but this cannot happen at all join nodes; the accumulated running time over
all join nodes is in O(2t(nt)2).
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Our Result We cautiously reformulate Equation 1

Γi : { 0, . . . , |Fi| } × 2Xi → R>0

Γi(`, S) = max
Ŝ⊆Fi

|Ŝ|=`

size(Ŝ ∪ S, V \ (Ŝ ∪ S)). (2)

In comparsion to Equation 1 we now use Γi(`, S) to store the value of the largest cut that consists of
the set S ⊆ Xi and ` further vertices that occur in bags below i, but not in Xi. We show that for a
join node i with children j and k we only need time O(2t|Fj × Fk|) to compute Γi. By definition of a
tree decomposition, the sets Fj and Fk do not share any vertex; this implies an overall running time of
O(2tn2).

Hardness Results Lokshtanov et al. [8] proved that Max-Cut cannot be solved in time O((2 −
ε)t polyn) for any ε > 0, assuming SETH. Their result can be extended to our case, where a tree
decomposition is given as advice, as they perform a reduction from 3-SAT to Max-Cut where the Max-
Cut instances consist of graphs where such a decomposition can be computed in polynomial time. Using
a standard approach (adding isolated vertices), Max-Cut can be reduced to Max-Bisection and thus the
result also applies here; hence, the dependence on t is optimal in our approach. Eiben et al. [4] showed
that for Max-Bisection (with a given tree decomposition), a truly subquadratic algorithm O(n2−ε) for
some ε > 0 would imply a truly subquadratic algorithm for (max,+)-convolution, which is considered
unlikely [3].

Possible Generalizations and Future Outlook Our result can be extended to other cut problems,
such as the minimization version of Max-Bisection, minimum edge expansion (min∅6=S⊂V

size(S,V \S)
min{|S|,|V \S|} ),

sparsest cut (min∅6=S⊂V
size(S,V \S)
|S||V \S| ), and densest cut (max∅6=S⊂V

size(S,V \S)
|S||V \S| ). The “classical” dynamic

programs of those are quite similiar to the one in [6]. As far as we know, the best known running time
for sparsest cut was in O(2tn3) [1].

Also, allowing arbitrary weights as well as allowing edges to be directed (the decomposition then has
to be a decomposition of the graph when all edges would be undirected) neither break the running time
nor correctnes of our algorithm.

Eiben et al. [4] also considered a special case of Max-Bisection where all the weights are integers be-
tween 1 andW for a givenW ∈ N. In this case they achieve a running time of O(8t poly(tW )n1.864 logn).
The underlying idea is that (max,+)-convolution can be solved in truly subquadratic time if the occuring
numbers are bounded. It would be interesting to investigate if it is possible to design an algorithm with
running time O(2tn2−ε poly(t,W )) or better for this special case; recall that for the general case, a truly
subquadratic algorithm can exist only if there is such an algorithm for (max,+)-convolution which is
considered unlikely [3, 4].
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We consider the minimum weight and smallest weight minimum-size dominating set problems in vertex-
weighted graphs. The latter is a two-objective optimization problem, which is concerned with optimizing
both weight and cardinality of the dominating set. First, we reduce the two-objective optimization
problem to the minimum weight dominating set problem by using Integer Linear Programming (ILP)
formulations. Then, under different assumptions, we employ the probabilistic method to obtain new
upper bounds on the minimum weight dominating sets in graphs. We also describe the correspond-
ing randomized algorithms for finding small-weight dominating sets in graphs and use computational
experiments to illustrate the results for two types of random graphs.

Weighted domination in graphs and networks can be used, for example, for modelling a problem
of the placement of a number of transmitters in a communication network such that every site in the
network either has a transmitter or is connected by a direct communication link to a site that has such
a transmitter. There are usually some ‘costs’ associated with placing a transmitter in each particular
location of the network, i.e. a vertex of the corresponding graph. The minimum weight dominating
set problem usually does not place any restrictions on the size of the dominating set, i.e. the number of
transmitters in this case – we only need to find a smallest weight/cost dominating set in a vertex-weighted
graph. However, the total emitted radiation in the environment would be smaller with fewer transmitters
installed. Similar facility location problems in road networks [2] and social networks [4] can be generalized
to vertex-weighted graphs and two-criteria optimization as well. See also network problems in [5].

Given a simple graph G of order n, the weight assigned to each vertex vi is denoted by wi, i = 1, ..., n.
The total weight of the graph, the minimum, maximum, and average vertex weights of G are denoted by
wG, wmin, wmax, and wave, respectively. The minimum vertex degree of G is denoted by δ = δ(G). A
set X of vertices of G is called a dominating set of G if every vertex not in X is adjacent to at least one
vertex in X. The minimum cardinality of a dominating set of G is called the domination number of G
and is denoted by γ(G). We denote by γw(G) the smallest weight of a dominating set in a graph G, and
by γ∗w(G) the smallest weight of a minimum-cardinality dominating set X in G.

The problem of finding an exact value of γ∗w(G) and the corresponding dominating set X can be
formulated as an ILP problem:

minimize z(x1, x2, . . . , xn) =
n∑

i=1
xi +

n∑

i=1

wi
wG

xi

subject to:
∑

vi∈N [vj ]

xi ≥ 1, j = 1, . . . , n,

xi ∈ {0, 1}, i = 1, . . . , n,

(1)

where a (0, 1)-decision variable xi ∈ {0, 1} is associated with each vertex vi ∈ G to indicate whether the
vertex is in the solution set X or not, having xi = 1 if and only if vi is in X, i = 1, ..., n. Reassigning
the graph vertex weights to w′i = 1 + wi

wG
, i = 1, ..., n, the ILP formulation becomes the single-objective

optimization problem of finding γw′(G) and the corresponding minimum weight dominating set in G with
respect to the vertex weights w′i, i = 1, ..., n. At optimum, we have γw′(G) = z∗ = z(x∗1, x∗2, ..., x∗n) and
as

n∑
i=1

wi

wG
x∗i < 1, we also have γ∗w(G) =

n∑
i=1

wix
∗
i . In light of these results, the problems of finding γ(G)

and γ∗w(G) in G can be considered as particular cases of the more general problem of finding γw(G) in G.
We use the probabilistic method to find several new upper bounds for γw(G) in a graph G. These

results are generalizations of the probabilistic method for the following classic upper bound for γ(G):
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Theorem 1. [1, 3] For any graph G with δ ≥ 1,

γ(G) ≤
(

1− δ

(1 + δ)1+1/δ

)
n.

The generalizations are based on the following general probabilistic construction and randomized
algorithmic framework. First, given a certain probability pi, i = 1, ..., n, we decide whether to include
each vertex vi of G into a set A, i = 1, 2, ..., n. Next, we consider the set of vertices that are not in A
and do not have a neighbour in A, which is denoted by B. The set D = A∪B will then be a dominating
set of G. By computing the expected total weight of the vertices in D, we obtain an upper bound for
γw(G). We use different ways to compute pi to obtain the upper bounds and corresponding randomized
algorithms. As the dominating set should have both small size and weight, we set pi = p · x, where p
depends on vertex degrees in G, and x depends on vertex weights in G. By trying different expressions
for x and optimizing the expected weight of D for p, we obtain the following upper bounds:
Theorem 2. For any graph G with δ ≥ 1,

γw(G) ≤
(

1− δ

(1 + δ)1+1/δ

)
wG.

Theorem 3. For a graph G with δ ≥ 1, k = wmax/wave ≤ δ + 1, and p = 1−
(

k
δ+1

)1/δ
≤ wmin/wmax,

γw(G) ≤ npwmax +
n∑

i= 1
wi (1− p)di+1 ≤

(
1− δk1/δ

(δ + 1)1+1/δ

)
kwG.

Theorem 4. For a graph G with δ ≥ 1, z = wmax/wmin ≤ δ + 1, and q = 1−
(

z
δ+1

)1/δ
,

γw(G) ≤ qzwG +
n∑

i= 1
wi (1− q)di+1 ≤

(
1− δz1/δ

(δ + 1)1+1/δ

)
zwG.

There are problem instances where the conditions of Theorem 3 are satisfied, but not those of Theorem
4 and vice versa. Also, Theorem 2 implicitly assumes that the ratio wmax/wmin is reasonably close to 1.

We implemented and tested the deterministic and randomized heuristic solution methods for both
problems on random graph instances of two types, one of which is the classic Erdös-Rényi random graph
type, and the other is a random graph type used to prove asymptotic sharpness of the upper bounds of
Theorem 1. Using the ILP formulations and a generic ILP solver (FICO R© Xpress), the exact deterministic
solutions to the problems of computing γ∗w(G) and γw(G) were found in a reasonable amount of time
of at most three hours for Erdös-Rényi random graphs of only at most 200 vertices, and the other type
of graphs of at most 560 vertices. Then, three randomized heuristics based on Theorems 2, 3, and 4
were run on each of the random graph instances. In the case of the Erdös-Rényi random graphs, the
three randomized algorithms performed similarly by the dominating set size, but the algorithm based
on Theorem 2 was less successful when searching for better solutions by weight. For the other type of
graphs, the algorithms corresponding to Theorems 3 and 4 performed better than that based on Theorem
2 by both parameters. Therefore, Theorems 3 and 4, whilst requiring stronger conditions, provide better
randomized heuristics.
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ABSTRACT
Finding connected subgraphs of maximum weight subject to addi-
tional constraints on the subgraphs is a common (sub)problem in
many applications. In this paper, we study the Maximum Weight
Connected Subgraph Problem with a given root node and a lower
and upper capacity constraint on the chosen subgraph. In addi-
tion, the nodes of the input graph are colored blue and red, and
the chosen subgraph is required to be balanced regarding its cu-
mulated blue and red weight. This problem arises as an essential
subproblem in district planning applications. We show that the
problem is NP-hard and give an integer programming formulation.
By exploiting the capacity and balancing condition, we develop a
powerful reduction technique that is able to significantly shrink the
problem size. In addition, we propose a method to strengthen the
LP relaxation of our formulation by identifying conflict pairs, i.e.,
nodes that cannot be both part of a chosen subgraph. Our computa-
tional study confirms the positive impact of the new preprocessing
technique and of the proposed conflict cuts.

1 INTRODUCTION
The Maximum Weight Connected Subgraph Problem (MWCS) is
to find a node set of maximum cumulated weight that induces
a connected subgraph in a given node-weighted graph. Popular
variants of the MWCS include a given set of roots that have to be
included in the chosen subgraph, and a capacitated (or budgeted)
variant where additional node weights and lower and upper weight
bounds for the chosen subgraph are specified. These variants occur
in various applications, and have been the subject of a number of
studies, see e.g. [2, 3, 11, 18].

In this paper, we study a variant of the rooted and capacitated
MWCS where additional balancing constraints are imposed. Emerg-
ing from an application in district planning, the nodes are divided
into blue and red nodes, and the chosen subgraph has to be bal-
anced with respect to the color weights. The problem of balancing
blue and red nodes in a connected subgraph has been studied, for
instance, in [4, 20]. The combination of balanced, rooted, and capac-
itated MWCS, however, is new and interesting in its own right. It
turns out that the combination of weight bounds and balancing con-
straints imposes a combinatorial structure that can be exploited to
shrink the problem substantially and to derive logical implications
on the shape of the subgraph.

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th 
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen, 
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

Figure 1: Exemplary BRCMWCS instance. The root node is
depicted as a yellow square, circles represent nodes inVb and
triangles nodes in Vr , node sizes correspond to weights and
colors to node profits.

The problem studied in this paper occurs as a subproblem when
designing control districts for toll enforcement inspectors on mo-
torways, see [6]. By a transition to the line graph of the motorway
network, highway sections become nodes, whose lengths then cor-
respond to node weights, and control districts are designed subject
to lower and upper length bounds. In addition, the districts are
desired to be homogeneous with respect to the traffic on its motor-
ways, and homogeneity is measured as the cumulated difference to
the median traffic of the district. Districts are generated dynami-
cally in [6] and when fixing a root as potential median traffic node,
all other nodes can be colored blue or red, representing motorways
with less or, respectively, more traffic than the root node. Enforc-
ing that the root has indeed the median traffic corresponds to the
balancing condition of the BRCMWCS. The node profits stem from
the duals of the restricted master problem, and are the only data
that changes in each pricing round.

The contributions and the structure of this paper are as follows.
In Section 2 we formalize the problem, review the literature, and
present an IP formulation. In Section 3 we propose preprocessing
methods that can drastically reduce the problem size. Section 4 is
concerned with conflict pairs, i.e., pairs of vertices that cannot be
both part of a feasible solution. Adding the resulting inequalities to
the IP can considerably strengthen the LP relaxation. We conclude
with a computational study in Section 5 that shows the strong effect
of the preprocessing and the potential of the conflict cuts.
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2 THE PROBLEM
For the Balanced, Rooted, and Capacitated Maximum Weight Con-
nected Subgraph Problem (BRCMWCS), we consider a graph G =
(V ,E) with a bipartition of the nodes V = Vb Û∪Vr into blue and
red nodes, node weights w ∈ RV≥0 and profits p ∈ RV , as well as
numbers 0 ≤ WL ≤ WU , ∆ ≥ 0, and a root node r ∈ V . The BR-
CMWCS is to find a treeT = (VT ,ET ) of weightw(VT ) ∈ [WL ,WU ],
such that r ∈ VT and |w(VT ∩Vb ) −w(VT ∩Vr )| ≤ ∆, and such that
p(VT ) is maximized. Here and in the following, we use the short
notationw(V ′) := ∑

v ∈V ′ wv for a subsetV ′ ⊆ V , and, accordingly,
for p(V ′).

Complexity. The BRCMWCS is NP-hard and the reduction can
come frommultiple angles. For instance, evenwithout the balancing
and capacity constraints, i.e., by setting ∆ andWU sufficiently large,
a reduction from the rooted MWCS (which is NP-hard due to [2]) is
possible. On the other hand, since the balanced connected subgraph
problem is NP-hard (see [4]), a reduction is also possible without
the root or capacity constraints. Note that if the rooted case could
be solved in polynomial time, the unrooted version can be solved
in polynomial time by considering every vertex as potential root
node. Finally, the capacity contraints alone make the problem NP-
hard. A reduction from the number partition problem is possible by
considering a star graph where the leaf weights are the numbers of
the partition instance and the center has weight 0. By settingWL =

WU to half of the sum of all weights, we see that the BRCMWCS is
NP-hard even without the root or balancing condition.

2.1 Related Work
The MWCS is a classical optimization problem with close rela-
tions to the family of Steiner tree problems, see e.g. [12, 19, 22]
for transformations and context. A number of papers from the
last decade study preprocessing techniques [13, 22, 23], exact ap-
proaches [1, 14, 21], or applications [3, 8, 9] for the MWCS. The
standard preprocessing approaches, however, do not carry over to
the budgeted variant, since the bounds might require the inclusion
of nodes with negative profit or the exclusion of nodes with posi-
tive profit in the optimal solution. Our paper adresses exactly this
situation.

The budgeted MWCS with a lower bound has been considered
in [15, 17, 18], but the nodes bear unit weights andWL =WU = k ,
i.e., the goal is a maximum weight connected subgraph with exactly
k nodes. While Hochbaum and Pathria [15] propose a dynamic pro-
gram that finds the optimal solution on trees and a 1

k -approximation
on general graphs, the authors of [18] reduce the problem to the
single-rooted case which is heuristically solved in [17].

The rooted and budgeted MWCS has been studied in [2, 11], but
only with an upper weight bound, i.e.,WL = 0. Both of these works
focus on the comparison of different connectivity formulations. The
results of Dilkina and Gomes [11] indicate that a single-commodity
flow is best if the upper weight bound is impractically large, while
in the other case, a formulation based on arc separation is preferred.
Álvarez-Miranda et al. [2] propose a node separator formulation,
and find that this formulation is favorable for denser graphs, com-
pared to the arc separation. Comparisons of different connectivity
formulations for the pricing problem in [6] strongly suggest that a
single-commodity flow is best suited for the BRCMWCS.

For the Balanced Connected Subgraph Problem (BCS) we are
given a graph G = (Vb Û∪Vr ,E) with nodes colored either blue or
red, and seek a maximum-cardinality subgraph that contains an
equal number of blue and red nodes. The problem was introduced
in [4] and shown to be NP-hard, even on planar, bipartite, and
chordal graph, or when a single root node is specified. When the
graph is a tree, however, Bhore et al. [4] give a labelling algorithm
to solve the BCS in time O(|V |4). Kobayashi et al. [16] improve the
runtime toO(|V |2) by running a dynamic program on a transformed
rooted binary tree with possibly additional uncolored nodes. The
authors also briefly study a weighted version of BCS and give
complexity results for special graph classes. Further complexity and
inapproximability results as well as polynomial-time algorithms for
the BCS on other special graph classes are provided in [4, 5, 10, 20].
We are not aware of any preprocessing or cutting plane approaches
to the BCS.

2.2 IP Formulation for BRCMWCS
We use a flow formulation to ensure the connectivity of the chosen
subgraphT . The idea is to construct a flow that emerges at the root
node. Each node of the chosen subgraph consumes one unit of flow,
while all other nodes satisfy flow conservation. To this end, we
consider the bidirected version D = (V ,A) ofG and introduce the
variables

• yv ∈ {0, 1} for v ∈ V indicating whether v ∈ T ,
• xa ≥ 0 for a ∈ A specifying the flow on arc a ∈ A.

The IP formulation of the BRCMWCS can then be stated as
follows.

max
x, y

∑
v ∈V

pv yv (1a)

s.t. WL ≤
∑
v ∈V

wv yv ≤ WU (1b)

∑
v ∈Vr

wv yv −
∑
v ∈Vb

wv yv ≤ ∆ (1c)

∑
v ∈Vb

wv yv −
∑
v ∈Vr

wv yv ≤ ∆ (1d)

yr = 1 (1e)∑
a∈δ−(v)

xa −
∑

a∈δ+(v)
xa = yv ∀v ∈ V \ {r } (1f)

xuv ≤ Myv ∀(u,v) ∈ A (1g)
xa ≥ 0 ∀a ∈ A (1h)
yv ∈ {0, 1} ∀v ∈ V (1i)

The objective (1a) is to maximize the profit of the chosen sub-
graph. The budget constraints are specified in (1b), and the balanc-
ing constraints in (1c) and (1d). The flow conservation is ensured by
equalities (1f). Inequalities (1g) are necessary to activate every node
that is used by the flow. The use of a bigM parameter is bad for the
LP relaxation, but necessary. It should be chosen as small as possi-
ble, and following [24],M = maxV ′⊆V {|V ′ | : w(V ′) ≤WU } − 1 is
a valid choice that can be computed with a greedy algorithm.
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3 PREPROCESSING
Computational studies show that preprocessing methods for the
MWCS generally have a huge impact on the solution time [13, 22,
23]. While the general methods for the MWCS do not carry over to
the BRCMWCS, we propose an effective approach that significantly
reduces the problem size and computation times for our problem.

The capacity constraints in combination with the balancing con-
dition allow for different reduction techniques for the BRCMWCS.
In particular, we can derive the following weight range for the
chosen blue vertices VT ∩Vb :

WL − ∆
2 ≤ w(VT ∩Vb ) ≤ min

(
WU + ∆

2 , w(Vr ) + ∆
)
. (2)

The weight range for the red color class is defined accordingly,
and we denote the respective upper weight bounds byW b

U and
W r
U . A method to discard nodes based on these color weight ranges

was proposed in [6]: For each color, we determine the color radius,
i.e., the set of nodes that can be reached from the root on a path
that satisfies the upper weight bound of the according color. The
color radius can be determined with a single shortest path tree
computation in the bidirected version of G using arc weights

w̃b
(u,v) :=

{
wv , if v ∈ Vb ,
0 , else,

and w̃r defined accordingly. Every node that is outside of the color
radius cannot be part of any feasible solution and can be removed.

Here, we propose a complementary preprocessing approach to
discard even more nodes. The bicolor radius is the set of nodes
that can be reached from the root on a path that satisfies the upper
weight bound of both color classes. Unfortunately, the bicolor radius
cannot be computed via a shortest path tree. In fact, it is essentially
a constrained shortest path problem to determine if a specified
node is inside the bicolor radius. We solve the problem with a
Bellman-Ford-like labelling algorithm. The approach is detailed
in Algorithm 1 and uses two-dimensional arc weights and node
labels (for the blue and red cumulated weight, respectively). The
upper weight bounds, given as a pair ℓmax = (W b

U ,W
r
U ), are part

of the input. We use the usual notion of domination, i.e., label ℓ1
dominates label ℓ2 if each weight in ℓ1 is less than or equal to the
corresponding weight in ℓ2 and if at least one of the inequalities is
strict. The algorithm is closely related to constrained shortest path
labelling approaches and runs in pseudo-polynomial time.

The effect of the bicolor radius preprocessing can be substantial,
and goes far beyond the single color radii. For the instance depicted
in Figure 2, the single color radii cannot exclude a single node. The
bicolor radius, on the other hand, is able to eliminate all gray nodes,
essentially eliminating half of the graph.

4 CONFLICT PAIRS
In this section, we propose a method to identify and make use of
conflict pairs in the BRCMWCS. A conflict pair consists of two
nodes u,v ∈ V that cannot be both part of a feasible solution, i.e.,
u ∈ T =⇒ v < T for any feasible solution T . For any conflict pair
(u,v) we can potentially tighten the LP relaxation of (1) with the
inequality yu + yv ≤ 1.

Algorithm 1: BicolorRadius
Input: G = (Vb Û∪Vr ,E),w, r , ℓmax
Output: set of nodes within the bicolor radius

1 Consider arc weights ω in the bidirected version of G with
ω(u,v) ←

(
w̃b
(u,v), w̃

r
(u,v)

)
;

2 ℓr ←
{
(wr , 0) , if r ∈ Vb ,
(0,wr ) , else

3 labels[v]←
{
{ℓr } , if v = r ,
� , else

;

4 L← {(r , ℓr )} ;
5 repeat
6 L′ ← � ;
7 for (u, ℓu ) ∈ L do
8 for each neighbor v of u in G do
9 ℓ′ ← ℓu + ω(u,v) ;

10 if ℓ′ respects ℓmax and is not dominated by any
label at v then

11 Add ℓ′ to labels[v] ;
12 Add (v, ℓ′) to L′ ;
13 Remove dominated labels in labels[v] ;
14 L← L′ ;
15 until L = �;
16 return all nodes with at least one label ;

The idea of analyzing conflicting pairs (or even larger sets), and
deriving stronger constraints has been proven to be very useful in
different set packing problems, such as knapsack or matching prob-
lems. The proposed idea also translates to the rooted and budgeted
MWCS, i.e., without the colors and balancing condition.

4.1 Finding Conflict Pairs
In order to identify conflict pairs, we can make use of the upper
capacity bounds introduced in Section 3 again. If for two nodes u

Figure 2: Effect of bicolor radius preprocessing. The root
node is depicted as a yellow square, the gray nodes are out-
side of the bicolor radius and can be removed.
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Algorithm 2: SteinerTreeConflictPairs
Input: D = (V ,A), r , w̃ ∈ RA≥0, wmax
Output: set C of conflict pairs

1 C ← � ;
2 len ← all pairs shortest path lengths in D w.r.t. w̃ ;
3 for all node pairs u,v ∈ V \ {r } do
4 for c ∈ V do
5 weiдht ← len[(r , c)] + len[(c,u)] + len[(c,v)] ;
6 if weiдht ≤ wmax then
7 // there is a feasible Steiner tree
8 Go to line 3 and check the next node pair ;
9 Add (u,v) to C ;

10 return C ;

and v and for every tree T = (VT ,ET ) containing r ,u, and v , we
know thatw(VT ) >WU orw(VT ∩Vb ) >W b

U orw(VT ∩Vr ) >W r
U ,

then (u,v) is a conflict pair. Deciding if there exists a tree connecting
a given set of terminal vertices at some cost, is a Steiner tree problem.
Fortunately, an elegant combinatorial approach is known for the
Steiner tree problem with three terminals. It is based on the insight
that any Steiner tree with three terminals is a union of paths from
a common center node (that is possibly a terminal itself) to the
terminals.

Building on this, Algorithm 2 describes our procedure to identify
conflict pairs. As input, we use the bidirected version D of G, the
root node r , and one of the following three weight combinations:
• w̃ with w̃(u,v) = wv , wmax =WU −wr ,
• w̃b , wmax =W b

U −wr · 1Vb (r ),
• w̃r , wmax =W r

U −wr · 1Vr (r ) ,
where 1 is the indicator function. The union of the three respective
return values of Algorithm 2 constitutes our set of conflict pairs.
The proposed algorithm runs in time O(|V |3), and for all tested
instances, it is able to identify a large number of conflict pairs.
In fact, in most cases there are so many conflict pairs that some
strategy is needed to exploit this information. We will discuss two
approaches: Deriving large conflict sets and identifying essential
conflicts.

4.2 The Conflict Graph
The individual conflict pair inequalities yu + yv ≤ 1 can be too
weak to effectively strengthen the LP relaxation. We construct the
conflict graph on the vertex set V by introducing an edge for every
conflict pair. Analogously to the set packing problem (see [7] for
details), we can derive stronger inequalities from the conflict graph:
Given an odd cycle C of length 2k + 1 in the conflict graph, the
inequality

∑
v ∈C yv ≤ k is known to be stronger than the ordinary

conflict pair inequalities. These odd-cycle cuts, however, usually
do not help the optimization process. The situation is different
when considering a clique C in the conflict graph. The clique cuts∑
v ∈C yv ≤ 1 are known to be often beneficial for the LP relaxation.
We experimented with including clique cuts to formulation (1).

Since the number of cliques is even much larger than the number
of conflict pairs, we determined an edge covering with cliques, and

only added the respective clique cuts. These additional inequalities,
however, showed to have a negative effect on the solution time in
our tests. A typical conflict clique together with an optimal solution
for the BRCMWCS instance is depicted in Figure 3. One can see that
the conflicting nodes are quite far apart and located at the boundary
of the graph. Depending on the node profits of the instance, such
clique cuts are rarely violated by the optimal LP relaxations. Hence,
we shift our focus to identifying more meaningful conflict pairs.

4.3 Essential Conflicts
Our experiments showed that the addition of all conflict cuts results
in significantly longer solution times. The same holds true if only
violated cuts are added dynamically to the program. Hence, it is
necessary to identify essential conflicts that actually facilitate the
solution process. Such conflicts presumably involve nodes that are
closer to the root node or have a high profit.

In order to specify these nodes, we define a scoring function that
assigns a value from the interval [−1, 1] to every vertex. A positive
profit as well as a small ratio between the shortest r -v-path length
andWU increase the score of node v . Essential conflicts are then
defined as all conflict pairs between nodes with a positive score.
Figure 4 shows the node scores and all resulting essential conflicts
for an exemplary instance. Observe that the conflict sets are now
much more central. Again, we determine an edge clique cover of
the essential conflict graph and only added the respective clique
cuts.

5 COMPUTATIONAL RESULTS
In our computational study, we evaluate the impact of the bicolor
preprocessing and the conflict pair cuts. We ran the experiments
on machines equipped with Intel Xeon E3-1234 CPUs with 3.7GHz
and 32GB RAM. The code is written in Python 3.6 and to solve
IPs Gurobi 9.1 is used. The instances stem from a transit network
generator used in [6]. These networks are edge weighted with a
length and a traffic value. We transform the transit networks into
node weighted graphs. The weight of a node represents the length
of the corresponding edge. As a root we chose a random node and

Figure 3: The nodes of an exemplary conflict clique are col-
ored red, an optimal solution is colored blue.
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Table 1: Reduction effect of the preprocessing and numbers
of (essential) conflict pairs for instances grouped with re-
spect to the four different weight bounds W1-W4.

group rp cp1 ecp1 cp2 ecp2
W1 227.7 13624.1 110.0 30426.5 146.6
W2 95.2 11132.1 103.0 46410.6 175.9
W3 25.3 4033.5 56.7 38420.7 146.0
W4 3.7 156.1 6.8 18688.0 78.2

the color of a node depends on whether the traffic value is higher
or lower than the traffic at the root. Finally, ∆ is set to the weight
of the root node.

We constructed 5 such network instances where the number of
nodes ranges from 563 to 569 and the number of edges from 845 to
885. For each network, we consider 9 different profits: 3 are actual
reduced costs from the pricing problem from [6], 3 are distributed
uniformly at random in the interval [−1, 1], and 3 are based on the
normal distribution to thin out extreme profits. For one instance
per profit class, we also used a random partition into red and blue
vertices. Finally, we consider 4 different upper weight bounds that
lie between 40% and 75% of the graph diameter, and are motivated
by our application. The lower bounds were set to half of the upper
bounds but showed no effect in any computation. Altogether we
have 5 · 12 · 4 = 240 test instances.

The base variant of the study is the formulation without pre-
processing and conflict cuts, which is denoted by 00. To assess the
impact of the proposed preprocessing, we consider the variant 10.
For a broader perspective, we consider two sets of conflict pairs
generated by Algorithm 2: The set cp1 is the union of the return
values for the input w̃b and w̃r . The set cp2, on the other hand, is
the combined output of all three weight combinations. The essen-
tial conflict sets ecp1 and ecp2 are formed by the presented scoring
function. To evaluate the impact of the conflict pairs, we consider
the variant 11 where, in addition to the preprocessing, conflict cuts

Figure 4: Essential conflicts and node scores of an exemplary
instance.

Table 2: Comparison of average computation times (in sec-
onds) for different variants and instance groups.

group 00 10 11 12 1*

small 42.3 22.7 23.8 23.9 21.6
medium 255.8 170.3 171.3 176.2 149.8
large 1996.7 1775.9 1527.6 1478.1 1188.0

to the set ecp1 are added, and the variant 12 defined accordingly
with the set ecp2.

Table 1 shows the impact of the preprocessing and the number
of generated (essential) conflict pairs. The instances are partitioned
into four groups corresponding to the upper weight bounds. We
report on the average numbers of removed nodes by the preprocess-
ing and of (essential) conflict pairs for the two described variants.
Overall, we observe that with increasing upper weight bound, the
effect of the preprocessing and the number of conflict pairs decrease.
Also observe that most conflict pairs are found with respect to w̃ ,
and that the reduction to essential conflict pairs is significant in
either case. Finding a decent subset of conflict pairs that support the
solution process is a big challenge. We proposed a scoring function
to determine a set of essential conflicts. While our computational
results show that this approach is already beneficial in many in-
stances, we like to point out that the potential of the conflict cuts is
even larger. To this end, we consider another hypothetical variant,
1*, that assumes for every instance the preferred cuts from ecp1
or ecp2. Consequently, the variant 1* is attributed the minimum
runtime of 11 and 12 for each instance. This variant essentially
simulates a superior way to determine essential conflicts.

In order to compare the variants, we partition the 240 instances
into three groups based on the magnitude of the computation time
for the base variant: small (123 instances), medium (91 instances),
and large (26 instances). All instances and instance-wise computa-
tional results are available in an online supplement1 to this article.
Table 2 contains the cumulated results. We report the geometric
mean of the runtimes in seconds for the respective groups and
variants. We opt for the geometric instead of the arithmetic mean
to lessen the impact of outliers. In particular, there is one large
instance that profits immensely from the additional cuts (speed-up
factor 40).

We can observe that the preprocessing clearly helps to reduce
the average computation times. While there are also instances
where the preprocessing has a smaller or even a negative effect, the
positive impact of the proposed method prevails in all groups. In
terms of the conflict cuts, the impact is not so obvious. On average,
for the small and medium instances, the cuts together with the
preprocessing are slightly worse than the preprocessing alone. For
the large instances, most of the positive impact admittedly stems
from the single outlier instance. Nevertheless, a smaller positive
effect remains when excluding this instance.

The average values, however, do not paint the whole picture.
On many instances, one of the conflict cut variants is significantly
better than variant 10, on many other instances, the reverse is true.
Interestingly, the variants 11 and 12 are often complementary, i.e.,
1https://github.com/stephanschwartz/brcmwcs

Session 1B: graph theory 1

INOC 2022 36 Aachen,7–10 June 2022



INOC 2022, June 7-10, 2022, Aachen, Germany

one set of essential cuts is much more favorable than the other. In
order to assess the potential of the conflict cuts, variant 1* serves
as an oracle that always chooses the better of the two essential
conflict sets. Indeed, we find that on average, this variant performs
best in all groups. Furthermore, the positive impact increases for
harder instances.

When considering the different variants over all instance classes,
there is no clear indication on which classes some variant performs
better than another. We cannot observe that a certain variant is
dominant on a specific network instance. The same holds true for a
specific profit class or weight bound. Even for the 15 instances that
have a sibling only varying in node colors, the performance of the
variants is vastly different for the pairs. Thus, it remains open in
which cases the single variants are best. As one can expect, however,
the computation time increases with larger (upper) weight bounds,
since the number of feasible subgraphs drastically increases.

6 CONCLUSIONS AND OUTLOOK
In this paper, we studied a variant of the Maximum Weight Con-
nected Subgraph problem that arises as a subproblem in a districting
application. A distinct feature of the problem is that the chosen sub-
graph has to meet a given cumulated weight range and is required
to have a similar weight of red and blue nodes. We use these fea-
tures to develop a preprocessing method that is able to considerably
reduce the average problem size and computation time.

In addition, we propose a method to identify node pairs that can-
not be both part of a feasible solution. By considering the emerging
conflict graph, we can strengthen the packing condition. The main
problem, however, is to identify an appropriate subset of conflict
pairs to add. To this end, we introduce a node scoring function
that favors nodes close to the root and nodes with positive profit.
Employing this scoring function, we generate two different sets of
essential conflicts that are added to the IP formulation. Our compu-
tational results show that each of the sets individually has a positive
impact on a number of instances. If we artificially choose the better
set for each instance, the advantage of the conflict cuts becomes
obvious. This suggests that the conflict cut approach is well suited
for this problem, and that future work should aim to discover which
conflict sets are essential for a given instance.
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The conjecture of Beineke and Harary states that for any two vertices which can be separated by k
vertices and l edges, but neither by k vertices and l−1 edges nor k−1 vertices and l edges, there are k+ l
edge-disjoint paths connecting these two vertices of which k + 1 are internally disjoint. We prove this
conjecture for l = 2 and every k ∈ N.

Connectivity is an extensively studied property of graphs. A well-known Theorem of Menger estab-
lishes equality between the vertex connectivity for a given pair of non-adjacent vertices and the maximum
number of internally disjoint paths between this pair as well as the edge connectivity for a given pair
of vertices and the maximum number of edge-disjoint paths between this pair. There are many vari-
ation and extensions of Menger’s Theorem. For example Aharoni and Berger [1] proved a version of
Menger’s Theorem for infinite graphs and Borndörfer and Karbstein [4] interpreted and proved Menger’s
Theorem in hypergraphs. Here we focus on a form of connectivity in which vertices and edges may be
removed at the same time. One variant of mixed connectivity was considered by Egawa, Kaneko and
Matsumoto [5]. They prove the following mixed version of Menger’s Theorem: Between two vertices v, w
of a graph there are λ edge-disjoint unions of k internally disjoint paths if and only if for each set S of
0 ≤ r ≤ min{k − 1, |V (G)| − 2} vertices the graph G− S contains λ(k − r) edge-disjoint v-w paths.

Beineke and Harary [2] proposed an alternative form of mixed connectivity between pairs of vertices.
They call a pair of non-negative integers (k, l) connectivity pair for distinct vertices s and t if they can
be separated by removing k vertices and l edges, but neither by k vertices and l − 1 edges nor k − 1
vertices and l edges. In the same publication Beineke and Harary claim to have proved a mixed version
of Menger’s Theorem: If (k, l) is a connectivity pair for s and t, then there exist k + l edge-disjoint s-t
paths k of which are internally disjoint. Mader [8] pointed out that the proof is erroneous.

More recently, mixed connectivity has been revisited by Erveš and Žerovnik [7], who regard trans-
ferrance of mixed connectivity along cartesian graph products and bundles, and Bonnet and Cabello [3]
who regard the parametrized complexity of mixed connectivity.

The main focus here, however, is the conjecture by Beineke and Harary. The most meaningful result
on the conjecture to date is due to Enomoto and Kaneko [6]. They first extended the conjecture claiming
that it is possible to find k+ 1 internally disjoint paths instead of just k under the additional assumption
that l ≥ 1 and then proved their statement for certain k and l.

Theorem (Enomoto and Kaneko [6]). Let q, r, k and l be integers with k ≥ 0 and l ≥ 1 such that
k + l = q(k + 1) + r, 1 ≤ r ≤ k + 1, and let s and t be distinct vertices of a graph G. If q + r > k and if
(k, l) is a connectivity pair for s and t, then G contains k + l edge-disjoint s-t paths of which k + 1 are
internally disjoint.

From our studies the following conjecture originally formulated by Beineke and Harary and extended
by Enomoto and Kaneko may hold.

Conjecture (Beineke-Harary-Conjecture). Let G be a graph, s, t ∈ V (G) distinct vertices and k, l non-
negative integers with l ≥ 1. If (k, l) is a connectivity pair for s and t in G, then there exist k + l
edge-disjoint paths, of which k + 1 are internally disjoint.

We prove this conjecture for l = 2 and any k ∈ N. It is worth noting that for l = 2 the conjecture
has not been proved for any k > 1. In particular, the result of Enomoto and Kaneko does not apply to
these cases and their proof does not appear to have an easy adaption for these cases. The techniques
used to prove the conjecture for l = 2 are novel. The main idea is to start with k internally disjoint paths
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and then find the missing path by inductively moving through the graph and adjusting the k internally
disjoint paths whenever necessary.

Our result is the first significant progress on the conjecture since 1994. It is possible, that the
techniques used in the proof may be adjusted to play a role in proving the conjecture for further k and
l, though they do not have an easy adaption to further cases. The result can also be exploited to prove
the conjecture for certain graph classes. We illustrate this by showing that the conjecture holds for all k
and all l if the underlying graph has treedwidth at most 3.
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ABSTRACT
In this paper, we consider a variant of the Traveling Salesman
Problem (TSP), called Balanced Traveling Salesman Problem (BTSP)
[7]. The BTSP seeks to find a tour which has the smallest max-
min distance : the difference between the maximum edge cost and
the minimum one. We present a Mixed Integer Program (MIP) to
find optimal solutions minimizing the max-min distance for BTSP.
However, minimizing only the max-min distance may lead to a
tour with an inefficient total cost in many situations. Hence, we
propose a fair way based on Nash equilibrium [5], [11] to inject the
total cost into the objective function of the BTSP. We consider a
Nash equilibrium as it is defined in a context of fair competition
based on proportional-fair scheduling. For BTSP, we are interested
in solutions achieving a Nash equilibrium between two players:
the first aims at minimizing the total cost and the second aims
at minimizing the max-min distance. We call such solutions Nash
Fairness (NF) solutions. We first show that NF solutions for BTSP
exist and may be more than one. We show that NF solutions are
Pareto-optimal [10] and can be found by optimizing a sequence of
linear combinations of the two players objectives based onWeighted
Sum Method [13]. We then focus on extreme NF solutions which
are NF solutions having either the smallest value of total cost or the
smallest max-min distance. Finally, we propose a Newton-based
iterative algorithm which converges to extreme NF solutions in a
polynomial number of iterations. Computational results on small-
size instances from TSPLIB will be presented and commented.

1 INTRODUCTION
The Balanced Traveling Salesman Problem (BTSP) is a variation
of the classical Traveling Salesman Problem (TSP) where instead
of finding a Hamiltonian tour minimizing the total cost, we find a
tour minimizing the max-min distance. The latter is the difference
between the maximum edge cost and the minimum one in the tour.
BTSP has been introduced by Larusic and Punnen (2011) [7] for
finding Hamiltonian tours in several cases where the equitable
distribution of edges are important, for example, the nozzle guide
vane assembly problem [12] and the cyclic workforce scheduling
problem [15].
BTSP can be formally defined as follows. Given an undirected graph
G = (V ,E) where V = [n] := {1, . . . ,n}, |E | =m, ci j ∈ R+ is a cost
associated with every edge ij ∈ E and let Π(G) denote the set of all

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th 
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen, 
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

Hamiltonian cycles in G, BTSP can be defined as

min
H ∈Π(G)

{
max
i j ∈H

ci j − min
i j ∈H

ci j

}
. (1)

BTSP is NP-hard as the problem of finding a Hamiltonian cycle inG
can easily be reduced to it. In [7], the authors proposed four thresh-
olds heuristic algorithms to solve this problem. More precisely,
distinct elements of c are firstly sorted in the ascending direction,
i.e. z1 < · · · < zp . The proposed algorithms find a pair (zi , zj ) satis-
fying (i) a subgraph ofG with the edge set {(i, j) ∈ E |zi ≤ ci, j ≤ zj }
is Hamiltonian, and (ii) zi − zj is as small as possible. The existence
of Hamiltonian cycles in subgraphs is verified by necessary condi-
tions for a tour and heuristic procedures instead of exact algorithms
that are highly computationally expensive. As a consequence, the
optimality of obtained solutions is not certified. Moreover, by mini-
mizing only the max-min distance, the total cost of edges used in
the tour is neglected and it may lead to very inefficient tours in
many situations.

Another work relating to the fairness of a tour in TSP is the
equitable TSP proposed by Kindable et al. [6]. In the equitable TSP,
one tends to minimize the absolute difference between the total
cost of two perfect matchings, which form a Hamiltonian cycle
in a graph. The problem is presented with the example about the
uniform distribution of distances to pedal for two people. Two inte-
ger programming formulations are proposed to solve the equitable
TSP exactly. However, this problem also may not guarantee the
efficiency of a tour in terms of the total cost.

In this paper, to overcome the possible inefficiency of the solu-
tions for BTSP, we propose a fair way based on Nash equilibrium to
inject the total cost into the objective function of BTSP. Nash equi-
librium is the most common optimality notion for sharing resources
among users [5],[11]. We consider a Nash equilibrium to be fair as
it is defined in a context of fair competition based on proportional-
fair scheduling that aims to provide a compromise between the
utilitarian rule - which emphasizes overall system efficiency, and
the egalitarian rule - which emphasizes individual fairness. For
BTSP, we are interested in solutions achieving a Nash equilibrium
between two players: the first aims at minimizing the total cost
and the second aims at minimizing the max-min distance. We call
such solutions Nash Fairness (NF) solutions. We first show that NF
solutions for BTSP exist and may be more than one. We show that
NF solutions are Pareto-optimal [10] and can be found by optimiz-
ing a sequence of linear combinations of the two players objectives
based on Weighted SumMethod [13]. We then focus on extreme NF
solutions which are NF solutions having either the smallest value
of total cost or the smallest max-min distance. Finally, we propose
a Newton-based iterative algorithm which converges to extreme
NF solutions in a polynomial number of iterations. Computational
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results on small size instances from TSPLIB will be presented and
commented.

The paper is organized as follows. In Section 2, we present a
mathematical formulation for BTSP. The notion of Nash fairness
solution will be discussed in Section 3. In particular, we prove
the existence of NF solutions for BTSP and show that they are
optimal solutions of a weighted sum objective problem. In Section 4,
Newton-based iterative algorithms for finding extreme NF solutions
is given. Computational results on small size instances from TSPLIB
will be presented and discussed in Section 5.

2 MIP FORMULATION FOR BTSP
Although several heuristic algorithms [7] have been developed for
this problem, there is no exact formulation for the BTSP mentioned
in the literature to the best of our knowledge. To formulate a MIP
for BTSP, we first consider the directed version of G by replacing
every edge ij by two arcs (i, j) and (j, i). The costs ci, j and c j,i
associated respectively with (i, j) and (j, i) are both equal to ci j . A
Hamiltonian tour in the original undirected graph G correspond
now to a directed tour in the directed version. We propose a MIP
formulation (for complete graph G) for the BTSP as follows:

min t (2a)

s.t.
∑
j ∈[n]

x j,i = 1 ∀i ∈ [n] (2b)

∑
j ∈[n]

xi, j = 1 ∀i ∈ [n] (2c)

∑
i ∈Q

∑
j,i, j ∈Q

xi, j ≤ |Q | − 1 ∀Q ⊂ V (2d)

t ≥ u − l (2e)
u ≥ ci, jxi, j ∀i, j ∈ [n] (2f)

l ≤
∑
j ∈[n]

ci, jxi, j ∀i ∈ [n] (2g)

xi, j ∈ {0, 1} ∀i, j ∈ [n]. (2h)

where xi, j is the binary variables representing the occurrence of
arc (i, j) in the solution tour. The constraints (2b), (2c) are respec-
tively the in-degree and out-degree constraints which assure that
there is exactly one incoming arc and one outgoing arc incident to
every vertex. The constraints (2d) are the subtour elimination con-
straints. These constraints represent the classical Held-Karp (linear
programming) relaxation for the Asymmetric Traveling Salesman
Problem. Together with the integral constraints (2h), they assure
that the solution is a tour. In order to calculate the max-min distance
t , we need to determine the largest and the smallest edge costs u
and l in the solution tour. Constraints (2f) obviously allow to bound
u from below by the largest weight arc in the solution tour. There
will be exactly one non null term in the sum in the right hand side
of constraints (2g) as there is exactly one arc leaving each vertex i .
This non null term represents the weight of the arc leaving i in the
solution tour. Hence, constraints (2g) allow to bound l from above
by the smallest arc weight in the solution tour. As t is minimized, u
and t will respectively take the values of the largest and the smallest
edge costs.

Table 1: The BTSP results in TSPLIB instances

Instance Heuristic algorithms [7] Formulation (2)
att48 192 190
gr48 48 46
berlin52 151 149
brazil58 1125 1097

We have designed a special-purpose branch-and-cut algorithm
based on Formulation (2). Despite of the simplicity of the latter, the
algorithm is capable to find an optimal solution for instances of
BTSP up to 80 vertices within 1 hour CPU time. Our experiments on
instances from TSPLIB have been able to certificate the optimality
of solutions found by heuristic algorithms in [7]. Furthermore, as
shown in Table 1, our exact algorithm have disproved the optimality
of the solution given in [7] for several instances.

However, the purpose of this paper is not to design exact solu-
tions for BTSP and to compare with the results in [7]. Since optimal
solutions for BTSP may not be very efficient in terms of the total
cost, the purpose of the paper is to inject the latter into the objective
function in some fair ways allowing a trade-off between the two
objectives. The rest of the paper will be devoted to this question.

3 NASH FAIRNESS SOLUTIONS FOR BTSP
3.1 Characterization of NF solutions
Nash fairness (NF) solutions for maximizing the utilities of two-
player problem [5] are defined by using the Nash standard of com-
parison. Under the latter, a transfer of utilities between the two
players is considered to be fair if the percentage increase in the
utility of one player is larger than the percentage decrease in utility
of the other player [1].

Proportional fairness is a generalized NF solution for multiple
players. In that setting, the fair allocation should be such that, if
compared to any other feasible allocation of utilities, the aggregate
proportional change is less than or equal to 0 [5], [1], [11].

LetU be a set of possible states of the world or alternatives and
let I be a finite set, representing a collection of individuals. For each
i ∈ I , ui : U −→ R+ be a utility function, describing the amount
of happiness an individual i derives from each possible state such
that we prefer the alternative x to the alternative y if and only if
ui (x) ≥ ui (y).

Definition 3.1. [1] xN F ∈ U be a NF solution in multiple players
problem if and only if

n∑
j=1

uj (x) − uj (xN F )
uj (xN F ) ≤ 0, ∀x ∈ U , (3)

where uj (x) > 0, ∀j ∈ I ,∀x ∈ U .

Let P ,Q represent the total cost and the max-min distance in
a feasible solution tour for BTSP. We have then P > Q ≥ 0. We
first suppose that Q > 0. As P ,Q now are two positive utility
functions, we have a two-player problem. In the usual definition
of NF solutions [5], [1], the alternative assigned a greater value is
preferred. However, in BTSP, we prefer the alternative assigned a
smaller value for two utility functions P and Q . Thus, we need to
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modify the sign of each term representing the proportional change
in Definition 3.1.

In the remainder of this paper, we consider (P ,Q) as the solution
for the total cost and the max-min distance corresponding to a feasi-
ble solution tour. Let (P∗,Q∗) be a NF solution for BTSP, condition
(3) can be translated into the context of BTSP as follows

P∗ − P
P∗

+
Q∗ −Q
Q∗

≤ 0, ∀(P ,Q) ∈ S, (4)

which is equivalent to

PQ∗ +QP∗ ≥ 2P∗Q∗, ∀(P ,Q) ∈ S, (5)

where S is the set of solutions (P ,Q) corresponding to all feasible
solution tours for BTSP in G.

We note that in case Q∗ = 0, the condition (5) is also satisfied.
Hence, NF solution for BTSP can be generally stated as follows

Lemma 3.2. (P∗,Q∗) ∈ S be a NF solution for BTSP if and only if
PQ∗ +QP∗ ≥ 2P∗Q∗, ∀(P ,Q) ∈ S .

Remark 3.3. (P , 0) is always a NF solution (i.e a solution tour
with all equal edge costs).

3.2 Existence of NF solutions
In this section, we first show the existence of NF solutions for
BTSP. Let us recall that in the classical multiple players problem
mentioned in Section 3.1 where we prefer the alternative assigned
a greater value, the NF solution can be obtained with the objective
function

max
n∑
j=1

log uj ,

provided that U is convex. The necessary and sufficient first-order
optimality condition for this problem is exactly the Nash standard
of comparison principle for n players. Notice that the above NF
solution is the one maximizing the product of the utilities over U .

On the contrary in BTSP, we prefer the alternative assigned
a smaller value for two utility functions P ,Q . Thus, there exists
a NF solution which can be obtained by minimizing instead of
maximizing the product of the utilities.

Theorem 3.4. (P∗,Q∗) = argmin(P,Q )∈S PQ is a NF solution.

Proof. Obviously, there always exists a solution (P∗,Q∗) ∈ S
such that

(P∗,Q∗) = argmin
(P,Q )∈S

PQ .

Now ∀(P ′,Q ′) ∈ S we have P ′Q ′ ≥ P∗Q∗. Then

P ′Q∗ +Q ′P∗ ≥ 2
√
P ′Q ′P∗Q∗ ≥ 2P∗Q∗,

The first inequality holds by the Cauchy-Schwarz inequality.
Hence, (P∗,Q∗) is a NF solution. □

Theorem 3.4 proves the existence of one NF solution for BTSP
that minimizes PQ , or equivalently minimizes (log P + logQ). How-
ever, finding such a solution may be difficult as it requires to min-
imize a concave function. In the following, we show that all NF
solutions can be found by minimizing an appropriate linear combi-
nation of P and Q based on the Weighted Sum Method [8]. More

precisely, all NF solutions can be obtained by solving the following
optimization problem

P(α) = min αP +Q s.t (P ,Q) ∈ S,
where α ∈ [0, 1] is the coefficient to be determined. For solving
P(α), we can solve the MIP (2) in Section 2 with αP + Q as the
objective function instead of Q .

Let α ∈ R+ and (Pα ,Qα ) be an optimal solution of P(α). Denote
Tα := αPα −Qα and C0 := {α ∈ R+ |Tα = 0}. Due to the definitions
of P and Q : P ,Q respectively represent the total cost and the max-
min distance in a solution tour, we always have P > Q ≥ 0. Hence,
if α ∈ C0 then α < 1, if not Tα ≥ Pα −Qα > 0.

Theorem 3.5. (P∗,Q∗) ∈ S is a NF solution if and only if there
exists a coefficient α∗ ∈ C0 such that (P∗,Q∗) is an optimal solution
obtained by solving P(α∗).

Proof. Firstly, let (P∗,Q∗) be a NF solution and α∗ = Q∗/P∗.
We will show that (P∗,Q∗) is an optimal solution of P(α∗).

Since (P∗,Q∗) is a NF solution, we have
P ′Q∗ +Q ′P∗ ≥ 2P∗Q∗, ∀(P ′,Q ′) ∈ S, (6)

Since α∗ = Q∗
P ∗ , we have α

∗P∗ +Q∗ = 2Q∗.
Dividing two sides of (6) by P∗ > 0 we obtain

2Q∗ ≤ Q∗

P∗
P ′ +Q ′, ∀(P ′,Q ′) ∈ S, (7)

So we deduce from (7)
α∗P∗ +Q∗ ≤ α∗P ′ +Q ′, ∀(P ′,Q ′) ∈ S,

Hence, (P∗,Q∗) is an optimal solution of P(α∗) and then α∗ ∈ C0.
Now suppose α∗ ∈ C0, we show that (P∗,Q∗) is a NF solution.
Since T ∗ = α∗P∗ −Q∗ = 0, we have

α∗ = Q∗

P∗
.

If (P∗,Q∗) is not a NF solution, there exists a solution (P ′,Q ′) ∈ S
such that

P ′Q∗ +Q ′P∗ < 2P∗Q∗,
We have then

αP ′ +Q ′ = P ′Q∗ +Q ′P∗

P∗
<

2P∗Q∗
P∗

= α∗P∗ +Q∗,

which contradicts the optimality of (P∗,Q∗). □

Corollary 3.5.1. NF solutions are Pareto-optimal solutions over
S .

Proof. Base on Theorem (3.5), all NF solutions can be obtained
by solving P(α). Now let (P∗,Q∗) be the corresponding NF solution
of P(α∗), we will show that (P∗,Q∗) is Pareto-optimal solution over
S by contradiction.

Let us assume that there exists another solution (P ′,Q ′) ∈ S
such that P ′ < P and Q ′ < Q . We have then

α∗P ′ +Q ′ < α∗P∗ +Q∗,

which contradicts the optimality of (P∗,Q∗).
Hence, NF solutions are Pareto-optimal solutions over S . □

The following remark asserts that there may be more than one
NF solution for BTSP.
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Remark 3.6. Let (P ,Q) and (P ′,Q ′) be two different feasible so-
lutions in BTSP. The two inequalities

P ′Q +Q ′P ≥ 2PQ and P ′Q +Q ′P ≥ 2P ′Q ′.

may be satisfied simultaneously.

The main question now is how to determine a coefficient α∗
allowing to find a NF solution according to Theorem 3.5. In the
next section, we present an iterative algorithm converging to α∗ in
a polynomial number of iterations. The value of α∗ found by this
algorithm corresponds to the NF solutions with the smallest total
cost or the smallest max-min distance.

4 ALGORITHMS FOR FINDING EXTREME
NASH FAIRNESS SOLUTIONS

As shown by Remark 3.6, there may be many NF solutions for
an instance of BTSP. Among these solutions, two solutions may
naturally be preferred to the others: the one with the smallest
P and the one with the smallest Q . Let us call the first Efficient
Nash Fairness (ENF) solution and the second Balanced Nash Fairness
(BNF) solution. We call both ENF solution and BNF solution extreme
Nash Fairness solution. In the following, we will focus first on
ENF solution. As we will argue at the end of the section, all the
subsequent results applied to ENF solution can be also applied to
BNF solution with slight changes.

Theorem 4.1. The ENF solution is unique.

Proof. Suppose (P ,Q) and (P ′,Q ′) are two ENF solutions. By
the definition of ENF solution, we have P ≤ P ′ and P ′ ≤ P that
imply P = P ′.

Furthermore, (P ,Q) and (P ′,Q ′) also are NF solutions. Hence

P ′Q +Q ′P ≥ 2PQ and P ′Q +Q ′P ≥ 2P ′Q ′.

Since P = P ′ > 0, we have

Q +Q ′ ≥ 2Q and Q +Q ′ ≥ 2Q ′.

These equations lead to Q = Q ′. □

We propose now an algorithm to find the coefficient α∗ such that
the optimal solution (P∗,Q∗) obtained by solving P(α∗) is the ENF
solution. This algorithm is inspired from the application of Newton
method (or the Newton-Raphson method) to linear fractional pro-
grams that was first discussed by Isbell and Marlow [4] and then
generalized to nonlinear fractional programs by Dinkelbach [3]. It
is often called the Dinkelbach method. The algorithm can be stated
as follows.

where Xi represents the solution tour correspond to (Pi ,Qi ).
Denote {αi } as the sequence constructed by Algorithm 1. We

will prove that Algorithm 1 terminates in a polynomial number of
iterations and the obtained solution (Pi ,Qi ) is the ENF solution.
Our proof will use the following lemmas.

Lemma 4.2. Let α ,α ′ ∈ R+ and (Pα ,Qα ), (Pα ′ ,Qα ′) be the opti-
mal solutions ofP(α) andP(α ′) respectively, ifα ≤ α ′ then Pα ≥ Pα ′

and Qα ≤ Qα ′ .

Algorithm 1
Input: An undirected graph G with n vertices, m edges and a

positive cost vector c ∈ Rm+ .
Output: A Hamiltonian tour corresponding to the ENF solution.
1: α0 ← 1, i ← 0
2: repeat
3: solve P(αi ) to obtain (Pi ,Qi ) and Xi
4: Ti ← αiPi −Qi
5: αi+1 ← Qi/Pi
6: i ← i + 1
7: until Ti = 0
8: return (Pi ,Qi ,Xi ).

Proof. The optimality of (Pα ,Qα ) and (Pα ′ ,Qα ′) gives
αPα +Qα ≤ αPα ′ +Qα ′ , and (8a)
α ′Pα ′ +Qα ′ ≤ α ′Pα +Qα (8b)

By adding both sides of (8a) and (8b), we obtain (α−α ′)(Pα −Pα ′) ≤
0. Since α ≤ α ′, it follows that Pα ≥ Pα ′ .

On the other hand, inequality (8a) implies Qα ′ −Qα ≥ α(Pα −
Pα ′) ≥ 0 that leads to Qα ≤ Qα ′ . □

Lemma 4.3. During the execution of Algorithm 1, the sequence {αi }
is always non-negative and non-increasing. Moreover,Ti ≥ 0, ∀i ≥ 0.

Proof. We have α0 = 1 ≥ 0. Since P > Q ≥ 0 ∀(P ,Q) ∈ S , it
follows that αi+1 = Qi/Pi ≥ 0, ∀i ≥ 0.

Our proof is given by induction on i . If i = 0, then T0 = α0P0 −
Q0 = P0 − Q0 ≥ 0 and α0 = 1 ≥ Q0/P0 = α1. Suppose that our
hypothesis is true until i = k ≥ 0, we will prove that it is also true
with i = k + 1.

Indeed, we have

Tk+1 = αk+1Pk+1 −Qk+1 =
QkPk+1 − PkQk+1

Pk
. (9)

The inductive hypothesis gives αk ≥ αk+1 that implies Pk+1 ≥
Pk > 0 and Qk ≥ Qk+1 ≥ 0 according to Lemma 4.2. It leads to
QkPk+1 − PkQk+1 ≥ 0 and then Tk+1 ≥ 0.

On the other hand, from the definition of αk+2, we get

αk+1 − αk+2 =
αk+1Pk+1 −Qk+1

Pk+1
=
Tk+1
Pk+1

≥ 0. (10)

That concludes the proof. □

Lemma 4.4. Algorithm 1 terminates in a polynomial number of
iterations.

Proof. By contradiction, we first show that if Ti+1 > 0 then
Pi < Pi+1 and Qi > Qi+1.

Let assume that Pi ≥ Pi+1. According to Lemma 4.3, αi ≥ αi+1
that implies Pi ≤ Pi+1 as the result of Lemma 4.2. Thus, Pi = Pi+1.
From (9), if Ti+1 > 0 then QiPi+1 > Qi+1Pi . Since Pi = Pi+1 > 0,
we get Qi > Qi+1.

On the other hand, as (Pi ,Qi ) is the optimal solution P(αi ), it
shows that αiPi +Qi ≤ αiPi+1 +Qi+1. Using Pi = Pi+1, we obtain
Qi ≤ Qi+1 which leads to a contradiction.
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By repeating the same argument for Qi ≤ Qi+1, we also have a
contradiction.

Consequently, while Tk > 0, each ith (i ≤ k) iteration of Algo-
rithm 1 explores a Pareto-optimal solution (Pi ,Qi ) with the distinct
value of Qi .

Now let cmax
i and cmin

i be the maximum edge cost and the
minimum one in the solution (Pi ,Qi ). We have Qi = c

max
i − cmin

i
and due to the distinctness ofQi , we obtain cmax

i − cmin
i , cmax

j −
cmin
j , ∀i , j. We have then

(cmax
i , cmin

i ) . (cmax
j , cmin

j ), ∀i , j,

Thus, each Pareto-optimal solution obtained by an iteration of
Algorithm 1 has distinct pair of edges corresponding to the maxi-
mum edge cost and the minimum one. For graph G with n vertices,
we have at most O(n2) edges and then the maximum number of
distinct pairs of edges is O(n4).

Hence, the number of iterations in worst case is alsoO(n4). Con-
sequently, Algorithm 1 terminates in a polynomial number of itera-
tions. □

Theorem 4.5. We obtain the ENF solution by Algorithm 1.

Proof. Let αn be the solution obtained by Algorithm 1 and
(Pn ,Qn ) be the optimal solution of P(αn ). By the stopping criteria,
Tn = 0 and αn ∈ C0. Hence,Ti > 0 ∀i < n and then αi < αi−1 ∀i ≤
n. According to Theorem 3.5, (Pn ,Qn ) is a NF solution. We will
prove that (Pn ,Qn ) is a NF solution with the smallest total cost.

Assume that (P ,Q) is another NF solution such that P < Pn . By
Theorem 3.5, there exists α ∈ C0 such that (P ,Q) is the optimal
solution of P(α). Furthermore, α ∈ (αn ,α0] (if not, Pα ≥ Pn ). Then
there exists 0 < i ≤ n such that α ∈ (αi ,αi−1]. Since α ≤ αi−1,
P ≥ Pi−1 and Q ≤ Qi−1 due to Lemma 4.2. Thus, we get

Q

P
≤ Qi−1

Pi−1
(11)

By the definitions of α and αi , inequality (11) is equivalent to α ≤ αi
which leads to a contradiction. Hence, (Pn ,Qn ) is the ENF solution.

□

For finding the BNF solution, we use a similar algorithm starting
from α0 = 0 instead of 1. In this case, the sequence {αi } is always
non-negative, non-decreasing and Ti ≤ 0 ∀i ≥ 0. After a polyno-
mial number of iterations, we also obtain a coefficient αn ∈ C0 and
then we can prove that the optimal solution (Pn ,Qn ) obtained by
solving P(αn ) is exactly the BNF solution. More precisely, we state
this algorithm as follows.

Algorithm 2
Input: An undirected graph G with n vertices, m edges and a

positive cost vector c ∈ Rm+ .
Output: A Hamiltonian tour corresponding to the BNF solution.
1: α0 ← 0, i ← 0
2: repeat
3: solve P(αi ) to obtain (Pi ,Qi ) and Xi
4: Ti ← αiPi −Qi
5: αi+1 ← Qi/Pi
6: i ← i + 1
7: until Ti = 0
8: return (Pi ,Qi ,Xi ).

Then, we also state some lemmas and theorems to prove that we
obtain BNF solution by using Algorithm 2.

Lemma 4.6. During the execution of Algorithm 2, the sequence {αi }
is always non-negative and non-decreasing. Moreover,Ti ≤ 0, ∀i ≥ 0.

Lemma 4.7. Algorithm 2 terminates in a polynomial number of
iterations.

Theorem 4.8. We obtain the BNF solution by Algorithm 2.

Remark 4.9. In caseQ = 0 (i.e a solution tour with all equal edge
costs), the optimal solution of BTSP is also the BNF solution.

5 NUMERICAL RESULTS
Let us denote NFBTSP for Nash Fairness Balanced TSP, the problem
of findingNF extreme solutions for BTSP. In this section, we conduct
several experiments aiming at solving NFBTSP with Algorithms
1 and 2 on rather small size instances from TSPLIB [14]. We also
solve the classical TSP and the BTSP [7] on the same instances. The
obtained solutions for three problems will be then compared and
commented.

For solving the three problems TSP, BTSP andNFBTSP, we design
a simple branch-and-cut algorithm devoted to minimize a linear
objective function over the MIP program in Section 2 (of course, for
TSP the constraints (2f) and (2g) are exluded). We use CPLEX 12.10
to implement our branch-and-cut algorithm. The constraints (2d)
are set as lazy cuts which are generated only when being violated
by some integer solution. For BTSP and NFBTSP, we also have some
specific branching rules for variable l inspired from the threshold
algorithm [9], [7]. For NFBTSP, this branch-and-cut algorithm is
used in each iteration of Algorithms 1 and 2 to solve the subproblem
P(α). All the experiments are conducted on a PC Intel Core i5-9500
3.00GHz with 6 cores and 6 threads.

Table 2 presents the results of three problems TSP, BTSP and
NFBTSP in several instances of TSPLIB with a range of nodes from
14 to 29. For NFBTSP, we also provide the number of iterations for
finding respectively the ENF solution and the BNF solution (column
"Iters") and its corresponding final value of α . We can see by the
values of P and Q in this table that the ENF and BNF solutions
for NFBTSP strike a better trade-off between two objectives: the
total cost and the max-min distance comparing with those for the
classical TSP and the BTSP. In particular, when the solutions for
classical TSP and for BTSP are too different: small P and bigQ in the
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Table 2: TSP, BTSP and NFBTSP results on TSPLIB problems

Instance TSP BTSP ENFTSP BNFTSP
P Q Time P Q Time P Q Time Iters alpha P Q Time Iters alpha

burma14 3323 472 0.10 4986 134 0.15 4986 134 1.40 4 0.027 4986 134 0.70 2 0.027
ulysses16 6859 1452 0.51 14032 868 0.70 7047 1399 4.42 3 0.199 13670 868 17.56 3 0.063
gr17 2085 311 0.21 4138 119 0.35 2227 234 5.53 3 0.105 3346 139 8.63 4 0.042
gr21 2707 328 0.01 8630 115 0.68 2989 278 1.24 3 0.093 5945 120 18.60 3 0.020
ulysses22 7013 1490 141.46 19168 868 1.68 7070 1471 356.97 3 0.208 7070 1471 651.38 4 0.208
gr24 1272 83 0.07 3886 33 1.85 1282 81 1.17 3 0.063 3847 33 49.17 3 0.009
fri26 937 118 0.13 2458 21 2.72 980 82 24.39 3 0.084 2447 21 55.06 3 0.009
bays29 2020 140 0.55 6757 38 7.95 3449 59 2,033.04 5 0.017 4558 44 2471.15 3 0.010
bayg29 1610 86 0.31 4252 29 4.12 1817 63 44.92 3 0.035 3246 35 2567.73 4 0.011

solution for TSP and big P and small Q in the one of BTSP, the two
extreme NF solutions for NFTSP give two interesting alternatives.
More precisely, the ENF solution (respectively BNF solution) offers
a better alternative than the solution of TSP (respectively BTSP)
with a significant drop on the value ofQ (respectively P ) and a slight
growth on the value of P (respectively Q). Table 2 also indicates
that Algorithms 1 and 2 seem to converge very quickly after only
maximum 5 iterations. One important issue is the CPU time for
solving NFBTSP is quite huge comparing with the CPU time spent
for solving TSP and BTSP. A deeper analysis on the iterations of
Algorithms 1 and 2 tells us that the smaller is the value of α , the
more difficult is P(α). Especially, the CPU time spent for solving
P(α) in the last iteration occupies a very big part of the overall CPU
time. Hence, a special-purpose algorithm for solving P(α) may be
more interesting than simply optimizing a linear function over the
MIP given in Section 2.

6 CONCLUSION
In this paper, we have made use of Nash fairness equilibrium to
achieve a trade-off between the efficiency estimated by the total
cost and the balancedness estimated by the max-min distance in so-
lutions for balanced TSP (BTSP). We have proven first the existence
of Nash Fairness (NF) equilibrium solutions for BTSP. Second, we
have designed Newton-based iterative algorithms to find the two
extreme NF solutions: the one with minimum total cost and the one
with minimum max-min distance. Numerical results conducted on
small size instances from TSPLIB have shown that comparing with
the optimal solutions of the original BTSP, the NF solutions found
by our algorithm have much smaller total cost with a reasonable
augmentation of the max-min distance. An important notice is that
the results in this paper can be also applied to various balanced com-
binatorial optimization [9] problems such as balanced assignment
problem , balanced spanning tree problem [2],... Another future
development of our work is the improvement of the CPU time for
solving the problem P(α) especially when α is very small. One of
the possible direction is to study the possibility of stopping the solv-
ing of P(α) once a improved solution of (P ,Q) is obtained instead
of stopping at optimality.
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This study presents a post-disaster humanitarian delivery problem where critical relief items are dis-
tributed by drones to the affected people. After a disaster, in particular, an earthquake, the road con-
nection between supply points and gathering points where the affected people gather might be disrupted
due to possible debris on the road. To reduce the impact of having an incomplete road network, drones
can be utilized as the main delivery option to distribute relief items.

In this study, we present a two-echelon distribution network where trucks and two different types of
drones (small and big) are used to complete deliveries. At the first echelon of the network, trucks are
used to carry small drones and relief items from depot(s) to areas called launch points, from which small
drones are launched to make final deliveries to gathering points at the second echelon of the network.
Additionally, big drones with longer range and larger capacity can be used to distribute relief items to
gathering points directly from depot(s). Figure 1 represents an example of the network described above
with one depot, four launch points (indicated by ‘P’) and several gathering points. While solid and dashed
arrows represent movements of trucks and small drones, respectively, dotted arrows indicate deliveries
made by big drones.

Figure 1: An illustration of the proposed drone delivery system

As time, place and magnitude of earthquakes cannot be predicted in advance, it is not easy to know
how much relief items will be needed by the affected people before the earthquake occurs. For that
reason, we consider uncertainty of demand. Additionally, to make sure that relief items are delivered
to as many people as possible, the objective function of the problem is to minimize the expected total
unsatisfied demand over all gathering points. The problem defined on the two-echelon network consists
of selecting depot(s) and launch points to use from a candidate set of sites, allocating launch points to
depots, allocating gathering points to launch points to be served by small drones and/or to depot(s) to be
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served by big drones subject to capacity restrictions of trucks and (small and big) drones, a time bound
to complete all deliveries and range of small drones.

To the best of our knowledge, this is the first study that considers a relief distribution problem under
demand uncertainty on a two-echelon network where range-limited drones (with the help of trucks) are
used to deliver critical items within a predetermined time bound.

As a solution approach, we, first, present a two-stage stochastic programming formulation and its de-
terministic equivalent problem formulation. As solving the deterministic equivalent problem formulation
within reasonable times does not seem possible, we also implement an exact solution approach based on
the scenario decomposition algorithm proposed by [1].

To apply this study to a real-life application, a case study is conducted based on western (European)
side of Istanbul, Turkey. One of the main reasons is to choose Istanbul is that geological studies and
surveys indicate in a near future, a major earthquake is expected to happen in Istanbul.

To estimate demand, different earthquake scenarios in terms of their locations and magnitudes are
considered. While the magnitude of earthquakes are randomly generated, location information are based
on 156 earthquakes that have happened in the last ten years near Istanbul (Figure 2). By using location
and magnitude information, number of affected people are calculated by damage intensity level formulas
from geology literature ([2]) and damage percentages from past earthquakes.

Figure 2: Epicenter location of earthquakes happened in Marmara Sea (last ten years) (Google Maps,
2021)

We carry out computational experiments on the performance of the scenario decomposition algorithm,
value of stochasticity and expected value of perfect information under different parametric settings and
also sensitivity analyses are conducted by varying key parameters of the problem such as time bound and
capacity of drones.
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Abstract

In the Traveling Salesman Problem with positional consistency constraints we seek to generate
a minimum cost set of routes, where the nodes are visited by all the routes they require service
from, and consistency is verified. In this case, consistency constraints are written in terms of
the relative position a node occupies in the routes it appears in, and not in terms of service
time or arrival time ([4] and [5]). Information known a priori includes the set of nodes that
must be visited by each route and the set of nodes that require consistency.
This problem is adequate to represent an application in healthcare scheduling, where each
route represents a healthcare professional (doctor or nurse), the tasks (patients or groups and
patients) are already assigned to one or several professionals, and each work day is divided
in time slots, all in the same duration. Tasks that are performed by several healthcare
professionals must be performed by all of them at the same time. Therefore, each schedule
can be represented by a route, with the order of the nodes in the route representing the
order of the tasks in schedule and, particularly, the relative position that the node occupies
represents the allocation of the corresponding task to a time slot. Waiting time is not allowed
between tasks, however, schedules with less tasks are allowed to start later and/or end earlier
than larger schedules.
We compare several time-dependent formulations that were adapted from the literature ([1],
[2] and [3]), since such formulations rely on decision variables indexed by time, which allows us
to derive straightforward consistency constraints. In addition, a new aggregated formulation,
which is not indexed by route was proposed. This new formulation can be proved to be valid
for the problem.
Finally, these models were assessed and compared using a set of test instances with charac-
teristics derived from the application.
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1 Introduction
The angular-metric traveling salesman problem (AngleTSP) aims to find a tour visiting a given set of
vertices exactly once while minimizing the cost given by the sum of all turning angles. If the cost
is obtained by combining the sum of the turning angles and traveled distance, the problem is called
angular-distance-metric TSP (AngleDistanceTSP). We define both problems on a complete directed graph
G = (V,A) with vertex set V and arc set A.

The described problems have applications in robotics and transportation. Keeping the movements
of a robot or a vehicle as straight as possible avoids energy-consuming and hard-to-control changes in
driving direction.

Because both problems are NP-hard, Staněk et al. [1] proposed multiple heuristics. The best-
performing methods are based either on simple construction heuristics or on matheuristics. The first
ones are fast but provide an unsatisfying solution quality. The second ones lead to a superior solution
quality but are expensive in terms of runtime.

We propose a granular tabu search (GTS) that considers the geometric features of the two problems in
the design of the starting solutions and the sparsification methods. Compared with the best-performing
heuristics developed by Staněk et al. [1], GTS improves either the solution quality or the runtime, some-
times both, and finds a large number of new best-known solutions.

Section 2 describes GTS and the proposed sparsification methods, and Section 3 presents the results
and gives conclusions.

2 GTS for the AngleTSP and the AngleDistanceTSP
To generate an initial solution, we rely on two different algorithms depending on the problem under
consideration. For the AngleTSP, the literature has shown that optimal tours have a snail shell shape.
Similarly to Staněk et al. [1], we apply a construction heuristic based on convex hulls. For the AngleDis-
tanceTSP, optimal tours are often simple polygons. To obtain a closed path with no intersections, we
rely on a construction heuristic that scans the set V in counterclockwise direction.

Next, GTS is applied. GTS uses a composite neighborhood generated by three operators: relocate,
exchange, and 2-opt. Granular neighborhoods are used to speed up the search (see below). To escape
local optima, the tabu criterion forbids to reinsert an arc that has been removed by GTS for a tenure
of τ iterations. In each iteration, we carry out the best non-tabu move, which can be deteriorating
with respect to the best solution found so far. As aspiration criterion, we always permit a move that
is tabu but improves on the best solution found. Moves deteriorating the cost are evaluated according
to an extended objective function that considers the number of times the inserted arcs were accepted in
previous moves. GTS terminates after η iterations without improvement.

Sparsification strategies To reduce the neighborhood size, the number of arcs used to generate the
moves, i.e., the generator arc set Ag, is restricted. Ag is obtained by adding the arcs included in Aa and
As. The list Aa contains the arcs inserted by the accepted moves in recent iterations. When the length
limit dκa | A |e of Aa is reached, the arcs added by the oldest move are removed and those added by the
last move are inserted.
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The set As contains the arcs—if not included in Aa yet—selected by one of the two alternative
sparsification strategies: the random-based lens procedure (r-LENS) and the cost-based lens procedure
(c-LENS). Both approaches rely on a modification of the general lens procedure (LENS) introduced by
Staněk et al. [1]. In LENS, a lens of thickness γ is positioned between two vertices vi and vi+1 in a tour
such that the lens curvature intersects at these vertices. Only the vertices in this lens are considered for
inclusion in the tour between vi and vi+1. Differently from Staněk et al. [1], who apply LENS to every
arc of a tour and include all the resulting arcs in As, we further intensify the sparsification by limiting
the cardinality of As to κs percent of | A |. This implies that a criterion to select the arcs on which the
lens should be positioned has to be defined to guarantee that the most important arcs are included in
As.

Starting always positioning the lens on the arc originating from vertex vi may result in little variety
of As due to its restricted length. To prevent this, r-LENS positions the lens on the arc of a random
vertex. This ensures that different parts of the tour are targeted across iterations.

In c-LENS, the turning angles of the tour are first sorted in non-increasing order. Then, the lens is
applied from the pair of arcs defining the biggest angle to the smallest one, until the cardinality limit of
As is reached. This sparsification procedure aims to improve the most expensive parts of the tour.

For more diversification, both sparsification strategies are dynamic. In contrast to common practice in
the literature, in which the dynamics is based on variations of κs, in r-LENS and c-LENS, the sparsification
intensity is kept equal to κs. Instead, the lens thickness γ varies in the interval [γmin, 2γmin]. Enlarging
the lens thickness when improvements are hard to be found allows to insert more diverse arcs in As.

3 Computational results and conclusion
GTS was implemented in C++ and compiled using clang v.12. The experiments were performed on
an Intel(R) Xeon(R) computer with an CPU E5-2430 v2 processor at 2.50GHz with 64 GB RAM under
CentOS GNU/Linux 7. We tested GTS on the benchmark sets proposed in [1]. Tables 1 and 2 summarize
the comparison of GTS with r-LENS and c-LENS for the AngleTSP and AngleDistanceTSP, respectively,
to the non-dominated algorithms of [1]. Because GTS contains randomized elements, we performed ten
runs for each instance and report the best and average gap to the best-known solutions and the converted
runtimes for a fair comparison. All results are reported as average over all instances. GTS with r-LENS
is superior to GTS with c-LENS for both sets. For the AngleTSP instances, GTS with r-LENS shows a
good quality-runtime tradeoff, and its performance lies on the Pareto frontier. For the AngleDistanceTSP
instances, both GTS variants do even better: they dominate two state-of-the-art algorithms and achieve
the best solution quality in competitive runtimes. Moreover, GTS with r-LENS finds new best-known
solutions for 68.75% and 72.50% of the AngleTSP and the AngleDistanceTSP instances, respectively.

LPPR +M15 LPPR +M20 LPCR
1 +M15 LPCR

1 +M20 GTS r-LENS GTS c-LENS

∆best

bks (%) 1.82% 1.13% 1.51% 0.91% -0.43% -0.20%
∆avg

bks (%) 1.82% 1.13% 1.51% 0.91% 1.21% 1.22%
t(s) 245.95 290.26 256.32 299.53 275.77 333.12

Table 1: AngleTSP results: comparison of the average results of the non-dominated algorithms of [1]
with GTS with r-LENS and c-LENS, respectively.

CIF +M15 CIF +M20 NN2
S +M15 NN2

S +M20 LPCR
1 +M20 LPCR

2 +M20 GTS r-LENS GTS c-LENS

∆best

bks (%) 1.71% 1.2% 0.63% 0.48% 0.41% 0.39% -0.22% -0.13%
∆avg

bks (%) 1.71% 1.2% 0.63% 0.48% 0.41% 0.39% 0.11% 0.17%
t(s) 25.13 42.00 90.97 106.27 180.77 190.72 188.18 165.33

Table 2: AngleDistanceTSP results: comparison of the average results of the non-dominated algorithms
of [1] with GTS with r-LENS and c-LENS, respectively.
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ABSTRACT
This paper addresses a robust variant of the Ring Star Problem
where we assume that at most one hub can fail, among a given sub-
set of nodes of the network. The network should remain functional
despite this failure, which means there is an edge connecting the
neighbors of any hub that can fail, and every terminal is connected
to two different hubs that can fail or a single hub that cannot fail.
The objective is to minimize the cost of such a robust Ring Star
Network structure. The problem is addressed through an integer
linear programming formulation, and a Benders decomposition is
proposed as an alternative solution method. Computational experi-
ments are carried out to compare these two approaches, and the
results are analyzed.

KEYWORDS
Ring star problem, Robustness, Integer linear programming, Ben-
ders decomposition.

1 INTRODUCTION
Several network design, telecommunication, transportation, and
facility location problems, among many others, involve designing
networks in a tributary or backbone architecture. Different designs
of tributary and backbone networks have been proposed, see for
instance Klincewicz[8]. In this manuscript, we consider a Ring Star
network design, where a complete mixed graphwith both, arcs from
and to every node, as well as edges between any pair of different
nodes and a particular node called the depot are given. The Ring
Star Problem (RSP) introduced by Labbé et al.[10] consists in
selecting a subset of nodes that includes the depot, named hubs,
and link them with a cycle to form the ring. A node that is not a
hub is called a terminal. Each terminal is connected to exactly one
hub, forming the star topology part. The aim of RSP is to minimize
the sum of three costs corresponding to (i) selecting the subsets
of hubs, (ii) forming the ring, and (iii) connecting the terminals to
the ring. RSP is NP-hard since it contains the Traveling Salsman
Problem as a special case when the assignment costs are very large
compared to the ring costs.

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the 10th
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen,
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

RSP has been widely studied in the literature. Labbé et al.[10]
proposed a Mixed Integer Programming model, strengthened with
valid inequalities resulting from a polyhedral analysis and solved
with a Branch-and-Cut algorithm. Another exact approach that
takes advantage of the fact that the depot must be in the ring is
introduced by Kedad-Sidhoum and Nguyen[6]. Calvete et al.[1]
addressed the problem using a bilevel optimization approach and
proposed an evolutionary-based heuristic for solving RSP while
Zang et al.[13] recently proposed an ant colony system algorithm.
As a consequence of some hazardous events (failures, attacks, etc.),
designing a reliable topological network might be essential. Sur-
vivable network design problems have largely been studied in the
literature as a means to provide robustness to networks [4, 7].

In [11], Labbé et al. consider a fully connected star problem
where the selected hubs form a clique. The authors investigate the
polyhedral properties of the proposed model and develop a cus-
tom branch-and-cut algorithm for solving it. Fouilhoux et al. [3]
study a 2 edge-connected star problem where the backbone struc-
ture is a 2 edge-connected subgraph (A graph is 𝑘 edge-connected,
for a non-negative integer 𝑘 , if there are at least 𝑘 edge-disjoint
paths between any pair of nodes). In [5], Karaşan et al. consider 2
edge-connected star problems where each terminal is connected
to two selected hubs. Both papers provide integer programming
models and valid inequalities for the studied problems, analyze
facet-defining inequalities and present exact and heuristic sepa-
ration algorithms. In these works, the survivability is considered
either only for the backbone network [3, 11] or for both tributary
and backbone networks [5]. In all cases, the topological structure
may not be preserved in the case one hub fails. Indeed, as shown
in Figure 1, the backbone structure is disconnected when the hub
in the central position fails.

As a consequence of some hazardous events (failures, attacks,
etc.), designing a reliable topological network might be essential.
Survivable network design problems have largely been studied in
the literature as a means to provide robustness to networks [4, 7].
In this work, we introduce a robust version of RSP where the ring
star structure should be preserved whenever a single hub fails. The
notion of robustness adopted complies with the one introduced in
[9].

The rest of this paper is organized as follows. Section 2 defines the
robust RSP. In Section 3 an integer linear program (ILP) is proposed
to model a robust version of the RSP. In Section 4, a Benders de-
composition is presented as an alternative solution method. Finally,
computational results are presented and discussed in Section 6.
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hubs

depot

terminals

Figure 1: 2 edge-connected star (dual homed) network [5]

2 ROBUST RING STAR PROBLEM
DEFINITION

In this section we first recall the RSP definition and introduce the
robust version we study in this paper.

2.1 Ring Star Problem
We first recall the Ring Star Problem definition as proposed in
Labbé et al.[10]. It consists of selecting a subset of nodes, called hubs,
to be linked by a cycle (ring topology) and join all the terminals to
the cycle (star topology). We consider a mixed graph𝐺 = (𝑉 , 𝐸∪𝐴)
with 𝑉 = {1, 2, . . . , 𝑛} a node set where node 1 is a specific node
called the depot, 𝐸 = {𝑖 𝑗 | (𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗} an edge set and
𝐴 = {(𝑐, ℎ) | (𝑐, ℎ) ∈ 𝑉 2} an arc set.
• The Ring part aims to select a subset 𝐻 ⊆ 𝑉 and link up all
hubs of 𝐻 with a cycle using edges of 𝐸. The cost of opening
a hub 𝑖 ∈ 𝑉 is 𝑜𝑖 ∈ R+ and the cost of selecting an edge
𝑖 𝑗 ∈ 𝐸 between two hubs 𝑖 and 𝑗 is 𝑟𝑖 𝑗 ∈ R+. The depot node
has to be in 𝐻 .
• The Star requires that each terminal in 𝑇 = 𝑉 \ 𝐻 must be
connected to exactly one hub in 𝐻 . The cost of selecting
arc (𝑡, ℎ) ∈ 𝐴 to connect terminal 𝑡 ∈ 𝑇 to a hub ℎ ∈ 𝐻 is
𝑠𝑡ℎ ∈ R+.

Finally, the RSP is to design a minimum-cost Ring Star network,
composed of the sum of selecting the hubs, linking them to form
the ring, and connecting the terminals.

2.2 Robust Ring Star Problem
The Robust Ring Star Problem, referred to as 𝜌-RSP where 𝜌
stands for robust, has an additional input compared to RSP: 𝑉 ⊆ 𝑉
is a possibly empty subset of nodes that can fail if they are selected
as hubs. A hub in 𝑉 is called uncertain because it may fail, whereas
a hub in 𝑉 \𝑉 is called certain as it is not supposed to fail [12].

The 𝜌-RSP is to build a minimal cost subgraph of 𝐺 that will
always contain a ring-star topology even if a hub in 𝑉 fails. By
contrast with RSP, if a hub belongs to 𝑉 , an additional edge has to
join its two neighbors in the ring. This edge will be used if the hub

in question fails. Furthermore, each terminal is linked to the ring
by either connecting it to a single hub in 𝑉 \𝑉 (if there exist one),
or by connecting it to two hubs in 𝑉 . The 𝜌-RSP is then to design
a minimal cost robust ring-star network. Thus, it can be observed
that 𝜌-RSP reduces to RSP when 𝑉 is empty. Figure 2 shows an
illustration of the 𝜌-RSP with 𝑉 = 𝑉 \ {1, 5, 6}.

1
2
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Figure 2: An instance of the 𝜌-RSP with 𝑉 = 𝑉 \{1, 5, 6} and
𝐻 = 𝑉 \{3, 10, 11}.

3 ILP FORMULATION OF ROBUST RSP
The proposed ILP formulation of 𝜌-RSP is based on the following
decision variables: 𝑥𝑖 𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗 is set to 1 if
and only if edge (𝑖, 𝑗) ∈ 𝐸 belongs to the ring. Note that we may
sometimes refer to 𝑥𝑖 𝑗 for 𝑖 > 𝑗 , in which case the actual computer
implementation will simply replace 𝑥𝑖 𝑗 with 𝑥 𝑗𝑖 . Variable 𝑦𝑖 𝑗 ∈
{0, 1}, ∀(𝑖, 𝑗) ∈ 𝑉 2 is set to 1 if and only if terminal 𝑖 is assigned
to hub 𝑗 and; 𝑦 𝑗 𝑗 is set to 1 if 𝑗 is selected as a hub, and 0 if it is a
terminal. Finally, 𝑥 ′

𝑖𝑘
∈ {0, 1} is set to 1 if and only if 𝑖 and 𝑘 are

hubs that have a common neighbor 𝑗 that can fail in the ring ( 𝑗 is a
hub in 𝑉 ). Note that the edges for which 𝑥 ′ is one do not need to
form a cycle, for e.g. see Figure 4 and Figure 3. In Figure 3, 𝑥 ′ and
𝑥 variables equal to one are displayed. Since there are eight hubs
in the ring, there are exactly eight 𝑥𝑖 𝑗 nonzero variables and since
there are five uncertain hubs, there are exactly five 𝑥 ′𝑖 𝑗 nonzero
variables. Finally, since the smallest ring has size 3, a robust solution
must have a ring of size at least 3+1=4 in 𝜌-RSP unless all the hubs
are in 𝑉 \𝑉 . Variable 𝜎 is an integer that enforces that the ring has
a size at least 4 whenever there is at least one selected hub in 𝑉 .

We will use the set of indices 𝐽̃ = {(𝑖, 𝑗, 𝑘) ∈ 𝑉 3 : 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, 𝑗 ≠
𝑘, 𝑖 < 𝑘} and 𝑉 ≠ = {(𝑖, 𝑗) ∈ 𝑉 2 : 𝑖 ≠ 𝑗} in the ILP formulation of
𝜌-RSP:
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Figure 3: Same instance as in Figure 2 with 𝑥 and 𝑥 ′ variables
equal to one displayed and non-hubs with lesser opacity

Minimize
∑
𝑖∈𝑉

∑
𝑗 ∈𝑉
𝑖< 𝑗

𝑟𝑖 𝑗 (𝑥𝑖 𝑗 + 𝑥 ′𝑖 𝑗 ) +
∑
𝑖∈𝑉

𝑜𝑖𝑦𝑖𝑖 +
∑
𝑖∈𝑉

∑
𝑗 ∈𝑉 \{𝑖 }

𝑠𝑖 𝑗𝑦𝑖 𝑗

∑
𝑗 ∈𝑉
𝑖< 𝑗

𝑥𝑖 𝑗 +
∑
𝑗 ∈𝑉
𝑖> 𝑗

𝑥 𝑗𝑖 = 2𝑦𝑖𝑖 ∀𝑖 ∈ 𝑉 (1)

|𝑆 | − 1
|𝑉 \𝑆 |

∑
𝑖∈𝑉 \𝑆

𝑦𝑖𝑖 ≥
∑
𝑖∈𝑆

∑
𝑗 ∈𝑆
𝑖< 𝑗

𝑥𝑖 𝑗 ∀𝑆 ⊂ 𝑉 : |𝑆 | ≤ 1
2 |𝑉 | (2)

∑
𝑗 ∈𝑉 \𝑉
𝑖≠𝑗

2𝑦𝑖 𝑗 +
∑
𝑗 ∈𝑉
𝑖≠𝑗

𝑦𝑖 𝑗 = 2(1 − 𝑦𝑖𝑖 ) ∀𝑖 ∈ 𝑉 (3)

∑
𝑖∈𝑉

∑
𝑗 ∈𝑉
𝑖< 𝑗

𝑥𝑖 𝑗 ≥ 3 + 𝜎 (4)

𝜎 ≥ 𝑦𝑖𝑖 ∀𝑖 ∈ 𝑉 (5)
𝑥𝑖 𝑗 + 𝑥 𝑗𝑘 ≤ 1 + 𝑥 ′𝑖𝑘 ∀(𝑖, 𝑗, 𝑘) ∈ 𝐽̃ (6)

𝑦𝑖 𝑗 ≤ 𝑦 𝑗 𝑗 ∀(𝑖, 𝑗) ∈ 𝑉 ≠ (7)
𝑦11 = 1 (8)
𝜎 ∈ N
𝑦𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝑉 2

𝑥𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗

𝑥 ′𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗

Constraints (1) correspond to connectivity constraints for the
ring while (2) to subtour elimination constraints. Constraints (3)
enforce that each terminal is connected to exactly two distinct hubs
if these hubs are in 𝑉 , or to a single hub if it is in 𝑉 \𝑉 . Constraints
(4) and (5) state that the ring has size at least three if all hubs are in
𝑉 \𝑉 , or four if at least one hub can fail. Constraints (6) enforce that
for each hub 𝑗 ∈ 𝑉 having hubs 𝑖 and 𝑘 as neighbors in the ring,
there is an edge that joins 𝑖 and 𝑘 , that can serve when 𝑗 fails. There
are 1

2𝑛(𝑛 − 1) (𝑛 − 2) = O(𝑛𝑛2) such inequalities where 𝑛 = |𝑉 | and
𝑛 = |𝑉 |. Constraints (7) ensure that a terminal can only be linked
to a hub. Finally, (8) force the depot to be part of the ring.

This model can be solved using a branch-and-cut approach,
where subtour elimination constraints are added on-the-fly as Lazy
Constraints.

4 BENDERS DECOMPOSITION OF ROBUST
RSP

We can observe that whenever the ring is known (i.e., the 𝑦𝑖𝑖 vari-
ables, the 𝑥𝑖 𝑗 variables, and 𝜎 are fixed), determining all the other
variables is an easy problem. Indeed, if the ring has 5 or more
hubs, we can simply set 𝑥 ′

𝑖𝑘
to one if and only if 𝑗 ∈ 𝑉 , and

𝑦 𝑗 𝑗 = 𝑥𝑖 𝑗 = 𝑥 𝑗𝑘 = 1, and zero otherwise, and for each terminal 𝑖 ,
we connect it either to the two nearest hubs in 𝑉 or to the closest
hub in 𝑉 \𝑉 , the selected option being the one that incurs the mini-
mum cost. Hence, we can devise a Benders decomposition whose
master problem decides on the 𝑦𝑖𝑖 , 𝑥𝑖 𝑗 and 𝜎 variables, whereas the
subproblem is to set the remaining variables.

The master problem is:

Minimize
∑
𝑖∈𝑉

∑
𝑗 ∈𝑉
𝑖< 𝑗

𝑟𝑖 𝑗𝑥𝑖 𝑗 +
∑
𝑖∈𝑉

𝑜𝑖𝑦𝑖𝑖 + 𝜆

Subject to (1), (2), (4), (5), (8), and

𝜎 ∈ N
𝑦𝑖𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑉
𝑥𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗

𝜆 ≥ 0

The numerical value of the 𝑥𝑖 𝑗 and 𝑦 𝑗 𝑗 variables after solving
the master problem are stored as 𝑥𝑖 𝑗 and 𝑦 𝑗 𝑗 , then passed to the
subproblem, whose primal can be stated as:

Minimize 𝜆 =
∑
𝑖∈𝑉

∑
𝑗 ∈𝑉
𝑖< 𝑗

𝑟𝑖 𝑗𝑥
′
𝑖 𝑗 +

∑
𝑖∈𝑉

∑
𝑗 ∈𝑉 \{𝑖 }

𝑠𝑖 𝑗𝑦𝑖 𝑗

∑
𝑗 ∈𝑉 \𝑉
𝑖≠𝑗

2𝑦𝑖 𝑗 +
∑
𝑗 ∈𝑉
𝑖≠𝑗

𝑦𝑖 𝑗 = 2(1 − 𝑦𝑖𝑖 ) ∀𝑖 ∈ 𝑉 (9)

𝑥 ′𝑖𝑘 ≥ 𝑥𝑖 𝑗 + 𝑥 𝑗𝑘 − 1 ∀(𝑖, 𝑗, 𝑘) ∈ 𝐽̃ (10)
𝑦𝑖 𝑗 ≤ 𝑦 𝑗 𝑗 ∀(𝑖, 𝑗) ∈ 𝑉 ≠, (11)
𝑦𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝑉 ≠ (12)

𝑥 ′𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗

Where (9), (10), and (11) are derived from (3), (6), and (7) respectively.
This subproblem is easy to solve. Indeed, for all (𝑖, 𝑗, 𝑘) ∈ 𝐽̃ such

that 𝑥𝑖 𝑗 + 𝑥 𝑗𝑘 = 2 we should set 𝑥 ′
𝑖𝑘

= 1 if 𝑦 𝑗 𝑗 = 1. If 𝑖 is a terminal
meaning 𝑦𝑖𝑖 = 0, we compute𝑚𝑖 and𝑚′𝑖 as the closest hubs in 𝑉 .
• 𝑚𝑖 = argmin

𝑗 ∈𝑉 :𝑦̂ 𝑗 𝑗=1
𝑠𝑖 𝑗 and

• 𝑚′𝑖 = argmin
𝑗 ∈𝑉 \{𝑚𝑖 }:𝑦̂ 𝑗 𝑗=1

𝑠𝑖 𝑗 .

If no two such hubs exist, 𝑚𝑖 and 𝑚′𝑖 are set to zero. We also
compute𝑚★

𝑖 , as the closest hub in𝑉 \𝑉 :𝑚★
𝑖 = argmin

𝑗 ∈𝑉 \𝑉 :𝑦̂ 𝑗 𝑗=1
𝑠𝑖 𝑗 . If no

such hub exists,𝑚★
𝑖 is set to zero. Assuming that 𝑠𝑖,0 is infinite, if
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𝑠𝑖,𝑚𝑖 + 𝑠𝑖,𝑚′𝑖 < 𝑠𝑖,𝑚★
𝑖
, then terminal 𝑖 is connected to its two closest

uncertain neighbors in the ring, otherwise 𝑖 is connected to the
closest certain hub in the ring. It can be observed that 𝑠𝑖,𝑚𝑖 + 𝑠𝑖,𝑚′𝑖
and 𝑠𝑖,𝑚★

𝑖
cannot be simultaneously set to infinity, as the ring has

at least three hubs.
The subproblem is originally an integer linear program, but it

can be stated as a linear program by adding the following constraint:
𝑦𝑖 𝑗 ≤

∑
𝑘∈𝑉 \{𝑖, 𝑗 }:𝑦̂𝑘𝑘=1

𝑦𝑖𝑘 for all 𝑖 ∈ 𝑉 such that 𝑦𝑖𝑖 = 0, and for all

𝑗 ∈ 𝑉 \{𝑖} such that 𝑠𝑖 𝑗 = 𝑠𝑖𝑚𝑖 . If no such 𝑗 exists, the constraint is
not enforced. This constraint, labeled as (14) in the sequel, states
that if terminal 𝑖 is connected to an uncertain hub, then it should
be connected to at least another one. Since (11) dominates (12), and
because the objective function “pushes” the 𝑥 ′ variables downward,
integrality constraints can be dropped, and it can be shown that
the linear relaxation of the subproblem (with the new constraints
above) has an integral optimal solution. Let Ω = {(𝑖, 𝑗) ∈ 𝑉 ×𝑉 \{𝑖} :
𝑦𝑖𝑖 = 0, 𝑠𝑖 𝑗 = 𝑠𝑖𝑚𝑖 }, the linear relaxation of the subproblem is:

Minimize 𝜆 =
∑
𝑖∈𝑉

∑
𝑗 ∈𝑉
𝑖< 𝑗

𝑟𝑖 𝑗𝑥
′
𝑖 𝑗 +

∑
𝑖∈𝑉

∑
𝑗 ∈𝑉 \{𝑖 }

𝑠𝑖 𝑗𝑦𝑖 𝑗

∑
𝑗 ∈𝑉 \𝑉
𝑖≠𝑗

2𝑦𝑖 𝑗 +
∑
𝑗 ∈𝑉
𝑖≠𝑗

𝑦𝑖 𝑗 = 2(1 − 𝑦𝑖𝑖 ) ∀𝑖 ∈ 𝑉 (13)

−𝑦𝑖 𝑗 +
∑

𝑘∈𝑉 \{𝑖, 𝑗 }
𝑦𝑖𝑘 ≥ 0 ∀(𝑖, 𝑗) ∈ Ω (14)

𝑥 ′𝑖𝑘 ≥ 𝑥𝑖 𝑗 + 𝑥 𝑗𝑘 − 1 ∀(𝑖, 𝑗, 𝑘) ∈ 𝐽̃ (15)
−𝑦𝑖 𝑗 ≥ −𝑦 𝑗 𝑗 ∀(𝑖, 𝑗) ∈ 𝑉 ≠, (16)

𝑥 ′𝑖 𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗

𝑦𝑖 𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝑉 ≠

5 DUAL FORMULATION OF BENDERS
SUBPROBLEM RELAXATION

In this section, we state the dual of the linear relaxation of the
subproblem, and the optimality cut that is used in the Benders
decomposition. Then, we introduce a hybrid solution approach to
solve the subproblem’s dual. Rather than solving the master prob-
lem and the subproblem alternatively, the Benders decomposition is
implemented as follows: whenever a feasible integer solution to the
master problem is found, the subproblem is solved and an optimal-
ity cut is added to the master problem (if necessary). If the current
integer solution to the master problem contains a subtour, we add
a Benders feasibility cut, i.e., a subtour elimination constraint (2).

5.1 Subproblem’s dual and optimality cut
The decision variables of the subproblem’s dual are associated with
the subproblem’s primal constraints as follows:
• Constraints (13) in the primal are associated with 𝛼𝑖
∀𝑖 ∈ 𝑉
• Constraints (14) in the primal are associated with 𝛿𝑖 𝑗
∀(𝑖, 𝑗) ∈ Ω
• Constraints (15) in the primal are associated with 𝛽𝑖 𝑗𝑘

∀(𝑖, 𝑗, 𝑘) ∈ 𝐽̃
• Constraints (16) in the primal are associated with 𝛾𝑖 𝑗
∀(𝑖, 𝑗) ∈ 𝑉 ≠

The dual of the relaxation of the subproblem is:

Maximize 𝜆 =
∑
𝑖∈𝑉

2(1 − 𝑦𝑖𝑖 )𝛼𝑖+
∑
(𝑖, 𝑗,𝑘) ∈ 𝐽̃

(𝑥𝑖 𝑗 + 𝑥 𝑗𝑘 − 1)𝛽𝑖 𝑗𝑘

−
∑
(𝑖, 𝑗) ∈𝑉 ≠

𝑦 𝑗 𝑗𝛾𝑖 𝑗

2𝛼𝑖 − 𝛾𝑖 𝑗 ≤ 𝑠𝑖 𝑗 , ∀𝑖 ∈ 𝑉 (17)

∀𝑗 ∈ 𝑉 \(𝑉 ∪ {𝑖})
𝛼𝑖 − 𝛾𝑖 𝑗 ≤ 𝑠𝑖 𝑗 , ∀𝑖 ∈ 𝑉 ,𝑦𝑖𝑖 = 1 (18)

∀𝑗 ∈ 𝑉 \ {𝑖}
𝛼𝑖 − 𝛾𝑖 𝑗 − 𝛿𝑖 𝑗 +

∑
𝑘∈𝑉 \{𝑖, 𝑗 }
𝑠𝑖𝑘=𝑠𝑖𝑚𝑖

𝛿𝑖𝑘 ≤ 𝑠𝑖 𝑗 , ∀(𝑖, 𝑗) ∈ Ω (19)

𝛼𝑖 − 𝛾𝑖 𝑗 +
∑

𝑘∈𝑉 \{𝑖, 𝑗 }
𝑠𝑖𝑘=𝑠𝑖𝑚𝑖

𝛿𝑖𝑘 ≤ 𝑠𝑖 𝑗 , ∀𝑖 ∈ 𝑉 : 𝑦𝑖𝑖 = 0 (20)

∀𝑗 ∈ 𝑉 \{𝑖} : 𝑠𝑖 𝑗 > 𝑠𝑖𝑚𝑖∑
𝑗 ∈𝑉 :𝑗≠𝑖, 𝑗≠𝑘

𝛽𝑖 𝑗𝑘 ≤ 𝑟𝑖𝑘 , ∀(𝑖, 𝑘) ∈ 𝑉 2, 𝑖 < 𝑘 (21)

𝛼𝑖 ∈ R, ∀𝑖 ∈ 𝑉
𝛾𝑖 𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝑉 ≠

𝛿𝑖 𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ Ω
𝛽𝑖 𝑗𝑘 ≥ 0, ∀(𝑖, 𝑗, 𝑘) ∈ 𝐽̃

The optimality cut to be added to the master problem of the
Benders decomposition is then:

𝜆 ≥
∑
𝑖∈𝑉

2(1 − 𝑦𝑖𝑖 )𝛼𝑖 +
∑
(𝑖, 𝑗,𝑘) ∈ 𝐽̃

(𝑥𝑖 𝑗 + 𝑥 𝑗𝑘 − 1)𝛽𝑖 𝑗𝑘

−
∑
(𝑖, 𝑗) ∈𝑉 ≠

𝑦 𝑗 𝑗𝛾𝑖 𝑗

Even if the subproblem can be stated as a linear program, it has
a cubic number of 𝛽𝑖 𝑗𝑘 variables, which makes it long to solve. In
order to solve it faster, we take advantage of the fact that these
variables are independent of the other variables. The next section
presents a quadratic time algorithm that finds a partial optimal
solution to the subproblem’s dual, in the sense that it sets the 𝛽𝑖 𝑗𝑘
variables. Then, the other decision variables of the subproblem’s
dual are set by solving the subproblem’s dual where 𝛽𝑖 𝑗𝑘 variables
and constraint (21) are removed. This “light” version of the sub-
problem dual has 𝑂 ( |𝑉 |2) variables and constraints, and is solved
much faster.

5.2 An algorithm for solving partially the
subproblem’s dual

Algorithm 1 solves partially the dual of Benders subproblem’s re-
laxation. It takes advantage of the fact that at most |𝑉 | of the 𝛽𝑖 𝑗𝑘
will be non-zeros and compute them in a quadratic running time.
Knowing 𝑥𝑖 𝑗 and 𝑦 𝑗 𝑗 , we initially let 𝛽 ′𝑗 be the adjacency list of
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node 𝑗 ∈ 𝑉 such that 𝑦 𝑗 𝑗 = 1: 𝛽 ′𝑗 [1] and 𝛽 ′𝑗 [2] are its two neighbors
in the ring. Next we handle the special case of a four-hub ring,
in which an edge joining two nonadjacent hubs may wrongly be
counted twice. As an example, in Figure 4, the dashed edge be-
tween depot 1 and hub 3 must not be counted twice in the objective
function as this edge preserves the ring structure when hub 2 or
4 fails. This is achieved in constant time, lines 13 to 19 in Algo-
rithm 1: if there exist 𝑗1 ≠ 𝑗2 in 𝑉 such that 𝑦 𝑗1 𝑗1 = 𝑦 𝑗2 𝑗2 = 1 and
(𝛽 ′𝑗1 [1], 𝛽

′
𝑗1
[2]) = (𝛽 ′𝑗2 [1], 𝛽

′
𝑗2
[2]), then we set 𝛽 ′𝑗2 to the empty set.

Note that for all (𝑖, 𝑗, 𝑘) ∈ 𝐽̃ , 𝛽𝑖 𝑗𝑘 ≠ 0 implies that 𝛽 ′𝑗 is nonempty
(the converse does not hold when some ring costs are zero).

Algorithm 1: Building the robust edges in the dual of the
subproblem of 𝜌-RSP
1 Input: (𝑦̂𝑖𝑖 )𝑖∈𝑉 , (𝑥𝑖 𝑗 )(𝑖,𝑗 )∈𝑉 2 | 𝑖< 𝑗 booleans
2 Output: (𝛽′𝑗 )𝑗∈𝑉
3 foreach 𝑗 ∈ 𝑉 do
4 𝛽′𝑗 ← [ ]
5 foreach 𝑖 ∈ 𝑉 do
6 𝛼𝑖 ← 0
7 foreach 𝑗 ∈ 𝑉 : 𝑗 ≠ 𝑖 do
8 if 𝑗 > 𝑖 and 𝑥𝑖 𝑗 = 1 and 𝑖 ∈ 𝑉 then
9 Append 𝑗 to 𝛽′𝑖

10 if 𝑗 > 𝑖 and 𝑥𝑖 𝑗 = 1 and 𝑗 ∈ 𝑉 then
11 Append 𝑖 to 𝛽′𝑗

/* Particular case of a 4-hub ring */

12 𝐻 ← {𝑖 ∈ 𝑉 : 𝑦̂𝑖𝑖 = 1}
13 if |𝐻 | = 4 then
14 𝐻 ← 𝐻 ∩𝑉
15 foreach ( 𝑗1, 𝑗2) ∈ 𝐻 ×𝐻 : 𝑗1 < 𝑗2 do
16 if (𝛽′𝑗1 [1], 𝛽

′
𝑗1
[2]) = (𝛽′𝑗2 [1], 𝛽

′
𝑗2
[2]) then

17 𝐻 ← 𝐻\{ 𝑗2 }
18 𝛽′𝑗2 ← ∅

19 return (𝛽′𝑗 )𝑗∈𝑉

When Algorithm 1 terminates, 𝛽𝑖 𝑗𝑘 is set to 𝑟𝑖𝑘 for all (𝑖, 𝑗, 𝑘) ∈ 𝐽̃ ,
and the optimality cut can be written as:
𝜆 ≥

∑
𝑖∈𝑉 :𝑦̂𝑖𝑖=0

2(1 − 𝑦𝑖𝑖 )𝛼𝑖 −
∑

(𝑖, 𝑗) ∈𝑉 ≠:𝑦̂𝑖𝑖=0
𝛾𝑖 𝑗𝑦 𝑗 𝑗

+
∑

𝑗 ∈𝑉 :𝛽′𝑗≠∅
(𝑥𝛽′𝑗 [1] 𝑗 + 𝑥 𝑗𝛽′𝑗 [2] − 1)𝑟𝛽′𝑗 [1]𝛽′𝑗 [2]

12

3
4

Figure 4: 𝜌-RSP instance with𝑉 = {2, 3, 4}with a dashed edge
used when hub 2 or 4 fails.

6 COMPUTATIONAL RESULTS
The ILP formulations given in Sections 3 and 4 are addressed using
a branch-and-cut approach. They have been implemented with
Julia v1.5.2 and Gurobi v0.9.4 on a 16 GB RAM machine and an
Intel(R) Core(TM) i7-10610U processor running at 1.80GHz.

Two types of instances have been used. First, we generated
random instances with 𝑛 ∈ {100, 200} nodes. The nodes’ coordi-
nates are randomly drawn in [1, 𝑛] for both abscissa and ordinates.
The parameter 𝛼 ∈ {3, 5, 7, 9} allows to compute the ring costs
𝑟𝑖 𝑗 = ⌈(10 − 𝛼)ℓ𝑖 𝑗 ⌉, for all (𝑖, 𝑗) in 𝐸 where ℓ𝑖 𝑗 is the euclidean dis-
tance between 𝑖 ∈ 𝑉 and 𝑗 ∈ 𝑉 . Opening costs 𝑜𝑖 , for all 𝑖 ∈ 𝑉 are
either randomly distributed over O𝑖 (where O𝑖 is a random variable
following the discrete distribution over the set N ∩ [0.5𝑛; 1.5𝑛]) or
are equal to 1. Star assignment costs 𝑠𝑖 𝑗 for all (𝑖, 𝑗) ∈ 𝐴 are either
randomly distributed over S𝑖 𝑗

(
where S𝑖 𝑗 is a random variable

such that S𝑖 𝑗 ∼ 1
U([𝑛; 3𝑛/2])

)
, or defined by 𝑠𝑖 𝑗 = ⌈𝛼ℓ𝑖 𝑗 ⌉, for all

(𝑖, 𝑗) ∈ 𝐴. For all random instances, we launched 5 runs and com-
puted the average for all of them. Second, we used eil 51 adapted
from TSPLIB as in Labbé 2004 [10]. For this TSPLIB instance, we set
𝑟𝑖 𝑗 = ⌈(10 − 𝛼)ℓ𝑖 𝑗 ⌉, 𝑜𝑖 = 𝑛. In all cases, 𝑉 = 𝑉 \ {1}, and instance
names are of the form rand 𝑛 − 𝛼 and eil 51−𝛼 in Table 1.

The formulation of 𝜌-RSP given in Section 3 is referred to as
ILP, the one of Section 4 is referred to as Benders. Table 1 shows a
comparison of ILP and Benders, with a time limit of 600 seconds
per instance.

The output of our numerical results are as follows: CPU is the
CPU Time in seconds for both methods. (TL) is indicated when the
time limit is reached for at least one instance; CPU SP is the CPU
time in seconds for Benders subproblem. Note that the master prob-
lem execution time is CPU − CPU SP; Gap represents the relative

optimality gap of bothmethods computed as |obj_bound − obj_val ||obj_val |
where obj_bound and obj_val are the ILP objective bound and in-
cumbent objective value; n_subtour is the number of subtour elim-
ination constraints, i.e., feasibility cuts for Benders, and Lazy Con-
straints for ILP; n_cut gives the number of optimality cuts in the
Benders decomposition; and 𝒓∗ corresponds to the percentage of
hubs over total number of nodes in the best solution found.

We can see from Table 1 that for all random instances we gen-
erated, the Benders decomposition approach outperforms the ILP
model. Those random instances are designed so that star costs are
very low compared to opening and ring costs. For such instances,
star costs are approximately 𝑛 times smaller than the opening costs
and the ring costs if opening costs are equal to 1, and 𝑛2 smaller
than the opening costs if the opening costs are randomly distributed
over O𝑖 . In these instances, we observe that we have 4 hubs in the
ring in all optimal solutions. For instances of size 𝑛 = 100, Ben-
ders is between 1.5 to 2 times faster than ILP, and for 𝑛 = 200, the
speedup lies between 4 and 5. For eil 51, Benders decomposition
is slower. This might be partially explained because star costs are
of the same order of magnitude as opening and ring costs. For such
instances, the master problem does not take into account subtour
elimination constraints and the contribution of star costs. Hence,
a large number of feasibility and optimality cuts are required to
achieve lower bounds that are competitive with the ones provided
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Table 1: Comparison of ILP and Benders

Instance 𝑛–𝛼 Instance type ILP Benders Decomposition

𝑛 = |𝑉 | 𝑜𝑖 𝑠𝑖 𝑗 CPU Gap 𝑟∗ n_subtour CPU Gap 𝑟∗ n_subtour CPU SP n_cut

rand 100-3 O𝑖 S𝑖 𝑗 38.01 0% 0.04 4.0 16.04 0% 0.04 15.2 12.01 85.8

rand 100-5 O𝑖 S𝑖 𝑗 30.97 0% 0.04 46.2 13.08 0% 0.04 20 9.39 66.8

rand 100-3 1 S𝑖 𝑗 30.01 0% 0.04 36.6 19.79 0% 0.04 38.4 14.78 102.2

rand 100-5 1 S𝑖 𝑗 28.8 0% 0.04 21.6 19.78 0% 0.04 53.8 15.01 109.8

rand 200-5 1 S𝑖 𝑗 349.74 0% 0.02 59.0 71.3 0% 0.02 54 53.84 76.2

rand 200-7 1 S𝑖 𝑗 324.28 0% 0.02 81.2 76.03 0% 0.02 68.4 51.59 69.6

eil 51-3 𝑛 ⌈3𝑙𝑖 𝑗 ⌉ 600.00 (TL) 26% 0.92 283.0 600.00 (TL) 47% 0.8 2492.0 58.25 754.0

eil 51-5 𝑛 ⌈5𝑙𝑖 𝑗 ⌉ 600.00 (TL) 29% 0.08 566.0 600.00 (TL) 36% 0.18 3442.0 62.17 1438.0

eil 51-7 𝑛 ⌈7𝑙𝑖 𝑗 ⌉ 600.00 (TL) 7% 0.08 118.0 600.00 (TL) 5% 0.08 1746.0 100.89 2332.0

eil 51-9 𝑛 ⌈9𝑙𝑖 𝑗 ⌉ 11.04 0% 0.08 0.0 15.41 0% 0.08 31.0 11.17 312.0

by the solver while addressing the monolithic ILP model. This issue
may be mitigated by reformulating the problem objective function
to let the master problem use more knowledge about star costs.
This may improve the lower bounds of the linear relaxation of the
master problem.

7 CONCLUSION
Future works may be focused on accelerating the proposed Benders
decomposition. A first option is to replace the hybrid method for
solving the subproblem’s dual by a single quadratic time algorithm
to separate Benders optimality cuts faster. This would also open the
way for the generation of stronger optimality cuts. Indeed, there
may exist many different optimal solutions to the subproblem’s
dual, that may lead to different optimality cuts. It would be bene-
ficial to return the solution that yields the strongest cut, and this
aspect is currently not under control when we resort to a linear
programming solver for separating Benders optimality cuts. In addi-
tion, a heuristic may be devised to address the master problem as in
Costa et al. [2]. This would be useful especially for large instances,
that might be beyond the range of exact approaches. Finally, lower
bounds could also be proposed in an attempt to address this prob-
lem with a branch-and-bound algorithm, as this class of solution
approaches does not seem have been explored to tackle ring star
problem variants.
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In the Multi-Commodity Fixed-Charge Capacitated Network Design Problem (NDP), one deals with
installing (or equivalently, designing) links between a set of given terminals and determining the flow
of a set of commodities over these installed links [1]. The problem has a large number of application
areas including, but not limited to, the strategic planning of airline and freight transportation, telecom-
munication, clean water supply, and wireless charging. A novel extension to the NDP, the NDP with
Commodity Outsourcing (NPDCO), can be defined by adding the decision of outsourcing the shipment
of a subset of commodities. In this study, we introduce the r-Interdiction NDPCO (RI-NDPCO) where
we consider the NDPCO in an attacker-defender game (a static Stackelberg game) setting to model the
strategic flight network design of a hypothetical small airline carrier (SAC). In the RI-NDPCO, the SAC
targets to enter an airline market with potential threats from incumbent carriers and aims to analyze
the maximum possible disruption in its flight network in the wake of an attack by a virtual attacker. A
bilevel mixed-integer programming (BMIP) formulation is devised to model the problem.

We propose a Tabu Search (TS) heuristic with a data-driven neighbor sampling (DDS) procedure
(TS-DDS) to solve the RI-NDPCO. A generic TS (or local search in general) with exhaustive search of
the whole neighborhood of a current solution (i.e., best improvement/steepest descent) is an inefficient
heuristic to solve the RI-NDPCO due to the computational complexity of the lower-level problem. To
overcome this computational burden, only a fraction of the whole neighborhood of a current solution
is evaluated at each iteration of TS-DDS. The DDS procedure is based on the idea of biased sampling
of the neighboring solutions so that the probability of selecting the best neighbor is adequately high.
The sampling relies on the predictions of a regression model trained (and re-trained periodically) using
the solutions visited during the search on-the-fly where the actual objective value is the output/target
variable. A substitute model that is used instead of an actual evaluation/objective function is known as a
conjugate model in the data-driven metaheuristics literature and such models are proposed as operators
in various heuristics [2]. To the best of our knowledge, this is the first study where a conjugate model
(i) is used for biased sampling of candidate solutions, and (ii) is updated during the search. Moreover,
we propose a pruning algorithm to discard a subset of neighboring solutions without evaluating them.
This algorithm, called bound pruning (BP), is based on comparing the lower and upper bounds of all
neighboring solutions where the bounds are obtained by linear relaxation and a rounding heuristic.

We work on a set of randomly generated instances Λ to analyze the ability of DDS, BP, and a hybrid
method alongside with a restart diversification (RD) scheme. The test bed consists of 20 instances where
the first 10 instances have the size of 9 nodes-36 arcs-72 commodities and the last 10 instances have the
size of 10 nodes-45 arcs-90 commodities. We compare the following set of heuristics on these instances;

1. TS: TS with best improvement (BI) strategy, i.e., generic TS.

2. TS-BP: TS with BI strategy where some neighboring solutions are pruned by BP prior to com-
puting the objective value of the remaining ones at each iteration.

3. TS-DDS: TS where a subset of all neighboring solutions are sampled by DDS prior to computing
their actual objective value at each iteration.

4. TS-BP&DDS: TS where (i) the neighboring solutions are first pruned by BP, then (ii) a subset
of remaining neighboring solutions are sampled by DDS prior to computing their objective value.
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5. RDRP-BP&DDS: TS-BP&DDS incorporated into an RD scheme with random perturbation.

Preliminary computational results with a time limit of 3600 seconds and interdiction budget r = 5
are displayed in Figure 1. Due to the computational complexity of the RI-NDPCO, it is not possible
to optimally solve all instances within reasonable computational time. Hence, we compare all methods
using the following formula:

Gap(%) = LBi
best − LBi

h

LBi
best

× 100, (1)

where LBi
h is the objective function value of instance i found by heuristic h, and LBi

best = max
h

(LBi
h).

Figure 1: Comparison of heuristics - Gap(%) averaged over instances of the same size.

According to the preliminary computational results, RDRP-BP&DDS returns the best average gaps
for both instance sizes. Larger average gaps in TS-DDS are caused by directing the search into non-
promising areas. A possible reason behind this fact is the lower prediction accuracy of the regression
model at the earlier iterations of the search. However, when DDS is coupled with BP, the resulting hybrid
heuristic returns better average gaps compared to TS-DDS. In future research, we plan to (i) work on
RD schemes with a data-driven perturbation operator, (ii) expand the test bed, and (iii) devise a trilevel
programming framework to model a defender-attacker-defender game in the context of RI-NDPCO.
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3 NUMERICAL RESULTS
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1 Introduction
The Maximum Common Edge Subgraph problem (MCES) was introduced by Bokhari in [5] to solve
the mapping problem, where we need to assign tasks to processors while maximizing the fulfillment of
communication demands. This problem also gives a measure of similarity between two given graphs and
has been used as a tool for measuring the similarity of molecules.

It can be stated as follows:
Let G = (VG, EG) and H = (VH , EH) be two graphs. S = (VS , ES) is an edge subgraph of G if

VS ⊆ VG and ES ⊆ VG. If an edge subgraph of G is isomorphic to an edge subgraph of H, then we say
it is a common edge subgraph of G and H. We aim to find a common subgraph with a maximal number
of edges. We consider here the graphs G and H to be simple and undirected.

The problem is N P-hard and generalizes several well-known graph problems, including subgraph
isomorphism, maximum clique, maximum path and subgraph isomorphism.

Almohamad et Duffuaa proposed the first integer programming formulation in [1] (AD) to solve the
more general problem of graph matching. They introduce variables xu,v ∀u ∈ VG, v ∈ VH that take value
1 if u is associated with v, and 0 otherwise, and variables counting the number of edges not belonging to
the common edge subgraph. Another formulation was proposed independently by Marenco and Loiseau
[7], [8] (ML), which uses the same x variables, and introduces variables yu1,u2 ∀u1u2 ∈ EG that take
value 1 if edge u1u2 belongs to the common edge subgraph, otherwise 0. A third formulation was given
by Bahiense, Manić, Piva, et de Souza [3], [4] (BMPS), which uses the same x variables, and introduces
variables cu1u2,v1v2 ∀u1u2 ∈ EG, v1v2 ∈ EH , that take value 1 if edge u1u2 is associated with edge v1v2.

2 New formulations
Five new formulations are proposed : A symmetrized version of the formulation given by [3] (sym. BMPS)
with a better relaxation, two reduced versions R1 and R2 which gradually reduce the number of variables.
We give a reformulation of the one’s proposed in [1] with fewer variables, and we show that it has the
same relaxation as our more compact reduced formulation. We also give another formulation D even
more compact, which introduces variables for the degree of vertices in the common edge subgraph.

3 Numerical results
We tested numerically the proposed formulations against the state of the art formulations on two datasets,
one dataset with problems gathered by Marenco and Loiseau ([8]) and coming primarily from mapping
problems, and a part of the ARG database ([6], [2]) composed of randomly generated graphs with diverse
models. We observe that performance varies quite a bit depending on the structure and the density
of the graphs. From our tests, it comes as a result that the R2 formulation is the most efficient on
denser instances, and dominates the R1 formulation. BMPS and sym. BMPS formulations share similar
behaviour, and are more efficient on some of the sparsest instances. While it does not solve these, the
symmetrized version gets the best gaps on the hardest instances composed of meshes. On the first
dataset, the ML formulation is faster on some small and medium sized instances. The formulation D is
more efficient only on a few small instances. Globally, the R2 formulation is the fastest in average and
solves the most instances. Moreover, it seems to have a better behaviour on the hardest instances, and
often gets the best gap on unsolved instances.
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Table 1: Asymptotic size of formulations and number of solved instances.
n. variables n. cons solved instances

AD O (|VG||VH |) O (|VG||VH |) 140
ML O (|VG||VH |) O (|EG||VH |) 137

BMPS O (|EG||EH |) O (|VG||EH | + |VH ||EG|) 134
sym. BMPS O (|EG||EH |) O (|VG||EH | + |VH ||EG|) 136

R1 O (|VG||EH | + |EG||VH |) O (|VG||VH |) 143
R2 O (|VG||VH |) O (|VG||VH |) 146
D O (|VG||VH |) O (|VG||VH |) 122
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1 Introduction
The ongoing COVID-19 pandemic and the shortage of vaccinations in the beginning of the vaccination
campaign highlighted the importance of optimization problems considering the allocation and scheduling
of vaccinations. An overview of these problems and literature has been given by Duijzer et al. [2] and in
light of the ongoing pandemic by Wouters et al. in [8]. For most available vaccines, each person has to
receive two doses in a specific time frame, i.e., the second dose has to be given three to six weeks after
the first dose. This leads to another problem: which doses are given to new patients as a first dose and
which are used as a second dose to those who already received a first dose. We will call this problem the
Two-Dose Scheduling Problem. Most countries have chosen the approach of delaying the second dose as
much as possible in order to achieve higher partial immunity through only one dose, for example Great
Britain and Canada. Other countries, like Israel and the United States, have chosen to administer both
doses as soon as possible in accordance with the phase 3 clinical trials, for example the trial [6] for the
Corminaty vaccine from BioNTech and Pfizer.

Additionally, in practice, the deliveries proved to be highly uncertain. In this paper, we will study the
problem without uncertainty to see how the problem can be modeled as a graph optimization problem
and to determine the complexity of this and related problems. Furthermore, in the meantime, these
vaccinations also require a third dose, the so-called booster shot, to be given to each person leading to
the Three-Dose Scheduling Problem which will turn out to be NP-hard.

2 Related Work
The vaccination strategy has been subject of extensive research in the recent year. First, Jurgens and
Lackner [3] examined the effect of delaying the second dose to 6, 9 or 12 weeks after the first dose on
the population immunity. Silva et al. [7] proposed different SEIR models, that is a compartmental
model using the compartments Susceptible, Exposed, Infectious and Recovered to minimize the number
of expected deaths due to the pandemic and include different subpopulations. Parino et al. [5] extended
an SIR model by adding different stages and applied it to the COVID-19 pandemic in Italy. Lastly,
Moghadas et al. [4] proposed an agent-based model using data from the United States. However to the
best of our knowledge, there have been no publications regarding the complexity of the combinatorial
optimization problem addressed in this talk.

3 Summary of Results
To model the Two-Dose Scheduling Problem, we assume a finite time span in which all vaccinations take
place and discrete time steps {1, . . . , n}. For example, these can be weeks or days. We first introduce a
mixed integer programming formulation (MIP) for the base problem of finding a schedule for the first and
second doses that obeys the necessary time gap between both shots for each patient and the delivered
doses. The time gap constraint describes the fact that the second dose has to be given in a fixed time
interval, i.e., 4 to 6 weeks, after the first shot and the delivery constraint ensures that only existing doses
are used. We then extend this model by adding a constraint on the storage capacity, which means that
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only a certain number of doses can be stored each week, and a vaccination speed constraint limiting
the number of vaccination in each time step to including, for example, the limited amount of medical
personal that can administer a dose of vaccine. We then solve these MIPs using Gurobi in order to
understand some basic properties of the solutions for different target functions. It turns out that for both
maximizing the expected immunity gained through vaccinations and minimizing the number of expected
deaths through COVID leads to a "first doses first" strategy, where as many people as possible receive a
first shot and second doses are delayed as much as possible and only given when necessary to satisfy the
constraints.

Since this approach does not lead to a polynomial time algorithm, we next formulate the Two-Dose
Scheduling Problem as a weighted b-matching problem, where each node represents a time step and each
arc between two nodes represents all patients being fully vaccinated using doses delivered in these two
time steps. The value of the nodes b is given by the number of doses delivered in the respective time
slot. Note, that this does not mean the doses are given in the time steps belonging to the nodes. One of
them may need to be delayed in order to satisfy the time gap constraint. The weight of each arc then
symbolizes the value of that vaccination, which may include the immunity gained by or the number of
expected deaths prevented through the vaccination. By finding a maximum weighted b-matching, the
Two-Dose Scheduling Problem is solved. Hence, we can solve the base problem in polynomial time (e.g.,
[1]).

Next, by using an alternative interpretation we include the storage capacity and the vaccination speed
constraints. This is achieved by connecting the nodes through a construction implementing the storing
of doses in order to use them later. The two added constraints then become lower bounds on certain arcs
in these constructions and can be assumed fixed for each matching. Thus, we can include the additional
constraints and still solve the problem in polynomial time.

Lastly, we examined the Three-Dose Problem and showed its NP-hardness by reducing the three-
dimensional maximum matching problem. For a given 3-D matching problem (X, Y, Z) and T ⊆ (X ×
Y × Z), the idea is to define one time step for each element from X ∪ Y ∪ Z such that each triple
(x, y, z) ∈ X×Y ×Z is represented by three time steps satisfying the time gap constraint and vice versa.
This result also implies that the Multiple-Dose Scheduling Problem is NP-hard for three or more doses.
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ABSTRACT
Motivated by self-stabilising algorithms, the objective of local certi-
fication is to verify whether a (global) property holds while being
restricted to a local view of the graph. Roughly speaking, this works
as follows: a prover assigns a certificate to every vertex of a graph.
Subsequently a verifier checks, for every vertex, whether its local
view of the graph is consistent with the property we wish to verify.
If this is the case at all vertices, then it accepts and it rejects other-
wise. For a prover-verifier pair to locally certify a graph property,
the verifier must accept any graph with this property that received
certificates from the prover and it must reject any proof on a graph
that does not have the desired property. The quality of such a pair
is measured by the prover’s size which is the length of the longest
certificate it uses.

One common model for local certification is that of proof la-
belling schemes. This is a prover-verifier pair in which the verifier
at a vertex 𝑣 has access to the information at 𝑣 as well as the cer-
tificates of all its neighbours. Determining whether an undirected
graph has an 𝑠𝑡-path (for specified nodes 𝑠 and 𝑡 ) can be done
with a prover of size 1 and in the directed case it is known that
O(logΔ(𝐺)) bits suffice, where Δ(𝐺) denotes the maximum degree
of𝐺 . We prove a matching lower bound, in particular, showing that
a constant amount of bits does not suffice.

KEYWORDS
Local Certification, Proof Labelling Schemes, Reachability

1 INTRODUCTION
The objective of local certification is to locally verify (global) prop-
erties in a distributed system. It is motivated by self-stabilising
algorithms [4]. These algorithms are used in distributed systems
which are subject to faults and have the property that they converge
to a solution for a given problem. A possible way of designing such
an algorithm is to first move to a solution and then to maintain
it for as long as it remains correct. This so called local detection
paradigm was introduced in [1]. Local certification describes this
last step, where the algorithm needs to detect whether the solution
is correct or not.

In local certification, a global prover has to convince a verifier
that a graph has a specific property. To do so, the prover first
presents a proof by assigning certificates to the vertices. Afterwards,
the verifier decides at every vertex whether to accept or reject the
proof provided. The decision at a vertex 𝑣 is solely based on the

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th 
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen, 
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
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local view of the graph around 𝑣 , including certificates. If a graph
has the designated property, the prover must be able to choose
certificates in a way that makes the verifier accept at every vertex.
Otherwise, the verifier must reject at some vertex of the graph,
regardless of which certificates are given. What exactly the term
local view means differs amongst the various local certification
concepts.

To illustrate the concept, we sketch how local certification of
bipartiteness works [10]. As local view, we assume that every vertex
has access to its own certificate as well as those of its neighbours. In
the case of a bipartite graph, the prover could specify a bipartition
using the certificates 0 and 1. The verifier then only needs to check
that the certificates of its neighbours differ from its own. If this is the
case everywhere, then the graph is bipartite, so the verifier never
accepts a non-bipartite graph. Furthermore, the bipartition specified
by the prover makes the verifier accept. Hence, this prover-verifier
pair locally certifies bipartiteness using a single bit.

Local certification does not restrict the computational power
of the prover or verifier. Instead the quality is measured by the
certificate lengths needed. The prover’s size is the length of the
longest certificate it assigns to a vertex. Given some property, a
natural question to consider is what size a prover needs to have
and what size suffices to locally certify this property.

The answer to this question may depend on the precise concept
used since a “larger” local view of the verifier may result in smaller
certificate lengths being sufficient. In this paper, we are interested
mainly in two such concepts: proof labelling schemes and locally
checkable proofs. These were introduced in [12] and [10], respec-
tively. A formal definition is given in Section 2, but here it suffices
to know that the verifiers in locally checkable proofs are more
powerful that the ones in proof labelling schemes. Thus, ideally,
one determines lower bounds on the prover’s size using locally
checkable proofs, and upper bounds using proof labelling schemes
(since then they hold for both concepts).

Many results of this type are known, for example, certifying
acyclicity [12] and planarity [6] requires Θ(log𝑛) bits, whilst mini-
mum spanning trees need Θ(log𝑛 log𝑊 ) bits [11], where 𝑛 is the
order of the graph and𝑊 is the largest weight of an edge. These
bounds are for proof labelling schemes, though the planarity re-
sult also works for locally checkable proofs. That Θ(log𝑛) bits are
required for acyclicity is also true in the locally checkable proof set-
ting is was open until recently and is, in fact, also shown in [6]. For
more results we refer to [5], a recent survey of local certification.

A very basic problem is that of certifying whether an 𝑠𝑡-path
exists, for two specified vertices 𝑠 and 𝑡 , which we refer to as the
𝑠𝑡-reachability problem. In [10] it is shown how to solve this for
undirected graphs using a single bit. In the directed case, a prover
using O(logΔ(𝐺)) bits, where Δ(𝐺) in the maximum degree of the
graph𝐺 , is described. Whether a constant size proof exists is posed
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as an open question. We recapitulate how these locally checkable
proofs work at the start of Section 3 and why the directed case
cannot be solved analogously.

Another paper that looks at locally certifying 𝑠𝑡-reachability
is [7]. Here the authors use a significantly more restrictive model in
which the verifier sees less information, making it weaker. To obtain
a logarithmic lower bound for 𝑠𝑡-reachability, they additionally
restrict to a one-way communication model in which vertices only
see their predecessors. The proof heavily relies on this restriction
and a lower bound for the standard two-way communication is left
open.

This suggests that the directed version is harder than the undi-
rected one, which is a common occurrence: In the 𝑘 disjoint paths
problem the task to find vertex-disjoint paths between 𝑘 pairs of
specified vertices. It can be solved in polynomial time on undirected
graphs for any fixed 𝑘 [13] but it is NP-complete in the directed
case, even for 𝑘 = 2 [8]. Similarly, the feedback arc set problem
is NP-complete [9] while its undirected counterpart is solved by
computing a spanning tree. Another result [2] demonstrates that
undirected 𝑠𝑡-reachability can be expressed by existential monadic
second order logic and directed reachability cannot.

We show that locally certifying 𝑠𝑡-reachability (in the proof la-
belling scheme setting) is another such example. More precisely,
we prove that the upper bound of O(logΔ(𝐺)) is tight. In partic-
ular, this covers the missing lower bound in [7] and shows that
no constant amount of bits suffices. Hence, this yields a new very
basic problem where we now have tight bounds for proof labelling
schemes, but whose lower bounds do not extend to locally checkable
proofs.

Outline. In Section 2 we introduce the notation we need and for-
mally define proof labelling schemes and locally checkable proofs.
The proof of the lower bound for the directed 𝑠𝑡-reachability prob-
lem is presented in Section 3 and in Section 4 we discuss the diffi-
culties that occur when extending our result to locally checkable
proofs.

2 PRELIMINARIES
Basic notation. The notation for this paper is based on [3], but

we briefly summarise what we need here. All graphs are non-empty
and finite. We write 𝑢𝑣 for an edge from 𝑢 to 𝑣 and 𝐸 (𝑣) denotes
the set of edges incident to the vertex 𝑣 . The set of neighbours of 𝑣
in 𝐺 is 𝑁𝐺 (𝑣) or 𝑁 (𝑣). We denote the maximum degree of a graph
𝐺 by Δ(𝐺) and its diameter by diam(𝐺).

A path is a graph 𝑃 with vertex set𝑉 (𝑃) = {𝑣1, . . . , 𝑣𝑛} and edge
set 𝐸 (𝑃) = {𝑣1𝑣2, . . . , 𝑣𝑛−1𝑣𝑛}, for which we write 𝑃 = 𝑣1 . . . 𝑣𝑛 . If
𝑢 and 𝑣 are distinct vertices of a path 𝑃 , then 𝑢𝑃𝑣 is the unique path
in 𝑃 joining 𝑢 and 𝑣 . If |𝑢𝑃𝑣 | ≥ 3, then we set 𝑢𝑃𝑣 B 𝑢𝑃𝑣 − {𝑢, 𝑣}.
Similarly, for a 𝑢𝑣-path 𝑃 , we write 𝑃 for 𝑃 − {𝑢, 𝑣}.

Local certification. Let G be a class of (directed or undirected)
graphs, for example, G could be the class of all connected undi-
rected graphs. Further, let F ⊆ G be the graphs in G that satisfy a
certain property (acyclicity, for example). In this context we specify
that graphs 𝐺 ∈ G have an identity for every vertex 𝑣 ∈ 𝑉 (𝐺),
which is denoted by id(𝑣) and can be encoded in O(log |𝑉 (𝐺) |)
bits. All identities in a graph are distinct. Furthermore, vertices also

have labels, L(𝑣), that can contain further information (but may
be empty). For example, these can be used to indicate colours of
vertices or to select a certain subset of the edges.

A proof for a graph 𝐺 is a function P : 𝑉 (𝐺) → {0, 1}∗ that
assigns a binary certificate (a bit string) to each vertex of 𝐺 . The
size |P| of a proof is the maximum number of bits in any of its
certificates and the set of all proofs for a graph 𝐺 is denoted by
P(𝐺). For the empty certificate and the empty label we write 𝜀. Note
that the label 𝐿(𝑣) of a vertex 𝑣 is part of the graph 𝐺 whereas the
certificate P(𝑣) at 𝑣 is provided by the prover.

A verifier for a class G is a function V defined for all triples
(𝐺, P, 𝑣) with𝐺 ∈ G, P ∈ P(𝐺), and 𝑣 ∈ 𝑉 (𝐺). Its output is a single
bit, that is,

V :
⋃
𝐺∈G

({𝐺} × P(𝐺) ×𝑉 (𝐺)) → {0, 1}.

A verifier V accepts (a proof P) at a vertex 𝑣 if V(𝐺, P, 𝑣) = 1. It
accepts (a proof P for) a graph 𝐺 if it accepts at all 𝑣 ∈ 𝑉 (𝐺) and it
rejects the proof otherwise. The verifier is sound for a subset F of G
if it rejects any graph not in F , regardless of the proof provided,
that is, for all 𝐺 ∈ G \ F and all proofs P ∈ P(𝐺) there exists a
vertex 𝑣 ∈ 𝑉 (𝐺) such thatV(𝐺, P, 𝑣) = 0.

A prover is a function P that maps every 𝐺 ∈ F to a proof
P(𝐺) ∈ P(𝐺). The size 𝑠 (P) of a prover is the maximum size of any
proof it assigns to a graph in F , often expressed as a function of
|𝑉 (𝐺) |. A prover P is complete for a verifierV ifV accepts P(𝐺)
for all 𝐺 ∈ F .

A pair 𝜋 = (P,V), consisting of a prover and verifier, locally
certifies F ⊆ G if it is both complete and sound. The pair is complete
if P is complete forV and it is sound if the verifier is sound for F .
The size 𝑠 (𝜋) of 𝜋 is just the size of its prover.

Restricting the verifier. So far the definition does not include
locality and this is where the various concepts that are used in
the literature differ. We now describe restrictions on the verifier
that make its computation local and lead to the definition of proof
labelling schemes and locally checkable proofs.

Let 𝐺 be a graph and 𝑣 ∈ 𝑉 (𝐺). The set of vertices in 𝐺 with
distance at most 𝑟 (with respect to number of edges) to 𝑣 is denoted
by 𝐵𝑟𝐺 (𝑣) or just 𝐵𝑟 (𝑣). For directed graphs, we always use the
underlying undirected graph to determine balls. A verifier is 𝑟 -local
if it satisfies that

V(𝐺, P, 𝑣) = V(𝐺𝑟𝑣 , P𝑟𝑣, 𝑣) for all 𝐺, P, 𝑣
where 𝐺𝑟𝑣 = 𝐺 [𝐵𝑟 (𝑣)] and P𝑟𝑣 is the restriction of P to 𝐵𝑟 (𝑣). We
say a verifier is neighbourhood-local if

V(𝐺, P, 𝑣) = V(𝐺𝑁𝑣 , P1
𝑣, 𝑣) for all 𝐺, P, 𝑣

where 𝐺𝑁𝑣 = (𝐵1 (𝑣), 𝐸 (𝑣)). If, additionally, the verifier does not
depend on the labels or identities of any vertex other than 𝑣 when
faced with (𝐺, P, 𝑣), then we call the verifier label- or identity-
restricted, respectively. We say it is restricted, if it is both label-
and identity-restricted and satisfies that

V(𝐺, P, 𝑣) = V(𝐺−𝑣 , P−𝑣 , 𝑣) for all 𝐺, P, 𝑣
where 𝐺−𝑣 is the star with 𝑣 at its centre and an edge 𝑣𝑥𝑒 (respec-
tively 𝑥𝑒𝑣) for each edge 𝑒 = 𝑣𝑢 (𝑒 = 𝑢𝑣) in𝐺 . The proof P−𝑣 maps 𝑣
to P(𝑣) and 𝑥𝑒 to the certificate P(𝑢) if 𝑒 = 𝑣𝑢 or 𝑒 = 𝑢𝑣 .
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With this notation we can now define proof labelling schemes
and locally checkable proofs.

Definition 2.1. A proof labelling scheme is a prover-verifier pair
𝜋 = (P,V) in whichV is restricted.

Definition 2.2. A locally checkable proof is a prover-verifier pair
𝜋 = (P,V) in whichV is 𝑟 -local for some constant 𝑟 ≥ 1.

Note that, in a proof labelling scheme, the verifier at a vertex
𝑣 may only use 𝑣 ’s identity and label, as well as the certificates
assigned to 𝑣 and its neighbours. In contrast, the verifier in a locally
checkable proof has access to much more information. Even if we
restrict ourselves to a 1-local verifier, it can still use the identities
and labels of the neighbours as well as the graph structure of the
neighbourhood, meaning it knows which of its neighbours are the
same and whether or not they are adjacent.

We introduced the term neighbourhood-local, which comes be-
tween the two. In contrast to proof labelling schemes, the veri-
fier here can detect parallels and anti-parallels, but, unlike locally
checkable proofs, it is still limited to direct neighbours and does
not know which of these are adjacent. We actually prove that a pair
(P,V) that locally certifies 𝑠𝑡-reachability needs Ω(Δ(𝐺)) bits if
the verifier is neighbourhood-local and identity-restricted in the
next section. This yields the results for proof labelling schemes as
a corollary.

An example. To wrap up the preliminaries, we illustrate these
concepts on an example. We have already seen how to certify bi-
partiteness and we now sketch how to verify acyclicity using a
proof labelling scheme as a slightly more involved example. As
mentioned in the introduction, Θ(log𝑛) bits are needed for this
and the lower bound does not extend to locally checkable proofs.
We illustrate why and refer to [12] for a more detailed proof.

The upper bound is obtained by rooting a tree: An arbitrary
vertex is chosen as the root and the certificate at each vertex is its
distance to this root. To locally verify this, a vertex with certificate 𝑑
need only check that it has exactly one neighbour with distance𝑑−1
and all other neighbours have distance 𝑑 + 1 (unless 𝑑 = 0 in which
case all neighbours must have distance 1). This is a proof labelling
scheme since the graph is a tree if the verifier accepts: in any cycle
in the graph, the vertex with largest certificate has at least two
neighbours whose certificates are not larger, which the verifier can
detect.

To obtain the lower bound, assume that a proof labelling scheme
exists that uses 𝑜 (log𝑛) bits. Then, for large enough 𝑛, we can as-
sume it has fewer than 𝑐 log𝑛 bits for some appropriate constant 𝑐 ,
chosen such that any path of length 𝑛 contains two disjoint pairs
that are labelled identically. By connecting the second vertex of the
first pair to the first vertex of the second pair, a cycle is obtained
in which all local behaviour is identical. Since the path must be ac-
cepted, the verifier also accepts the cycle, contradicting soundness.

The reason this no longer works for locally checkable proofs is
because, in this concept, the verifier can see the identities of its
neighbours even if the size of the prover is too small to simply add
these to the certificates. As a result, the verifier would notice that
its neighbour has changed in the transition to the cycle, since the
ends of the new edge now have a neighbour whose identity differs
from the path.

3 VERIFYING REACHABILITY
The 𝑠𝑡-reachability problem. The (directed) 𝑠𝑡-reachability prob-

lem starts with a graph class G of (directed) graphs in which there
is a unique vertex labelled 𝑠 and one labelled 𝑡 (and all other vertices
have empty labels). The subclass F that we wish to verify contains
those graphs in which 𝑡 is reachable from 𝑠 , that is, those graphs in
G that have an 𝑠𝑡-path. For the remainder of this section, G and F
will be used to denote these graph classes.

In the undirected case, a single bit is sufficient to verify reacha-
bility (as described in [10]): by fixing some shortest 𝑠𝑡-path 𝑃 and
setting P(𝑣) = 1 if 𝑣 ∈ 𝑃 (and leaving the certificate empty other-
wise), a vertex 𝑣 can check that either P(𝑣) = 𝜀 or exactly two of its
neighbours are also assigned a non-empty certificate. The vertices
𝑠 and 𝑡 are exceptions, they must receive certificate 1 and require
exactly one neighbour with this property.

This breaks down in the directed case, since the analogous re-
quirement of asking for exactly one predecessor and one successor
is not true. Even on shortest paths, the existence of back-edges
may lead to larger quantities of both. This can be fixed by addi-
tionally specifying the distance from 𝑠 (as in the verification of
acyclicity), letting us detect back-edges. Alternatively, one can spec-
ify which of the edges incident to a vertex leads to the succes-
sor on the path. These yield upper bounds of O(log diam(𝐺)) and
O(logΔ(𝐺)), both of which are potentially O(log𝑛).

We now show that the second approach is best possible in the
sense that 𝑜 (Δ(𝐺)) bits are insufficient to obtain a proof labelling
scheme in the directed case. To achieve this, we assume that a proof
labelling scheme (P,V) exists that only uses 𝑥 bits and therefore
uses at most 𝑐 B 2𝑥+1 − 1 distinct certificates. We then construct a
graph 𝐺 ∈ G that the verifier would falsely accept and check that
its maximum degree is polynomial in 𝑐 . This yields that logΔ(𝐺)
is some multiple of 𝑥 , and 𝑥 ∈ Ω(logΔ(𝐺)).

As we already mentioned at the end of the last section, our con-
struction works even if we can detect parallels and anti-parallels
and can see the labels of neighbouring nodes. It also does not use
the relation between 𝑐 and 𝑥 . Therefore, we suppose that (P,V)
is a prover-verifier pair with neighbourhood-local and identity-
restricted verifier that locally verifies directed 𝑠𝑡-reachability using
𝑐 distinct certificates. To facilitate our argumentation, we now pro-
vide some notation.

Split paths and their properties. Let←−𝑃 be an 𝑠𝑡-path with back-
edges, that is, 𝑃 = 𝑠𝑣1 . . . 𝑣𝑘𝑡 ,

←−
𝐴 = {𝑣𝑖𝑣 𝑗 : 𝑖 > 𝑗} is the set of back-

edges of 𝑃 , and 𝑃 ⊆ ←−𝑃 ⊆ 𝑃 +←−𝐴 (for some 𝑘). Note that←−𝑃 ∈ F . Let
𝑢𝑣 be an edge of 𝑃 and 𝑏𝑎 be a back-edge in←−𝑃 with 𝑢𝑣 ∈ 𝑎𝑃𝑏. The
split-path (of←−𝑃 ) at 𝑢𝑣 using 𝑏𝑎 is the graph←−𝑃 − {𝑢𝑣, 𝑏𝑎} + {𝑏𝑣,𝑢𝑎},
which is in G \ F . This operation is illustrated in Figure 1.

We now show that assigning certain certificates to the vertices
of a path with back-edges would makeV accept a split-path, and
hence these assignments may not occur. For simplicity, we write
P(𝑥𝑦) for (P(𝑥), P(𝑦)), where P is some proof and 𝑥𝑦 is an edge.

Lemma 3.1. Let ←−𝑃 be an 𝑠𝑡-path with back-edges, P = P(←−𝑃 ),
𝑢𝑣 be an edge of 𝑃 , and 𝑏𝑎 be a back-edge in

←−
𝑃 with 𝑢𝑣 ∈ 𝑎𝑃𝑏. If

𝑣 ∉ 𝑁 (𝑏), 𝑢 ∉ 𝑁 (𝑎), and 𝑣𝑢 ∉
←−
𝑃 , then P(𝑢𝑣) ≠ P(𝑏𝑎).
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𝑎 𝑢 𝑣 𝑏

𝑎 𝑢 𝑣 𝑏

Figure 1: An illustration of the split-path operation.

Proof. Suppose P(𝑢𝑣) = P(𝑏𝑎). Let 𝑆 be the split path of←−𝑃 at
𝑢𝑣 using 𝑏𝑎. We show that V accepts P for 𝑆 , which contradicts
𝑆 ∈ G \ F .

Notice that for all vertices 𝑥 ∉ {𝑎, 𝑏,𝑢, 𝑣} the ball 𝐵1 (𝑥) remains
unchanged and thus V accepts at all these vertices. Also, in the
remaining four balls we only exchange the vertices 𝑎 and 𝑣 or 𝑏 and
𝑢. Since these are assigned the same certificate by assumption, the
verifier is faced with the same certificates. Moreover, none of these
vertices can be 𝑠 or 𝑡 , so they are all unlabelled. Finally note that
the remaining assumptions of the lemma ensure that none of the
edges 𝑢𝑣 , 𝑏𝑎, 𝑏𝑣 , or 𝑢𝑎 have a parallel or an anti-parallel in←−𝑃 or 𝑆 ,
hence the graphs←−𝑃 𝑁𝑥 and 𝑆𝑁𝑥 also coincide for 𝑥 ∈ {𝑎, 𝑏,𝑢, 𝑣}. □

Constructing a counterexample. We are now ready to construct a
path with back-edges←−𝑃 in which any proof that the verifier accepts
leads to a split path which is accepted as well. Since the verifier
accepts P(←−𝑃 ), this is a contradiction.

We let 𝑟 =
(𝑐
2
) + 𝑐 and define a graph 𝐺𝑘 for 0 ≤ 𝑘 ≤ 𝑟 , each of

which is an 𝑠𝑡-path with back-edges. For a copy 𝐻 of a graph 𝐺𝑘 ,
we write 𝑃 (𝐻 ) for the copy of the 𝑠𝑡-path of 𝐺𝑘 in 𝐻 and write
𝑠 (𝐻 ), 𝑡 (𝐻 ) for its start and end, respectively. The graph𝐺0 is simply
the path 𝑠𝑢0𝑣0𝑡 . For 𝑘 ≥ 1, the graph 𝐺𝑘 is the disjoint union of 𝑘
copies 𝐻1, . . . , 𝐻𝑘 of 𝐺𝑘−1 which are combined to an 𝑠𝑡-path with
back-edges as follows: copies 𝐻𝑖 and 𝐻𝑖+1 are connected by a path
𝑡 (𝐻𝑖 )𝑢𝑖𝑣𝑖𝑠 (𝐻𝑖+1) introducing new vertices 𝑢𝑖 and 𝑣𝑖 . Additionally,
we prepend the path 𝑠𝑢0𝑣0𝑠 (𝐻1) and append the path 𝑡 (𝐻𝑘 )𝑢𝑘𝑣𝑘𝑡 .
Finally, all possible back-edges between vertices {𝑢𝑖 , 𝑣𝑖 } and {𝑢 𝑗 , 𝑣 𝑗 }
for 𝑖 > 𝑗 are added.

This construction is visualised in Figure 2 and a formal definition
of the edge and vertex set of the graph 𝐺𝑘 is given below:

𝑉 (𝐺𝑘 ) =
𝑘⋃
𝑖=1

𝑉 (𝐻𝑖 ) ∪ {𝑢𝑖 , 𝑣𝑖 : 0 ≤ 𝑖 ≤ 𝑘} ∪ {𝑠, 𝑡},

𝐸 (𝐺𝑘 ) =
𝑘⋃
𝑖=1

𝐸 (𝐻𝑖 ) ∪ {𝑢𝑖𝑣𝑖 : 0 ≤ 𝑖 ≤ 𝑘}

∪ {𝑣𝑖−1𝑠 (𝐻𝑖 ), 𝑡 (𝐻𝑖 )𝑢𝑖 : 1 ≤ 𝑖 ≤ 𝑘} ∪ {𝑠𝑢0, 𝑣𝑘𝑡}.
We say that a pair of certificates (𝑐1, 𝑐2) ismissing on a path with

back-edges if no edge on the path has certificate (𝑐1, 𝑐2). We extend
this definition to sets {𝑐1, 𝑐2}, where 𝑐1 and 𝑐2 need not be distinct,

and call such a set missing if the tuples (𝑐1, 𝑐2) and (𝑐2, 𝑐1) are. Note
that 𝑟 is exactly the number of such sets. With these definitions at
hand we can now prove the following lemma.

Lemma 3.2. For every 𝑘 ≤ 𝑟 , the graph𝐺𝑟 contains a copy𝐻 of𝐺𝑘
in which at least 𝑟 − 𝑘 sets are missing on the path ˚𝑃 (𝐻 ).

Proof. We prove this by induction on 𝑘 , where in the case 𝑘 = 𝑟
there is nothing to show. For 𝑘 < 𝑟 let𝐻 ′ be the copy of𝐺𝑘+1 given
by the induction hypothesis and let 𝑃 ′ = ˚𝑃 (𝐻 ′). Then 𝑟 − (𝑘 + 1)
sets are missing on 𝑃 ′ and every vertex on this path is assigned a
certificate whose corresponding set is amongst the remaining 𝑘 + 1
many. Since 𝐺𝑘+1 has the 𝑘 + 2 edges 𝑢0𝑣0, . . . , 𝑢𝑘+1𝑣𝑘+1, at least
two of the corresponding edges in 𝑃 ′ are assigned certificates that
give rise to the same set {𝑐1, 𝑐2}. For simplicity, we assume these
edges are 𝑢0𝑣0 and 𝑢1𝑣1. This set is not missing in 𝑃 ′, but we show
that it is missing on the path 𝑃 = ˚𝑃 (𝐻 ) where 𝐻 is the copy of 𝐺𝑘
between 𝑢0𝑣0 and 𝑢1𝑣1 in 𝐻 ′.

To see that this is indeed the case, we note that for any edge𝑢𝑣 on
the path 𝑃 we can apply Lemma 3.1 to the edges 𝑢𝑣 and 𝑏𝑎 = 𝑢1𝑢0
in 𝐺𝑟 : since the only edges with an end in 𝑉 (𝐻 ′) \𝑉 (𝐻 ) and the
other in 𝑉 (𝐻 ) are 𝑣0𝑠 (𝐻 ) and 𝑡 (𝐻 )𝑢1, we get that 𝑣 ∉ 𝑁 (𝑢1) and
𝑢 ∉ 𝑁 (𝑢0). Moreover, 𝑣𝑢 ∉ 𝐺𝑟 since 𝐺𝑟 has no anti-parallels by
construction. Therefore, the assumptions of Lemma 3.1 are satisfied,
and P(𝑢𝑣) ≠ P(𝑢1𝑢0). The same holds for the back-edges𝑢1𝑣0, 𝑣1𝑢0,
and 𝑣1𝑢1.

Since we assumed that both 𝑢0𝑣0 and 𝑢1𝑣1 are assigned a certifi-
cate corresponding to the set {𝑐1, 𝑐2}, one of the four back-edges
has certificate (𝑐1, 𝑐2) and another has (𝑐2, 𝑐1). Thus, we have en-
sured that both of these are missing, giving us the new missing
set {𝑐1, 𝑐2} (in addition to the 𝑟 − (𝑘 + 1) many provided by the
induction hypothesis), which completes the proof. □

By Lemma 3.2 for 𝑘 = 0, 𝐺𝑟 has a copy 𝐻 of 𝐺0 in which 𝑟
pairs are missing on the path 𝑃 = ˚𝑃 (𝐻 ). But since these are all
possible pairs, the single edge in 𝑃 has no valid assignment, which
is a contradiction. To complete this section, we only need to see
how 𝑐 relates to Δ(𝐺𝑟 ).

Observation 3.3. The maximum degree of𝐺𝑟 is 2𝑟 + 2 = 𝑐2 +𝑐 + 2.

Proof. We prove by induction that the maximum degree of 𝐺𝑘
is 2𝑘 + 2. Since 𝐺0 is a path, this holds initially. For 𝑘 > 0 let 𝑣 be a
vertex in 𝐺𝑘 . If 𝑣 is in some copy 𝐻 of 𝐺𝑘−1, then its degree is at
most 2𝑘 : in 𝐻 only the vertices 𝑠 (𝐻 ) and 𝑡 (𝐻 ) have incident edges
to vertices outside of this copy of 𝐻 , and these have degree 2 in𝐺𝑘 .

Any other vertex of 𝐺𝑘 is 𝑠 , 𝑡 , or in {𝑢0, 𝑣0, . . . , 𝑢𝑘 , 𝑣𝑘 }. The first
two have degree 1 and any 𝑢𝑖 or 𝑣𝑖 has two neighbours on the
path and 2𝑘 further neighbours in 𝐺𝑘 , namely all 𝑢 𝑗 and 𝑣 𝑗 for
𝑗 ∈ {0, . . . , 𝑘} \ {𝑖}. Hence, the maximum degree of 𝐺𝑘 is 2𝑘 + 2.

The missing equality follows from the definition of 𝑟 . □

By Observation 3.3, Δ(𝐺𝑟 ) is indeed polynomial in 𝑐 . Simple
computations yield that at least log2 (𝑐 + 2) − 1 bits are required to
obtain 𝑐 + 1 distinct certificates and log2 (Δ(𝐺𝑟 )) ≤ 2 log2 (𝑐) + 2.
Consequently, since we need at least 𝑐 + 1 certificates to correctly
verify 𝐺𝑟 , at least 1

2 log2 (Δ(𝐺𝑟 )) − 2 bits are necessary. We have
thus arrived at the desired result.
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𝐻1 𝐻𝑘
𝑠 𝑢0 𝑣0 𝑠 (𝐻1) 𝑡 (𝐻1) 𝑢1 𝑣1 𝑠 (𝐻𝑘 ) 𝑡 (𝐻𝑘 ) 𝑢𝑘 𝑣𝑘 𝑡

Figure 2: A visualisation of the graph 𝐺𝑘 constructed for the proof of Theorem 3.4.

Theorem 3.4. The 𝑠𝑡-reachability problem cannot be locally certi-
fied by a prover-verifier pair (P,V) of size 𝑜 (Δ(𝐺)) if the verifier is
neighbourhood-local and identity-restricted.

As a corollary, we get the same result for proof labelling schemes.

Corollary 3.5. There exists no proof labelling scheme of size
𝑜 (logΔ(𝐺)) for directed 𝑠𝑡-reachability.

4 CONCLUSION AND FURTHER RESEARCH
We have shown that Ω(logΔ(𝐺)) bits are necessary in any proof
labelling scheme for directed 𝑠𝑡-connectivity. This implies the only
missing bound in [7], but does not answer the open question in [10],
since locally checkable proofs are not covered. It would be desirable
to obtain an example that fools the stronger verifiers allowed in
locally checkable proofs. We now describe why this additional
verification power is problematic for the example we constructed.

Note that we are able to deal with parallels and anti-parallels,
but already had to exclude being able to see which neighbours are
adjacent and which ones are not. The reason for this is that the
proof of Lemma 3.1 no longer works in this case: if we look at 𝑢’s
local view of the graph in Figure 1, then it replaces 𝑣 by 𝑎. But if 𝑣
was adjacent to other neighbours of 𝑢 and 𝑎 is not, then the verifier
can now detect this. Indeed, this happens in the graph 𝐺𝑟 . In the
graph 𝐺𝑘 , the vertices 𝑢0, . . . , 𝑢𝑘 , 𝑣0, . . . , 𝑣𝑘 form a complete graph
(in the undirected sense). But if we transition to a split path at one
of the edges 𝑢𝑖𝑣𝑖 , using a back-edge 𝑏𝑎 from outside this 𝐺𝑘 , then
we replace the neighbour 𝑣𝑖 that is part of this complete graph by
some other vertex 𝑎 that neighbours none of these vertices.

Similarly, larger radii are problematic. It is not implausible to
generalise Lemma 3.1 to paths (by replacing back-edges by “back-
paths” and forbidding paths with the same certificate sequence
below them). However, this is not helpful. The reason is that it
does not allow us to generate new forbidden paths, which is easiest
exemplified by assigning all intermediate vertices on back-paths a
unique certificate, distinguishing them from the rest.

The last obstacle introduced by locally checkable proofs is that
the identities of the neighbours are now visible, for which tools
similar to the ones used in [10] seem to be required: multiple graphs
in F with disjoint identities need to pieced together to obtain one
that is not in F , but locally appears to be.
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1 INTRODUCTION AND PROBLEM DESCRIPTION

A granular local search for the demand-scenario-based district
cutting problem for postal deliveries

Alina Theiß1, Rossana Cavagnini1, and Michael Schneider1

1Deutsche Post Chair – Optimization of Distribution Networks, RWTH Aachen University, Aachen, Germany, �
theiss@dpo.rwth-aachen.de

1 Introduction and problem description
Cost-efficient routing of postmen is of major importance for companies like our industry partner Deutsche
Post DHL Group (DPDHL). Currently, DPDHL pursues the strategy of clustering street segments of a
city into districts and determining a tour within each district. This problem can be defined on a directed
graph G = (V, A). The vertex set V = {0, 1, 2, . . . , n} is composed of a depot 0 and a set of street
segments I = {1, 2, . . . , n}, and A is the arc set. Each street segment is characterized by a service time
and each arc by a travel time. The goal is to cluster the street segments into a given number of districts
and to determine the tours within the districts under the following constraints: (1) each street segment is
visited exactly once, (2) each tour starts and ends at the depot, and (3) the total service time within each
district stays between a given lower and upper bound. The objective is to minimize the total travel time
required by the postmen for completing their tours. Because the number of letters varies on different
days of the week and different seasons, we have different demand scenarios, characterized by the number
of districts to form. DPDHL already solved the problem based only on the most likely demand scenario,
the so-called standard demand scenario. The resulting problem is called the standard demand district
cutting problem (SDDCP).

Before starting the tour each postman has to pick up the letters at the depot. The letters are
already sorted on so-called preparation tables, where each table consists of shelves divided into sections
representing the street segments. Because each shelf section is labeled with the names and numbers of
the delivery addresses within the corresponding street segment, the order according to which the letters
are sorted is fixed with respect to the SDDCP solution, i.e., it cannot be changed on a daily basis.

Motivated by the need of optimizing the use of postmen and of keeping the postmen workload balanced,
we study the problem of modifying the district composition and the associated tours for demand scenarios
different from the standard one, which require either a smaller or a larger number of postmen, i.e.,
districts. We refer to this problem as the demand-scenario-based district cutting problem (DSBDCP).
The objective is to minimize the total travel time. Because the letters at the depot are sorted according
to the SDDCP solution, in addition to the SDDCP constraints, the following ones must be satisfied:

1. If two street segments belong to the same district in the SDDCP solution, and if they are still
in the same district in the DSBDCP solution (which is possibly different from the district of the
SDDCP), then the precedence constraint referring to the visiting sequence of these two street
segments becomes fixed (precedence constraints).

2. The number of changes in the predecessor and the successor of each street segment with respect to
the SDDCP solution is bounded because the letters are already sorted according to that visiting
sequence (adjacency constraints).

3. Because only one person can stand at each preparation table at the same time, the number of
postmen visiting the same table is bounded (preparation table constraints).

4. Because each preparation table is located at a certain distance from the others and a postman can
pick up the letters at a table only if the preparation work at that table has been completed, the
number of tables visited by a postman is bounded (postman constraints).

5. To prevent that every postman visits as many tables as the the ones imposed by the upper bound
of Point 4, an upper bound on the total number of table changes is also introduced (table change
constraint).
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Similarities of the DSBDCP to problems in the literature can only be found to a limited extent (see,
for example, [1]). Moreover, standard solvers cannot even find a feasible solution to realistically sized
instances in reasonable runtimes.

We propose a local search (LS) to address the DSBDCP and derive a preprocessing technique and
sparsification methods which allow us to discard the evaluation of unpromising solutions. Preliminary
results show that, on small-sized test instances, the standard solver outperforms the LS in terms of solution
quality. However, on bigger test instances, finding feasible solutions is computationally expensive for the
standard solver, while the LS returns feasible solutions within fractions of a second.

Section 2 describes the LS design, and Section 3 presents preliminary results and a conclusion.

2 Granular local search
We construct a feasible initial solution using two different algorithms, depending on whether the demand
scenario asks for more or fewer districts than in the SDDCP solution. Then, we apply the LS. It uses
a randomized variable neighborhood descent with a first-improvement strategy to explore the neighbor-
hoods generated by three different relocate operators. Each neighborhood is searched completely before
moving on to the next one. If an improving move is found, we apply the move and restart the search
using the current neighborhood. An operator and an arc (i, j) ∈ A, called generator arc, uniquely iden-
tify a move which generates a neighboring solution. To reduce the neighborhood sizes and speed up
the search, the number of considered generator arcs is restricted. First, we apply a preprocessing step
in which all arcs violating the precedence constraints are removed. Then, for each street segment, we
consider only a subset of the shortest remaining arcs. We enrich the generator arc set with the arcs of
the given SDDCP solution because they always fulfill the additional DSBDCP constraints. Furthermore,
we add the arcs connecting two street segments assigned to the same preparation table and not violating
the precedence constraints. These arcs are always beneficial to limit the number of preparation tables
visited by a postman. During the search, only feasible improving moves are carried out. Because we use
a first-improvement strategy, the search trajectory depends on the order in which we evaluate the moves.
Consequently, we execute the LS for ten runs and, at the beginning of each run, we randomly shuffle the
order of the neighborhoods and that of the moves within each neighborhood.

3 Preliminary results and conclusion
We implemented the LS in C++ and used the clang v.12 compiler. For comparison purposes, we solved the
DSBDCP model using Python 3.7.3 and Gurobi 9.0.0. The experiments were performed on an Intel(R)
Xeon(R) computer with a CPU E5-2430 v2 processor at 2.50GHz with 64 GB RAM under CentOS
GNU/Linux 7. We tested the LS on a small set of test instances obtained from the real-world data
provided by DPDHL. The test set contains instances of three different sizes, with 30, 50, and 100 street
segments, respectively. The LS is able to find feasible solutions for all instance sizes within 0.02 seconds.
Gurobi solves the instances with 30 street segments to optimality within an average runtime of 1434
seconds. The average gap between the solutions found by the LS and the optimal solution is 16.49%. For
instances with 50 street segments, Gurobi finds feasible but no optimal solution within three hours with
an average optimality gap of 35.95%. Finding the first feasible solution for Gurobi is time-consuming: on
average, it takes 149.75 seconds. The solutions found by LS are on average 34.29% better than Gurobi’s
first-found feasible solution and 10.67% worse than the solution found by Gurobi after three hours. For
instances with 100 street segments, Gurobi cannot find a feasible solution within three hours for most of
the instances. Because real-world instances contain approximately 500 street segments, and the problem
needs to be solved on a daily basis, using heuristics is the only viable alternative.

In this work, we have presented an LS for solving the DSBDCP. The LS shows clear advantages over
a commercial solver in terms of computational effort. Currently, the LS is implemented as simple local
descent. Mechanisms for both handling infeasible solutions and penalizing them during the search as well
as mechanisms for diversification and intensification will be included to escape local optima.
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The increase in urban population accompanied by the growth of e-commerce aggravates the already
problematic issue of last-mile deliveries, causing more congestion, pollution and traffic accidents in central
urban areas. Many countries have implemented pull and push measures to cope with the negative effects
of freight vehicles on the quality of life in urban areas. Push measures, such as defining restricted zones
where large vehicles are prohibited during busy hours, discourage the use of large vehicles. Pull measures,
such as providing as direct a route as possible for bikes, promote cycling by improving the convenience
of bicycle use. With this aim, some European cities such as Copenhagen and Antwerp have constructed
bicycle bridges to provide short-cuts for bikers. These measures and incentives drove companies to deploy
more sustainable vehicles such as cargo bikes for last-mile deliveries. However, cargo bikes do not provide
an all-embracing solution to the delivery companies due to their limited speed on larger roads and their
low load capacity compared to traditional vehicles. Hence most delivery companies using cargo bikes
operate with a heterogeneous fleet to make use of the compatibility of different vehicle types to different
routes. With the integration of small vehicles to the fleet, obliging vehicles to perform at most one route,
as in the traditional setting of the VRP, leads to an oversized fleet and inefficient utilization of workdays.
Relaxation of this assumption for a heterogeneous fleet and allowing vehicles to perform several trips
per day result in a heterogeneous fleet multi-trip VRP. Due to this multi-trip feature, using a depot
outside the city center becomes more costly, encouraging companies such as DHL and UPS to use several
micro-depots in central areas.

Inspired by these new challenges the companies face, we study the heterogeneous fleet multi-depot
multi-trip VRP with time windows under shared depot resources where small and large vehicles have
different travel times in certain areas. We formulate this problem using workday variables and propose
a branch and price algorithm whose performance is enhanced by a new heuristic algorithm based on the
reduction in the graph size. The proposed algorithm introduces a new way to compute the completion
bounds using the iterative structure of the state-space augmenting algorithm and eliminates the need
for solving a separate relaxation. We conduct experiments on modified small and medium-size instances
from Solomon’s benchmark set. The results of our computational experiments show that the proposed
algorithm is very effective and can solve instances with up to 40 customers, two depots and two types of
vehicles.
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An important aspect of optimising public transport is finding a good timetable. Often a periodic timetable
is desirable, i.e. a timetable which repeats in a regular pattern (e.g. every hour). On the one hand, short
travelling times are important from the passengers’ point of view. The problem of finding a periodic
timetable with minimal travelling times is known as the Periodic Event Scheduling Problem (PESP) and
is well researched, see e.g. [4]. On the other hand, tight timetables without buffer times are prone to
delays, which are inevitable in practice and highly dissatisfactory for the passengers. Hence, a good
timetable should also have some degree of delay resistance. Many concepts and ideas on how to increase
the robustness of a timetable against delays exist, see [6]. However, none of these approaches uses the
promising concept of recoverable robustness introduced by [5]. The aim is to find a timetable with small
travelling times such that in every delay scenario from a given uncertainty set U it is possible to recover
the solution, i.e. to find a disposition timetable which is still acceptable for the passengers, e.g. the
total delay should be below some given bound. A timetable which can be recovered for every delay
scenario is called recovery robust. Hence, our aim is to combine two problems: The PESP and the Delay
Management problem (DM).

We briefly describe the PESP, which is used for periodic timetabling. In the PESP we are given a
period T together with a set of events E , which correspond to the arrival or the departure of a traffic
line at some station. Furthermore, we have activities A, which represent processes between the events.
Together, we obtain an event-activity-network (EAN) N = (E ,A) in which the events are represented as
nodes and the activities as arcs. We distinguish several different types of activities. Driving activities
model a train line driving from one station to another, while waiting activities represent a line waiting
at a station. Passengers have the possibility to transfer between different lines, which is included by
the transfer activities. Additionally, we have passenger weights: wa is the number of passengers using
activity a ∈ A and wi is the number of passengers arriving at their destination i ∈ E . A timetable with
period T is a mapping π : E → {0, . . . , T − 1} assigning a time to every event. Every activity has a lower
bound La and an upper bound Ua for its duration, i.e. for every a = (i, j) ∈ A a feasible timetable π has
to fulfil πj − πi + zaT ∈ [La, Ua] for some za ∈ Z. The objective is to minimise the total travelling time.

In practice, delays occur and make the timetable infeasible. Hence, the Delay Management problem
consists of two tasks: finding a disposition timetable, i.e. a new mapping of times to events respecting
the source delays, and deciding which transfers between different trains should be maintained and which
should be cancelled. See [2] for a survey on delay management.

The difficulty when integrating PESP and DM is that delays in general do not occur periodically,
and hence, DM is not considered in the periodic EAN, but in a non-periodic network. I.e. the events
do not represent the arrival or departure of a line (which repeats every T minutes), but of a single trip.
Usually, PESP and DM are solved sequentially, i.e. DM has a timetable as input. This timetable is used
to roll out the periodic EAN N = (E ,A) to a non-periodic network N = (E ,A) for some planning horizon
I = [tmin, tmax]. IfK is the number of periods in I, every periodic event i ∈ E hasK realisations i1, . . . , iK
in the non-periodic network. The set of activities A depends on the timetable, as can be seen in the small
example in Figure 1. In our paper, we integrate PESP and DM. PESP is a periodic problem in the EAN,
while Delay Management uses the aperiodic network N . However, we have to consider both problems in
the same network. We decided to use the aperiodic network N . Hence, we face two challenges: Rolling
out the EAN without a timetable, and finding a periodic timetable in a non-periodic network. We solve
the first problem by adding all possible activities when rolling out the network (as in Figure 1d) and
choosing a subset while simultaneously fixing the timetable. Hence, we solve an assignment problem. The
periodicity is ensured by synchronisation constraints between events corresponding to the same periodic
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i j
La = 15
Ua = 20

(a) Periodic activity

i1

8:00
j1

8:17

j2

9:17

(b) Rolled out activity for
one timetable

i1

8:50
j1

8:07

j2

9:07

(c) Rolled out activity for
another timetable

i1 j1

j2

(d) Both possible rolled out
activities

Figure 1: Problem of rolling out a periodic EAN without knowing the timetable

event. The problem of finding a periodic timetable in this rolled out network, called Periodic Timetabling
in Aperiodic Network (PTTA), was introduced in [3], where it was also shown to be equivalent to PESP.
Based on this model we now develop an integer programming formulation for the Recoverable Robust
Periodic Timetabling Problem (RRPT), i.e. the problem of finding a periodic timetable and a disposition
timetable for every scenario r ∈ U , such that the sum of nominal travelling time and worst-case delay
summed over all passengers is minimised.

For the integer programming formulation we need variables πi for i ∈ E determining the time of every
event and binary variables ua for a ∈ A for choosing the activities in the assignment problem of PTTA.
We have to solve the delay management problem in every scenario. Hence, for every r ∈ U we need
variables xr

i determining the time of event i ∈ E in the disposition timetable and binary variables yr
a

for every transfer activity a, determining if the transfer is maintained. Since the disposition timetable
depends on the choice of the activities in the assignment problem, we have coupling constraints between
PTTA and DM. Because of the dependence on the choice of ua and ya we need different types of big-M -
constraints and auxiliary variables for linearising quadratic constraints. The IP formulation is analysed
and experiments are presented.
Apart from introducing an integer programming formulation for RRPT, we analyse how the concept of re-
covery robustness differs from the established concept of strict robustness (see [1]) in the described railway
setting. Namely, we identify similarities and differences of both concepts in special cases. Furthermore,
we sketch an iterative heuristic to solve the integrated problem RRPT.
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Introduction
Given the dynamic nature of traffic in telecommunications networks, we investigate the variant of the
robust network design problem where we have to determine the capacity to reserve on each link so that
each demand vector belonging to a polyhedral set can be routed. The objective is either to minimize
congestion or a linear cost. Routing is assumed to be fractional and dynamic (i.e., dependent on the
current demand vector).

It has been proved in [1] that the problems above are Ω( logn
log logn ) hard to approximate under the

ETH conjecture, where n is the number of nodes. On the other hand, upper bounds can be obtained
in polynomial-time by considering static/oblivious routing. In fact, it is shown in [6] that static routing
leads to an O(logn) approximation for the dynamic routing variant of the problem.

Several approaches have been proposed to improve the solutions given by a static routing such that
the multi-static routing [3] or the affine routing [4, 5]. Here we will present some of approaches to improve
the quality of the affine routing solution [2]. Roughly speaking, affine routing consists in restraining the
flow of each commodity h ∈ H to affinely depend on the demand scenario d ∈ D where H is the set
of commodities and D is the uncertainty set (a polyhedral set representing the set of plausible traffic
vectors). This can be done as follows. For each h ∈ H, e ∈ E (where E is the set of network links), the
flow related to h and sent through e denoted by fh,e(d) is given by fh,e(d) = x0

h,e +
∑
h′∈H

xh
′
h,edh′ where

x0
h,e, xh

′
h,e for h′ ∈ H are 1 + card(H) are new variables that are subject to optimization. A first version

where path variables are considered is proposed in [4], while [5] focused on node-arc formulations (i.e.,
using Kirchhoff’s laws).

Relaxing the flow conservation constraints
In this section, we present some improvements of the node-arc formulation by relaxing the flow conser-
vation constraints. Such improvements permit us to further reduce the cost of the solution and minimize
the gap with the solution given by the dynamic routing. The standard formulation with an affine routing
is denoted by F= (“=” means that we have equalities in the flow conservation constraints). Let F+ be
the formulation obtained by replacing the flow conservation constraints by the following inequalities.

∑

e∈δ+(v)

fh,e(d)−
∑

e∈δ−(v)

fh,e(d)
{
≥ dh, if v = s(h)
≥ 0 if v 6= s(h), t(h) (1)

where s(h) (resp. t(h)) is the source (resp. sink) of commodity h while δ+(v) (resp. δ−(v) denote
the set of edges going out of (resp. into) v. In [2] we show the somewhat surprising result that this
relaxation leads to a valid solution of the dynamic routing problem. Said another way, by interpreting
fhe (d) as a capacity that has to be reserved on link e to be used by commodity h, we prove that these
capacities are sufficient to carry the demand vector d (one has then to solve a simple flow problem, one
for each commodity h, to effectively route it on the these reserved capacities). Moreover, we provide a
simple example where the optimal solution of F+ is strictly better than the optimal solution of F=. Our
numerical experiments also show that this can lead to some improvement on realistic instances.
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Another way to relax the flow conservation constraints consists in replacing them by the following
inequalities:

∑

e∈δ+(v)

fh,e(d)−
∑

e∈δ−(v)

fh,e(d)
{
≤ −dh, if v = t(h)
≤ 0 if v 6= s(h), t(h) (2)

The obtained formulation can then be called the F− formulation. The solution of F− can also be shown
to be a valid solution for dynamic routing. There is also a simple example where the optimal solution of
F− is strictly better than the optimal solution of F=. F−. While both F− and F+ dominate F=, they
are not comparable (for some instances F− provides better results than F+ and vice-versa).

Extended graph formulation
We have seen that formulations F− and F+ can be strictly better than F= (i.e., closer to Fdyn, the
formulation related to dynamic routing in its full generality). The difference between F− and F+ lies
in the sign of the terms

∑
e∈δ+(v)

fh,e(d) − ∑
e∈δ−(v)

fh,e(d) for v ∈ V \ {s(h), t(h)} required to be negative

for F− and positive for F+. We propose here a stronger formulation that is still easy to solve, where
the features of F− and F+ are combined in some way. For each commodity h ∈ H, and for each node
v ∈ V \ {s(h), t(h)}, we add to G the two directed edges (t(h), v) and (v, s(h)). We also add an edge
directed from t(h) to s(h). For each commodity h, an s(h)t(h) flow fh is considered in the extended
graph. Notice that the extra edges we added (t(h), v), (v, s(h)) and (t(h), s(h)) can only be used by
commodity h. Flow conservation constraints can be expressed as follows.

fh,(v,s(h))(d) +
∑

e∈δ+(v)

fh,e(d)− fh,(t(h),v)(d)−
∑

e∈δ−(v)

fh,e(d) = 0 if v 6= s(h), t(h) (3)

∑

e∈δ+(s(h))

fh,e(d)−
∑

v∈V \{s(h)}
fh,(v,s(h))(d) = dh. (4)

Notice that δ+(v) and δ−(v) contain only edges belonging to G. Observe that there are no explicit
capacity limitations for the edges not belonging to E (the added edges of type (v, s(h)) and (t(h), v)).
However, positivity is required for the flow on these edges. It is easy to see that F+ (resp. F−) is a
special case of F since the term

∑
e∈δ+(v)

fh,e(d)− ∑
e∈δ−(v)

fh,e(d) (resp.
∑

e∈δ−(v)
fh,e(d)− ∑

e∈δ+(v)
fh,e(d)) is

positive in F+ (resp. F−) and can be seen as the flow going through an additional edge (t(h), v) (resp.
(v, s(h))). In other words, by considering only edges of type (t(h), v) (resp. (v, s(h))) and solving F we
get F+ (resp. F−) . In [2] we provide a simple example where the optimal solution of F is strictly better
than the optimal solution of F+ and of F−. Our numerical experiments also show that this can lead to an
improvement on realistic instances. Other improvements based on the combination of aggregation (either
by source or by destination) with the affine approach are also proposed in [2] and will be presented in
our talk.
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Introduction
In this talk we will present results published in [1] on the approximability of the robust network design
problem in undirected graphs. Given the dynamic nature of traffic in telecommunication networks, we
investigate the variant of the robust network design problem where we have to determine the capacity
to reserve on each link so that each demand vector belonging to a polyhedral set can be routed. The
objective is either to minimize congestion or a linear cost. Routing is assumed to be fractional and
dynamic (i.e., dependent on the current traffic vector).

The robust network design problem where a linear reservation cost is minimized was proved to be
co-NP hard in [10] when the graph is directed. A stronger co-NP hardness result is given in [7] where
the graph is undirected (this implies the directed case result). Some exact solution methods for robust
network design have been considered in [8, 12]. Notice that since solving this dynamic routing problem
is generally difficult (as shown in this paper), and dynamic routing is difficult to implement in practice,
other routing strategies have been proposed in literature such as static/oblivious routing [3, 5] and less
conservative variants such as those of [2, 4, 13, 14]). However, we will only focus on dynamic routing.

The robust network design problem
Consider an undirected graph G = (V,E), a set of commodities H (each commodity h ∈ H has a source
s(h) and a destination t(h)), a cost vector λ ∈ RE representing the cost of reserving one unite of capacity
on each edge e ∈ E of the network and a polytope D describing all possible demand vectors d ∈ D. We
consider here the case where D is given by a set of inequalities. More precisely, D = {d ∈ RH

+ |Ad ≤ b}
where A is a matrix and b is a vector.

We aim to chose the capacities ue to reserve on each edge e ∈ E such that, for all demand vectors
d ∈ D, there exists a multicommodity flow that serves all demands and does not exceed capacities ue.

We denote by U(D) the set of capacities vectors u ∈ RE
+ that are big enough to serve all demands in

D. The "linear cost" problem consists in finding a capacity vector u ∈ U(D) minimizing the linear cost
min

u∈U(D)

∑
e∈E

λeue. Given capacities ce on each edge e, the "congestion" problem consists in minimizing the

congestion min
u∈U(D)

max
e∈E

ue

ce
. It is worth to insist again on the fact that the routing for the commodities is

dynamic (i.e. it can depend on each demand vector d ∈ D)

Our contributions
• We first prove that the robust network design problem with minimum congestion cannot be ap-

proximated within any constant factor. The reduction is based on the PCP theorem and some
connections with the Gap-3-SAT problem. The same reduction also allows to show inapproximabil-
ity within Ω(log n

∆ ) where ∆ is the maximum degree in the graph and n is the number of vertices.

• Using the ETH conjecture [11], we prove a Ω( log n
log log n ) lower bound for the approximability of

the robust network design problem with minimum congestion. This implies that the well-known
O(logn) approximation ratio that can be obtained using the result in [15] is tight.
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• We show that any α-approximation algorithm for the robust network design problem with linear
costs directly leads to an α-approximation for the problem with minimum congestion. The proof
is based on Lagrange relaxation. We obtain that robust network design with minimum congestion
can be approximated within O(logn). This was already proved in [15] in a different way.

• An important consequence of the Lagrange-based reduction and our inapproximability results is
that the robust network design problem with linear reservation cost cannot be approximated within
any constant ratio. This answers a long-standing open question stated in [6].

• Another consequence is a new proof for the existence of instances for which the optimal static
solution can be Ω(logn) more expensive than a solution based on dynamic routing, when a linear
cost is minimized. This was already proved in [9] in a different way.

• We show that even if only two given paths are allowed for each commodity, there is a constant k
such that the robust network design problem with minimum congestion or linear costs cannot be
approximated within k.
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We study piecewise affine policies for multi-stage adjustable robust optimization (ARO) problems with
non-negative right-hand side uncertainty. In multi-stage robust optimization, uncertainty vectors ξ are
drawn from an uncertainty set U and revealed over the course of a time horizon with T discrete stages.
In each stage i, a fraction xi of the decision vector x is fixed after the realization of uncertainties ξi.
Herein, xi may only depend on uncertainties that were revealed up to stage i. These constraints of only
using past information are called nonanticipativity constraints and are key for multi-stage optimization.
Specifically, we provide new policies for problems that are formally given by

ZAR(U) = min
x(ξ)

max
ξ∈U

cᵀx(ξ)

Ax(ξ) ≥Dξ + d ∀ξ ∈ U
(1)

where A ∈ Rl×n, c ∈ Rn, D ∈ Rl×m
+ , d ∈ Rl

+ and U ⊂ Rm
+ .

For such problems, finding solutions for x is hard in general. Accordingly, many existing approaches
focus on restricting x to more tractable function spaces. One class of well known restrictions are affine
policies proposed by Ben-Tal et al. [1], which remain optimal for some special variants of Problem (1) [5, 7,
8]. To the best of our knowledge, no results on approximation guarantees exist for the general multi-stage
adjustable problem of (1), although a lot of recent work has focused on its two-stage variant, providing
O(
√

m) policies for general uncertainty sets U and c,x non-negative [2, 4]. Moreover, improved bounds
in the two-stage problem exist for many common uncertainty sets, including hypersphere uncertainty,
ellipsoid uncertainty, p-ball uncertainty and intersections thereof [2, 3], as well as budgeted and generalized
budgeted uncertainty [2, 3, 6].

With this work, we generalize some of these ideas and extend the existing literature in multiple ways.

• To the best of our knowledge, we present the first policies for the multi-stage robust optimization
problem (1) that yield optimality bounds of O(

√
m) on general instances. Moreover, we show even

tighter bounds for many commonly used uncertainty sets, see Table 1.
• In contrast to existing policies for the two-stage problem, our policies do not rely on the assumption

of c,x being non-negative, which allows modelling many additional instance classes.
• We show that we can find solutions for our policies with a linear program (LP) that can efficiently be

solved using state of the art solvers. Furthermore, we present comprehensive numerical experiments
that show significant improvements in computational times as well as improvements of the objective
value for many instances.

In Table 2, we show results for instances that are modified versions of the tests in [2] where decisions
and uncertainties were assigned to

√
m stages. While our policies perform about 6% worse than affine

policies for budgeted uncertainty sets with a budget of
√

m, they perform better by almost a factor of
two for hypersphere uncertainty sets. Additionally, we find improvements in the solution time by up to
a factor of 20 for both uncertainty types.

Concluding, our policies not only extend the theoretical bounds for multi-stage adjustable robust
optimization problems; they can also be found by orders of magnitude faster than affine adjustable
policies on many instances while achieving similar performances.
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No. Uncertainty Set U Bound Asymptotic Bound
1

{
ξ ∈ Rm

+
∣∣‖ξ‖2

2 ≤ 1
}

4√m
√

m−1√
2(m−√m)

O( 4√m)

2
{
ξ ∈ [0, 1]m

∣∣‖ξ‖1 ≤ k
}

k(m−1)
m+k(k−2) O

(
min

{
k, m

k

})

3 {ξ ∈ Rm|ξᵀΣξ ≤ 1}
(

a
2 +

√
1−a

4√am2+(1−a)m

)−1
O
(

m
2
5

)

4
{
ξ ∈ Rm

+
∣∣‖ξ‖p ≤ 1

} 2
p

(p− 1)
p−1

p m
p−1
p2 O

(
m

p−1
p2
)

5
{
ξ ∈ Rm

+
∣∣‖ξ‖p ≤ 1, ‖ξ‖q ≤ r

}
min

{
r

1−p
p m

p−1
pq , r

1
q m

q−1
q2
}

O
(

min
{

r
1−p

p m
p−1
pq , r

1
q m

q−1
q2
})

6 general U ⊂ Rm 2
√

m + 1 O
(√

m
)

Table 1: Performance bounds of the piecewise affine policy for different uncertainty sets.
We prove specific bounds for uncertainty sets of the forms 1. hypersphere uncertainty; 2. budgeted uncertainty;
3. ellipsoid uncertainty ,with Σ := (1 − a)1 + aJ where 1 is the unity matrix and J the matrix of all ones; 4.
p-norm ball, with p ≥ 1; 5. intersection of two norm balls, with m

1
q
− 1

p ≥ r ≥ 1.

m Avg Tour(s) Taff (s)
10 0.85 0.00 0.01
20 0.76 0.01 0.15
30 0.70 0.05 1.01
40 0.66 0.21 3.41
50 0.63 0.72 11.13
60 0.61 1.74 30.93
70 0.59 4.12 62.88
80 0.58 8.97 134.42
90 0.56 16.27 251.98

100 0.55 29.45 482.67

(a) hypersphere uncertainty

m Avg Tour(s) Taff (s)
10 1.06 0.01 0.02
20 1.06 0.04 0.10
30 1.06 0.16 0.64
40 1.06 0.64 3.08
50 1.06 2.27 12.42
60 1.06 6.58 32.44
70 1.06 13.81 119.18
80 1.06 28.81 364.65
90 1.06 59.15 950.59
100 1.06 102.27 1903.73

(b) budgeted uncertainty

Table 2: Average relative objective value Zour
Zaff

of our policies compared to the affine adjustable policies introduced
in [1] and computation times on modified test instances from [2].
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2 LOADS SCHEDULING

Loads scheduling for energy community Demand Response on
Smart Grids
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1 Introduction

The energy transition is a means to meet the objectives set by the Paris Agreement [3]. Faced with
the challenges of the energy transition, many innovative companies are emerging and propose continu-
ous technological progress. This paper focuses on optimizing collective self-consumption in an energy
community composed of various members: households and public premises (stadium). Each member can
produce, consume, exchange, sell (within the community or on the grid) and/or store photovoltaic energy.
The considered community remains connected to the public grid and uses it. This study aims finally to
provide optimal planning of the controllable loads for each member in the planning horizon. Moreover, it
gives a plan of energy exchanges and a management scheme for electricity storage units installed in the
community.

2 Loads scheduling

We consider a collective self-consumption community composed of n members. Each member can have
production and storage equipment. In addition, each member performs a set of tasks with electrical
devices. These tasks are detailed as follows. The objective is to schedule the tasks to minimize the use of
the grid. According to [1], controllable loads are those with flexible and programmable operation. The
controllable loads are grouped into two categories: type A and B loads, which reorganization over time
allows increasing the community’s energy efficiency.

• Type A loads: these are related to tasks whose execution allows to regulate the temperature of
certain environments to ensure human comfort. As an example of such tasks, we have heating and
water heaters. In practice, an individual regulates the temperature of a room to reach a comfort
zone temperature and then maintains this zone until a certain time of the day.

• Type B loads: these relate to tasks that must be done within some given time windows and with
fixed periodic levels of electrical consumption. They are generated by the use of appliances such as
washing machines, dryers, and electric vehicles. For each corresponding task, the user will indicate
the different time windows where she could execute the task and indicate the periodic consumption
levels in each time window.

• Type C loads these are loads that must be executed without delay after the request and necessarily
with the required levels of electrical consumption. As type C-tasks, we can mention lighting,
cooking, television. For each member, we estimate the periodic accumulation of the consumption
of those tasks in the planning horizon.

The proposed solution consists of determining the starting period and the periodic consumption levels
to be used for each type A task and also choosing the best schedules to operate the type B tasks while
respecting the community’s operating constraints.
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3 Resolution method

In a first step, we developed a mixed-integer linear programming (MILP) model inspired by the model
proposed in [2]. However, the MILP is not efficient for large problem instances. We then developed
a heuristic based on a column generation algorithm, convexifying the feasible set corresponding to the
schedules of tasks of type A. That heuristic allows us to generate only the schedules likely to improve
the restricted master problem (RMP) instead of explicitly generating them all. We begin this resolution
approach by generating some feasible schedules to get the dual values by solving the RMP. Then, we
solve a pricing problem at each iteration to get the potentially improving plans (with a negative reduced
cost). Next, we add these columns to the RPM and solve it. We repeat this process until no improving
solution is returned or until the maximum iteration is reached. Finally, we solve the RMP with integrality
constraints to get the result of the heuristic

4 Results

The used instances are built with data from the BEOGA’s Smart Lou Quila demonstrator located in
Cailar in the Guard. Smart Lou Quila is composed of seven members. The other instances are built
by duplicating those members. The planning horizon is consists of a day sliced into 48 periods. The
MILP’s solving time is time_limit=5600s, the column generation’s pricing problem has a maximum time
time_limit=200s, and the maximum number of GC iterations is maxIter=10 for each instance. Finally,
the RMP with integrality constraints has a time_limit=3600s. The results are reported in Table 1 where
|N | denotes the number of members in the community. obj and objGC represent respectively the sum of
the electricity extracted from the main grid during the planning horizon returned by the MILP and the
column generation. Output “ *** ” means that no feasible solution has been found after the time_limit.
We notice that the MILP approach is more efficient for the small instances while the column generation
is more efficient for the large ones.

MILP’s solutions Column generation solutions
|N | obj Gap CPU objGC CPU
7 111.38kWh 0.08% 5605.4 112.00kWh 110.44
28 481.68kWh 0.2% 5601.66 482.59kWh 1311.08
56 974.89kWh 0.4% 5601.78 976.87kWh 1035.71
112 *** *** *** 1964.57kWh 1882.25
224 *** *** *** 3904.91kWh 1162.68

Table 1: Comparison between the solutions of the two approaches.
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We present an overview of the Supporting Energy Communities - Operational Research and Energy
Analytics (SEC-OREA) project which enables local energy communities (LECs) to participate in the de-
carbonisation of the energy sector by developing advanced efficient algorithms and analytics technologies.

LECs require accurate information on renewable energy generation to develop their full potential
at both planning and operational stages. SEC-OREA is an open data driven project. As part of the
project, we plan to go through the path of creating an energy community modelling framework, simulating
different energy community load profiles in four countries, considering each country’s low voltage network
restrictions and average annual household consumption. At the same time, the emphasis is placed on
the accuracy of the data and the assessment of real world conditions. Generated load profiles will be
validated, comparing the communities’ load profiles with their county’s typical load curve and average
households’ electricity consumption.

Climate reanalysis combine past observations with models to generate consistent time series of multiple
climate variables. Reanalysis datasets are widely used for simulating renewable energy availability such
as assessing the potential of solar photovoltaic, and wind power generation. There is growing demand
from industry, research and other sectors for high quality and long-term gridded climate datasets with
high temporal and spatial resolution.

We explore available climate services to gather energy-relevant pan-European indicators of climate
trends and variability. We assess these open data sources against meteorological observations to determine
the best suited climate data sources for particular use cases such as the location where an LEC may decide
to locate. The climate data is used to estimate renewable energy scenarios at high time and geographic
resolution by converting weather variables such as wind speed to estimates of wind power for different
wind turbine technologies. We use better data to model renewable energy generation, to understand
and create dynamic scenarios of electricity consumption. We create better ensemble models of climate
dependent electricity generation from renewable energy sources, and consumer electricity demand.

We create a set of mathematical optimization models to efficiently solve the multilateral economic
dispatch decisions of the LEC Renewable Energy Sources in a fair manner. More precisely we explicitly
model the interactions among the stakeholders by relying on Nash and Stackelberg equilibriums. These
problems result in bilevel optimisation problems involving possibly muti-leader or multi follower.

In particular, we extend the classical Unit Commitment (UC) problem to take into account the specific
characteristics of LECs. We develop methods to solve realistic size instances of these UC deterministic
optimisation problems, and extend these methods to address uncertainty given by the different electricity
consumption and generation scenarios.

For the evaluation of mathematical optimisation models, an LEC power system model is used. The
LEC power system is modelled using a universal prosumer model as shown in Fig 1. This enables us to
simulate power flows in various grid topologies using a single modelling object. The prosumer modelling
object enables to incorporate customised control blocks, to simulate individual asset controllers but also to
execute internal optimisation and aggregation logic of the LEC, and provides an interface for integration
with external utilities, e.g higher-level mathematical optimisation models or data sources for forecasts.
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This approach provides a simple and flexible way to model power flow in LEC power systems, thus
reducing the required resources for object modelling and control system integration.

Figure 1: LEC Modelling Framework

We evaluate the implications of the LEC activity and net demand on sample grid topologies. The
model provides support to the Distribution System Operator (DSO) in understanding the impacts of,
and requirements for LECs on the low voltage distribution network. Different optimisation models are
investigated on their performance to meet objectives of different LEC parties but also provide benefits for
the DSO. This understanding supports better LEC and DSO decisions on asset reinforcement, network
power flow and congestion management.

We address challenges in operation and planning of the grid, studying various climate, energy and
dispatch optimisation scenarios useful in understanding of LEC impact on distribution systems. The
scenarios will cover operation of different technologies (either individually or in combination). Concerns
will be addressed for operation, short-term planning and investment planning from the perspective of dif-
ferent stakeholders. Thus, solutions will address adequacy, security, utilisation and investment decisions,
developing solutions to enhance economy and sustainability of grid development.

We provide recommendations for an overarching LEC enabling framework to ensure safe reliable effi-
cient sustainable operation of the LEC and low voltage network. Our framework will allow LEC members
to take ownership of the energy transition, benefit from the new technologies we develop and so reduce
their bills and their carbon footprint. We provide business model analyses, efficient scalable multilateral
economic dispatch and energy analytics algorithms, and integrated climate/LEC/Low Voltage models to
support our climatology, meteorological services, smart city, municipality and energy agencies stakeholder
decision makers.

Acknowledgements: This work emanates from research supported by the ERA-NET Cofund grant
under the CHIST-ERA IV Joint Call on Novel Computational Approaches for Environmental Sustain-
ability (CES), project “Supporting Energy Communities - Operational Research and Energy Analytics”
(SEC-OREA). Sandeep Araveti is funded by the Irish Research Council. The work of Cristian Aguayo
and Bernard Fortz is supported by the Fonds de la Recherche Scientifique - FNRS under Grant R801020F.
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In this talk we study a simple model for demand side management in the energy market. A distribution
network operator (DNO) is tasked with covering the energy demand of consumers in his sub-network.
To that end the DNO can buy energy from the power market or provide energy from renewable sources
under his control. However, renewable energy is lost when not used. The DNO’s problem is now to
dynamically adjust the energy prices in each period to stimulate a shift in energy consumption in his
favor, e.g. shifting consumption to times where there is surplus of renewable energy. Each consumer, on
the other hand, tries to minimize his energy bill. To be able to adjust to non-uniform prices, consumers
do not have fixed demand but rather choose a cummulative-demand curve from a set of curves bounded
by a lower and an upper stair function.

The idea behind this approach is to improve the incorporation of renewable energy sources in the
energy market via economic incentives for both producers and consumers. The model is to be used as
a rough proof on concept, constrained by our current ability to solve multilevel mathematical problems,
rather than a realistic real world model.

The mathematical problem emerging from the model is a bilevel problem with bilinear objective functions
and linear constraints. The DNO constitutes the upper level and the consumers the lower level. The
bilinear part of the respective objectives consists of a product of energy price and realized consumption.
When fixing the energy prices, the lower level problems turn into linear problems. Thus they fulfill
Slater’s constraint qualification and thereby admit two of the most common reformulation techniques, a
KKT-reformulation and a strong-duality reformulation. In both cases the dual problem of each lower level
problem is added to the formulation. The KKT-reformulation then ensures optimality for the lower level
problems by enforcing complementary slackness of the pairs of primal and dual variables via additional
constraints. The strong-duality reformulation achieves the same with an equation forcing the primal-dual
pairs to assume solutions with zero duality gap [1].

Applying the KKT-reformulation to our model yields a single level mathematical problem with com-
plementarity constraints (MPCC) featuring a quadratic objective function whereas the strong-duality
reformulation results in a single level quadratically constrained quadratic problem (QCQP). Both non-
linear, non-convex and thus very challenging to solve.

We propose to build on the strong-duality reformulation to arrive at a mixed integer (MIP) formulation
of the original problem. This reformulation is based on an interpretation of the lower level problem as
a minimum cost flow problem. The number of non-continuous variables of the MIP formulation only
depends on T , the number of time-periods considered.

First we show that one can interpret the lower level problems as a simple minimum-cost-flow problem
that has at most two priced arcs on any given elementary cycle. Applying the well known negative cycle
optimality condition allows us to reverse optimize the prices set by the upper level. Given a price vector
and a corresponding optimal flow, we can raise the prices, yet preserve optimality of the flow as long
as we do not create negative cycles in the residual network. By virtue of the simple structure of the
underlying graph we see that we can avoid negative cycles if we do not disturb the natural ordering of
the given prices. We can use this insight to determine that in any optimal solution of the bilevel problem
the entries of the price vector can take at most T different values. Those values can be calculated in
linear time.
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Using the now discrete prices, we can linearize all quadratic terms in the strong-duality reformulation
via big-M constraints and binary variables, without loss of optimality. The resulting problem is a MIP
with at most T (T +1)

2 binary variables.
To strengthen the MIP formulation we introduce valid inequalities that cut off combinations of the

binary variables values that are impossible to occur in optimal solutions.

Computational experiments show that all formulations, the QCQP, the MPCC, the MIP and the strength-
ened MIP are decent at finding strong feasible solutions. However, the MIP formulation, especially the
strengthened one, beats the QCQP and MPCC formulations by orders of magnitude when it comes to
closing the duality gap and proving optimality.

Acknoledgement
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2 RELIABILITY CONSTRAINT AND BILEVEL FORMULATION OF THE RELIABLE
STOCHASTIC NETWORK EXPANSION PROBLEM
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1 Industrial context
We propose in the current work a methodology to take into account a reliability constraint in some
network expansion problems used in long term adequacy studies done by RTE, the french transmission
system operator. Long term adequacy studies aim at analyzing the risk of imbalance on the electricity
network between production capacity and demand to horizon from 15 to 30 years. The studies also
propose some possible investment on production or transmission capacities on the network to face this
risk of imbalance.

This can be modeled by a two-stage stochastic network expansion problem. Let S be a set of scenarios
with probabilities (ps)s∈S , G = (N , E) be a graph modeling the network and T be a set of time steps.
We denote by x the first-stage variables which model investment decisions on the network, and φ(x, s)
the cost of the operational problem, for a given scenario s ∈ S and first-stage decision x. The stochastic
network expansion problem can be modeled as follows:





min cTx+
∑

s∈S
psφ(x, s)

s.t. Ax = b

x ∈ Rn1,C × Nn1,I

The operational problem models the optimal balance between production and demand on the network:

φ(x, s) =





min gT
s ys +MeTus

s.t. Wsys +Qsus = ds − Tsx

ys ∈ Rn2 , us ∈ RCard(N )×Card(T )

where variable us ∈ RCard(N )×Card(T ) counts, for each node of the graph and each time step, the quantity
of unmet demand, ys represents all the other second-stage variables (e.g. production, flow). M is the
fixed unit cost of an unmet demand, and e is a vector of 1′s.

2 Reliability constraint and bilevel formulation of the reliable
stochastic network expansion problem

The cost associated to an unmet demand in the used formulations is fixed by legislation to 20.000€\
MWh. This cost might be not large enough to produce solutions in which the demand at each node
and each time step in every scenario is satisfied. To enforce the reliability of the network, the legislation
requires not to have more than a given constant α of unmet demands across all nodes and all time steps
on the network in expectation over the scenarios.

This constraint couples all the scenarios. However, the operational problem models an optimal oper-
ational solution for a given scenario, and its solution is independent of other scenarios. Then, its solution
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can not be chosen because of the relationship between scenarios caused by the reliability constraint. Said
differently, the solution of the balance between production and demand in a particular scenario can not
be suboptimal because of an other scenario. This leads to a mixed-integer bilevel formulation, where the
reliability constraint appears in the upper level, and have to be satisfied only by optimal solutions of the
lower level problems.

We denote by δ ∈ {0, 1}Card(S)×Card(N )×Card(T ) the vector of binary variables which represent
whether a demand is unmet or not at each node and each time step in every scenario. Let α be the
maximum number of unmet demands imposed by legislation, R be a large enough constant, and ε a
positive threshold above which a demand is said to be unmet. The reliable stochastic network expansion
problem can be modeled as follows:





min cTx+
∑

s∈S

ps(gT
s ys +MeTus)

s.t. Ax = b

δs,n,t ≤
1
ε
us,n,t,∀s ∈ S,∀n ∈ N ,∀t ∈ T

Rδs,n,t ≥ us,n,t − ε,∀s ∈ S,∀n ∈ N ,∀t ∈ T∑

s∈S
ps

∑

n∈N

∑

t∈T
δs,n,t ≤ α

(ys, us) ∈ Arg min{gT
s y
′
s +MeTu′s : Wsy

′
s +Qsu

′
s + Tsx = ds},∀s ∈ S

δ ∈ {0, 1}Card(S)×Card(N )×Card(T )

x ∈ Rn1,C × Nn1,I , y ∈ Rn2×Card(S), u ∈ RCard(N )×Card(T )×Card(S)

3 Solution method
Many solution methods for mixed-integer bilevel programs require some assumptions on the structure
of the problem, such as only integer coupling variables [1], or no constraint on lower-level variables in
the upper level. We propose a heuristic algorithm based on the relaxation of the upper-level coupling
constraint, and a dichotomic search on investment costs. For a given bound on investment cost cTx ≥ Λ,
we can efficiently solve the resulting problem with Benders decomposition thanks to the relaxation of
the upper-level coupling constraint. Moreover, as the Benders cuts associated to the subproblems are
valid on the whole feasible domain of x variables, we can warm-start the Benders decomposition at each
iteration of the heuristic to accelerate its convergence. We compare the results of the propose algorithm,
both in computation time and solution quality with the KKT-reformulation of the problem introduced
in [2], and its resolution with SOS1-branching [3].
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In this paper we study multiple Roaming Salesman Problem (m-RSP), a new variant of the recently in-
troduced Roaming Salesman Problem (Shahmanzari et al., 2020), the goal of which is to determine daily
tours for m traveling salesmen who collect time-dependent rewards from various cities during a planning
horizon of length Tmax. m-RSP is a generalization of the traditional traveling salesman problem (TSP)
and has a wide range of real-world applications including touristic trip planning, election logistics, nurse
routing, multi-period vehicle routing, and marketing campaigns.

Consider a network of G=(N,E) where N denotes the set of nodes including a central node indexed
as 1 and E denotes the set of edges. During a planning horizon of Tmax days, salesmen in set M should
decide on which nodes to be visited. Among visited nodes, each salesman should decide which nodes
to be included in the reward collection. The total number of visits for each salesman must not exceed
the maximum number of permitted visits per day (p). Also, the duration of each daily tour should not
exceed the daily maximum tour threshold, denoted by q. A node’s reward must be collected by only one
salesman per each day. Salesmen can end daily tours in any node in set N. However, it must be guaranteed
that the route of today originates where the route of yesterday terminates. Inspired by real-world appli-
cations, we assume that every salesman must visit the central node every Taway days. Given that sales
representatives in real life usually return to central offices frequently, this assumption makes m-RSP more
realistic. Every edge in E is assigned a traveling cost and a traveling time, measuring the total traveling
cost and time of daily tours for every salesman. The objective function seeks to maximize the total ben-
efit defined as the difference between the collected rewards and the incurred routing costs for all salesmen.

A distinctive feature of m-RSP is that all salesmen are allowed to include open and closed tours on
different days of the planning horizon. We present a toy-size m-RSP instance in Figure 1 to illustrate
how the combination of closed and open daily tours improves the solution. The instance consists of 5
nodes and one depot. Let us assume travel time and travel costs between each pair of nodes are identical.
These values are given in Figure 1. Moreover, the maximum daily tour duration is 8 hours. According to
traditional TSP models where starting node and ending node should coincide (Figure 1.a), the objective
value of the optimal solution is 22, spanning three days of the planning horizon. Compared with the pre-
vious solution, the m-RSP solution (Figure 1.b) provides improved efficiency where all nodes are visited,
the total objective value is 20, and one day is saved.

m-RSP can be characterized as an extension of team orienteering problem (Chao et al., 1996) with
static edge costs and time-dependent vertex rewards. During the planning horizon, each node can be
visited more than once. However, a depreciation coefficient is applied for repeat visits. m-RSP seeks a
closed or open tour for every salesman for each period with the objective of maximizing the total benefit.
m-RSP is a selective routing problem, e.g., the salesmen are not required to visit all nodes, and the
starting and ending nodes of daily tours for each salesman do not necessarily coincide. Moreover, each
salesman can stay overnight in any node to start the tour of the next period. Each node is associated
with a time dependent reward and a fixed visit duration. Finally, the total length of travel times between
nodes and visits on each period cannot exceed a fixed maximum tour duration.

We propose a MILP model to tackle the m-RSP that includes relevant real-life assumptions, some
of which are widely used in business context. We categorize decision variables into two distinct groups
as routing variables and reward variables. Routing variables deal with determining order of visits and
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terminal nodes in any period, being independent of reward collection in any node. Reward variables
determine the amount of reward collected from visited nodes. Note that rewards are increased linearly
in time as we get closer to the end of the planning horizon rather than the other way around. The
objective function consists of maximizing collected rewards, including rewards corresponding to first and
repeat meetings, and minimizing travelling costs. To make these two components of objective function
compatible, we multiply traveling costs with a normalization coefficient β.

Figure 1: Comparison between a m-RSP solution and the corresponding optimal solution.

Commercial solvers such as GUROBI and CPLEX fall short of solving m-RSP large instances to opti-
mality in a reasonable CPU time. To tackle large-size instances, we develop a new hybrid metaheuristic
algorithm that consists of a Skewed Granular Tabu Search which is embedded in a Variable Neighbor-
hood Search algorithm. The proposed method is experimentally validated on 50 real-life instances with
actual travel times and distances. The computational results indicate that our method can produce
near-optimal solutions very fast. Using an effective mathematical model and a hybrid metaheuristic, we
demonstrate that promising results can be achieved to hopefully assist routing and scheduling managers
in their strategic decision making.
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ABSTRACT
This paper addresses a real-life multi-period orienteering problem
arising in a large Italian company that needs to patrol a vast area in
order to provide security services. The area is divided into clusters,
and each cluster is assigned to a patrol. A cluster comprises a
set of customers, each requiring different services on a weekly
basis. Some services are mandatory, while others are optional. It
might be impossible to perform all optional services, and each
of them is assigned a score when performed. The challenge is to
determine a set of routes, one for each patrol and each day, that
maximizes the total collected score, while meeting a number of
operational constraints, including minimum quality of service, hard
time windows, maximum riding time, and minimum time between
two consecutive visits for the same service at the same customer. To
solve the problem, we propose an iterated local search that invokes
at each iteration an inner variable neighborhood descent procedure.
Computational tests performed on a number of real-life instances
prove that the developed algorithm is very efficient and finds in a
short time solutions that are consistently better than those in use
at the company.

1 INTRODUCTION
Every day, private security guards need to inspect structures, parks,
buildings, and many other facilities to check for any anomalies, in
order to counter potential criminal actions or simply restore normal
safety conditions following forgetfulness or breakdowns. In this
paper, we study a real-life security problem in which patrols are
required to perform a set of services at customers located in a vast
area. Some services are mandatory, while others are optional. The
optional services, when performed, induce a score, and the aim is to

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th 
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen, 
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
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license CC-by-nc-nd 4.0.

maximize the collected score, while meeting different operational
constraints.

The problem originates from the everyday activity of Coopser-
vice, a large service provider company located in Italy (https://www.
coopservice.it/). Counting on more than 25 000 employees, Coopser-
vice operates a number of different services, including logistics,
transportation, cleaning, maintenance, and security. The company
also operates car patrolling services in a number of provinces all
around Italy. An example of the patrolling activity performed in
the province of Reggio Emilia is provided in Figure 1.

The customers are geographically dispersed in the area and are
consequently divided into clusters. Each cluster is assigned to a
patrol, who performs every day a route to visit customers and ex-
ecutes the required services. The cluster division does not vary
from a day to the other, but the routes performed inside the clus-
ters may change. Indeed, customers may require different services
according to the day of the week, following the contract stipulated

Figure 1: Customers and clusters for the patrolling of the
Reggio Emilia province
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with the company. More in detail, each customer may require mul-
tiple services, and, for each such service, multiple visits during the
same period. Some services, such as the closing or opening of a
commercial activity, are mandatory, whereas others, such as the
inspection of an area or a building, are optional. The optional ser-
vices create a score when performed, and the company is interested
in maximizing the collected score.

The resulting optimization problem is very difficult, as it involves
a number of operational constraints. First of all, the services should
be performed within hard time windows, and the routes should
not exceed a maximum riding time. In addition, a customer might
require multiple visits for the same service in the same period. In
such a case, two consecutive visits should be separated by at least
a threshold time (i.e., 90 minutes or so). This constraint is indeed
very challenging, as it requires us to schedule endogenous time
windows, induced by the consecutive visits, inside the exogenous
timewindow received in input. Moreover, the company is interested
in maintaining a minimum quality of service (QoS) level. The QoS
level is computed as the ratio between the number of optional
services that have been performed and the number of optional
services that have been required. Ideally, the QoS level should be
balanced among all customers at the end of the week.

Our aim is to determine a set of routes, one for each period
and each cluster, by keeping unchanged the cluster configuration
received in input and maximizing the total collected score. The re-
sulting problem is thus a multi-period orienteering problem, which
is a generalization of the well-known orienteering problem (OP)
[4]. The OP is known to be strongly NP-hard and difficult to solve
in practice, and the problem we are facing is a challenging gener-
alization of the OP that includes different additional constraints.
For this reason, we decided to solve the problem by means of a
metaheuristic algorithm.

We developed an iterated local search (ILS), a metaheuristic
that obtained in recent years relevant results on a huge number
of optimization problems [7]. The ILS receives in input the set of
customers, the set of services to be performed, the cluster config-
uration, and all details of the instance. It builds an initial solution
by means of a constructive heuristic. Then, while the time limit
is not reached, it introduces perturbations on the current solution
and then improves it by means of a variable neighborhood descent
(VND) procedure [6] based on five neighborhood operations.

Computational tests on a set of real-life instances provided by the
company prove that the developed ILS works very well in practice.
The solutions obtained by the ILS consistently improve the ones
in use at the company in terms of the total score. In addition, the
average QoS level is also improved.

The remainder of the paper is organized as follows. Section 2
contains a brief literature review of orienteering problems and car
patrolling applications. Section 3 formally describes the problem we
solve. Section 4 presents the ILS algorithm proposed in this paper.
Section 5 shows the results obtained and, finally, Section 6 gives
some concluding remarks and hints for future research directions.

2 LITERATURE REVIEW
Car patrolling is a security measure widely used to protect large
areas from criminal activity. It consists of guards (patrols) using

vehicles to move between points of interest in a region and taking
actions that may prevent or respond to crimes. Samanta et al. [9]
surveys the police patrolling problem considering every compo-
nent involved in this complex operation and divides it into three
categories: (i) resource allocation, (ii) district design, and (iii) route
design. Among these categories, the route design is the one that
most resembles our problem, since it is concerned with how the
routes are selected and how they affect the patrols’ efficiency. Many
techniques are used to solve this type of problem and many study
cases arise in this context. Some examples are the maximization of
the vehicle patrolling coverage in Israel [1], and the minimization
of patrols’ idle time and unpredictability in London and Chicago
[2].

In general, the problems evaluated in [9] differ from ours, due to
how Coopservice needs to provide its patrolling service. In fact, in
our routing design, not necessarily all clients need to be visited, so
our problem is more similar to an orienteering problem (OP). The
literature on OPs is very rich and we found plenty of applications.
The first study on the OP dates back to 1984 [10], where the OP was
presented as a generalization of the traveling salesman problem.
Since it is an NP-hard problem, most studies use heuristic methods
to solve the OP and its variants. Gendreau et al. [3] discuss why
it is so difficult to design high-quality heuristics for this type of
problem. The score of a location and the distance to reach it are
independent and often in contrast to one another, so it is difficult to
select the locations that are part of an optimal solution. Therefore,
simple construction heuristics may direct the algorithm towards
undesirable directions and are not sufficient to explore large parts
of the solution space.

A hybrid heuristic composed of a greedy randomized adaptive
search procedure (GRASP) and a variable neighborhood search
(VNS) has been proposed by [8] to solve a generalization of the
OP. This variant has constraints related to mandatory visits and
incompatibilities among nodes. Those constraints mean that there
is a set of nodes that must be visited in order for the solution to
be considered feasible, while visiting some other nodes is optional.
In addition, incompatible nodes cannot share the same route. The
hybrid heuristic takes advantage of the multi-start feature of the
GRASP to generate initial solutions that are then optimized with
the VNS. The authors report that the heuristic was able to find 128
optimal solutions on a set of 131 instances and required, on average,
only 0.8% of the time required by an integer linear programming
model solved with commercial software.

Recent applications of the OP were studied also for tourism trip
planning. For example, Vansteenwegen et al. [11] developed an
iterated local search (ILS) metaheuristic to a problem that requires
determining a set of touristic locations to visit, while satisfying time
limits and budget criteria. The local search step is done through an
insertion procedure in which feasible points are added into routes
until a locally optimal solution is reached. In the shake step, some
visited points are removed from routes according to some prede-
fined parameters. The authors report that, in their experiments, the
average gap between the optimal solution value and the ILS one
is 2.1%. In [5], the goal is to optimize touristic routes considering
constraints such as visit redundancy avoidance and time windows,
where some attractions might have a shorter visiting time than oth-
ers. An integer linear programming model and an ILS metaheuristic
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are proposed. The authors report that the ILS could almost match
the results from the solver Gurobi, used to execute the model, for
the smaller instances, while for the larger instances it could provide
better solutions in most cases.

Outside the scope of metaheuristic algorithms, in [12] an approx-
imation algorithm for a variant of the team orienteering problem
(TOP) was proposed. In addition to the basic TOP constraints and
the basic objective of maximizing the collected score, their problem
includes a set of new features to better model Internet of things
applications. The new features of the problem are the following:
a limited budget is imposed on the vehicles to perform the routes,
the node costs are included in the path cost function in addition to
the edge costs, and the nodes can be served by multiple vehicles.
Computational experiments proved that the developed algorithm
provided up to a 17.5% increase in the collected score than the
state-of-the-art algorithms for this same TOP variant.

3 PROBLEM DESCRIPTION
The area to be patrolled is divided into clusters, but the cluster
configuration is not part of the optimization process. For this reason,
we formally describe our problem for a unique cluster served by a
unique car.

The problem we face can be viewed as a multi-period orienteer-
ing problem with time windows (MPOPTW). In the MPOPTW, we
are given a graph 𝐺 = (𝑉0, 𝐴). The set of vertices is defined as
𝑉0 = {0, 1, . . . ,𝑛}, where 0 is the depot at which the single vehicle
starts and ends each route, and𝑉 = {1, . . . ,𝑛} is the set of customer
locations. The graph is complete, and with each arc (𝑖, 𝑗) ∈ 𝐴, we
associate a traveling time 𝑡𝑖 𝑗 . The time matrix is asymmetric.

Let𝑇 be the set of services provided by the company. A standard
service time is given for each service 𝑡 ∈ 𝑇 . This is denoted by𝑞𝑡 and
gives the time duration necessary for a patrol to stay at a customer
location to execute the service. The set of services is partitioned
as 𝑇 = 𝑀 ∪ 𝑈 , where 𝑀 is the set of mandatory services and 𝑈
is the set of optional services. A score 𝑤𝑡 is associated with each
optional service 𝑡 ∈ 𝑈 , which represents the level of importance of
the service.

The activities should be executed on a given set𝐷 ⊆ {1, . . . , 7} of
periods. Each period corresponds to the working hours from 22:00
of a day to 06:00 of the next day in our instances, as all activities
are performed at night time. Each customer 𝑣 ∈ 𝑉 requires services
on a subset 𝐷𝑣 ⊆ 𝐷 of periods. Formally, we denote by 𝑇𝑣𝑑 ⊆ 𝑇
the set of services to be performed at customer 𝑣 on period 𝑑 . This
set is partitioned as 𝑇𝑣𝑑 = 𝑀𝑣𝑑 ∪𝑈𝑣𝑑 , where 𝑀𝑣𝑑 ⊆ 𝑀 comprises
mandatory services and 𝑈𝑣𝑑 ⊆ 𝑈 optional ones.

Let 𝑛𝑣𝑑𝑡 be the number of times service 𝑡 is required by cus-
tomer 𝑣 in period 𝑑 , and let 𝑛𝑣𝑑𝑡 be the number of services that
have been actually performed. We define the QoS level as 𝑄𝑜𝑆 =∑
𝑣∈𝑉 ,𝑑∈𝐷𝑣 , 𝑡 ∈𝑇𝑣𝑑 𝑛𝑣𝑑𝑡/𝑛𝑣𝑑𝑡 . This index represents the ratio of ser-

vices that have been performed in the entire set of periods, and it
should be at least a required value 𝑄𝑜𝑆min (which is set to 75% in
our instances).

Every service 𝑡 required by a customer 𝑣 in a day 𝑑 has a time
window [𝑒𝑣𝑑𝑡 , 𝑙𝑣𝑑𝑡 ]. This defines the earliest and latest possible
times to start the execution of each of the 𝑛𝑣𝑑𝑡 visits for that cus-
tomer in that period. The time window defines a hard constraint,

so late arrivals are forbidden and waiting on site is imposed in case
of early arrivals. A time window is also imposed on the depot and
corresponds to the total working time (from 22:00 of a day to 06:00
of the next day in our instances).

For some services, such as closing or opening a commercial
activity, the time window is strict (e.g., 10 minutes) and just one
visit per night is required. This typically happens for mandatory
services. For other services, such as checking a private house, the
time window is usually loose (e.g., several hours during the night)
but multiple visits are required in a period. This typically happens
for optional services. In the latter case, if two or more visits are
performed for the same service at the same customer in the same
period, the start times of any two of such visits should be separated
by at least a given threshold 𝛿 (which is equal to 90 minutes in
our instances). This is imposed to enforce a balanced patrol of the
customer during the execution of a route.

For each period, a patrol starts its route at the depot, performs
visits to customers to execute the services, and then returns to the
depot. The total riding time, which comprises traveling, service,
and waiting times, is the difference between the start and end times
of the route, and it should not exceed a given upper bound 𝑄max.

To summarize, the aim of the MPOPTW is to define a set of
routes, one per period, in such a way that (i) constraints on hard
time windows, the QoS level, the time distance between consecutive
visits, and the total riding time are satisfied; (ii) all mandatory
services are performed; and (iii) the score of the optional services
that have been actually performed is maximized.

The problem is of interest not only because of its real-life ap-
plication, but also because it is very general and models a large
number of other possible applications arising in the context of
car patrolling and attended home services. In the next section, its
solution is pursued by means of a metaheuristic algorithm.

4 PROPOSED METHODOLOGY
To solve the problem, we developed an ILS metaheuristic [7]. The
ILS receives as input the set of customers, the set of services to
be performed, the cluster configuration, and other details of the
real-life application. It builds an initial solution using a constructive
heuristic and then applies perturbations and local search iteratively
in the current solution until a time limit is reached. An acceptance
function decides at each iteration whether to keep the current
solution or to move to a newly-generated one. In our algorithm,
it always chooses the best solution among the two, and if their
fitness values are the same, our algorithm keeps the current one.
The overall ILS procedure is presented in Algorithm 1. Each step
is described in detail in the remaining part of this section. The
local search is performed by means of a VND, an algorithm that
sequentially invokes a set of neighborhoods [6].

4.1 Solution evaluation
The objective of the problem is to maximize the total score achieved
with the optional services performed by the patrol. However, in
order to guide our algorithm, we use a fitness function that, together
with the score, takes into account also the riding time of the routes.
Let S(𝜎) be the total score of a given route 𝜎 and T (𝜎) be its riding
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Algorithm 1 ILS algorithm
1: procedure ILS(𝑇max)
2: 𝑠∗ ← ConstructiveHeuristic
3: 𝑠∗ ← VND(𝑠∗)
4: while elapsedTime ≤ 𝑇max do
5: 𝑠′ ← Perturbation(𝑠∗)
6: 𝑠′′ ← VND(𝑠′)
7: 𝑠∗ ← Accept(𝑠∗, 𝑠′′) ⊲ the best of 𝑠∗ and 𝑠′′ with respect to F
8: end while
9: return the best feasible solution found during the search
10: end procedure

time. The fitness function used by the proposed ILS algorithm to
evaluate a solution 𝑠 is a weighted average of these values, namely

F (𝑠) = 𝛼
∑
𝜎 ∈𝑠
S(𝜎) − 𝛽

∑
𝜎 ∈𝑠
T (𝜎), (1)

where 𝛼 and 𝛽 are weights to be calibrated. By doing this, we expect
that the algorithm favors shorter routes during the optimization in
order to add more services later on, thus improving the score.

4.2 Constructive heuristic
An initial solution is constructed by a greedy algorithm. The ser-
vices of each period are sorted in non-decreasing order of the start
time of their timewindows. A route is constructed for each period in
two phases: first, the mandatory services are inserted sequentially,
in the order in which they were sorted (this is always feasible for
the mandatory services in the instances provided by the company);
later, while possible, optional services are appended one by one in
the solution (i.e., an optional service is appended if the solution
remains feasible, otherwise it is skipped). Algorithm 2 summarizes
the steps of this heuristic. In the ILS, the solution obtained by Algo-
rithm 2 is optimized by invoking a VND procedure to the solution
built by the constructive heuristic.

Algorithm 2 The greedy constructive heuristic
1: procedure Constructive Heuristic(𝑀,𝑈 )
2: for each period 𝑑 ∈ 𝐷 do
3: 𝑀𝑑 ,𝑈𝑑 ← services in𝑀 and𝑈 for period 𝑑
4: Sort𝑀𝑑 and𝑈𝑑 in non-decreasing order of 𝑒𝑣𝑑𝑡
5: 𝜎𝑑 ← AppendAllMandatory (𝑀𝑑 )
6: while CanAppendOptionals (𝜎𝑑 ,𝑈𝑑 ) do
7: 𝜎𝑑 ← AppendOptionals (𝜎𝑑 ,𝑈𝑑 )
8: end while
9: end for
10: return 𝑠 = {𝜎1, . . . , 𝜎𝐷 }
11: end procedure

4.3 VND heuristic
A VND procedure is used to find a locally optimal solution using
a sequence of different neighborhoods 𝑁𝑘 (𝑘 = 1, . . . , 𝑘max). Algo-
rithm 3 shows the main steps of the VND heuristic. Starting with
the first neighborhood (𝑘 = 1), the heuristic explores the solution
space searching through the sequence of neighborhoods in a deter-
ministic way, controlled by the neighborhood change procedure

presented in Algorithm 4. The steps of these algorithms are detailed
in the following.

At each step of the VND, a neighbor 𝑠 ′ of the current solution
𝑠 is selected from the neighborhood 𝑁𝑘 (𝑠). A neighbor is always
selected by a first improvement move in the fitness function F
defined in (1). If there is no better neighbor in the 𝑘th neighborhood
(i.e., the current solution is locally optimal with respect to this
neighborhood), the algorithm changes to the next neighborhood,
𝑁𝑘+1. If, instead, a better neighbor is found, the algorithm returns
to the first neighborhood. The process continues while there is a
neighborhood to be explored, that is, it stops when the current
solution is locally optimal with respect to all neighborhoods.

For the VND, we implemented five classical neighborhood op-
erators from the traveling salesman and vehicle routing literature.
Swap: this operator swaps the positions of two visits inside a route.
2-opt: this operator reverses the visiting order between two visits
in a route.Relocate: this operator moves a visit to another position
in the route. Swap unrouted: this operator swaps the status of two
services, an unrouted service takes place of a performed service.
Insertion unrouted: this last operator inserts a visit in a route to
perform an unrouted service, increasing the number of services
performed by the patrol. Note that the first three operators, Swap,
2-opt and Relocate, may improve the fitness function by reducing
the riding time of a route, as they do not change the collected score.
The operator Swap unrouted may instead improve the fitness func-
tion by increasing the score or by reducing the riding time. The last
operator, Insertion unrouted, may improve the score at the expense
of an increase in the riding time.

Note that all described neighborhoods consist of intra-period
movements, in which they change routes of each period indepen-
dently. A solution may be further improved by performing inter-
period movements, exchanging services from different periods. For
example, a customer requiring services in more than one period
that is currently served in only a subset of those periods may have
the visits changed without changing the total score, perhaps de-
creasing the riding time. Inter-period movements are costly to be
evaluated because of the large number of neighbors. Hence, they
are not fully explored in a deterministic way, but are considered in
the perturbation step, described next.

Algorithm 3 Variable neighborhood descent heuristic
1: procedure VND(𝑠)
2: 𝑘 ← 0
3: 𝑠∗ ← 𝑠
4: while 𝑘 ≤ 𝑘max do
5: Let 𝑠 be an improved sol. in 𝑁𝑘 (𝑠∗) if any; otherwise 𝑠 ← 𝑠∗
6: 𝑠∗, 𝑘 ← NeighborhoodChange(𝑠∗, 𝑠, 𝑘)
7: end while
8: return 𝑠∗
9: end procedure

4.4 Perturbation procedure
The perturbation procedure is introduced to escape from the locally
optimal solution obtained by the VND used in the local search step.
Two inter-period operators are used, which both attempt to modify
the current solution in the set of periods.
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Algorithm 4 Neighborhood change procedure
1: procedure NeighborhoodChange(𝑠∗, 𝑠, 𝑘)
2: if F(𝑠) > F(𝑠∗) then
3: 𝑠∗ ← 𝑠
4: 𝑘 ← 1
5: else
6: 𝑘 ← 𝑘 + 1
7: end if
8: return 𝑠∗, 𝑘
9: end procedure

Two periods are randomly chosen and an arbitrary number of
shaking movements are applied, limited by a maximum number of
tries and a maximum number of successful movements. The Swap
inter-period operator randomly chooses a service in the route of
a chosen period and tries to swap it with every other service in
a successive period. TheMove inter-period chooses one service
routed in a period and tries to insert it in every position of the route
of a different period. In either case, if a try succeeds in finding an
improved solution, then the move is applied. Only feasible moves
are considered.

5 COMPUTATIONAL EVALUATION
In this section, we present the computational results that we ob-
tained. First, we briefly describe the instances we address. Then,
we report the calibration of the main ILS parameters. Finally, we
present the results obtained by the ILS. The algorithm was coded
in Python 3.7.3 and executed on an Intel Xeon CPU E5-2640 v3
2.60 GHz with 64 GB of memory, running under Windows 10 Pro
20H2 64-bits.

5.1 Instances
The company provides security services in a number of provinces
of Italy. We were provided with the data of four of such provinces.
Each of them is different in the number of customers and frequency
of tasks. Table 1 reports for each province, in order, the number of
instances, the number of periods (column |𝐷 |), the total number of
customers (column |𝑉 |), and the total number of services (column
|𝑇 |). The traveling times have been obtained by using the OSRM
application.

Table 1: Details of the real-life instances

Province Instances |𝐷 | |𝑉 | |𝑇 |
Parma 5 7 175 1382
Pescara 5 7 160 987
Sassari 9 7 122 1044
Roma 8 7 121 1234

5.2 Parameter calibration
As the size of the instances changes by province, we defined a
different time limit 𝑇max (the maximum time allowed for the ILS
execution) for each of them, based on the number of customers.
We set 𝑇max, in minutes, to 120, 120, 60, and 60 for Parma, Pescara,
Sassari, and Roma instances, respectively.

As the fitness function F defined by (1) used to guide the algo-
rithm has two parameters, 𝛼 and 𝛽 , we ran preliminary tests for all
combinations of 𝛼 = [1, 2, 3, 4, 5] and 𝛽 = [0.1, 0.3, 0.5, 0.7, 0.9]. For
any combination, we evaluated the reported solutions considering
(i) the total score, (ii) the mean of the distances traveled by the pa-
trols, (iii) the mean of the patrol times, (iv) the mean of the waiting
times, and (v) the 𝑄𝑜𝑆 level obtained. For each instance, a ranking
of the parameter combination results was created. To merge all
rankings into a unique one, we assigned scores for each ranking
as follows: from position 1 to 5 of a ranking the score is 5, from 6
to 10 the score is 4, from 11 to 15 the score is 3, from 16 to 20 the
score is 2, and from 21 to 25 the score is 1. Then, we summed the
scores for each combination. Note that the higher is the ranking,
the larger is the sum. The winning combination was determined as
𝛼 = 5 and 𝛽 = 0.9 and was used in all successive experiments.

5.3 Computational experiments
To compare the solutions obtained by the ILS with the ones in
use at the company, several criteria have been considered: 𝑘𝑚, the
average distance traveled by the patrols; 𝑑𝑣 , the average distance
between two consecutive visits; T , the average riding time; 𝑢𝑐 , the
average number of unvisited customers; 𝑄𝑜𝑆 , the average QoS; 𝛿 ,
the average time between two visits at the same customer; and S,
the total collected score.

Table 2 reports the above parameters computed for the solutions
in use at the company. It is important to highlight that the solutions
by the company do not always satisfy the constraint on the desired
interval of 𝛿 = 90 minutes between two visits to the same customer.

Table 2: Evaluation of the solutions in use at the company

Province 𝑘𝑚 𝑑𝑣 T 𝑢𝑐 𝑄𝑜𝑆 𝛿 S
Parma 156.85 2.51 431.63 1.40 92.56 85.39 4117.57
Pescara 53.42 1.14 339.69 21.12 48.63 30.74 693.43
Sassari 40.81 2.39 217.21 1.12 92.72 45.38 718.86
Roma 92.56 5.65 379.76 0.50 83.12 87.73 1393.28

Since the ILS algorithm contains a random factor in the pertur-
bation step, we have run the algorithm multiple times for each
instance. Table 3 reports the average results obtained for five runs
of the ILS, and Table 4 shows the comparison with the real-life
solutions currently adopted by the company. Table 5 reports the
difference reported in Table 4, but in terms of percentages in order
to better highlight the results (we have decided to exclude column
𝑢𝑐 from Table 4 because all values were −100%).

The results obtained by the ILS show several improvements with
respect to the real ones. The only negative result is noticed for
the distance 𝑘𝑚 traveled by the vehicles. This happens because,
in order to maximize the score, more optional services have been
performed, and this requires more km to be traveled. The two
measures used in our guide fitness function, T and S, were highly
improved. The average travel time was reduced by 10 to 42% for the
tested instances, while the total score was increased by 11 to 96%.
Moreover, although not directly used in the fitness function, other
criteria were also improved, as theywere used to choose the weights
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𝛼 and 𝛽 in this function. Note that in our solutions, no customer is
left unvisited. Moreover, almost all tasks are performed, as the 𝑄𝑜𝑆
is above 97%. The distance𝑑𝑣 between two visits is similar to the one
obtained by the company, which indicates that the neighborhood
operators were able to find routes as good as those designed by the
experienced workers of the company. Furthermore, the 𝛿 parameter,
the interval between two consecutive visits to the same customer,
is always respected in the solutions of our ILS algorithm, which we
recall is not the case in the solutions by the company.

Table 3: Evaluation of the solutions obtained by the ILS

Province 𝑘𝑚 𝑑𝑣 T 𝑢𝑐 𝑄𝑜𝑆 𝛿 S
Parma 179.69 2.17 335.46 0 98.22 153.51 4572.60
Pescara 127.78 3.32 197.35 0 98.29 93.25 1365.20
Sassari 69.98 4.29 170.64 0 98.52 122.85 1052.60
Roma 115.61 5.40 338.04 0 97.10 131.08 1750.60

Table 4: Absolute differences between ILS and company

Province 𝑘𝑚 𝑑𝑣 T 𝑢𝑐 𝑄𝑜𝑆 𝛿 S
Parma 22.84 −0.34 −96.17 −1.40 5.66 68.12 455.03
Pescara 74.36 2.18 −142.34 −21.12 49.65 62.50 671.77
Sassari 29.17 1.90 −46.57 −1.12 5.80 77.46 333.74
Roma 23.05 −0.25 −41.71 −0.50 13.98 43.34 357.32

Table 5: Percentage differences between ILS and company

Province 𝑘𝑚 𝑑𝑣 T 𝑄𝑜𝑆 𝛿 S
Parma 14% −13% −22% 6% 79% 11%
Pescara 139% 190% −42% 102% 203% 96%
Sassari 71% 79% −21% 6% 171% 46%
Roma 24% −4% −10% 17% 49% 26%
Average 62% 63% −23% 58% 125% 44%

6 CONCLUSIONS AND FUTURE RESEARCH
This paper presented a study on a car patrolling application that
arose from a large Italian company, which has to plan routes to
perform mandatory and optional services at customers. The result-
ing optimization problem is a challenging variant of a multi-period
orienteering problem. Because of its difficulty, we decided to solve
it with an iterated local search (ILS) metaheuristic, which was en-
riched with a variable neighborhood descent.

Through a computational analysis, we observed that the ILS
consistently improved the company solutions. The improvement
obtained was remarkable for both the total collected score and
for the overall quality of service (a measure of the percentage of
optional services that were performed). In the province of Pescara,
just to give an example, the quality of service was remarkably
increased by 102%. Another important result obtained by the ILS
comes from the fact that all solutions were feasible with respect to
the constraint that imposes a required elapsed time between two
consecutive visits to the same customer. This constraint is indeed
not always satisfied in the solutions by the company.

We present four suggestions for future studies. First, the mod-
ification of the cluster: the current clusters were provided by the
company, but we foresee that changing their configuration might
help improve the solutions even further. Second, the insertion of dy-
namic and stochastic features in the problem: in the current version
of the problem, dynamic occurrences such as alarm triggering or
unexpected urgent services are not considered; by embedding them
into a new problem that considers dynamic and stochastic aspects,
we may obtain a more sophisticated model, to be used on-the-fly
during the execution of the activities. Third, a more elaborated eval-
uation of the quality of service: in our study, the quality of service
is evaluated using an overall measure of the number of services
performed, which may introduce unfairness as some customers
may have been poorly served while others fully served; introducing
a quality of service measured per single customer might improve
the fairness of the resulting solutions. Finally, the development of
an integer linear programming model represents another interest-
ing topic for future research. This model might be used to provide
proven optimal solutions, or at least to assess the quality of the
solutions found by the metaheuristic.
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1 Introduction
The traveling salesman problem with time windows (TSPTW) arises both in scheduling and routing
applications such as school bus transportation, postal deliveries and single-machine scheduling. The
problem aims to find an optimal Hamiltonian tour with respect to different objectives, which depend
on the goals of the specific application. A classical variant is to minimize the total travel cost or time
(TSPTW-T). Excellent solution methods, including exact and heuristic ones, have been introduced to
solve this variant [3, 4]. Other important objectives include but are not limited to: the minimization of
completion time or makespan (TSPTW-C) [1], and the minimization of total duration (TSPTW-D) [5].

In this paper, we introduce a new variant maximizing the minimum slack (TSPTW-S), i.e., the
smallest time buffer between arrival time and the end of the time window over all customers. Thus, we
target four variants in total: TSPTW-T, TSPTW-C, TSPTW-D and TSPTW-S. To solve these variants,
we develop a two-phase heuristic. We apply an efficient move evaluation procedure that is introduced
by [6] for the vehicle routing problem with time windows (VRPTW) and embed the procedure within
the local search. The resulting algorithm is able to solve all considered variants. For each variant, we
conduct extensive numerical experiments to assess the quality of the solutions obtained by our algorithm
against the best known solutions from the literature.

2 Solution method
Our two-phase heuristic is based on the general variable neighborhood search (GVNS) framework of [2]
and works iteratively in two phases. The first is a constructive phase, which tries to find a feasible
solution using a standard variable neighborhood search (VNS). This phase iteratively calls a combination
of a shaking and a local search procedure until a feasible solution is found or the time limit is reached. We
modify the shaking procedure by replacing the level-based random 1-shift moves of [2] with a level-based
destruction and construction procedure of [3], and we consider a 1-shift neighborhood in the local search.
The second phase is an improvement phase, which aims to improve the feasible solution found by the
first phase using a GVNS, i.e., a VNS with variable neighborhood descent (VND) as local search. The
GVNS calls iteratively the same shaking procedure that is used in the first phase and the VND to update
the overall best solution. We consider six neighborhoods in total in the VND: 1-shift backward, 1-shift
forward, 1-swap, 2-shift backward, 2-shift forward, 2-opt. The phase terminates if no improvement has
been found in itermax consecutive iterations or a time limit tmax is reached. In both phases, we adapt
the constant-time move evaluation procedure from [6] in the local search to speed up the search.

3 Preliminary results
We conduct experiments for each variant on multiple well-known TSPTW benchmarks to evaluate the
performance of the proposed two-phase GVNS. In total seven benchmark sets are considered. Table 1
presents a sample summary of the computational results on two of the considered sets, namely AFG and
GDE. For each variant, we report the best known solutions (BKS), the solutions from the state-of-the-art
heuristics from the literature, and the solutions obtained by our heuristic. Note that for TSPTW-S, there
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exist no BKS from the literature. We solve the problem exactly using a constraint programming (CP)
algorithm. Thus, the set of BKS consists of the best solutions obtained using both the CP algorithm and
our two-phase heuristic. Each row in the table reports the aggregated results for all instances included
in the set.

Table 1: Aggregated results on benchmark sets AFG and GDE.
TSPTW-T TSPTW-C TSPTW-D TSPTW-S

Start-of-the-art GVNS Start-of-the-art GVNS Start-of-the-art GVNS Exact CP GVNS

Inst. BKS gap% time gap% time BKS gap% time gap% time BKS gap% time gap% time BKS gap% time gap% time

AFG 5550.80 0.000[4] 4.9 0.040 1.9 9568.63 0.000[1] 0.4 0.001 0.4 8393.94 0.460[5] - 0.006 2.0 433.52 0.000 1078.2 -0.040 5.3
GDE 432.08 0.070[3] 1.1 0.070 0.6 575.03 0.000[1] 0.3 0.000 0.2 505.60 0.410[5] - 0.000 1.2 56.26 -0.050 197.7 0.000 1.4

Note1: All experiments, including solving TSPTW-S using CP, were run on a computing cluster with an Intel Xeon E5-2430v2 processor with 2.50
GHz. [3] and [4] used a 2.53 GHz processor, [1] and [5] used a 3.40 GHz processor.
Note2: For each instance, our heuristic is run 30 times and the time limit tmax is 120 seconds. The gap% is computed as (100 · best−BKS

BKS
)%, where

best is the solution obtained by the state-of-the-art heuristic or by our heuristic. The average runtime is presented in seconds.

The main observation is that our two-phase GVNS is competitive with the state-of-the-art heuristics
for all variants. Our heuristic can find solutions with the same quality for TSPTW-T and TSPTW-C in
the GDE set, and a gap below 0.04% exists for these two variants in the AFG set. For TSPTW-D, our
heuristic beats the simple VND heuristic in [5] by providing better solutions for both sets with an overall
gap below 0.006% to the BKS. For TSPTW-S, our heuristic finds feasible solutions for all instances that
can be solved exactly by the CP algorithm for both sets, and is able to improve the solutions in the GDE
set. Moreover, the runtime of our heuristic is significantly smaller than that of the CP algorithm in both
sets.

4 Conclusions
We develop a two-phase GVNS heuristic to solve multiple TSPTW variants with different objectives
efficiently. The proposed heuristic performs well for all considered variants and is competitive with
respect to the start-of-the-art heuristics that are developed separately for each variant. Future work
will concentrate on the development of improved strategies to further optimize the performance of our
heuristic.
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ABSTRACT
The analysis of social and biological networks often involves model-
ing clusters of interest as cliques or their graph-theoretic generaliza-
tions. The 𝑘-club model, which relaxes the requirement of pairwise
adjacency in a clique to length-bounded paths inside the cluster,
has been used to model cohesive subgroups in social networks and
functional modules/complexes in biological networks. However,
if the graphs are time-varying, or if they change under different
conditions, we may be interested in clusters that preserve their
property over time or under changes in conditions. To model such
clusters that are conserved in a collection of graphs, we consider
a cross-graph 𝑘-club model, a subset of nodes that forms a 𝑘-club
in every graph in the collection. In this paper, we consider the
canonical optimization problem of finding a cross-graph 𝑘-club
of maximum cardinality. We introduce algorithmic ideas to solve
this problem and evaluate their performance on some benchmark
instances.

KEYWORDS
Cross-graph mining, temporal networks, 𝑘-clubs, integer program-
ming

1 INTRODUCTION
In graph-based data mining (or graph mining), a node models a
data item with different attributes, and two nodes are joined by
an edge if they are “close" to each other based on similarity mea-
sures. Graph mining in social and biological networks involves
modeling clusters of interest using cliques and their graph-theoretic
generalizations. In these graphs, a cohesive/tight-knit subset is a
group whose member nodes are believed or verified to intimately
cooperate with each other towards some specific goal. Cohesive
subgroups in social networks could be identified for use in rec-
ommender systems, marketing campaigns, community detection,
influence maximization, and so forth [3]. In biological networks like
protein interaction networks, gene co-expression networks, and
metabolic networks, clusters and network motifs are commonly
used to identify functional modules that could represent protein
complexes, transcriptional modules, or signaling pathways [12].

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th 
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The clique and its graph-theoretic relaxations have been exten-
sively studied and used as cluster models in diverse fields [19].
Major categories include distance based relaxations 𝑘-clique and
𝑘-club [6], and edge count, degree, and density based relaxations 𝑘-
defective clique [25], 𝑘-plex [5], and quasi-clique [15], respectively.

A significant body of literature on optimization methods for
cluster detection seeks to find a subset of nodes satisfying a graph
property while optimizing a measure of fitness like cluster size
or weight. One common characteristic shared by optimization ap-
proaches to graph mining is that they identify cohesive subgraphs,
critical nodes, most central actors, or other graph structures of
interest in a single graph. However, in many settings the graphs are
time-varying as the underlying dynamic systems they are modeling
evolve over time. In this case, a single graph is typically a snapshot
that reflects node relationships at the point in time it is recorded.

Alternatively, relationships between a group of nodes may be dif-
ferent under different conditions. Jointly mining node relationships
under different conditions might uncover novel clusters that cannot
be found by individually analyzing each condition. An example
in cross-market customer segmentation is finding customers who
have similar behaviors across different markets as a more robust co-
hesive subgroup than those found in a single market [21]. Similarly,
systems biologists are interested in finding groups of co-expressing
genes or interacting proteins that are conserved under different
biological conditions or between different species [20].

In this paper we consider a cross-graph 𝑘-clubmodel to represent
clusters that are conserved in a collection of graphs. Note that the
graph collection may represent temporal graphs with an implicit
ordering, or may be obtained under different (experimental) con-
ditions without any natural ordering. Although our focus is on
clusters that induce low-diameter subgraphs, one may investigate
any clique relaxation or another graph property in the same setting.

2 CROSS-GRAPH 𝑘-CLUBS
For a simple graph 𝐺 , we use 𝑉 (𝐺) and 𝐸 (𝐺) to denote its node 
and edge sets respectively. For simplicity we use 𝑢𝑣 to denote an 
edge {𝑢, 𝑣} ∈ 𝐸 (𝐺). For a subset of nodes 𝑆 ⊆ 𝑉 (𝐺), 𝐺 [𝑆] denotes 
the subgraph induced by 𝑆, obtained by deleting nodes outside 𝑆 
and their incident edges. We denote by dist𝐺 (𝑖, 𝑗) the minimum 
number of edges on a path connecting nodes 𝑖 and 𝑗 in graph 𝐺 
and its diameter as diam(𝐺) B max{dist𝐺 (𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝑉 (𝐺)}.

Definition 2.1 ([14]). Given a graph 𝐺 and a positive integer 𝑘 , a
subset of nodes 𝑆 ⊆ 𝑉 (𝐺) is called a 𝑘-clique if dist𝐺 (𝑖, 𝑗) ≤ 𝑘 for
every pair of nodes 𝑖, 𝑗 ∈ 𝑆 .
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A 𝑘-clique 𝑆 allows two vertices 𝑢 and 𝑣 to be in 𝑆 even if every
path between 𝑢 and 𝑣 of length at most 𝑘 in 𝐺 includes vertices
outside 𝑆 (see Figure 1). By contrast, in a 𝑘-club, at least one of
those paths should be contained in 𝑆 as the definition below states.

Definition 2.2 ([16]). Given a graph 𝐺 and a positive integer 𝑘 , a
subset of nodes 𝑆 ⊆ 𝑉 (𝐺) is called a 𝑘-club if diam(𝐺 [𝑆]) ≤ 𝑘 .

2 4

3 5

1 6

2 4

3 5

1 6

Figure 1: The set {1, 2, 3, 4, 5} forms a 2-club; the set {2, 3, 4, 5, 6}
forms a 2-clique, but does not induce a 2-club [2].

For low values of parameter 𝑘 , typically no more than four, the
𝑘-club can be an appropriate choice for modeling cohesive social
subgroups or tightly knit clusters. We define the cross-graph coun-
terpart of the 𝑘-club, based on the cross-graph quasi-clique model
introduced by Pei et al [21], which also appears to be the earliest for-
mal study of a cross-graph cluster model. Let G = {𝐺1,𝐺2, . . . ,𝐺𝑝 }
denote a collection of 𝑝 simple, undirected graphs, all defined on a
common node set denoted by 𝑉 (G).

Definition 2.3. A subset of nodes 𝑆 ⊆ 𝑉 (G) is called a 𝑝-graph
𝑘-club if 𝑆 is a 𝑘-club in each graph in the collection G.

This paper focuses on the maximum 𝑝-graph 𝑘-club problem,
which seeks to find a 𝑝-graph 𝑘-club of maximum cardinality in G.
We use the prefix “𝑝-graph” when we know or wish to specify that
there are 𝑝 graphs in the collection. Otherwise, in line with past
usage, we simply refer to it as a cross-graph 𝑘-club [21].

3 LITERATURE REVIEW
The (1-graph) maximum 𝑘-club problem is NP-hard for every value
of parameter 𝑘 fixed in the problem [8]. Consequently, the maxi-
mum 𝑝-graph 𝑘-club problem is NP-hard for every fixed positive
integer 𝑘 as it includes the maximum 𝑘-club problem as special case.
Shahinpour and Butenko [23] provide a comprehensive survey on
the complexity results and algorithmic approaches for the maxi-
mum 𝑘-club problem. Given the focus of this paper, we limit our
review to integer programming (IP) formulations of the maximum
𝑘-club problem and prevailing works on cross-graph models.

The first IP formulation for the maximum 𝑘-club problem seen
in the literature was the chain formulation given by Bourjolly et
al [8]. The chain formulation introduces a binary variable for each
path of length at most 𝑘 connecting a nonadjacent pair of nodes 𝑖
and 𝑗 , in addition to binary variables indicating membership in the
𝑘-club. For the special case of 𝑘 = 2, the binary variables for the
paths are unnecessary as each path of length 2 between 𝑖 and 𝑗 is
uniquely identified by the common neighbor internal to that path.
Thus, we obtain the so-called common neighbor formulation for
the maximum 2-club problem. Path enumeration gets increasingly
challenging as 𝑘 takes values larger than two, and for arbitrary 𝑘
it can take up to 𝑂 (𝑛𝑘+1) binary variables and constraints to fully
describe the chain formulation on a graph with 𝑛 nodes.

For the maximum 3-club problem, Almeida and Carvalho [4] 
introduced a compact neighborhood formulation, as well as a node 
cut set formulation with exponentially many constraints in the 
worst case. Veremyev and Boginski [26] introduced two 
polynomial-sized IP formulations for the maximum 𝑘-club 
problem, one using binary variables and the other using integer 
variables, obtained by linearizing a polynomial formulation. Both 
are described by 𝑂 (𝑘𝑛2) variables and constraints on an 𝑛-node 
graph, and are known to be the first compact IP formulations for 
the maximum 𝑘-club problem for general 𝑘.

Moradi and Balasundaram [13, 17] proposed a branch-and-cut
algorithm that is based on a delayed application of canonical hyper-
cube cuts to eliminate integral solutions to the initial relaxation (a
maximum 𝑘-clique formulation) that do not correspond to a 𝑘-club.
They also introduced an iterative graph decomposition framework
based on variable fixing to solve the problem on potentially small
subgraphs of the original graph and to take advantage of intermedi-
ate solutions in preprocessing (vertex deletion) between iterations.

Salemi and Buchanan [22] introduced a cut-like formulation
and a path-like formulation using length-bounded separators and
connectors. Their study generalizes for arbitrary 𝑘 , some of the
aforementioned formulations for the special cases, when 𝑘 = 2, 3.
Generally, the cut-like formulation could use exponentially many
constraints, but only |𝑉 | binary variables. This formulation and the
associated decomposition branch-and-cut algorithm demonstrated
effective computational performance making it the current state-of-
the-art mathematical programming approach to solve themaximum
𝑘-club problem for arbitrary 𝑘 .

Although previous works on cross-graph models in the litera-
ture are limited, we mention some examples that are related and
motivated our study. To extract reliable patterns across multiple
pieces of data, Pei et al [21] mined cross-graph quasi-cliques and
developed algorithms to enumerate them across multiple graphs.
Jiang and Pei [11] extended this work to the problem of finding fre-
quent cross-graph quasi-cliques. They seek to enumerate maximal
node subsets that form quasi-cliques in at least a minimum number
of graphs in the collection. We must clarify that the terminology
has been reused as these are “degree-based” quasi-cliques [18], and
not “density-based” quasi-cliques [15].

Sim et al [24] introduced an approach to clustering stocks that
exhibit homogeneous financial ratio values by mining the complete
set of cross-graph quasi-bicliques in a bipartite graph. This bipartite
graph has stocks as nodes in one partition and different features of
the stock data in the other partition. The cross-graph quasi-biclique
model was used to handle the issue of missing values in stock data.

4 IP FORMULATIONS
We begin with an IP formulation that is a direct extension of the
cut-like formulation for the maximum 𝑘-club problem to the cross-
graph setting. Then we propose a new formulation based on what
we refer to as ‘pairwise peeling.’

4.1 A conjunctive cut-like formulation
We use the following additional notations in the formulation. Let𝐺
denote the complement graph of 𝐺 . Given a graph 𝐺 and a pair of
nonadjacent nodes 𝑢 and 𝑣 , a subset of nodes 𝑆 is called a length-𝑘
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𝑢, 𝑣-separator if dist𝐺\𝑆 (𝑢, 𝑣) > 𝑘 , where 𝐺 \ 𝑆 denotes the graph
obtained from 𝐺 by deleting the nodes in 𝑆 along with its incident
edges. In other words, every path of length at most 𝑘 in𝐺 between
𝑢 and 𝑣 uses nodes from 𝑆 . By S𝐺 (𝑢, 𝑣), we denote the collection of
all length-𝑘 𝑢, 𝑣-separators that are minimal by exclusion. For the
case 𝑘 = 2, the unique minimal length-2 𝑢, 𝑣-separator is the set of
common neighbors, i.e., nodes adjacent to both 𝑢 and 𝑣 in 𝐺 . For a
subset of nodes 𝐶 , we use the short form 𝑥 (𝐶) to denote

∑
𝑢∈𝐶 𝑥𝑢 .

Consider the following optimization problem:

max 𝑥 (𝑉 (G)) (1a)

s.t. 𝑥𝑢 + 𝑥𝑣 − 𝑥 (𝑆) ≤ 1 ∀𝑆 ∈ S𝐺 (𝑢, 𝑣), 𝑢𝑣 ∈ 𝐸 (𝐺),𝐺 ∈ G (1b)
𝑥𝑢 ∈ {0, 1} ∀𝑢 ∈ 𝑉 (G) . (1c)

Formulation (1) is a conjunction of the cut-like formulation of the
maximum 𝑘-club problem introduced by Salemi and Buchanan [22],
across all the graphs in the collection. Henceforth, we refer to
formulation (1) as the conjunctive cut-like formulation (CCF). It is
readily verified that the CCF is a correct formulation in the sense
that 𝑥 is an incidence vector of a cross-graph 𝑘-club if and only if
it is feasible to the CCF.

Formulation (1) can be strengthened by noting that if a node
𝑤 that belongs to some minimal length-𝑘 𝑢, 𝑣-separator of graph
𝐺𝑖 ∈ G (i.e.,𝑤 ∈ 𝑆 ∈ S𝐺𝑖 (𝑢, 𝑣)) is also at a distance strictly greater
that 𝑘 from either 𝑢 or 𝑣 in some other graph 𝐺 𝑗 in the collection,
then𝑤 cannot be in a cross-graph 𝑘-club that contains both 𝑢 and
𝑣 . Consequently, constraints (1b) can be replaced by

𝑥𝑢 + 𝑥𝑣 − 𝑥 (𝑆 ∩ 𝐷𝑢𝑣) ≤ 1, (2)

where,

𝐷𝑢𝑣 B
{
𝑤 ∈ 𝑉 (G) \ {𝑢, 𝑣} : dist𝐺 (𝑢,𝑤) ≤ 𝑘 and

dist𝐺 (𝑣,𝑤) ≤ 𝑘 ∀𝐺 ∈ G
}

(3)

is the set of nodes that are at a distance of at most 𝑘 from 𝑢 and 𝑣
in all the graphs in G. The validity of constraints (2) follows from
the observation that if 𝑥𝑢 = 𝑥𝑣 = 1, then 𝑥 (𝑆 \ 𝐷𝑢𝑣) = 0 as no
nodes from the set 𝑆 \ 𝐷𝑢𝑣 can be included in a cross-graph 𝑘-club
containing 𝑢 and 𝑣 . Alternately, we can think of 𝑆 ∩ 𝐷𝑢𝑣 as further
minimalizing the separator 𝑆 by removing nodes that are not on
any path of length at most 𝑘 between 𝑢 and 𝑣 , in some graph in the
collection. Observe that the resulting formulation is at least as tight
as the CCF. Moreover, there are instances where 𝑥 (𝑆 ∩𝐷𝑢𝑣) < 𝑥 (𝑆)
for at least one separator 𝑆 ∈ S𝐺 (𝑢, 𝑣), as illustrated next.

1 2

34
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1 2

34
5

67

𝐻

Figure 2: Inequality 𝑥1 + 𝑥2 ≤ 1 is valid for the problem on
G = {𝐺,𝐻 } when 𝑘 = 2.

Consider the maximum 2-graph 2-club problem on the graph
collection in Figure 2. Formulation (1), for node pair 1 and 2, includes
the constraints 𝑥1 + 𝑥2 − 𝑥3 ≤ 1 due to 𝐺 and 𝑥1 + 𝑥2 − 𝑥6 ≤ 1 due
to 𝐻 . However, we can tighten the first constraint by intersecting
the separator {3} with 𝐷1,2 = {5, 6, 7} to obtain the constraint
𝑥1 + 𝑥2 ≤ 1 that dominates both previous constraints; note that
dist𝐻 (1, 3) = 3.

4.2 A conjunctive formulation based on
pairwise peeling

Based on the idea of intersecting the length-𝑘 𝑢, 𝑣-separator 𝑆 in
constraint (1b) with 𝐷𝑢𝑣 to obtain a tighter constraint (2), we can
envision an approach in which we further tighten the constraints
with respect to each 𝑢, 𝑣 pair, by recursively deleting nodes which
are too far away from either 𝑢 or 𝑣 in any graph in the collection.
As the deletion of nodes tends to have a domino effect on pairwise
distances in graphs, leading to more nodes meeting the condition
for deletion, the resulting inequalities will be at least as strong as
their counterpart in constraints (2). However, it is important to
recognize that this operation is node pair specific, i.e., the graph
collection obtained by deleting nodes based on a particular 𝑢, 𝑣 pair
is only valid for generating constraints with respect to that pair.
This is because nodes deleted based on 𝑢 and 𝑣 might be within
distance 𝑘 of a different node pair.

To illustrate this idea, consider the maximum 2-graph 3-club
problem on the graph collection in Figure 3. Constraints (2) are
listed below for the node pair 1 and 6, for graphs 𝐺 and 𝐻 , by
noting that 𝐷1,6 = {3, 4, 5}, S𝐺 (1, 6) =

{{2, 3}, {2, 5}, {3, 4}, {4, 5}},
and S𝐻 (1, 6) =

{{3}, {4}}.
𝑥1 + 𝑥6 − 𝑥3 ≤ 1
𝑥1 + 𝑥6 − 𝑥5 ≤ 1
𝑥1 + 𝑥6 − 𝑥3 − 𝑥4 ≤ 1
𝑥1 + 𝑥6 − 𝑥4 − 𝑥5 ≤ 1
𝑥1 + 𝑥6 − 𝑥3 ≤ 1
𝑥1 + 𝑥6 − 𝑥4 ≤ 1

However, the inequality 𝑥1 + 𝑥6 ≤ 1 that can replace all of the
foregoing constraints for the node pair 1 and 6 can be derived
as follows: observe that dist𝐻 (2, 6) = 4 > 3, thus if we want to
simultaneously include nodes 1 and 6 in a 2-graph 3-club, then we
cannot include node 2 and it can be deleted from 𝐺 and 𝐻 . Then,
the dist𝐺\{2} (1, 4) = 4 > 3, and consequently we cannot include
node 4 either. Upon deleting nodes 2 and 4 from 𝐺 and 𝐻 , we find
that nodes 1 and 6 are disconnected in 𝐻 ; so, 𝑥1 + 𝑥6 ≤ 1 is valid.

Algorithm 1 formalizes the idea illustrated by the foregoing
example to generate tighter constraints, and we refer to it as the
pairwise peeling algorithm. We denote by J the node pairs that are
nonadjacent in some graph in the collection G, i.e.,
J B

{
{𝑢, 𝑣} ⊂ 𝑉 (G) : 𝑢 ≠ 𝑣,𝑢𝑣 ∈ 𝐸 (𝐺) for some 𝐺 ∈ G

}
.

The algorithm takes a graph collection G, a positive integer 𝑘 , and a
node pair𝑢𝑣 ∈ J as input, and creates an auxiliary graph collection
G𝑢𝑣 by recursively deleting from every graph in the collection,
nodes that are more than distance 𝑘 from either 𝑢 or 𝑣 in some
graph in the collection. The constraints for the node pair 𝑢 and 𝑣
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Figure 3: Inequality 𝑥1 + 𝑥6 ≤ 1 is valid for the problem on
{𝐺,𝐻 } when 𝑘 = 3.

can then be generated based on the minimal separators of graphs in
this auxiliary collection G𝑢𝑣 . Thus, we can replace constraints (1b)
by the following based on the pairwise peeled collection:
𝑥𝑢 + 𝑥𝑣 − 𝑥 (𝑆) ≤ 1 ∀𝑆 ∈ S𝐺 (𝑢, 𝑣) and

∀𝐺 ∈ G𝑢𝑣 such that 𝑢𝑣 ∈ 𝐸 (𝐺), 𝑢𝑣 ∈ J . (4)
In Algorithm 1, the do-while loop executes at most |𝑉 (G)| + 1 
times, as we delete at least one node in each iteration. In one execu-
tion of the do-while loop, the nested for-loops execute 𝑂 (𝑝|𝑉 (G)|) 
times. Computing distances from a single node 𝑤 and deleting 𝑤 if 
necessary, can be completed in 𝑂 (|𝑉 (𝐺)| + |𝐸(𝐺)|). Although the 
worst-case complexity is unattractive, we did not find this algo-
rithm to be time-consuming when compared to the impact it has 
on overall running time in our computational experiments.

Algorithm 1: Pairwise Peeling
Input: G, 𝑘 , 𝑢𝑣 ∈ J
Output: G𝑢𝑣

1 do
2 𝑊 ← ∅
3 for 𝐺 ∈ G do
4 for𝑤 ∈ 𝑉 (G) \ (𝑊 ∪ {𝑢, 𝑣}) do
5 if dist𝐺 (𝑢,𝑤) > 𝑘 or dist𝐺 (𝑣,𝑤) > 𝑘 then
6 𝑊 ←𝑊 ∪ {𝑤}
7 delete𝑤 from every graph in G

8 while𝑊 ≠ ∅;
9 return G𝑢𝑣 ← G

Proposition 4.1. If constraints (1b) in formulation (1) are re-
placed by constraints (4), the resulting formulation is correct for the
maximum 𝑝-graph 𝑘-club problem.

The claim follows from the observation that the incidence vector
of a 𝑝-graph 𝑘-club satisfies constraints (4) and every binary vector
satisfying these constraints also satisfies constraints (1b).

Proposition 4.2. The pairwise peeling algorithm will delete the
same set of nodes independent of the order in which the graphs in G
are processed by the algorithm.

Proof. Suppose for a specific 𝑢𝑣 ∈ J , (𝑤1,𝑤2, . . . ,𝑤𝑞) is the
order in which nodes were deleted using an ordering 𝜋 of the graphs
in G. Then, 𝑤1 is too far from either 𝑢 or 𝑣 in some graph in the

original collection, and hence, must be deleted by Algorithm 1 using
any other ordering of graphs in G. If𝑤2 was deleted following𝑤1
when using 𝜋 , then in any other ordering, after𝑤1 is deleted, we
know that 𝑤2 must be too far from either 𝑢 or 𝑣 , and therefore,
must also be deleted. By repeating this argument, {𝑤1,𝑤2, . . . ,𝑤𝑞}
must be deleted under any ordering that is different from 𝜋 . As 𝜋 is
arbitrary, we can conclude that the final outcome of Algorithm 1 is
independent of the order in which graphs in G are processed. □

Henceforth, we refer to the new formulation as the pairwise
peeled cut-like formulation (PPCF). For each 𝑢𝑣 ∈ J , constraint (4)
is at least as strong as constraint (2) (which in turn dominates
constraint (1b)). Through our computational experiments reported
in the next section, we assess the gains made by using Algorithm 1
to generate potentially stronger constraints.

5 COMPUTATIONAL EXPERIMENTS
The goal of our computational study is to compare the performance
of a general purpose IP solver when using CCF and PPCF to solve
the maximum 𝑝-graph 𝑘-club problem. As either formulation uses
exponentially many constraints in the worst case, we generate them
in a delayed fashion and implement two decomposition branch-
and-cut (BC) algorithms that use the same master problem based
on cross-graph 𝑘-cliques defined below.

Definition 5.1. A subset of nodes 𝑆 ⊆ 𝑉 (G) is called a 𝑝-graph
𝑘-clique if 𝑆 is a 𝑘-clique in each graph in the collection G.

5.1 Overview of the solvers
Like the single-graph counterparts, a cross-graph 𝑘-clique is a
graph-theoretic relaxation of a cross-graph 𝑘-club. The maximum
𝑝-graph 𝑘-clique problem is equivalent to the classical maximum
clique problem on the power-intersection graph of G, i.e., the graph
with node set 𝑉 (G) and edge set containing every pair of distinct
nodes that are at distance at most 𝑘 in every graph in the collection.
We can then define the complementary edge set 𝐸 containing all
the conflicting pairs of nodes as:

𝐸 B
{
{𝑢, 𝑣} ⊆ 𝑉 (G) : dist𝐺 (𝑢, 𝑣) > 𝑘 in some graph 𝐺 ∈ G

}
,

and we use it in our master IP formulation (5):

max𝑥 (𝑉 (G)) (5a)

𝑥𝑢 + 𝑥𝑣 ≤ 1 ∀𝑢𝑣 ∈ 𝐸 (5b)
𝑥𝑢 ∈ {0, 1} ∀𝑢 ∈ 𝑉 (G) (5c)

The two decomposition BC algorithms, referred to as CCF and
PPCF henceforth, would add constraints (1b) and (4), respectively,
whenever a feasible solution to the master problem (5) that is not a
cross-graph 𝑘-club is encountered anywhere in the BC tree. Our
implementations are also enhanced by preprocessing (see Algo-
rithm 2) based on a feasible solution 𝑆 to the problem obtained
using the “DROP heuristic” for 𝑘-clubs [7, 22] on the intersection
graph 𝐽 with node set 𝑉 (G) and edge set

⋂{𝐸 (𝐺) : 𝐺 ∈ G}.
Note that a 𝑘-club in 𝐽 is a cross-graph 𝑘-club of G. Then, in the 

power-intersection graph of G denoted by 𝐽𝑘 , if a node 𝑢 has fewer 
than |𝑆 | neighbors, it cannot belong to a cross-graph 𝑘-club larger 
than 𝑆. (Because if it did, node 𝑢 would have degree at least |𝑆 | in
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Algorithm 2: Preprocessing
Input: G, 𝑘
Output: a preprocessed graph collection G

1 obtain the intersection graph 𝐽 of all graphs in G
2 compute a 𝑘-club 𝑆 of 𝐽 using DROP heuristic
3 obtain the power-intersection graph 𝐽𝑘 of G
4 CorePeel(G, 𝐽𝑘 , |𝑆 |)
5 CommunityPeel(G, 𝐽𝑘 , |𝑆 |)
6 recursively delete edge 𝑢𝑣 from every graph 𝐺 ∈ G and 𝐽𝑘

in which it is present, if 𝑢 and 𝑣 are in distinct connected
components of some graph 𝐺 ∈ G or 𝐽𝑘

7 return G

𝐽𝑘 ). Hence, core peeling [1] recursively deletes nodes with degree 
less than |𝑆 | in 𝐽𝑘 , and correspondingly from every graph in G.

After core-peeling, as long as 𝑉 (𝐽𝑘 ) is not empty, 𝐽𝑘 will be an |𝑆 
|-core as every node that survives will have at least |𝑆 | neighbors. 
Now, a pair of nodes 𝑢 and 𝑣 that are adjacent in 𝐽𝑘 can belong to a 
cross-graph 𝑘-club larger than 𝑆 only if they have at least |𝑆 | − 1 
common neighbors in 𝐽𝑘 . If not, the edge 𝑢𝑣 is deleted from 𝐽𝑘 and 
from every graph in the collection where 𝑢 and 𝑣 are adjacent in 
the community peeling [27] step.

Graph 𝐽𝑘 may contain more connected components after core 
and community peeling than before. As a result, there may exist 
an edge 𝑢𝑣 ∈ 𝐸 (𝐺) for some 𝐺 ∈ G whose end points 𝑢 and 𝑣 
belong to different connected components of 𝐽𝑘 . These edges can 
be removed from every 𝐺 ∈ G containing the edge. Doing so may 
disconnect a graph 𝐺 ∈ G so that not only 𝑢 and 𝑣 belong to 
different components, but so do some other nodes 𝑎  and 𝑏  that 
are adjacent in 𝐽𝑘 ; then, we can delete edge 𝑎𝑏 from 𝐽𝑘 . Hence, 
we can recursively delete edges from every graph in the expanded 
collection G ∪ {𝐽𝑘 } until all of them have identical connected 
components (in terms of the node subsets inducing the components). 
The preprocessing steps can be implemented to run in time that is 
linear or quadratic in the size of the input [22, 27], and their running 
time is negligible in practice compared to the BC algorithm.

To avoid unnecessary constraints (5b) added for pairs of nodes
which reside in different components of 𝐽𝑘 , we extend formula-
tion (5) by introducing a binary variable for each of the connected
components of 𝐽𝑘 and enforce that nodes selected must belong
to the same component. In the master problem, only conflict con-
straints related to a pair of nonadjacent nodes in a same connected
component would be enumerated. Similarly, any node pair for
which a lazy constraint is generated must also belong to the same
connected component of 𝐽𝑘 .

5.2 Preliminary results
We report computational experiments conducted on 64-bit Linux®
compute nodes with dual Intel® “Skylake" 6130 CPUs with 96 GB
RAM. Optimization models are solved using GurobiTM Optimizer
v9.0.1 [10] and the algorithms are implemented in C++. We consider
the following parameter values in our experiments: 𝑘 ∈ {2, 3, 4}
and 𝑝 ∈ {2, 3, 4, 5}.

To generate test instances for this preliminary computational 
study, we generate graphs using the algorithm described in [8] (BG 
graphs). These graphs are known to be challenging for the (single-
graph) maximum 𝑘-club problem. We first generate a set of 10 
graphs {𝐺1, 𝐺2, . . . , 𝐺10}, each with 200 nodes, by specifying an 
edge density and running BG algorithm 10 times. From our pre-
liminary results, BG_1 (generated with edge density of 0.15%) and 
BG_4 (generated with edge density of 0.1%) are challenging in-
stances when 𝑘 = 2. When 𝑘 = 3 or 4, BG_2 (generated with edge 
density of 0.05%) and BG_3 (generated with edge density of 0.025%) 
are challenging instances. For each 𝑝, 𝑘 pair, we report results aver-
aged over instances obtained from the collection of 10 graphs with 
the edge density that is most challenging for the chosen value of 𝑘 .

Each row of Table 1 reports results averaged over 11 − 𝑝 runs
with collections {𝐺1, . . . ,𝐺𝑝 }, {𝐺2, . . . ,𝐺𝑝+1}, . . ., {𝐺11−𝑝 , . . . ,𝐺10}.
Except for BG_1 instance when 𝑝 = 2 and 𝑘 = 2, where both ap-
proaches did not reach optimality, PPCF based BC takes a signifi-
cantly shorter running times than CCF for most of the instances.
For example, on BG_2 instance when 𝑝 = 4 and 𝑘 = 3, CCF took
1079.11 seconds while PPCF only took 47.11 seconds (over 20 times
faster than CCF). Overall, PPCF is over 6 times faster than CCF in
terms of average running time on challenging instances.

Table 1: Comparison of CCF and PPCF on BG instances.

CCF PPCF

𝑘 𝑝 Instance obj time(s) #LCa #NCTb obj time(s) #LC #SLCc #NCT
2 2 BG_4 9.44 88.01 12116.22 2.26 9.44 54.77 8085.56 6887.00 0.53
2 2 BG_1 ≥16.33d 7200.23 20353.00 4.32 ≥16.22 6973.67 17958.22 1310.33 4.00
2 3 BG_4 4.63 55.22 12564.38 2.27 4.63 38.41 9807.00 9802.25 0.00
2 3 BG_1 7.88 3074.61 24496.13 4.39 7.88 760.30 19702.88 3214.00 3.48
2 4 BG_4 2.43 49.74 11712.43 2.27 2.43 44.59 10442.00 10441.86 0.00
2 4 BG_1 4.43 1982.95 25226.43 4.39 4.43 338.92 20934.71 5719.86 2.94
2 5 BG_4 2.00 40.70 10166.33 2.27 2.00 36.36 9253.67 9253.67 0.00
2 5 BG_1 2.50 1533.07 25121.67 4.41 2.50 201.43 21074.00 8851.50 2.36
3 2 BG_2 12.00 3008.56 47557.00 4.54 12.00 576.44 26125.44 6079.22 3.46
3 3 BG_2 3.13 1748.18 45065.50 4.52 3.13 105.67 21304.25 12592.63 1.91
3 4 BG_2 3.00 1079.11 40636.29 4.55 3.00 47.11 17284.29 15254.00 0.61
3 5 BG_2 3.00 818.45 36544.33 4.47 3.00 40.02 15971.67 15687.17 0.10
4 2 BG_3 8.78 192.51 23791.11 3.60 8.78 40.72 12169.78 10365.56 0.79
4 3 BG_3 4.00 99.02 18502.13 3.37 4.00 31.06 11116.88 10921.00 0.01
4 4 BG_3 4.00 59.55 13925.57 3.21 4.00 30.74 9216.86 8992.71 0.00
4 5 BG_3 4.00 46.07 11001.67 3.16 4.00 29.12 7622.17 7406.50 0.00
a Average number of lazy constraints added.
b Average number of negative terms in a lazy constraint.
c Average number of strengthened lazy constraints added.
d On instances not solved to optimality we report the lower-bound provided by the best solution found.

Table 1 also shows the number of lazy constraints added by
each algorithm on average. For each instance, we observe fewer
lazy constraints used in PPCF than CCF. Together with the fact
that PPCF took much less time than CCF for each instance, this
observation is indicative of the strength of using constraints (4)
over constraints (1b). On average, CCF added over 1.5 times more
lazy constraints than PPCF. Column #SLC under PPCF reports
the number of strengthened lazy constraints added, i.e., these are
strictly constraints (4). On average, over 70% of lazy constraints
added in PPCF are of this type. For BG_4 instance when 𝑝 = 5 and
𝑘 = 2, all lazy constraints added in PPCF are of this type.

The columns labeled #NCT in Table 1 report the average number
of terms with coefficient -1 on the left hand side of the added lazy
constraints. This is another indirect indicator of the strength of the
lazy constraints—generally, the smaller this number, the stronger
the constraint. For most of the instances, we observed a significantly
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smaller value under PPCF than CCF. Note that the value of #NCT
is zero for five instances under PPCF. The lazy constraints of this
type are actually conflict constraints with no negative terms on the
left hand side. The foregoing observations strongly suggest that
PPCF approach based on pairwise peeling constraints significantly
improves our ability to find maximum 𝑝-graph 𝑘-clubs.

Figure 4 shows the performance profiles [9] based on running
times of CCF and PPCF algorithms for solving the maximum 𝑝-
graph 𝑘-club problem on the challenging instances. The red (dash-
dotted) and blue (dotted) lines plot the fraction 𝑓𝑖 (𝜏) of instances
solved within a factor 𝜏 of the shortest running time (over all values
of parameters 𝑝 , 𝑘 , and all challenging instances) by solvers 𝑖 =
CCF and PPCF. The profiles clearly suggest that the computational
benefits of using lazy constraints strengthened by pairwise peeling
is quite significant.
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Figure 4: Performance profiles of CCF and PPCF algorithms.

6 CONCLUDING REMARKS
In this paper, we consider cross-graph 𝑘-clubs for modeling low-
diameter clusters that are conserved in a collection of graphs. We
introduce a pairwise peeling approach designed to strengthen con-
straints in a straightforward conjunction of a known formulation.
This approach helps with scale-reduction and integrates informa-
tion across graphs in the collection to produce tighter constraints.
These claims are supported by the empirical evidence obtained from
our preliminary experiments. The decomposition branch-and-cut
algorithm based on this approach seems to be promising, and capa-
ble of handling moderately large instances and graph collections.
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Many real world problems do not allow to work with precise data. Instead, parts of the input are un-
certain or only known approximately. Different approaches to deal with uncertainty include stochastic
optimization, where the input data is known to follow a specific probability distribution, robust opti-
mization which aims to find good solutions for all possible inputs and explorable uncertainty. In the
setting of explorable or queryable uncertainty which was introduced by Kahan [4], it is possible to obtain
more precise or even exact data upon request, e.g. by making further measurements or performing a user
survey. However, any such query causes additional exploration cost, say time, money or other resources
needed to carry out measurements.

This talk deals with the Minimum Spanning Tree Problem under Explorable Uncertainty (MST -U), which
was first introduced by Erlebach et al. [3]. In an instance of MST -U , each edge is equipped with an
uncertainty set and a query cost. The uncertainty set of an edge is an open interval which is guaranteed
to contain the edge’s weight or a singleton set containing only the edge’s weight. In the latter case we
refer to an edge as trivial. An edge query (we also say update) reveals the edge’s true weight. A set of
queries which allows to compute a minimum spanning tree with certainty is called feasible query set. The
goal is to find a feasible query set of minimum query cost. The queries may be chosen adaptively, i.e. we
are allowed to choose the next update based on the previous outcomes of edge queries. In general, we
consider two types of algorithms: deterministic algorithms and randomized algorithms. An algorithm’s
performance is measured in terms of its competitive ratio, i.e. the ratio between the query cost of the
algorithm’s solution and the optimal query cost.

Megow et al. [5] introduce a general algorithm framework, based on which they provide a deterministic
algorithm with performance ratio 2 which was shown by [3] to be the smallest possible competitive ra-
tio for deterministic algorithms. Moreover, they introduce the randomized algorithm RANDOM which
relies on the same framework and achieves a performance ratio of 1 + 1√

2 . The best known bound for
randomized algorithms is 1.5 which was observed by Erlebach and Hoffmann in [2] and remains true
even on triangles. We consider the special case of cactus graphs for which we introduce the randomized
algorithm RANDOMC and show that RANDOMC achieves a competitive ratio of 1.5 for the specified
instance type.

Erlebach et al. [3] also introduce a different problem related to MST -U , namely the Minimum Span-
ning Tree Problem under Vertex Uncertainty (V -MST -U), where vertices are points in the plane with
uncertain locations and the edge weights correspond to the distances of the respective end vertices. So
far, V -MST -U has only been considered in the deterministic setting and for uniform query costs, i.e.
instances where all vertices have identical query costs. We prove that no randomized algorithm can have
a performance guarantee better than 2.5. Moreover, we deal with the question of transferability of results
concerning MST -U to the vertex uncertainty setting, especially with respect to general query costs and
randomized algorithms. We discuss several fundamental differences between MST -U and V -MST -U
which impede the adaption of algorithms in a straightforward way. For the special case of instances
where no two cycles share a non-trivial vertex however, we introduce the algorithm V -RANDOMC and
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show that V -RANDOMC achieves a competitive ratio of at most 3.

Note that even for an omniscient solver who knows all outputs of edge queries a priori, finding an optimal
query set is not a task which allows for an immediate obvious solution. The problem of computing an
optimal query set if the uncertainty sets as well as the exact edge weights are given is called verification
problem for MST -U and was studied by Erlebach and Hoffmann in [1]. They establish a connection
between MST -U and the Minimum Bipartite Vertex Cover Problem which they use to show that the
verification problem for MST -U with uniform query costs is solvable in polynomial time, while the verifi-
cation problem for the vertex uncertainty problem V -MST -U is NP-hard. We show that the verification
problem for MST -U with general query costs can be solved in polynomial time by adapting the algorithm
of [1] to the non-uniform case.

Even though deterministic and randomized algorithms with good performance guarantee are known for
MST -U , it turns out that such results can no longer be achieved once we consider more specific trees
instead of general spanning trees. More precisely, we introduce the Minimum Spanning Star Problem
under Explorable Uncertainty (MSS-U). MSS-U is defined analogously to MST -U except that we are
now aiming to find queries which allow the identification of a spanning star of minimum weight instead
of a general minimum spanning tree. For MSS-U we derive a negative result with respect to competitive
analysis, i.e we show that no algorithm for MSS-U can achieve a constant competitive ratio.
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1 Introduction
In the Steiner Tree Problem, we are given a set of nodes in a graph and the goal is to find a tree sub-graph
of minimum weight that contains all nodes in the given set (possibly including additional nodes). This is
an NP-hard problem and as such, solving large instances of this problem optimally (or close to optimally)
remains a computational challenge.

In recent years, a machine learning approach called learning-to-prune has been successfully used in
a range of combinatorial optimization problems such as maximum clique enumeration [1], k-median [2],
travelling salesperson problem [3] etc. The idea behind this approach is to train a learning model that
can confidently predict the values of a large number (but not all) of variables based on features derived
from algorithmic and optimization literature. The training is done on smaller instances generated from
the same distribution as the larger input. Fixing a large number of variables reduces the search space
significantly and the remaining problem can be solved using mixed integer linear programming (MILP)
solvers or other exact algorithms.

In this paper, we show that a careful application of the learning-to-prune approach enables us to
reduce the running time of a commercial MILP solver on Steiner tree problem instances of I160 dataset
from SteinLib [5] with only a marginal loss (less than 1%) in the objective function value of the solution.

2 Methodology
In the context of Steiner tree problem, the learning-to-prune approach predicts which edges can be
removed from the graph such that the solution on the remaining graph still remains quite close to
optimal.

Feature Importance
LP 0.461665
Normalized Weight 0.108099
Variance 0.082869
Degree Centrality Max 0.052033
Eigenvector Centrality Max 0.047566
Betweenness Centrality Max 0.047523
Degree Centrality Min 0.045958
Local Rank j 0.041085
Eigenvector Centrality Min 0.039031
Betweenness Centrality Min 0.038027
Local Rank i 0.036145

Table 1: Feature Importance

In applying the learning-to-prune framework, our first
challenge is to find a good Integer Linear Programming
(ILP) formulation of the problem. We use the formu-
lation from Wong [4]. In this formulation, the problem
is considered as a multi-commodity flow problem with
polynomial number of constraints and thus, its linear pro-
gramming (LP) relaxation can be solved quite fast even
for larger instances of the problem. The LP values of the
variables can be used as a highly discriminative feature
in the learning-to-prune approach.

Apart from the LP values (F1), the other features
that we use in our learning-to-prune model include (F2)
normalized edge weight, (F3) variance of normalized
edge weight, (F4, F5) normalized local rank of the edge
at the two incident nodes, (F6, F7) min and max degree
centrality of the two incident nodes, (F8, F9) min and
max betweenness centrality of the two incident nodes and

(F10, F11) min and max Eigenvector centrality of the two incident nodes.
In terms of the classification techniques, we used Support Vector Machine (SVM) for the prediction

task; the results are similar with other models such as Random forests, Logistic Regression, Gaussian

1
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Objective Original ILP Feature Computation Objective ILP Runtime Objective Runtime
Time Time (Hard Pruning) (After Pruning) Increase % Decrease %

i160-344 8307.0 27245.214428 54.171017 8324.0 157.707098 0.204647 99.222329
i160-244 5076.0 7762.750552 25.680089 5103.0 47.128251 0.531915 99.062081
i160-345 8327.0 70653.843429 51.934421 8327.0 242.822062 0.000000 99.582816
i160-343 8275.0 20897.368129 50.549097 8275.0 114.900505 0.000000 99.208275
i160-342 8348.0 91351.384691 60.099658 8355.0 1384.392882 0.083852 98.418751
i160-313 9159.0 3832.540745 15.259630 9159.0 84.731579 0.000000 97.390994
i160-241 5086.0 6446.484885 24.782818 5086.0 32.778224 0.000000 99.107094
i160-341 8331.0 52473.687999 53.653058 8331.0 104.738673 0.000000 99.698150
i160-245 5084.0 3014.052865 28.052475 5084.0 15.946626 0.000000 98.540201
i160-242 5106.0 4817.800565 27.340318 5106.0 42.810647 0.000000 98.543921

Table 2: Evaluation by Hard Pruning

Naive Bayes. We observe that in this classification model, LP values are found to be very important
(Table 1), but the prediction is not solely reliant on this feature.

For the edges that are predicted to not be in the optimal solution by our classifier and whose LP value
is also zero, we can prune them out from further consideration (hard pruning) or constrain that atmost
a small number of edges can be taken from that set (soft pruning).

3 Evaluation
In the benchmark SteinLib [5] dataset, we found that there are only 55 problem instances for which
the LP relaxation of the considered ILP formulation does not return integral solutions. Thus, we only
focus on these instances and select 80% of them with the smallest running times as training and use the
remaining 20% of the instances with the largest running time as the test dataset. This is because we
want to show that our model generalizes from smaller instances to larger and more complex instances in
this dataset.

Table 2 presents the results of the learning-to-prune approach on the 10 test instances. We first note
that on these larger and more complex instances, the time to compute all the features including the LP
values is very small compared to the time to run the original ILP. More importantly, the running time of
the learning-to-prune approach (including the time to compute features and then running the ILP with
hard pruning constraint) is around 99% smaller than the original ILP time on these instances. In 7 of
these 10 instances, the hard pruning is able to find the optimal solution. In the remaining three instances,
the resultant increase in the objective function value because of the mistakes in the pruning process is
still very small (less than 0.6%).

In applications where we wish to reduce the optimality gap even further, we can use the soft pruning
approach. When applied on the instance i160-344, the soft pruning approach that allows just one edge
from the pruned set finds the optimal solution of the original problem. The running time of this approach
on this instance is around 3000 seconds, which is still considerably less than the original ILP time of around
27000 seconds, but more than the time of the hard pruning approach (around 150 seconds).
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Let G = (V, E) be an undirected graph, w ∈ R|E|
+ be a vector of edge weights in G, and a positive integer

2 ≤ k ≤ n, where n = |V |. The Minimum-Weight Constrained Spanning Forest Problem (CFP, for
short) aims to find a minimum cost spanning forest F = (V, EF ), EF ⊆ E, such that each connected
component is a tree spanning at least k vertices. In the literature, F is often called a k-capacitated
forest or a k-forest. The CFP is N P-hard for 3 ≤ k ≤ ⌊ n

2 ⌋ [5], since if k = 2, the problem is reduced to
minimum-weight edge covering, and if k ≥ ⌈ n

2 ⌉, the problem is reduced to the minimum spanning tree.
The CFP is a graph partition problem with minimum size requirements, where each partition weights

its minimum spanning tree. It is closely related to a series of tree problems and graph partition problems
abroad the literature, and has applications in telecommunications [4]; political districting [8]; data micro
aggregation [7]; and wiring optimization of the robotic skin design [2].

Ali and Huang [1] studied a variation where the amount of trees is an input parameter, and the
trees must not differ in vertices by more than one. Guttmann-Beck and Hassin [4] presented another
similar problem, but in this case, the number of trees and the number of vertices for each tree are input
data. Also, the Capacitated Minimum Spanning Tree Problem [3] aims at finding a minimum spanning
tree such that each subtree from a root has capacity at most Q. There is also an online version of the
CFP with different weight vector for every planning period [9]. Note that, in some of those problems,
the adaptation of our approaches is straightforward, needing adjustments on existing constraints or new
ones. Also, for the Online CFP, we may run our algorithms for every planning period.

In this work, we review two models from the literature to identify the current state-of-the-art. For
that, we present a dominance study and computational results. Also, we introduce a reduction test, used
as preprocessing, for cutting out suboptimal edges from the input graph. Consider Ji [6] model as P1,
using a set of decision variables x ∈ B|E| for edge selection of the input graph. Still, let S ⊆ V be a subset
of vertices, δ(S) ⊂ E be the subset of edges with exactly one endpoint in S, E(S) ⊆ E be the subset
of edges with both endpoints in S, φ(S) = δ(S) ∪ E(S), and x[EP ] =

∑
e∈EP

xe be the sum of variables

implied by the edge subset EP ⊆ E.
(P1) min wT x (1)

s.t.: x[E(S)] ≤ |S| − 1, ∀S ⊆ V (2)

x[φ(S)] ≥ |S| −
⌊ |S|

k

⌋
, ∀S ⊆ V, |S| ≥ 2 (3)

x[δ(v)] ≥ 1, ∀v ∈ V (4)

x[E(V )] ≥ |V | −
⌊ |V |

k

⌋
(5)

In P1, the objective function aims to minimize the weight of the selected edges. Subcycle Elimination
Constraints (SECs) (2) were used to ensure an acyclical graph. Then, inequalities (3) impose a lower
bound on the number of edges that a k-forest with |S| vertices must have. Finally, inequalities (4)-(5) are
specific cases of previous inequalities. They cut out isolated vertices (4), and limit the minimum number
of edges that the forest must have (5). The sole purpose of those inequalities is to serve as a starting
bound in the cutting plane loop.

As another way of exploring the possible bounds for the problem, we present two Lagrangian Relax-
ations using sets of exponential inequalities. This method is particularly interesting, since it provides
useful information as preprocessing to other methods, such as the Branch-and-Cut (B&C). Such informa-
tion includes the fixation/discarding of variables, an initial pool of cuts, and starting (primal and dual)
bounds.
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Consider the problem of dualizing the exponentially many inequalities (3) from P1 in a Lagrangian
fashion. Now, let µ ∈ R|S|

+ be the dual variables associated with those inequalities, also called lagrangian
multipliers, where S = {S ⊆ V, |S| ≥ 2}. Although this Lagrangian Relaxation Problem (LRP) represents
a valid lower bound over the CFP, to the best of our knowledge, its solution is not well defined in
polynomial algorithmic terms. For that very reason, we considered two well-defined LRPs:

L1(µ) = min
∑

e∈E

(
we − ∑

S∈S:e∈φ(S)
µS

)
xe +

∑
S∈S

µS

(
|S| −

⌊
|S|
k

⌋)
(6)

s.t.: (2) and (4)

where L1(µ) is the minimum-weight forest cover problem, which can be optimally solved in strongly
polynomial-time using the algorithm described in White [10]. Thus, the best possible bound obtainable
from L1(µ) is given by L∗

1(µ) = max
µ∈R|S|

+

{L1(µ)}. And,

L2(µ, π) = min
∑

e∈E

(
we − ∑

S∈S:e∈φ(S)
µS − πu − πv

)
xe +

∑
S∈S

µS

(
|S| −

⌊
|S|
k

⌋)
+
∑

v∈V

πv (7)

s.t.: (2) and (5)

where π ∈ R|V |
+ are the lagrangian multipliers associated with inequalities (4). Then, L2(µ, π) models a

minimum-weighted spanning forest problem, which is solved through Kruskal’s algorithm, and has the
best possible bound given by L∗

2(µ, π) = max
µ∈R|S|

+ ,π∈R|V |
+

{L2(µ, π)}.

Both L∗
1(µ) and L∗

2(µ, π) are solved using the Subgradient Method (SM), with some adaptations to
handle the many dualized exponential inequalities. Then, since convergence of the pure SM is limited, we
defined stop criteria in order to use the good-quality information obtained as a warm-start to the B&C
algorithm. Our results show promising performance when compared to the previous B&C in Ji [6], while
also providing a way to tackle larger instances where even solve the linear relaxation is hard.
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ABSTRACT
Given a graph G = (V ,E) and a set C of unordered pairs of edges
regarded as being in conflict, a stable spanning tree in G is a
set of edges T inducing a spanning tree in G, such that for each{
ei , ej

} ∈ C , at most one of the edges ei and ej is inT . The existing
work on Lagrangean algorithms to the NP-hard problem of finding
minimum weight stable spanning trees is limited to relaxations
with the integrality property. We have recently initiated the combi-
natorial and polyhedral study of fixed cardinality stable sets [17],
which motivates a new formulation for stable spanning trees based
on Lagrangean Decomposition. By optimizing over the spanning
tree polytope of G and the fixed cardinality stable set polytope of
the conflict graph Ĝ = (E,C) in the subproblems, we are able to
determine stronger Lagrangean bounds (equivalent to dualizing
exponentially-many subtour elimination constraints), while lim-
iting the number of multipliers in the dual problem to |E |. This
naturally asks for more sophisticated dual algorithms, requiring the
fewest iterations possible, and we derive a collection of Lagrangean
dual ascent directions to this end.

KEYWORDS
Stable spanning trees, conflict-free spanning trees, Lagrangean
decomposition, dual ascent, fixed cardinality stable sets.

1 INTRODUCTION
Given an undirected graph G = (V ,E), with edge weights w :
E → Q, and a familyC of unordered pairs of edges that are regarded
as being in conflict, a stable (or conflict-free) spanning tree in G is
a set of edges T inducing a spanning tree in G, such that for each{
ei , ej

} ∈ C , at most one of the edges ei and ej is inT . The minimum
spanning tree under conflict constraints (MSTCC) problem is to
determine a stable spanning tree of least weight, or decide that none
exists. It was introduced by [8, 9], who also prove its NP-hardness.

Different combinatorial and algorithmic results about stable span-
ning trees explore the associated conflict graph Ĝ = (E,C), which
has a vertex corresponding to each edge in the original graph G,
and where we represent each conflict constraint by an edge con-
necting the corresponding vertices in Ĝ . Note that each conflict-free
spanning tree inG is a subset of E which corresponds both to a span-
ning tree in G and to a stable set (or independent set, or co-clique:
a subset of pairwise non-adjacent vertices) in Ĝ . Therefore, one can
equivalently search for stable sets in Ĝ of cardinality exactly |V | − 1
which do not induce cycles in the original graph G.

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th 
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen, 
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

We have recently initiated the combinatorial study of stable sets
of cardinality exactly k in a graph [17], where k is a positive integer
given as part of the input. There are appealing research directions
around algorithms, combinatorics and optimization for problems
defined over fixed cardinality stable sets. Also from an applications
perspective, conflict constraints arise naturally in operations re-
search andmanagement science. Stable spanning trees, in particular,
model real-world settings such as communication networks with
different link technologies (which might be mutually exclusive in
some cases), and utilities distribution networks. In fact, the latter
is a standard application of the quadratic minimum spanning tree
problem [1], which generalizes the MSTCC one.

Exact algorithms to find stable spanning trees have been in-
vestigated for a decade now, building on branch-and-cut [6, 18],
or Lagrangean relaxation [7, 20] strategies. Consider the natural
integer programming (IP) formulation for the MSTCC problem:

min
∑
e ∈E

wexe (1)

s.t.
∑

e ∈E(S )
xe ≤ |S | − 1, for each S ⊊ V , S , ∅, (2)

∑
e ∈E

xe = |V | − 1, (3)

xei + xej ≤ 1, for each
{
ei , ej

} ∈ C, (4)
xe ∈ {0, 1} , for each e ∈ E. (5)

While a considerable effort in the development of branch-and-cut
algorithms led to more sophisticated formulations and contributed
to a better understanding of our capacity to solve MSTCC instances
by judicious use of valid inequalities, the existing Lagrangean al-
gorithms are limited to the most elementary approach. Namely, a
relaxation scheme dualizing conflict constraints (4), which thus has
the integrality property. We review other aspects of the correspond-
ing references in Section 2.

The present paper takes the standpoint that the development
of a full-fledged Lagrangean strategy to find stable spanning trees
is an unsolved problem. While we recognize different merits of
previous work, we argue that it is worth investigating stronger
Lagrangean bounds for the MSTCC structure: exploring more cre-
ative relaxation schemes, designing improved dual methods, all the
while harnessing the progress in IP computation.

The main idea of this paper is to offer an alternative starting
point for this problem. In Section 3, we call attention to a stronger
relaxation scheme, based on Lagrangean Decomposition. We explain
how classical results from the literature guarantee the superiority
of such a reformulation: both with respect to the quality of dual
bounds, when compared to the straightforward relaxation, and
with regard to the number of multipliers, when compared to an
alternative framework to determine the same bounds (relax-and-cut
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dualizing violated subtour elimination constraints (2) dynamically).
The decomposition naturally leads to the dual ascent paradigm
to solve the Lagrangean dual problem, and Section 4 is devoted
to presenting maximal ascent directions. These are fundamental
ingredients in tailored methods guaranteeing monotone bound
improvement when optimizing the Lagrangean dual.

We see the opportunity for renewed interest in Lagrangean De-
composition in light of the progress in mixed-integer linear pro-
gramming (MILP) computation. Given the impressive speedup of
MILP solvers over the past two decades, Dimitris Bertsimas and
Jack Dunn are among a group of distinguished researchers who
make a case for (exact) optimization over integers as the natu-
ral, correct model for several tasks within machine learning and
towards interpretable artificial intelligence. This is the theme of
their recent book [2]; see also [3, 4]. We are interested in explor-
ing whether this philosophy (challenging assumptions previously
deemed computationally intractable) should also imply less hesita-
tion towards designing Lagrangean algorithms that exploit subprob-
lems for which, albeit strongly NP-hard, specialized solvers attain
good performance. In the particular case of the MSTCC problem,
one could leverage state-of-the-art branch-and-cut algorithms for
stable sets (in particular, of fixed cardinality) to find stable spanning
trees more efficiently by means of Lagrangean Decomposition, such
as we outline in this paper.

In summary, our contributions are the following.
(1) We bring attention to the quality of different Lagrangean

bounds for the MSTCC problem as an inviting margin for
designing improved algorithms, and we discuss the advan-
tages, in theory, of a reformulation based on Lagrangean
Decomposition.

(2) We determine a collection of Lagrangean dual ascent direc-
tions for optimizing the Lagrangean dual problem corre-
sponding to the newMSTCC reformulation, hence contribut-
ing towards a new family of algorithms and dual bounds for
the problem.

2 DRAWBACKS OF EXISTING LAGRANGEAN
APPROACHES FOR MSTCC

The work of [20] contributes in many research directions about
stable spanning trees, including particular cases which are polyno-
mially solvable, feasibility tests, several heuristics, and two exact
algorithms based on Lagrangean relaxation. The first formulation
is the straightforward one we mentioned, dualizing all conflict
constraints (4); they denote the corresponding dual bound L∗. The
second approach relaxes a subset of inequalities (4): using an ap-
proximation to the maximum edge clique partitioning problem [10],
this scheme dualizes a subset of conflict constraints such that the
remaining conflict graph is a collection of disjoint cliques; the re-
sulting dual bound is denoted ℓ∗. The authors argue that the latter
reformulation is stronger than the former, and present extensive
computational results justifying their claims.

Unfortunately, the Lagrangean dual bounds L∗ and ℓ∗ in [20] are
in fact identical, as we show next. The first relaxation clearly has
the integrality property, as the remaining constraints correspond
to a description of the spanning tree polytope or, equivalently, to
bases of the graphic matroid of G. The second relaxation scheme

is designed so that the conflict constraints which remain in the
subproblem of relaxation ℓ∗ induce a collection of disjoint cliques
in Ĝ. The subproblem thus corresponds to the intersection of two
matroids: the graphic matroid of G and the partition matroid of
subsets of E that intersect the enumerated cliques in Ĝ at most once.
It follows that the second relaxation also has the integrality property
[15, Theorem III.3.5.9], and consequently, L∗ and ℓ∗ both equal the
optimal objective function value in the continuous relaxation of
(1)−(5) [15, Corollary II.3.6.6]. In this perspective, the computational
results in Tables 2–4 of [20] diverge from what Lagrangean duality
theory prescribes.

Recently, [7] presented thorough computational experiments of
a new Lagrangean algorithm for the MSTCC problem. They use
the same relaxation scheme dualizing all conflict constraints, and
focus on a combination of dual ascent and the subgradient method
to compute the Lagrangean bound, namely, L∗ in [20], equal to the
LP-relaxation of (1) − (5). In Table 1 of [7], the performance of the
new algorithm is compared to the results published in [20]. That is,
the issue we analyse above regarding the computational results of
[20] is repeated as a baseline of the new numerical evaluation.

Another drawback of the new algorithm is that dual ascent steps
are intertwined with subgradient optimization. While not incorrect,
this choice undermines the advantages of a strategy to solve the
dual problem in fewer iterations. A passage from a classical work of
Guignard and Rosenwein [14] is conclusive: “An ascent procedure
may also serve to initialize multipliers in a subgradient procedure. This
scheme is particularly useful at the root node of an enumeration tree.
However, an ascent method cannot guarantee improved bounds over
bounds obtained by solving the Lagrangean dual with a subgradient
procedure.”

Moreover, the ascent steps rely on a greedy heuristic, and not
on maximal ascent directions, i.e. optimal step size in a direction
of bound increase; see Definition 4.1. In the algorithm of [7], if
a conflicting pair of edges exists in a Lagrangean solution, the
multiplier adjustment is derived from the observation that the dual
bound shall improve by at least the increased cost of replacing one
of the edges by its cheapest successor (in a list of edges ordered by
current costs). The authors remedy the resulting low adjustment
values by alternating subgradient optimization iterations and the
ascent procedure.

We stress again that references [7] and [20] have many virtues
and present concrete contributions to the MSTCC literature. Our
only remark is that the first Lagrangean strategy designed to im-
prove upon the LP-relaxation bound is matter-of-factly yet to be
introduced. In the next sections, we offer an interesting approach
to tackle this challenge.

3 LAGRANGEAN DECOMPOSITION
Renaming the variables in (4) as y, and introducing linking con-
straints xe = ye for each e ∈ E, we have the same formulation.
Now, dualizing the linking constraints with Lagrangean multipliers
λ ∈ Q |E | , we arrive at the Lagrangean Decomposition formulation:

z(λ) def
= min

x ∈Fsp.tree(G)
(w − λ)⊺x + min

y∈Fkstab(Ĝ, |V |−1)
λ⊺y (6)
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where Fsp.tree(G) is given by∑
e ∈E(S )

xe ≤ |S | − 1, for each S ⊊ V , S , ∅, (7)

∑
e ∈E

xe = |V | − 1, (8)

xe ∈ {0, 1} , for each e ∈ E, (9)

and Fkstab(Ĝ, |V | − 1) is given by∑
e ∈E

ye = |V | − 1, (10)

yei + yej ≤ 1, for each
{
ei , ej

} ∈ C, (11)
ye ∈ {0, 1} , for each e ∈ E. (12)

The Lagrangean dual problem is to determine the tightest such
bound:

ζ
def
= max

λ∈Q|E |
{z(λ)} . (13)

The first systematic study of Lagrangean Decomposition as a
general purpose reformulation technique was presented by Guig-
nard and Kim [13]. They indicate earlier applications of variable
splitting/layering, especially [19] and [16]. See also the outstanding
presentation in [12, Section 7].

One of the main virtues of the decomposition principle over
traditional Lagrangean relaxation schemes is that the bound from
the Lagrangean decomposition dual is equal to the optimum of the
primal objective function over the intersection of the convex hulls of
both constraint sets [13, Corollary 3.4]. The decomposition bound
is thus equal to the strongest of the two Lagrangean relaxation
schemes corresponding to dualizing either of the constraint sets.

In our application to the MSTCC problem, we recognize the
integrality of the spanning tree formulation described by (7) − (8)
over x ∈ Q |E | . Hence the decomposition bound matches that of
the stronger scheme where constraints (10) − (11) enforcing fixed
cardinality stable sets are kept in the subproblem (which is thus
convexified), and all subtour elimination constraints (7) are dualized.
This means that we can compute stronger Lagrangean bounds,
while limiting the number of multipliers in the dual problem to
|E |, instead of dealing with exponentially-many multipliers e.g. in
a relax-and-cut approach.

We defend the advantages of breaking the original problem into
two parts, exploiting their rich combinatorial and polyhedral struc-
tures, so as to derive stronger dual bounds. The price of this strategy
is to solve a strongly NP-hard subproblem, which naturally leads to
more sophisticated dual algorithms, requiring the fewest iterations
possible. Customized dual ascent is a technique that integrates nat-
urally with Lagrangean decomposition [13], and may be the key
ingredient towards effective computation of such stronger bounds.

4 LAGRANGEAN DUAL ASCENT
In this section we present the main contributions of the paper. In
what follows, let ei ∈ Rm denote the standard unit vector in the
i-th direction, let conv S denote the convex hull of a set S , and let
ext Q denote the set of extreme points of a given polyhedron Q.
We let

Psp.tree(G) def= conv Fsp.tree(G)

denote the spanning tree polytope of a graph G, and let

C(G,k) def= conv Fkstab(G,k)

denote the polytope of stable sets of cardinality k in G. Note that
Psp.tree and C are bounded (polytopes contained in the 0,1 hyper-
cube), and do not contain extreme rays.

The Lagrangean dual function z : Q |E | → Q is an implicit
function of λ. It is determined by the the lower envelope of{

(w − λ)⊺xr + λ⊺ys : xr ∈ ext Psp.tree(G),

ys ∈ ext C(Ĝ, |V | − 1)
}
.

Hence, it is piecewise linear concave, and differentiable almost
everywhere, with breakpoints at λ′ such that the optimal solution
of z(λ′) is not unique.

Such breakpoints are the key ingredient in the dual ascent par-
adigm to solve a Lagrangean dual problem. In particular, the fol-
lowing kind of point deserves special attention to guide progress
in this framework.

Definition 4.1. Amaximal ascent direction of the Lagrangean
dual function z : Qm → Q at λr is a vector u ∈ Qm in a direction
of increase from z(λr ), i.e.

z(λr + u) > z(λr ),

such that λ + u is a breakpoint of z, i.e.

z(λr + u) ≥ z(λr + αu), for all α ∈ Q.

A maximal ascent direction determines an optimal multiplier
adjustment in a given direction of increase of the Lagrangean dual
function. It need not correspond to a steepest ascent direction from
z(λr ), in general.

The technique of optimizing the Lagrangean dual function by
means of ascent directions uses the formulation structure to de-
termine monotone bound improving sequences of multipliers. It
was pioneered by [5] and [11] in the context of the facility location
problem. An actual algorithm of this kind thus relies on analysing
the specific problem and the information available from subprob-
lem solutions. Nevertheless, we found it instructive to summarize
and systematically review the following instructions as a guiding
principle of Lagrangean decomposition based dual ascent:
i. Update multiplier λe corresponding to a violation xe , ye
ii. in the sense of improving the Lagrangean dual bound,
iii. analysing the implications of changes in λe alone,
iv. so as to induce alternative subproblem solutions
v. while avoiding bound-decreasing effects.

Although one cannot hope for a pragmatic, problem-independent
algorithm, this principle is the intuitive foundation of the arguments
that follow.

So as not to overload notation, we omit the transposition symbol
in the remainder of the text, whenever it is clear from the context
e.g. in vector products like (w − λr )⊺ xr .
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Theorem 4.2. Let (xr ,yr ) be an optimal solution of subproblem
z(λr ), such that xre = 0 < 1 = yre . Define the non-negative quantities

∆re
def
= min

{
λry : y ∈ Fkstab(Ĝ, |V | − 1),ye = 0

} − λryr , (14)

∂re
def
= min

{(w − λr )x : x ∈ Fsp.tree(G),xe = 1
} − (

w − λr ) xr .
(15)

If min
{
∆re , ∂

r
e
}
, 0, then min

{
∆re , ∂

r
e
} · ee is a maximal ascent

direction of z at λr .

Proof.
(i.) Given that xre = 0 and yre = 1, increasing λre corresponds to

increasing the dual bound, until alternative optimal solutions
where that hypothesis fails are induced. Specifically,

z(λr + ϵee ) > z(λr ) (16)
for all ϵ > 0 such that

xr ∈ argmin
{(
w − (

λr + ϵee
) )
x : x ∈ Fsp.tree(G)

}
, (17)

yr ∈ argmin
{ (
λr + ϵee

)
y : y ∈ Fkstab(Ĝ, |V | − 1)

}
. (18)

As long as ϵ can be made positive, ϵee is a direction of increase
from z(λr ). The necessity of conditions (17) and (18) follows
from noting that the contribution of the e-th variables xe and
ye to z, (

we −
(
λre + ϵee

) )
xe +

(
λre + ϵee

)
ye ,

remains constant as we increase ϵ after xe joins, or ye leaves,
an optimal solution. For, if xe = ye = 1, meaning that the
coefficient of edge e is attractive enough in (17), any further
increase +ϵye is cancelled by −ϵxe . Moreover, if xe = ye = 0,
whichmeans that the coefficient of vertex e is no longer attrac-
tive enough in (18), further increasing ϵ in

(
λre + ϵee

)
ye = 0

has no effect.
(ii.) To determine ϵ such that we find a breakpoint of z, we use

the limiting conditions (17), (18).
For xr to no longer be the unique optimum in (17), the cost
of edge e decreases so much that an alternative solution
x̃ ∈ Fsp.tree(G) which includes e is determined. Note that x̃ is
well-defined, as the choice of edges in a minimum spanning
tree where e is fixed a priori does not depend on the cost of e
(all other costs are kept unchanged). Also note that, since the
existing solution is such that xre = 0, the cost of x̃ is no less
than that of xr . The difference is precisely ∂re in (15).
If ∂re = 0, the bound cannot be improved by adjusting λre , as
an alternative minimum spanning tree including e is readily
available; equivalently, we should have ϵ = 0 in part (i). If
∂re > 0, it is the maximum increase in λre (i.e. decrease in the
cost of edge e in the x subproblem) before x̃ becomes optimal
and z starts to decrease. That is, enforcing (17) yields

ϵ ≤ ∂re . (19)
(iii.) For yr to no longer be the unique optimum in (18), the cost of

vertex e increases so much that an alternative fixed cardinality
stable set ỹ ∈ Fkstab(Ĝ, |V | − 1) which does not include e is
determined.
Analogous to the situation in part (ii), ỹ is well-defined be-
cause the multipliers corresponding to all other vertices are

kept constant: choosing ỹ amounts to finding a minimum cost
fixed cardinality stable set in Ĝ−e . Also, its cost is no less than
that of yr , the existing optimal solution to the y subproblem.
The difference is exactly ∆re in (14).
If ∆re = 0, no bound improvement by changing λre is possible,
as an alternative fixed cardinality stable set of least cost not
including e is readily available; i.e. we should have ϵ = 0
in part (i). On the other hand, if ∆re > 0, it is the maximum
increase in λre before ỹ becomes optimal and z stops increasing.
That is, enforcing (18) yields

ϵ ≤ ∆re . (20)
(iv.) In conclusion, if min

{
∆re , ∂

r
e
}
= 0, then ϵ = 0 and ϵee fails to

be a direction of increase from z(λr ). Otherwise, we combine
bounds (19) and (20) into (16):

∀ϵ > 0, z(λr +min
{
∆re , ∂

r
e
} · ee ) ≥ z(λr + ϵee ),

showing that λr +min
{
∆re , ∂

r
e
} · ee is a breakpoint of z, and

min
{
∆re , ∂

r
e
} · ee is a maximal ascent direction.

□

To determine a minimum spanning tree with edge e = {i, j}
fixed a priori in part (ii), we may contract that edge in G. If the
contraction operator is defined so as to allow parallel edges between
the new vertex ij and k ∈ N (i) ∩N (j), where N (u) ⊂ V denotes the
neighbourhood of vertex u, we must ensure that not more than one
edge between two vertices is chosen (e.g. in Kruskal’s algorithm;
this is not an issue in Prim’s method). Now, if the contraction
operator forbids parallel edges, we make an unambiguous choice
in the original graph G by recognizing the proper edge ({i,k} or
{j,k}) yielding the correct spanning tree.

A maximal ascent direction from Lagrangean solutions where
xre = 1 but yre = 0 is derived by an argument analogous to that of
Theorem 4.2. The next proof if thus significantly streamlined.

Theorem 4.3. Let (xr ,yr ) be an optimal solution of subproblem
z(λr ), such that xre = 1 > 0 = yre . Define the non-negative quantities

∆re
def
= min

{
λry : y ∈ Fkstab(Ĝ, |V | − 1),ye = 1

} − λryr , (21)

∂re
def
= min

{(w − λr )x : x ∈ Fsp.tree(G),xe = 0
} − (

w − λr ) xr .
(22)

If min
{
∆re , ∂

r
e
}
, 0, then min

{
∆re , ∂

r
e
} · (−ee ) is a maximal ascent

direction of z at λr .

Proof. Decreasing λre corresponds to increasing the dual bound,
in this case. Hence, ϵ(−ee ) is a direction of increase from z(λr ), as
long as ϵ can be made positive in

z
(
λr + ϵ(−ee )

)
> z

(
λr

)
, (23)

where
xr ∈ argmin

{[
w − (

λr + ϵ(−ee )
) ]
x : x ∈ Fsp.tree(G)

}
, (24)

yr ∈ argmin
{[
λr + ϵ(−ee )

]
y : y ∈ Fkstab(Ĝ, |V | − 1)

}
. (25)

For yr to no longer be the unique optimum in (25), the cost of
vertex e decreases enough for an alternative solution including e to
be determined. Since all other multipliers are kept constant, such
point ỹ ∈ Fkstab(Ĝ, |V | − 1) corresponds to a minimum cost stable
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set of cardinality |V | − 2 in Ĝ − N [e], that is, the conflict graph
where the closed neighbourhood of vertex e is removed. As the
existing solution is such that yre = 0, the cost of ỹ is no less than
that of yr . The difference is precisely ∆re in (21).

Now, for xr to no longer be the unique optimum in (24), the cost
of edge e increases as far as determining an alternative minimum
spanning tree not including e . Let x̃ ∈ Fsp.tree(G) denote that point,
which corresponds to a minimum spanning tree in G − e , since all
other multipliers are held constant. The cost of x̃ is no less than
that of xr , the existing optimal solution to the x subproblem. The
difference is exactly ∂re in (22).

If min
{
∆re , ∂

r
e
}
= 0, then ϵ = 0, and ϵ(−ee ) fails to be a direction

of increase from z(λr ). Otherwise, we have

∀ϵ > 0, z
(
λr +min

{
∆re , ∂

r
e
} · (−ee )) ≥ z

(
λr + ϵ(−ee )

)
,

showing that λr + min
{
∆re , ∂

r
e
} · (−ee ) is a breakpoint of z, and

min
{
∆re , ∂

r
e
} · (−ee ) is a maximal ascent direction. □

5 CONCLUDING REMARKS
We bring attention to a research question that we consider both
attractive and promising. Stable spanning trees comprise appeal-
ing combinatorial and polyhedral structures, and designing a La-
grangean algorithm that may yield stronger dual bounds to optimal
stable trees is an open problem. This paper presents the first steps
in a sensible direction: Lagrangean Decomposition inducing a non-
integral relaxation, coupled with carefully designed dual ascent.

Our development relies on the solid foundation that the pioneers
of Lagrangean duality in IP have laid, through which we are able to
justify the shortcomings of existing approaches and the virtues of
the one we propose. We also make an effort for our exposition of the
design principle of Lagrangean dual ascent to be fairly tutorial, and
for the main proof of the maximal ascent direction to be instructive.

The definitive proof of concept should be actually computing
the stronger bounds and finding optimal stable spanning trees in
computationally challenging benchmark instances more efficiently.
We are currently crafting an implementation of the method outlined
in this paper. Regardless of the success of our current efforts and one
particular algorithm, we stand in the position put forth at the end
of the Introduction. In light of the progress in MILP computation, it
seems worthwhile to further investigate the strategy of Lagrangean
Decomposition based on harder subproblems, possibly replacing
the common sense boundary of weakly NP-hard choices by the
weaker requirement that our choice be computationally tractable.
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2 TRI-LEVEL FORMULATION AND CUTTING PLANE REFORMULATION

A tri-level Network Protection Problem with weight control
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1 Introduction
Network Interdiction Problems (NIPs) are problems where an attacker tries to disable some network
elements (usually edges or vertices) submitted to an attack budget, while a defender reacts to such an
attack in order to optimise some kind of connectivity on the network. Classic examples are, among many
others, the Maximum Flow Interdiction or Shortest Path Interdiction problems, where an attacker disables
edges to minimise the maximum flow or maximise the length of the shortest path between two nodes.
Such problems have many possible applications, such as assessing the robustness of a transportation or
energy distribution network, studying the structure of social networks or biological networks and of course
military and security applications. Given their attacker-defender structure, they are often modeled as
bi-level optimisation problems. We refer the reader to the survey [2] for an overview of NIPs and the
Mathematical Programming techniques used to solve them.

Though the focus is often on finding the most critical set of elements to disable from an attacker’s
point of view, a few works exist in the literature that instead focus on how to protect the network from
the malign intervention of an attacker. These problems very often take the form of a fortification of a
subset of graph elements, i.e. rendering some graph elements impervious to attacks, see e.g. [1]. To our
knowledge, no approach has been studied to act instead on the relative deletion costs of the different
graph elements. However, we feel that in many situations it should be possible to allocate more resources
to protect a specific part of the network with respect to other parts, therefore requiring a larger effort
on the part of the attacker to disable the respective graph elements. We refer to such a problem as the
Network Protection Problem with weight control (NPPwc) in the following.

2 Tri-level formulation and cutting plane reformulation
Next we model the NPPwc as a tri-level problem over a graph G = (V,E). We consider that the defender
has a protection budget W , the attacker an attack budget K and that both edges and nodes can be
interdicted. Define the following variables:
• wi, wij : deletion costs (either continuous or integer) for nodes i ∈ V and edges (i, j) ∈ E;

• vi, vij : binary variables equal to 1 if i ∈ V or (i, j) ∈ E is deleted from G, 0 otherwise;

• x: general variables of the follower to optimise the connectivity measure on the network.
We call X(v) the domain of definition of the lower level (defender) variables. The NPPwc is:

max
w

Cd (1)
∑

i∈V

wi +
∑

{i,j}∈E

wij ≤W (2)

Cd = min
v
Ca(w) (3)

∑

i∈V

wivi +
∑

{i,j}∈E

wijvij ≤ K (4)

Ca = max
x

C ′
d(x) (5)

x ∈ X(v), (6)
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where Cd is the objective value of the defender at the higher level, Ca is the objective of the attacker at
the second level and finally C ′

d is the objective of the defender at the lower level. We will concentrate
on problems where the lower level is a polynomial problem and the two lower levels can be transformed
into a single level (by, e.g., inner dualisation). The problem becomes bi-level, where the lower level is the
traditional NIP and the upper problem tries to allocate the deletion costs optimally. We consider both
the possibility of continuous and integer values for the deletion costs w.

We write the model in a simpler form which enumerates all the second level solutions with their
respective objective value. Define S as the set of second level (attacker) solutions: a s ∈ S is defined
by parameters v̄s

i and v̄s
ij equal to 1 if the graph elements are deleted in solution s, along with the

connectivity Cs associated to s. We can reformulate the above MINLP as:

max
w

Cd (7)
∑

i∈V

wi +
∑

{i,j}∈E

wij ≤W (8)

Cd ≤ Cs + (1− πs)(Cmax − Cs) s ∈ S (9)

(K + ε)πs ≥ K + ε−
∑

i∈V

wiv̄i −
∑

{i,j}∈E

wij v̄ij s ∈ S (10)

with πs binary variables which activate the constraint for a solution s ∈ S if its attack budget is less
than the maximum budget K and where ε is small enough to find the optimal solution (ε = 1 for integer
weights). Therefore, each solution has an associated variable and constraint. We can adopt a Cutting
Plane (CP) algorithmic approach, i.e. start with an empty (or very small) set S and solve the model
iteratively by adding violated cuts. At each iteration, we add a binary variable πs and we can branch on
it: the branching node where πs = 1 is closed immediatly since we cannot improve on the solution found
while the node where πs = 0 forces the model to make the newly found attacker’s solution infeasible in
the next iteration. The procedure converges when the model become infeasible.

3 Conclusions and perspectives
We will assess the above algorithmic framework for solving the protection version of several classic NIPs
on a set of benchmark instances. It is known that models with continuous upper level variables but integer
lower level variables suffer in general from the non-existence of an optimal solution but we will prove its
existence. Depending on the time and results available, we will also try to refine the cuts obtained to
lift them as much as possible, or to apply existing sophisticated approaches for fortification problems,
as e.g. [1]. We will also derive the Σ2

p-completeness of the application of our model to some classic
NIPs (with integer attack weights) in order to justify a CP algorithm to solve our bi-level approach.
This demonstration first shows that several NPPwc incarnations are equivalent, on specially structured
graphs, to an Interdiction Knapsack Problem with weight control, which we show to be Σ2

p-complete.
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We study a two-stage network interdiction-monitoring game involving an defender and an attacker. The
attacker’s goal is to reach a target node represented by the sink node undetected. In the first stage,
the defender removes (by interdicting) a subset of arcs on the network given an interdiction budget. In
the second stage, the problem is a two-person simultaneous zero-sum game similar to the one studied
by Washburn and Wood [6], in which the defender randomly selects from a set of feasible monitoring
decisions subject to a budget independent of the interdiction budget. The probability that the attacker is
detected when traversing an arc that is monitored is known to both players. Overall, the defender seeks
an interdiction-monitoring strategy that minimizes the probability that the attacker reaches the target
node. We refer to this problem as the network interdiction in a simultaneous game, or NISG for short.
There is an extensive body of literature on network interdiction problems in which the defender employs
a deterministic strategy [3, 7, 8], or a probabilistic strategy [1, 2, 4, 5]. Applications for this problem
include homeland security and cyber/physical security, where modifying the network, i.e., removing a
subset of arcs, can be costly. Thus, a strategy that combines interdiction and monitoring decisions may
be more desirable. This paper contributes an exact formulation to the NISG and a decomposition-based
solution appproach to solving the NISG.

An Integer Programming Formulation to the NISG. We assume that the game takes place over
an acyclic network G = (N, A). Let decision variables x represent the defender’s interdiction decisions
in the first stage, where xa = 1 if arc a ∈ A is interdicted and xa = 0 otherwise. Letting BI denote the
interdiction budget and da be the cost to interdict arc a, ∀a ∈ A, we define the feasible region of the
first-stage problem as X = {x :

∑
a∈A daxa ≤ BI , x ∈ {0, 1}|A|}.

With respect to the second stage, we denote by BM the defender’s monitoring budget and by ma the
cost to monitor arc a, ∀a ∈ A. Let P and M represent the set of all source-sink paths and the set of all
feasible monitoring decisions, respectively. Additionally, denote by P(x) the set of all feasible source-sink
paths and by M(x) as the set of feasible monitoring decisions for a fixed x, i.e., source-sink paths and
monitoring decisions that do not include an interdicted arc. Let yM represent the probability that the
defender selects monitoring decision M , ∀M ∈ M(x). Let zP represent the probability that the attacker
selects path P , ∀P ∈ P(x). The NISG can be formulated as follows:

NISG(P, M) : min
x∈X

{
min

y
max

z

∑

P ∈P(x)

FP (x, y)zP

}
(1a)

s.t.
∑

M∈M(x)

yM = 1 (1b)

∑

P ∈P(x)

zP = 1 (1c)

yM ≥ 0 ∀M ∈ M(x) (1d)
zP ≥ 0 ∀M ∈ P(x), (1e)

where FP (x, y) denotes the probability that the attacker reaches the sink node undetected via path P
given interdiction x and probabilistic monitoring strategy y. Letting FP,M denote the probability that
the attacker reaches the sink node undetected via path P given monitoring decision M , the NISG(P, M)
is equivalent to the following:

F-NISG(P, M) : min u (2a)
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s.t. u ≥
∑

M∈M
FP,M yM −

∑

a∈P

xa ∀P ∈ P (2b)

∑

M∈M
yM = 1 (2c)

yM ≥ 0 ∀M ∈ M (2d)
x ∈ X. (2e)

However, as solving the F-NISG(P, M) requires the enumeration all paths in P and all feasible monitoring
decisions in M, we propose a decomposition-based solution approach that utilizes Benders cut in the first
stage, and column and row generation in the second stage.

A Reformulation of the NISG. Using an epigraph formulation, we reformulate the first stage
as follows: min{θ : θ ≥ u(x), x ∈ X}, where u(x) represents the optimal objective function to the
second stage given a fixed x. Denote by HP,M a linear approximation of FP,M , ∀P ∈ P, M ∈ M. The
second-stage problem given x = x̂ is given by:

H-SG(x̂, P, M) : u(x̂) = min u (3a)

s.t. u ≥
∑

M∈M
HP,M yM − R

∑

a∈P

x̂a ∀P ∈ P (3b)

∑

M∈M
yM = 1 (3c)

yM ≥ 0 ∀M ∈ M, (3d)

where the row-generation problem becomes a shortest-path problem, and the column-generation problem
can be solved as a knapsack problem.

An Algorithmic Solution Approach. We begin with subsets P ⊆ P and M ⊆ M. Our algorithm
iteratively obtains a feasible interdiction solution and a lower bound on the optimal objective function
by solving the first-stage problem. Given a fixed interdiction solution, we solve the second-stage problem
using row and column generation, updating subsets P and M as necessary. Benders cuts corresponding
to the second stage’s optimal objective values are added to the first stage. The algorithm terminates
when the objective function values in the first and second stage are within some permissible tolerance.

Finally, we will also discuss some preliminary results on the efficacy of our algorithm on randomly
generated NISG instances.
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Extended Abstract
The orienteering problem (OP) is a fundamental routing problem where the aim is to find a tour on a
graph such that a given maximum tour length is not exceeded and the total prize collected from the visited
nodes is maximized [3]. It is a variant of the traveling salesman problem (TSP); instead of minimizing
the the total tour length, our goal is to find a tour that maximizes the collected prize while respecting a
budget on the tour length. This NP-hard problem has applications in several areas such as scheduling,
logistics, and tourism and there exist many variants of the problem, see, e.g., the survey [8]. In this
work, we introduce orienteering interdiction games (OIGs), which correspond to the incorporation of a
competition (game) setting in the context of the OP. Interdiction games involve two players, denoted as
leader and follower, who act sequentially. The follower optimizes a given problem, and the leader tries to
undermine the objective of the follower by partially or completely interdicting the usage of some resources
of the follower’s optimization problem. A recent survey on network interdiction models is presented in
[7]. There exists considerably less work on interdiction games in a routing context, the work [5] considers
a traveling salesman game and in [6] a multi-depot vehicle routing games is studied.

In our OIG, both the leader and the follower look for a tour which fulfills their given budget. The
two tours are over the same graph, and whenever a node is in the tour of the leader, the follower cannot
collect the prize of this node. Like in the classical OP, the follower aims to maximize the collected prizes
of her or his tour, while the leader tries to minimize the objective the follower can achieve. The proposed
problem can model applications such as determining police patrolling strategies against criminal activities
[1] and urban campaigning during elections by door-to-door canvassing [4].

Formally, our OIG is defined as follows. We are given a complete graph with node set V , a prize
pi > 0 associated with each node i ∈ V , and cost/length dij associated with each edge {i, j} ∈ V × V .
The goal of the leader is to find a tour starting from its depot ρ` ∈ V and with a total distance no greater
than B`, so that it minimizes the maximum profit that the follower can achieve by performing a tour,
starting from ρf ∈ V and with a total distance no greater than Bf .

Let xk ∈ {0, 1}|V | be a vector of decision variables so that xk
i = 1 if player k ∈ {`, f} visits node

i ∈ V in their tour, and xk
i = 0 otherwise. Likewise, yk ∈ {0, 1}|V×V | be a vector of decision variables so

that yk
ij = 1 if player k visits node j ∈ V after visiting node i ∈ V \ {j}, and yk

ij = 0 otherwise. Also let
(xk,yk) denote the route associated with xk and yk. The problem can be formulated as mixed-integer
bilevel programming problem as follows.

z∗ = min
x`,y`

max
xf ,yf

∑

i∈V

pi(1− x`
i)x

f
i

s.t.
∑

i,j∈V×V

dijy
`
ij ≤ B`

∑

i,j∈V×V

dijy
f
ij ≤ Bf

(x`,y`) ∈ P`

(xf ,yf ) ∈ Pf
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Here P` and Pf denote the sets of feasible tours, i.e., cycles that do not contain subtours, where each
node is visited at most once, and which pass through ρ` and ρf , respectively.

In order to tackle this challenging bilevel programming problem, we propose a single-level reformu-
lation based on so-called interdiction cuts. This technique was introduced in [2] for interdiction games
fulfilling a certain monotonicity assumption and we show how to adapt it to our OIG. Based on this
reformulation, we develop a branch-and-cut algorithm to solve the OIG and introduce various enhance-
ments for the algorithm. We test our approach on instances created from a set of TSPLIB instances
by considering several leader’s budget levels. In addition, we analyze the obtained results with the aim
of gaining some managerial insights. From an algorithmic standpoint, the preliminary results (over 24
TSPLIB instances with sizes between 17 and 100 nodes and node prizes randomly generated) show that
the proposed enhancements improve the efficiency of the branch-and-cut significantly. In Table 1, we pro-
vide the average results under four of our settings, assuming that the leader’s maximum allowed distance
is equal to the follower’s, i.e., B` = Bf . In the first one, interdiction cuts are generated for integer points
only. In the second one, fractional points are separated too, but in a heuristic way. Next, we integrate a
heuristic for speed up the integer separation. Lastly, we generate multiple interdiction cuts for the same
integer/fractional solution of the master problem. We provide in the table the average solution times,
optimality gaps, root gaps, number of interdiction cuts and the incumbent objective value.

Table 1: Preliminary results of the B&C algorithm using interdiction cuts.
Setting description Time(s.) Gap(%) RootGap(%) nICcuts zBest
Integer separation only 2246.13 20.65 64.23 62.88 799.58
Integer and fractional separation 1778.29 16.75 54.39 20.92 789.08
Heuristics to speed up the separation 1673.29 15.85 57.45 48.91 764.65
Multiple ICs added for the same point 1732.51 15.06 56.11 52.75 781.50
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The foundation for our work is the problem of Shortest-Path Interdiction: a two-stage, two-player zero-
sum game, played over a directed weighted graph [2, 3]. We study the Dynamic Shortest-Path Interdiction
problem (DSPI) [5]: a variant of this game, where two players, the Evader and the Interdictor, take steps
in turns. The Evader seeks to take a shortest-path between two given nodes, while the Interdictor
tries to maximize the cost of this path by attacking the arcs. When an arc is interdicted, its cost
increases by a pre-defined amount. The Interdictor starts the game, and can interdict any subset of
arcs, subject to a cardinality (budget) constraint. The Evader follows and traverses one arc during each
turn. The players take turns until the Evader reaches the given terminal node. Potential applications
include counter-terrorist activities, infrastructure reliability problems, and vulnerability analysis, as well
as natural disaster response, analysis of social effects, and others.

The decision variant of the problem was shown to be NP-hard [5]. To the best of our knowledge, while
bounds on the optimal objective have been proposed in the aforementioned paper along with an exact
(exponential-time) dynamic programming solution approach, no heuristic exists in the literature that
yields high quality solutions (valid sequences of moves corresponding to the provided objective values).
This work contributes an algorithm that fills in this gap.

Note, that it is not forbidden for the Evader to visit a node more than once. Moreover, it is sometimes
optimal to do so [5]. This complexity implies that even for graphs with dozens of nodes, enumerating all
game states to build the whole decision tree might become impractical. Following some ideas from the
Reinforcement Learning research [1, 7] and strategy employed to design a powerful Go playing machine
[6], we adapt Monte Carlo Tree Search (MCTS) approach. We first formalize the concept of a game tree,
where each node comprises the current game state (Evader’s position, current turn, and interdiction set),
available players’ actions, and costs information. We guide the tree construction by cost-to-go estimates
obtained from random simulations of the players’ turns, so that the more promising nodes are explored
first. We also incorporate tree pruning mechanism leveraging the bounds presented in the literature
[5] and using a classical approach for two-agent zero-sum games, called alpha–beta pruning [4]. The
game tree encodes learned policies both for the Interdictor and the Evader for the specific instance.
The algorithm updates the tree iteratively, choosing the most promising nodes, expanding the tree, and
running simulations in the forward pass, and propagating the bounds and the obtained cost information
from child to parent nodes in the backward pass.

The proposed framework yields a sequence of turns for both players as follows. First, the tree is built
by running a pre-determined number of learning episodes, and the Interdictor’s turn is chosen as the
most promising child node of the root node. Then, the root node is updated to point to the chosen game
state, and the procedure is repeated for the other player, and so on. By limiting the number of learning
episodes per move we can trade the depth of analysis and solution quality for runtime. The resulting
procedure is a reinforcement learning algorithm in a sense that it does not require a pre-compiled dataset
to devise a good solution for the given instance, but learns parts of the solution by interacting with the
environment model and receiving rewards (in the form of costs in this case).

We highlight the practicality of these ideas in a series of numerical experiments, highlighting the
performance of the heuristic for different instance characteristics and algorithm parameters. This analysis
suggests that Monte Carlo Tree Search constitute a promising framework for designing a game playing
heuristic for DSPI, which can be fine tuned to accommodate for the amount of available computational
resources.
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There are several possible lines of research aimed to build upon these results. First, the MCTS
algorithm can be improved using the many ideas already discussed in the literature (e.g., [1]): caching
the frequently visited game states, improving the reliability of node assessment, possibly involving deep
neural networks, and many others. Then, the algorithm can be adapted for other variants of interdiction
problems. Finally, it would be interesting to investigate ways to retain the information encoded in the
game tree across different instances (which in fact would be equivalent to learning heuristic algorithms).
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The last-mile delivery (LMD) is defined as the final stage to deliver products from depots, hubs, or
warehouses to the customer. In the LMD, many packages are performed inside buildings (residential,
institutional, educational, and commercial buildings), especially in urban centers. A wide variety of
products, such as food, furniture, certified letters, etc., must be delivered directly to the customer. For
example, in office buildings, most office supplies are delivered directly to the offices because usually there
is not enough space for temporary storage in the building receptions. Thus, one or more deliverymen
(DM) must deliver products inside the buildings (using a bag or cargo cart), starting at the reception,
using the elevation system, and ending at the different demand points.

As a relevant antecedent, [5] and [4], estimate that the distribution time inside buildings represents
about 87% of the total distribution time in districts with high population density. [6], indicates that the
Company Camden Property Trust loses about 10 minutes of productivity per employee in the delivery
of a single parcel within a condo with buildings. In the same way, since the Covid-19 pandemics, many
orders are accumulated in the reception, especially in residential buildings. Then, the recipients go down
to pick up their parcel, or the building staff member delivers the products to residents [2, 7]. Moreover,
the elevators’ social distancing implies that the goods distribution is slower than a normal situation within
an office, university, or hospitals buildings [9].

From a different perspective, each type of building has a specific traffic pattern according to the
moment of the day at which the delivery is made [1, 3]. Figure 1 shows a theoretical traffic pattern of
an office building [8], indicating that the number of individual elevator calls represents the passenger
demand for elevators. They are aggregated according to the demand direction (going up or going down).
At the beginning of the day, there are multiple going-up calls (morning up-peak), and they are generated
by the arrival of people who work in the building. At the end of the day, there is a down-peak caused
by the people that leave the building. In the middle of the day, there are two groups of up-peaks and
down-peaks caused by two different lunchtimes (i.e., from 12:00 PM-01:00 PM, and from 01:00 PM to
02:00 PM). This pattern is usually known as bidirectional traffic. There is inter-floor traffic for the rest of
the day, where the number of calls is similar. All traffic patterns affect the travel times within a building.
Naturally, the traffic pattern differs according to the type of the building and its use, e.g., residential,
educational, hospital, public institution, parking, office, etc. [8].

Consequently, the DM distribution time within buildings depends on the arrival time, the building
pattern traffic, the elevation system, the building type, and its particular characteristics, etc. Thus,
the waiting times and vertical travel times within a building depend on the day’s moment. For a DM,
these times could represent a significant percentage of the total time within a building, e.g., the total
distribution time is higher if a DM arrives at a peak hour.

We define the vertical routing term to refer to all those activities required for goods transportation to
customers located within buildings. It involves mainly waitings, vertical and horizontal movements. We
address time-dependent waiting and vertical times. It can be noticed that the vertical routing problem
with time dependency is a particular case of the well-known Time-Dependent Traveling Salesman Problem
(TDTSP). In our research, the network of arcs and nodes within a building has particular characteristics,
such as the traffic patterns, the time dependency in nodes and arcs, and the network fishbone shape.
We focus our research on the vertical routing problem by introducing, modeling, and solving the time-
dependent vertical routing problem (TDVeRP). To the best of our knowledge, this problem has not been
studied in the traveling salesman or last-mile distribution literature. We propose a mixed-linear integer
programming (MILP) model and a Genetic Algorithm to solve a set of building instances. A set of
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Figure 1: Traffic pattern for an office building (based on [8])

detailed results is presented in two different buildings, considering different variations in the number of
customers, DM arrival time, and distribution of customers within a building.
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Last-mile delivery is a critical portion of logistics networks accounting for approximately 30-35% of the
costs. As delivery volumes have increased delivery vehicle route times have become unsustainably long.
To address this issue many logistics companies (including FedEx and UPS) have resorted to using a
“Driver Aide” to assist with deliveries.

In the “Driver Aide Problem”, a delivery vehicle is equipped with a “driver” and an “aide”. The aide
can assist the driver in two modes. As a “Jumper” the aide works with the driver, thus reducing the
service time at a given location. As a “Helper” the aide works independently at a location while the driver
leaves (to deliver packages at other locations) and then returns. Given a set of delivery locations, travel
times, and service times (based on the aide mode) the goal is to determine both the delivery route as
well as the most effective mode to use the aide at different locations to minimize the total delivery time.
We model this problem as an integer program with an exponential number of variables and constraints
and develop a branch-cut-and-price approach for solving it. We discuss our computational experience
and insights based on data provided by an industrial partner.
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During the past few years, car sharing services have quickly developed in many countries for client trans-
portation, especially in urban areas where there are many potential clients who are ready to pay for the
private mobility via the short-term use of a vehicle on a per trip basis. The use of well managed car
sharing services is profitable for individuals. They have enough mobility without buying or leasing of
expensive cars, their maintenance, possible repair, refueling, parking, paying taxes and insurance, etc.
The social profit is provided via more efficient use of parking places, the increase in the throughput of the
roads and a decrease in the probability of a traffic jam, reduction of carbon emission, etc. Car sharing
services may be a profitable business if they are well built and managed. One of the most important
problems, which have to be resolved while starting or developing car sharing service, is to determine the
number of required cars. The problem of fleet management is quite challenging and complicated. The
importance and profitability of car sharing services made them popular both in real life and scientific
literature.

We consider a car sharing system as an open queuing network. Customers are associated with clients.
Servers correspond to the cars. Each idle car can be located in a corresponding node (zone of the opera-
tional area). If the car is busy, its current location in the network is assumed be temporarily undefined
for customers because they cannot observe it. We present an exact analysis of the constructed model of
a car sharing system. The study of queuing systems and networks with moving servers has not received
proper attention due to the mathematical complexity of such systems and networks. As the simplest
examples of such systems (with the exception of the trivial examples of systems with server’s vacations,
unreliable systems, and polling systems, in which a server sequentially connects to the existing queues ac-
cording to a certain schedule), we can note the following two systems. One of them is the tandem system
with moving servers that are dynamically redistributed between stations. A part of the available servers
is permanently assigned to tandem stations, and then the remaining part is dynamically redistributed
between stations depending on the ratio of the number of users present at the corresponding station. The
servers are distributed over the nodes of the network and from time to time they interchange the nodes,
taking the existing queues of users with them.
An essential advantage of the queuing networks that considered in the paper is the consideration of

a quite general, marked Markovian arrival process (MMAP) of customers that allows us to take into
account random fluctuations of the intensity of customer arrival in various nodes. Such fluctuations take
place in the overwhelming majority of real car sharing systems. At the same time, the majority of the
research is implemented under the assumption that the arrivals occur according to a stationary Poisson
process that has a constant arrival rate. An essential novelty of the model proposed for analysis within
this study is that the queuing network takes into account the server’s mobility and their unavailability
at any node during the service process. It is worth to note also that we allow the realistic scenario when
the arriving customer meets idle servers in the target node, but he/she balks the network with a certain
probability, which depends on the node and the number of available cars. Such a situation is typical in
real car sharing systems because the client can refuse to occupy the available car, e.g., because his/her
walking distance to the nearest car seems to be too long or the available car is not suitable to him/her
by some reason.
The client of a car sharing system is considered as a customer that receives service in a queuing network.

The queuing network consists of K nodes. The total number of servers in the network is equal to N .
The servers can move and change their location. The numbers of idle and busy servers at each node
are observed. These numbers can be changed at any instant of the start or finish of the trip of a client.
We distinguish the arriving customers by the type according to the node at which a customer appears.
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Namely, a type-k customer arrives at the k-th node of the network. The arrival process is assumed to be
defined by the MMAP (Marked Markovian Arrival Process).
The goal of the analysis is the computation of the performance measures of the system under the fixed

number of available cars N and estimation of possible variation of these measures when the number N
is changed. The results of this analysis can be used for the choice of the optimal value of N . Also, these
results can be helpful in answering the question: whether or not the existing distribution of the nodes of
starting and finishing journey is satisfactory or it has to be somehow varied. Such variation seems to be
possible, e.g., via differentiation of the tariffs for the use of cars depending on the time and the nodes of
starting and finishing the journey. In the paper, the expressions for computation of the key performance
measures of the system are given and numerical results are presented. They characterize the dependence
of some performance measures of the network and the nodes on the total number of cars (fleet size of
car-sharing system) and correlation in the arrival process.

Keywords: Queueing network, movable servers, car-sharing, marked Markovian arrival process
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Truck platooning is a promising transportation mode to save fuel consumption in the freight industry.
In this paper, we consider a truck platooning system for which we jointly optimize the truck route
and schedule from the perspective of a central platform. We improve an existing decomposition-based
heuristic by Luo and Larson [1], which iteratively solves a routing and a scheduling problem, with a
cost modification step after each scheduling run. We propose different formulations for the routing
and scheduling problems and embed these into Luo and Larson’s framework, and we examine ways to
improve their iterative process. In addition, we propose several preprocessing techniques to accelerate
the solution of the scheduling problem and enable the resulting heuristic to deal with large instances.
The computational results show that our procedure achieves better performance than the existing one.
Moreover, based on sensitivity analysis, we find that long routes, cluster demands, and sparse networks
can promote the formation of truck platoons.
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Opinion dynamics is a natural phenomenon in a system of cognitive agents, and is a well-studied topic
across several disciplines. Camps such as those for elections and marketing, harness this phenomenon
to maximize the adoption of their opinions or products among the nodes in a social network. Since
nodes update their opinions based on their neighbors’ opinions, a camp aims to influence the opinions
of influential nodes by investing on them by way of money, persuasion time, etc. Thus, given a budget
constraint, the strategy of a camp comprises how much to invest and on which nodes. Problems related
to maximizing opinion adoption in social networks have been extensively studied, however, much of
the literature focuses on discrete time dynamics [2]. Among the works in the domain of continuous
time opinion dynamics in social networks, most either consider simplistic models which always result in
consensus, or practical models which are intractable to analyze. It is, thus, difficult to analytically study
the investment strategies that a camp could devise so as to maximize its influence in the network. In
this work, we propose a continuous time opinion dynamics model while accounting for camp investments,
which we justify to be a logical extension of some of the well-accepted models, while also being tractable
for analyzing a camp’s optimal investment strategies.

In a discrete time setting, the nodes’ opinions get updated in discrete time steps, while in a continuous
time setting, the opinions are updated continuously with time. While there have been several models
aiming to capture discrete time dynamics, the Friedkin-Johnsen model is among the most well-accepted
ones that are analytically tractable. In an earlier work, we incorporated camp investment into it so as
to study the model from a strategic perspective [1]. Taylor’s model [3] is a continuous time equivalent of
the Friedkin-Johnsen model. This work aims to extend this model to incorporate camp investment and
present optimal investment strategies in a variety of settings. We now describe our model formally.

Let N be the set of all nodes, v
(t)
i be the opinion value of a node i at time t, and wij be the weightage

attributed by node i to the opinion of node j. Taylor’s model is based on the hypothesis that the rate of
influence on node i due to another node j at time t is proportional to the difference in their opinions at
time t. As per the Taylor’s model, this rate is given by wij(v(t)

j − v
(t)
i ). Similar to [1], we consider that

node i has a biased opinion of its own (say v0
i ) and a weightage attributed to it (say w0

ii); in the current
context, bias could be understood as a node’s reluctance to change its opinion. Hence, the rate at which
the opinion value gets drawn towards the bias owing to that bias, can be written as w0

ii(v0
i − v

(t)
i ). In

order to incorporate a camp’s investment into the Taylor’s model, we consider that the camp aims to
drive the opinion values of the nodes in the social network to be as high as possible. A hypothesis on
similar lines as [1] is that the rate of change of a node i’s opinion at time t owing to the camp’s investment
on it, is directly proportional to the investment at time t (say x

(t)
i ) and the weightage attributed to the

camp by node i (say wig). We hence consider this rate to be wigx
(t)
i , which is in line with the multilinear

nature of the Taylor’s model. Combining all the aforementioned factors, we can write the rate of change
of node i’s opinion value as

dv
(t)
i

dt
=
∑

j∈N

wij(v(t)
j − v

(t)
i ) + w0

ii(v0
i − v

(t)
i ) + wigx

(t)
i = −

(∑

j∈N

wij + w0
ii

)
v

(t)
i +

∑

j∈N

wijv
(t)
j + w0

iiv
0
i + wigx

(t)
i

Let Q be the diagonal matrix with its ith diagonal element being
(∑

j∈N wij + w0
ii

)
, and let W be

the matrix whose cell (i, j) has element wij . Denote A = W − Q. Let B and C be diagonal matrices
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with their ith diagonal elements as wig and w0
ii, respectively. Let V (t), X(t), V 0 be vectors whose ith

components are v
(t)
i , x

(t)
i , v0

i , respectively. Thus, the above equation can be written in matrix form as
dV (t)

dt
= AV (t) + BX(t) + CV 0

With certain practically relevant assumptions such as wij ≥ 0, w0
ii > 0, it can be shown that matrix A

is nonsingular and the real parts of its eigenvalues are negative. Consider the initial conditions that the
initial time t0 = 0 and the vector of initial opinion values V (t0) = V 0. Solving the differential equation
with these initial conditions, we get that the opinion vector at the end of time T is

V (T ) = eAT V 0 + eAT

T∫

0

e−At(BX(t) + CV 0)dt =
(
eAT − A−1C + eAT A−1C

)
V 0 + eAT

T∫

0

e−AtBX(t)dt

Since it is not practical for a camp to constantly change its investments as a continuous function of
time, we split the time period from 0 to T into M equal intervals, where the investment stays constant
within each interval k. Let the investment vector corresponding to interval k be denoted by X [k]. So, we
can formulate the fundamental problem of maximizing the sum of opinion values at time horizon T as

arg max
(X(t))t∈[0,T ]

1′V (T ) = arg max
(X(t))t∈[0,T ]

1′eAT

T∫

0

e−AtBX(t)dt = arg max
(X[k])k∈{1,...,M}

1′eAT

M∑

k=1

kT
M∫

(k−1)T
M

e−AtBX [k]dt

In the course of simplifying the above objective function, we arrive at the following quantity:
eAT A−1

(
−e− kT

M A + e− (k−1)T
M A

)
, which we denote by L[k]. Let its element corresponding to cell (i, j) be

ℓ
[k]
ij , which could be viewed as the influencing power of node j on node i in interval k. Note that ℓ

[k]
ij could

be non-zero even if j does not have a direct link to i (owing to indirect influence via other nodes). Let
r

[k]
j =

∑
i∈N ℓ

[k]
ij , which could be viewed as the combined influencing power of node j over all the nodes

in the network in interval k. It can hence be shown that the above objective function simplifies to

arg max
(X[k])k∈{1,...,M}

M∑

k=1

∑

j∈N

x
[k]
j wjgr

[k]
j

Now, the above objective function can lead to different optimal investment strategies for different
types of budget constraints. For instance, if there is only an overall budget constraint with regard to the
investment that can be made over all intervals and all nodes, an optimal strategy is to invest on only one
node and in one interval, namely, arg maxj,k wjgr

[k]
j . If there are constraints on investment per node (or

per interval), an optimal strategy is to invest on nodes (or intervals) in decreasing values of wjgr
[k]
j while

satisfying the constraints. In a more general setting wherein there are constraints on both investment
per node and investment per interval in addition to an overall budget constraint, the problem can be
transformed into a minimum cost flow problem which can be solved using one of the relevant algorithms.

The other problems that we study in this work are that of maximizing the sum of opinion values
under diminishing returns on investments, maximizing the cumulative opinion value over the entire time
period, optimizing on the number of intervals, and maximizing the sum of opinion values under uncertainty
(i.e., when the parameters’ values are not exactly known). We believe that this work lays a theoretical
foundation for studying investment strategies in a social network in the continuous time framework, and
explores the immense research potential that this area has to offer.
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ABSTRACT
In this work, we solve a real-world facility location problem by
means of a mixed integer linear programming model. The problem
is faced by an Italian multi-utility company operating in the sec-
tor of waste management. The company works in several Italian
regions to collect and treat the urban waste through a network
of facilities. In this problem, a set of demand points is given with
a predicted quantity of waste to be collected and a fixed number
of visits required over a predetermined time horizon. The flow of
different classes of recyclable waste must be optimized by deciding
whether and where to open additional intermediate transfer facil-
ities among a set of dedicated points. The aim is to minimize the
CO2 emissions involved in the process, including emissions from
the use of additional facilities and the transport of waste across the
network. We provide a mathematical formulation for the problem,
and use it to solve a real-world case study. An optimal solution
is obtained with a significant reduction in CO2 emissions and a
well-structured network, proving the efficacy of the model.

1 INTRODUCTION
Waste management is a general term referring to the set of activities
related to collection, transport, treatment and disposal of waste, and,
in addition, control and prevention actions across the whole pro-
cess. The increasing amount and complexity of waste generated by
modern societies has indeed raised major sustainability-related con-
cern around governments, firms, and individuals. As a consequence,
waste management has been recently connected to environmental
issues, as stated, for example, by Tolaymat et al. [27], who referred
to waste management as the link between all the subjects involved
in the waste production network and the societal entities taking
care of environmental goals. The significant environmental impact
of the waste industry is well known and reduction measures have
been already introduced in many systems (e.g., ReVelle [24]) to cut
the amount of greenhouse gas emissions along the process (e.g.,
products’ recycling and salvage, collection routing optimization).

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th 
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Many strategic and operational problems related to each phase of
the waste management process have been studied in the literature
for decades, confirming a high interest of both researchers and
practitioners in this field. Operational problems refer to short-term
optimization decisions like routing and scheduling problems. In this
Operations Research context, the literature on the classical Vehicle
Routing Problem (VRP) applied to waste collection contexts is huge
(e.g., Golden et al. [13]). Strategic problems refer, instead, tomedium-
and long-term design and management decisions to optimize the
waste collection and treatment network, including the location
of different facilities (e.g., collection points, intermediate transfer
facilities, final treatment facilities, and landfills). The Operations
Research area of Facility Location Problems (FLPs) is addressed in
this context (e.g., Van Engeland et al. [29]).

This work deals with a specific FLP in the context of urban
waste collection, that is, the collection of urban waste from multiple
sources and its transport to the treatment or disposal plants. The
activity is typically managed by municipal services or by public or
private corporations. In this work, we study the strategic problem of
transfer facility location to minimize CO2 emissions, by considering
the transfer phase of urban plastics and paper waste carried out by
Iren Ambiente S.p.A., an Italian multi-utility private company.

Iren Ambiente is a division of Iren Group, an industrial holding
company operating in the Italian market of multi-utilities. Iren
Ambiente manages the operations of waste collection, treatment
and disposal, designs waste treatment and disposal systems, and
controls renewable energy systems in several areas of Italian re-
gions (mainly Emilia Romagna, Piemonte, Liguria, Lombardia, and
Sardegna). Our case study refers to the region of Emilia Romagna.

The specific problem studied in this work only considers the
transfer of waste, excluding downstream and upstream processes
of waste production and treatment or disposal (and the related CO2
emissions), even tough the entire waste management process is
managed by the company in its assigned areas.

The problem is a particular Capacitated Facility Location Prob-
lem (CFLP) (i.e., a FLP where facilities have limited capacity), which
we solve by means of a Mixed Integer Linear Programming (MILP)
model. The goal is to determine the optimal network in real-world
scenarios, evaluating how many intermediate transfer locations
must be opened and where they must be located to minimize the
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total CO2 emissions produced during the process (i.e., facilities’ and
vehicles’ emissions) over a fixed time horizon.

The rest of the paper is organized as follows. A summary of the
related literature is given in Section 2. In Section 3, we provide a
detailed description of the problem and present our mathematical
model. Section 4 reports the results obtained by the proposed solu-
tion method on our real-world case study. Concluding remarks are
provided in Section 5.

2 LITERATURE REVIEW
Reverse logistics commonly refers to the set of activities and pro-
cesses related to the flow of raw material, inventory, and finished
goods other than waste from the point of consumption back to the
origin point. Back in 1998, Carter and Ellram [3] already referred
to reverse logistics as the practice whereby firms can become more
environmentally efficient by, for example, recovering material and
recycling products. A review on reverse logistics is given by Govin-
dan et al. [15]. A restricted field of study on environment-related
reverse logistics problems is labelled in the literature as "green
logistics". A review on green logistics and related combinatorial
optimization problems is given by Sbihi and Eglese [25].

Waste management is the reverse logistic sub-field of study fo-
cusing only on waste, and more commonly on solid waste (e.g.,
Beliën et al. [2]). In their recent survey, Van Engeland et al. [29]
reviewed the literature of the so-called waste reverse supply chain,
identified as the overlapping subject between waste management
and the broader reverse logistic. Collection, transportation, recov-
ery, and disposal of waste are included in the waste reverse supply
chain, where several problems are solved with the aim of creating
value at three different levels of management decisions: (i) long-
term strategic decisions of waste network design; (ii) medium-term
decisions (e.g., waste quantities and capacity allocation), and (iii)
short-term operational decisions like routing and scheduling. In
our work, we are interested only in the first decision level.

Focusing on the area of long-term strategic network design prob-
lems, Van Engeland et al. [29] surveyed the extensive literature
of the period 1995-2020, providing a classification of strategic net-
work design problems and their combinatorial optimization solution
methods based on several characteristics: single- or multi-period de-
cisions, single- ormulti-product problems, single- ormulti-objective
optimization, with specific constraints and different objective func-
tions. They found that 60% of collected works dealt with single-
objective functions, representing cost minimization or profit maxi-
mization in around 95% of the cases. Only one out of 133 articles
surveyed in this work was categorized as a carbon emissions-related
single-objective model. In this regard, our work is an attempt to ex-
tend this branch of the literature. In multi-objective models, instead,
environmental goals are often included and balancedwith economic
ones, such as the minimization of CO2 emissions or energy use.
Talaei et al. [26] solved a bi-objective cost-emissions minimization
facility location-allocation problem for a closed-loop supply chain.
They developed an 𝜖-constrained method where the higher prior-
ity cost function was used as the objective function, and the CO2
emissions function formed the 𝜖-based constraints. Sometimes, the
social impact is also included in multi-objective problems. For exam-
ple, Govindan et al. [14] proposed a multi-objective MILP model for

the closed-loop supply chain network of a generic product recovery
system, including in the objective function the minimization of car-
bon emissions and social impact, together with the maximization
of revenues. Mirdar Harijani et al. [21] developed a multi-objective
model for sustainable recycling of municipal solid waste with simi-
lar economic, environmental, and social goals.

In the Operations Research literature, the strategic problems
defined above are classified under the broad category of FLPs; they
have been of great interest since the 1960s. In their book, Farahani
and Hekmatfar [9] defined FLP as the problem of locating a set of
facilities (resources) to minimize the cost of satisfying some set of
demands (of the customers) with respect to some set of constraints.
The authors surveyed different FLP families and related discrete
and continuous optimization algorithms, along with case studies
from private and public firms.

As reported by Verter [30], the classical FLP has been extended
in a number of ways by, for example: (i) increasing the number of
products, from single- to multi-commodity FLPs (see, e.g., Liu et al.
[19], who studied a complex multi-commodity CFLP involving sus-
tainability concerns); (ii) increasing the number of facility echelons,
that is, the types of facility to locate (e.g., Gendron and Semet [11]);
(iii) increasing the number of time periods included in the model,
defining dynamic FLPs where the facility location is determined at
each period so as to minimize the total cost over time (e.g., Nickel
and Saldanha-da Gama [23]); and (iv) incorporating possible scale
and scope economies in the cost function (e.g., Wu et al. [31]) and
uncertainties (e.g., Correia and Saldanha-da Gama [4]).

For what concerns FLPs in the waste management industry,
Adeleke and Olukanni [1] surveyed important models and solution
algorithms, published between 2006 and 2020 and adapted to deal
with several optimization problems. These problems are usually
formulated by MILP models, but then solved in practice by means
of heuristic algorithms able to find near-optimal solutions in a lim-
ited time. In the following, we mention some case studies in the
urban waste management contexts. Ghiani et al. [12] studied a bin
allocation problem in Italy where the aim is to minimize the total
number of activated waste collection sites. The problem was solved
by means of a MILP model and a constructive heuristic. Lee et al.
[18] proposed several mathematical models for the waste manage-
ment system of Hong Kong, in which they minimize the total cost
for the municipal solid waste management system (i.e., daily waste
management costs, transportation costs, net of the revenues from
incinerators). Dimitrijević et al. [6] applied a bi-objective optimiza-
tion model to a landfills’ location problem belonging to the class
of so-called Undesired FLPs, where the economic objective asks
for minimizing total costs (i.e., costs generated by establishing new
facilities and satisfying the demand) while the social objective con-
cerns the total number of end users undesirably influenced by new
landfills. Gambella et al. [10] studied a facility location and waste
flow allocation problem. They developed a stochastic programming
model that was applied to solve a real-world Italian case study.

A relevant part of the current literature on waste transfer FLPs
includes environmental concerns in the problem statement and in
the model formulation. A summary of the main concepts and mod-
els for the so-called Green FLP was included in 2017 by Martínez
and Fransoo [20]. The focus of their work is on the transportation
performance of firms in terms of both costs and emissions, which is
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strongly determined by the design of the network. In the models un-
der review, the main sources of CO2 emissions associated with the
location of facilities derive from both mobile sources (transporta-
tion) and stationary sources (production, storage, and handling). In
2002, environmental qualitative and quantitative evaluations have
been combined with a MILP model and multi-criteria methods by
Vaillancourt and Waaub [28] to solve waste facility location prob-
lems similar to our problem. Valuable results have been obtained on
a case study of the city of Montreal, Canada. Some more recent real-
world examples of green FLPs are the works by Mohsenizadeh et al.
[22], who solved a bi-objective cost-pollution transfer stations loca-
tion problem in Ankara, by Kudela et al. [17] who addressed a case
study for the Czech Republic, and by Eiselt and Marianov [8], who
minimized a bi-objective cost-pollution function in a real-world
Chilean landfills’ location problem.

As stressed by Martínez and Fransoo [20], not many companies
have implemented in practice facility locations strategies to reduce
their environmental impact, especially as primary goal, although
a considerable amount of theoretical work is already available in
the literature. In this respect, our work is an attempt to provide an
example of application of green FLPs in practice and contribute to
the relevant literature.

3 PROBLEM DESCRIPTION AND
MATHEMATICAL MODEL

In this section, we describe the CFLP addressed by Iren Ambiente,
introduce the mathematical notation, and present the proposed
MILP model that we developed.

With the aim of optimizing the waste transfer logistics in a spe-
cific area, the number of demand points to be visited (i.e., locations,
number of visits, and types and quantities of waste) is assumed
to be known and fixed over a limited time horizon (one year) as
estimated from past data and budgets. The number of intermediate
transfer locations and final treatment locations to open and the flow
across the network are the decisions to be made in the problem.
Representing a real-world scenario, we assume that some facilities
are already open and must stay open even in the optimized scenario.
One or more locations are given as candidate locations where a
facility can be opened (e.g., areas already owned by the company
and activated in the past). The goal is to find the optimal waste
transfer network (i.e., locations and flow) that minimizes the total
CO2 emissions involved in the overall process of collection, transfer,
and delivery of waste to final treatment plants.

A set 𝐼 of customers to be visited (i.e., demand points where
waste must be collected) is given over a limited time horizon. The
total estimated amount of waste produced by each customer over
the considered time period must be collected and delivered to final
treatment facilities, either directly or passing by one or more inter-
mediate transfer facilities. We call 𝐽 the set of all candidate facility
locations, and 𝐽𝑒 the subset of locations where a facility already
exists and is open. In addition, we call 𝐽1 the subset of intermediate
candidate facility locations. We denote by 𝐻 the set of recyclable
waste types, such as paper, plastics, and glass (i.e., we deal with a
multi-commodity CFLP).

Let 𝑞𝑖ℎ indicate the total estimated quantity of waste type ℎ to
be collected from customer 𝑖 over the considered time period, and

let 𝑛𝑖ℎ represent the corresponding required number of trips. The
value of 𝑛𝑖ℎ is predetermined by the municipality (e.g., paper waste
is collected once or twice per week). For each facility location 𝑗 , we
define 𝑄 𝑗 as the overall waste capacity and 𝑄 𝑗ℎ as the capacity for
waste type ℎ, where 𝑄 𝑗 ≤

∑
ℎ∈𝐻 𝑄 𝑗ℎ . For example, if a location 𝑗

has 𝑄 𝑗 = 100 tons and 𝑄 𝑗ℎ = [70, 60] tons for ℎ = 2, then we can
dedicate half capacity to each waste (i.e., [50, 50] tons), or we can
accept an unbalanced solution without exceeding the 𝑄 𝑗ℎ values
(e.g., [70, 30] tons).

For CO2 emissions minimization, we introduce the parameters
𝑒𝑖 𝑗ℎ , for 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 , ℎ ∈ 𝐻 , and 𝑒 ′

𝑗𝑘ℎ
, for 𝑗 ∈ 𝐽1, 𝑘 ∈ 𝐽 , ℎ ∈ 𝐻 .

The former estimates transport emissions for waste type ℎ from
customer 𝑖 to facility 𝑗 , while the latter from intermediate facility
𝑗 to facility 𝑘 . Parameters 𝑒𝑖 𝑗ℎ consider, for each customer 𝑖 , the
type of vehicle that serves it, the time required by the vehicle to go
from customer 𝑖 to facility 𝑗 , its fuel consumption, the conversion
factor, and the number 𝑛𝑖ℎ of required trips over the selected time
horizon (i.e., [ 𝑘𝑔𝐶𝑂2

𝑦𝑒𝑎𝑟 ]). Parameters 𝑒 ′
𝑗𝑘ℎ

consider the capacity of
the loading vehicle in use at each facility 𝑗 , its time to move from
facility 𝑗 to facility 𝑘 , and its fuel consumption to compute the
carbon emissions for a single tripe from 𝑗 to 𝑘 (i.e., [ 𝑘𝑔𝐶𝑂2

𝑡𝑜𝑛 ]).
In addition, let 𝑝 𝑗ℎ and 𝐹 𝑗 represent, respectively, variable and

fixed components of emissions generated by opening a new facil-
ity 𝑗 ∈ 𝐽 . For each facility we estimate a different percentage of
emissions for fixed and variable components, depending on the
energy consumption of the operating machines in the facility, i.e.,
the equipment used for loading, unloading, and moving waste. The
greater the amount of waste collected by a single facility, the greater
the environmental benefit from opening that facility.

To formulate our MILP model, we introduce a set of three-index
variables 𝑥𝑖 𝑗ℎ that indicate the fraction of waste of type ℎ collected
at customer 𝑖 ∈ 𝐼 and transferred to location 𝑗 ∈ 𝐽 in the overall
considered period. The variable is continuous, implying that each
customer demand can be fulfilled by one or more facilities. An
additional set of non-negative continuous variables 𝑓𝑗𝑘ℎ represents
the flow of waste transferred from intermediate location 𝑗 ∈ 𝐽1 to
intermediate/final location 𝑘 ∈ 𝐽 , 𝑗 ≠ 𝑘 . Then, binary variables 𝑦 𝑗
take the value 1 if location 𝑗 ∈ 𝐽 is open, and 0 otherwise.

The problem is modelled as follows:

min
∑
𝑖∈𝐼

∑
𝑗 ∈𝐽

∑
ℎ∈𝐻

𝑒𝑖 𝑗ℎ𝑥𝑖 𝑗ℎ +
∑
𝑗 ∈𝐽1

∑
𝑘∈𝐽
𝑗≠𝑘

∑
ℎ∈𝐻

𝑒 ′𝑗𝑘ℎ 𝑓𝑗𝑘ℎ+

+
∑
𝑘∈𝐽

∑
ℎ∈𝐻

𝑝𝑘ℎ (
∑
𝑖∈𝐼

𝑞𝑖ℎ𝑥𝑖𝑘ℎ +
∑
𝑗 ∈𝐽1
𝑗≠𝑘

𝑓𝑗𝑘ℎ) +
∑
𝑗 ∈𝐽

𝐹 𝑗𝑦 𝑗 (1)

s.t.
∑
𝑗 ∈𝐽

𝑥𝑖 𝑗ℎ = 1 𝑖 ∈ 𝐼 , ℎ ∈ 𝐻 (2)

∑
𝑖∈𝐼

𝑞𝑖ℎ𝑥𝑖𝑘ℎ +
∑
𝑗 ∈𝐽1
𝑗≠𝑘

𝑓𝑗𝑘ℎ ≤ 𝑄𝑘ℎ𝑦𝑘 𝑘 ∈ 𝐽 , ℎ ∈ 𝐻 (3)

∑
𝑖∈𝐼

∑
ℎ∈𝐻

𝑞𝑖ℎ𝑥𝑖𝑘ℎ +
∑
𝑗 ∈𝐽1
𝑗≠𝑘

∑
ℎ∈𝐻

𝑓𝑗𝑘ℎ ≤ 𝑄𝑘𝑦𝑘 𝑘 ∈ 𝐽 (4)
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∑
𝑖∈𝐼

𝑞𝑖ℎ𝑥𝑖𝑘ℎ +
∑
𝑗 ∈𝐽1
𝑗≠𝑘

𝑓𝑗𝑘ℎ −
∑
𝑙 ∈𝐽
𝑙≠𝑘

𝑓𝑘𝑙ℎ = 0 𝑘 ∈ 𝐽1, ℎ ∈ 𝐻 (5)

𝑦 𝑗 = 1 𝑗 ∈ 𝐽𝑒 (6)
0 ≤ 𝑥𝑖 𝑗ℎ ≤ 1 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 , ℎ ∈ 𝐻 (7)
𝑓𝑗𝑘ℎ ≥ 0 𝑗 ∈ 𝐽1, 𝑘 ∈ 𝐽 , 𝑗 ≠ 𝑘, ℎ ∈ 𝐻 (8)
𝑦 𝑗 ∈ {0, 1} 𝑗 ∈ 𝐽 (9)

The objective function (1) minimizes the total amount of CO2
emissions involved in the process in one year: the first two terms
count the emissions from vehicles’ travels for customer-facility and
facility-facility trips respectively, while the third and fourth terms
consider the emissions generated by the working facilities, address-
ing variable and fixed components of CO2 emissions respectively.
Constraint (2) ensures that each waste demand is fulfilled by one or
more facilities sharing its entire demand over the considered period.
Constraints (3) and (4) represent the overall and waste-specific ca-
pacity constraints for each facility 𝑗 . Constraint (5) guarantees the
conservation of flow for each intermediate facility (i.e., the total
incoming flow from customers and other intermediate facilities
is equal to the flow going out to other facilities). Constraint (6)
imposes that existing facilities are kept open by the model solution.
Constraints (7)-(9) give the domain of the variables.

4 CASE STUDY
In this section, we study the performance of model (1)-(9) on a
realistic instance from Iren Ambiente. Our model has been coded
in the Mosel language and solved with FICO Xpress Solver 64bit
v8.9.0 on an Intel Core i7, 1.80 GHz, with 16 GB of RAM memory,
running under Windows 10 64 bits.

The company collects the waste of 34 municipalities serving
approximately 460,000 inhabitants in the province of Reggio Emilia,
for a total quantity of nearly 330,000 tons of urban waste per year.
Such activity consists in moving vehicles from the depots, collect-
ing waste from the municipalities and transporting them to the
final treatment or disposal plants, and bringing back the vehicles
to the original depots. This does not exclude the possibility of in-
cluding intermediate transfer facilities, so as to allow waste flows
from municipalities to intermediate points, between intermediate
points, and from intermediate points to final plants. The company is
currently building a new final treatment facility close to the Reggio
Emilia district, where the entire volume of plastic and paper urban
waste from the entire area of the district could be possibly con-
ferred. The company wants to optimize the future waste collection
network, also evaluating whether and where it could be convenient
to open additional intermediate waste transfer facilities.

In this strategic decision, the company has been moved, first and
foremost, by environmental issues rather than economic concern,
under the increasing pressure of the European Union and other
international entities for providing more environmentally efficient
waste management solutions (see, e.g., [7] and [16]).

In our case study, we use the data on paper and plastic waste
collected in the province of Reggio Emilia over a one-year time
period (i.e., from October 2019 to October 2020), which is also the
time horizon adopted for our model. A preliminary analysis has
confirmed that the emergency situation due to Covid-19 pandemics

did not affect the urban waste industry significantly, nor was Iren
Ambiente’s business specifically impacted. In Reggio Emilia district,
there are several waste collection points distributed over 34 mu-
nicipalities. As requested by the company, we aggregate points to
find stable solutions by merging similar weekly repetitive patterns
of waste collection services. Municipalities are clustered based on
several characteristics (e.g., distance, number of inhabitants, bal-
anced number of units per cluster, business constraints). From the
clustering, we obtain 18 clusters.

Each cluster represents a service to be fulfilled over the consid-
ered time period; it is characterized by: (i) a total predicted quantity
of waste to be collected for paper and plastic, respectively; and (ii)
a required number of visits and a type of serving vehicle (assumed
to serve at full capacity for the sake of simplicity), which, in our
analysis, is significant only for the overall impact on CO2 emissions.
The total demand for waste collection from the 18 clusters in a year
is equal to 27,532 tons of paper and 16,098 tons of plastic.

The overall capacity of the one final treatment location under
construction is equal to 50,000 tons, distributed as 32,000 and 18,000
tons for paper and plastic, respectively. Two candidate locations
for intermediate transfer facilities are considered following the
strategic guidelines of the company and the clustering logic. For
each possible location, 16 different options for its paper and plastic
capacities are considered. Total capacities of intermediate candidate
facilities range between 540 and 32,000 tons of waste.

In the computation of CO2 emissions, we consider fuel consump-
tion and gross weight of the different diesel Euro 6 vehicles (ranging
between 3 and 15 liters per hour, and 3.5 and 38 tons, respectively).
Fuel consumption is converted in CO2 emissions with the conver-
sion factor (2.63 kg CO2 per l) taken by (DEFRA) [5]. The number
of visits for each cluster is computed over the entire period starting
from given weekly requirements (e.g., one or two visits per week
for plastic). For emissions generated by building and opening a new
facility, we consider some estimations of consumption and produc-
tivity done by the company, and a different percentage addressed
to the fixed and variable components for each candidate location
(e.g., 14% and 86%, respectively).

Our model was able to find an optimal solution in 0.83 seconds
of CPU time. We compare two optimal solutions: the one generated
by the model assuming additional intermediate transfer locations
and the one generated by the model in the absence of intermediate
facilities (i.e., the final treatment facility collects the whole waste
flow of Reggio Emilia district). The networks resulting from the two
solutions are represented in Figures 1 and 2. Red points indicate
facilities, with names in black color for final treatment facilities
and in purple color for intermediate transfer facilities. Green points
indicate the centroids of the municipalities. Waste flows are repre-
sented by dashed lines and numbers (tons of waste), where plastic
waste flows are in red and paper waste flows are in blue.

Figure 1 represents the optimal solution on the reduced instance
with the only final treatment facility (i.e., "C1 RE") open. This first
network connects all the clusters to the final treatment plant, with
an overall amount of 1,407.7 tons of CO2 emissions. The solution
has been obtained by the model in 0.15 seconds of CPU time.

Figure 2 represents the optimal flow on the complete instance.
The model opens two intermediate locations both for paper and
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Figure 1: Solution without intermediate facilities

Figure 2: Solution with intermediate facilities

Table 1: Summary of case study results on plastic waste

Plastic waste
Facility 𝐶 [ton] 𝐹𝑎 [ton] Sat.
Final "C1 RE" 18,000 16,098 89%
Intermediate "Mancasale" 14,400 14,400 100%
Intermediate "C. Monti" 720 720 100%
𝑎 Total incoming flow from collection points and intermediate facilities

Table 2: Summary of case study results on paper waste

Paper waste
Facility 𝐶 [ton] 𝐹𝑎 [ton] Sat.
Final "C1 RE" 32,000 27,532 86%
Intermediate "Mancasale" 28,800 25,863 90%
Intermediate "C. Monti" 1,920 1,669 87%

𝑎 Total incoming flow from collection points and intermediate facilities

plastic waste in the two different candidate locations (i.e., "Man-
casale" and "C. Monti"). In this extended network, we obtain a 25%
reduction in the total amount of CO2 emissions with respect to
the value of the previous solution, and an efficient flow of waste.
Almost all the waste flow is delivered to intermediate facilities,
apart from a fraction generated by one cluster , which is the nearest
one to the final plant in the north-west area of the district. The
southern intermediate facility in "C. Monti" has lower capacities,
in accordance to the lower quantities of waste produced by the
clusters in the south of the district (mainly upland) with respect
to the north area (which concentrates the waste produced by the
main city of the district, Reggio Emilia, and other urban areas).

Tables 1-2 report the results obtained by the model on the case
study in terms of overall capacity (𝐶) and incoming flow (𝐹 ) for
each open intermediate location, expressed in tons of waste for
plastic and paper, respectively. For the sake of clarity, results for the
final treatment facility are also included, although its capacity was
predetermined by the model input data. Plants’ saturation (Sat.) is
also reported, proving the efficiency of the solution with all facili-
ties’ capacity almost saturated. Indeed, they are all greater than 85%,
and equal to 100% in the case of intermediate facilities for plastic
waste. Note that saturation of travels between facilities is impor-
tant because waste from different travels converge to intermediate
facilities before being transported to the final one. The more the
intermediate facilities are saturated, the more the second-level trips
(i.e., from intermediate to final facility) can be aggregated.

5 CONCLUSIONS AND FUTURE RESEARCH
In this work, we have studied a real-world capacitated facility loca-
tion problem occurring in an Italian multi-utility company. The goal
is to define the optimal network of final treatment and intermediate
transfer facilities in the district of Reggio Emilia (Italy) for plastic
and paper waste collection to minimize CO2 emissions generated
by the on-road transfer of waste with heavy vehicles and by the
opening of new facilities.

We have modelled the problem by means of a mixed integer lin-
ear programming formulation, where binary variables define which
facility should be open among a set of candidate facility locations
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and which capacity should be employed, and continuous variables
define the flow between customers and facilities and between differ-
ent facilities. The model enables dividing the waste demand of each
customer among one or more facilities, ensuring that the total and
waste-specific capacity constraints for each facility are satisfied.

The model is general, so as to be applied to different case studies
of waste collection that appears in the literature and in different
real-world contexts. On the other hand, the model considers en-
vironmental issues as the single objective. While not so common
in the literature, it is nonetheless very important, considering the
current situation of the increasing waste industry and the corre-
sponding governments’ attention to this topic.

We have solved a real-world case study of our industrial partner
bymeans of the proposedmathematical model, obtaining significant
results on an aggregated one-year instance. The model has provided
an optimal solution in less than 1 second of computation, with a
25% reduction in CO2 emissions with respect to the case in which
only one final facility (currently under construction) is open. The
resulting flow and saturation of new facilities are well-structured.
To further test our model, it would be interesting also to solve each
daily instance of the considered year, and then sum the results over
the total number of days. That could provide more insight on the
solution obtained for the single aggregated instance.

In view of the good results, we plan to further work on this
problem. First, we plan to study a bi-objective formulation for the
problem in order to consider economic as well as environmental
goals. The idea is to investigate the investment in new facilities and
measure the economic value created (as expressed by the project
Net Present Value) also performing a sensitivity analysis for detect-
ing the parameters that have the greatest impact on the objective
function.

Moreover, we plan to provide a more extensive computational
evaluation of our model, testing it on other real-world scenarios
and on more complex random instances, to better evaluate the
performance and scalability of the proposed model.
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ABSTRACT
This work studies robust gas network optimization under uncertain-
ties in demand and in the physical parameters. The corresponding
optimization problems are nonconvex in node pressures and flows
along the pipes. They are thus very difficult to solve for realistic
instance sizes. In recent approaches, an adaptive bundle method
has been developed, where one solves the occurring adversarial
problems via iteratively refined piecewise linear relaxations. These
subproblems need to be solved always from scratch using mixed-
integer linear programming (MIP). As alternative to the MIP solver,
we employ here a nonsmooth optimization approach that allows a
warm start strategy such that it can profit from the results obtained
for coarser relaxations. We evaluate the approach for realistic gas
network topologies and outline possibilities for future research.

1 INTRODUCTION
Resource-efficient distribution of energy is one of the grand chal-
lenges of modern times. In the current transformation of the energy
system, natural gas is considered as a transition technology that
is used to ensure stable and resilient energy supply. Furthermore,
in the future current energy sources may be combined or even
replaced by hydrogen. Optimization of the respective energy net-
works is of major importance [5].

In addition, optimization of gas network operation should be
hedged against uncertainties that are inherent in the energy de-
mands and in the physical parameters of gas transport. In particular
when demand distributions are unknown (e. g. if they are market-
driven) or when uncertainties cannot be measured easily (which for
example is true for the roughness in the pipes), protection is sought
in the sense of robust optimization. A particular mathematical chal-
lenge consists in the fact that the relation between gas pressure
at the network nodes and gas flow along the pipes is nonconvex
quadratic. Thus, in order to determine a best possible operation of
the active elements in the network such as compressors and valves,

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th 
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen, 
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

a robust nonconvex optimization problem needs to be solved. To
this end, several robust optimization approaches have been estab-
lished, see, e.g., [1, 12]. An efficient solution approach is given by an
adaptive bundle method [7] that can cope with the nonconvexities.
It is integrated within an outer-approximation scheme that is able
to decide on discrete as well as continuous decisions for operating
the active elements [8]. To solve the adversarial problems that arise
within the bundle method, the nonconvex expressions are replaced
by iteratively refined piecewise linear relaxations. The latter are
modeled via a mixed-integer linear optimization problem (MIP). In
each iteration, the MIP is refined until a predefined error guarantee
on the quality of the relaxation is given. Typically, after applying
small changes in a MIP, the corresponding simplex based branched-
and-bound approaches do not allow any warm start strategy as they
usually cannot profit from earlier iterations. Therefore, in [7], the
MIPs are always solved from scratch using available MIP solvers.

In this work, we advance this method by replacing theMIP solver
by an approach called CASM for Constrained Active Signature
Method. CASM is tailored to solve optimization problems where
the objective function as well as the constraints are continuous and
piecewise linear. In contrast to the MIP solvers that always need
to solve the problems from scratch, the CASM approach allows a
warm start based on the optimization results obtained for a coarser
approximation of the nonconvex expressions. The goal of this work
is to apply CASM to the problem of robust operation of gas network
operation in order to evaluate its applicability.

The structure of this paper is as follows. In the next section,
the considered problem stemming from gas transport is introduced.
Section 3 presents CASM in more detail including also a description
of the warm start option. Numerical results are discussed in Sec. 4.
Section 5 contains a conclusion and an outlook.

2 THE GAS TRANSPORT PROBLEM
We consider a problem that arises in the context of gas networks,
namely the stationary robust gas transport problem. For a profound
explanation of models and solution approaches for gas transport
problems, we refer to [5].
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Here, we consider the problem of finding an optimal control that
is robustly protected against the perturbation of physical param-
eters. We aim for a minimum-cost control of compressors. Con-
straints are thereby that all demands should be satisfied and no
physical constraints should be violated. The control of active ele-
ments can be modeled as here-and-now variables at the first stage
and the realization of physical states as wait-and-see variables at
the second stage. The realization of physical states takes place after
uncertain parameters realize themselves. As uncertain parameters,
we consider demands and pressure loss coefficients, where the lat-
ter is due to uncertain frictions of the pipes. For every possible
realization of the pressure loss coefficients, physical feasibility of
the gas transport has to be maintained by the network operator. In
the following, we model the arising robust gas transport problem
from the point of view of the network operator.

We describe a gas network by a directed graph G = (V,A),
where the arcs model pipes and compressors (A = A𝑝𝑖 ∪ A𝑐 )
and an incidence matrix 𝐴 ∈ {−1, 0, 1} |V |×|A | . We denote the gas
flow by 𝑞 ∈ R |A | , where its sign indicates the flow’s direction.
Further, squared pressure values are denoted by 𝜋 ∈ R |V | . To
ensure uniqueness of the physical states, we fix the pressure value
at one so-called root node. By𝑤 (Δ), we denote the costs of a control
Δ of compressors. We use a linear compressor model, so that a value
Δ𝑎 induces a pressure increase of Δ𝑎 at compressor 𝑎. In total, we
consider the following robust optimization problem:

min
Δ∈[Δ,Δ]

max
(𝑑,𝜆) ∈U,𝜋,𝑞

𝑤 (Δ) +
∑
𝑣∈𝑉

max{0, 𝜋𝑣 − 𝜋𝑣, 𝜋𝑣 − 𝜋𝑣} (1a)

s.t. 𝐴𝑞 = 𝑑 (1b)

(𝐴𝑇 𝜋)𝑎 = Δ𝑎 ∀𝑎 ∈ A𝑐 (1c)

(𝐴𝑇 𝜋)𝑎 = −𝜆𝑎𝑞𝑎 |𝑞𝑎 | ∀𝑎 ∈ A𝑝𝑖 (1d)

(𝑞, 𝜋) ∈ R |A | × R |V | . (1e)

Thereby, the uncertainty setU is defined as follows:

U := {(𝑑, 𝜆) | 𝜆 ∈ [𝜆, 𝜆], 𝑑𝑖 ∈ [𝑑, 𝑑],
𝑛∑
𝑖=1

𝑑𝑖 = 0}.

Fixing the uncertain parameters to some values, there is a unique
physical state, i.e., unique flow and pressure variables, that fulfills
the physical constraints [1, 2]. Due to this fact, we can reformulate
(1) as a box-constrained optimization problem writing the pressure
as a function of the other parameters (see [7]):

min
Δ∈[Δ,Δ]

max
(𝑑,𝜆) ∈U

𝑤 (Δ) +
∑
𝑣∈𝑉

max{0, 𝜋𝑣 − 𝜋𝑣 (Δ;𝑑, 𝜆), 𝜋𝑣 (Δ;𝑑, 𝜆) − 𝜋𝑣}.

In [7], an adaptive bundle method is developed to solve problems of
this kind. For this purpose, the bundle method is applied to the outer
minimization problem with the optimal value function of the inner
maximization problem as objective function. As in every iteration of
the bundle method, an approximate function evaluation is required,
the inner maximization problem has to be approximately solved
in every iteration. This inner adversarial problem is the following

nonconvexly constrained optimization problem:

max
(𝑑,𝜆) ∈U,𝜋,𝑞

∑
𝑣∈V

max{0, 𝜋𝑣 − 𝜋𝑣, 𝜋𝑣 − 𝜋𝑣} (2a)

s.t. 𝐴𝑞 = 𝑑 (2b)

(𝐴𝑇 𝜋)𝑎 = Δ𝑎 ∀𝑎 ∈ A𝑐 (2c)

(𝐴𝑇 𝜋)𝑎 = −𝜆𝑎𝑞𝑎 |𝑞𝑎 | ∀𝑎 ∈ A𝑝𝑖 (2d)

(𝑞, 𝜋) ∈ R |A | × R |V | . (2e)

In [7] this adversarial problem is approximately solved via piece-
wise linear relaxation. The adaptive bundle method only allows
for a certain error in the optimal objective value. As a relaxation
that fulfills a requested error bound, for each of the pressure loss
constraints, piecewise linear relaxation via the delta method [1, 3, 9]
is used. In the adaptive bundle method [7], an error bound on the
optimal objective value of the adversarial problem is requested and
a consequent bound for the error in the pressure loss constraints is
provided. As this theoretical bound turned out to be not very tight,
the strategy in [7] is to allow for large errors in the constraints and
to refine in case of a too large a posteriori error in the objective
(cf. [7, Section 5.1.1, 5.1.2]). In [7], it is noted that the run time of
the bundle method is largely determined by the solution of the
adversarial problem up to the requested error, where the piecewise
linearly relaxed adversarial problems are solved via MIP solvers.
This motivates the development and analysis of an alternative so-
lution strategy for these piecewise linear problems in the present
paper. In particular, as by the use of the refinement strategy, se-
quences of refined relaxations are solved, a method that allows for
warm start strategies has the potential to speed up computations.

3 THE OPTIMIZATION APPROACH CASM
In [6] the so-called Constrained Active Signature Method (CASM)
for solving constrained piecewise linear optimization problems was
introduced and analyzed in detail. Therefore, here we just introduce
its main aspects briefly. Based on results contained, e.g., in [11], it
follows that any continuous piecewise linear function 𝑓 : R𝑛 ↦→ R,
𝑦 = 𝑓 (𝑥), can be represented by a system of equations of the form

𝑧 = 𝑐 + 𝑍𝑥 +𝑀𝑧 + 𝐿 |𝑧 | ,
𝑦 = 𝑑 + 𝑎⊤𝑥 + 𝑏⊤𝑧 ,

where 𝑧 ∈ R𝑠 is the vector of so-called switching variables, 𝑐 ∈ R𝑠 ,
𝑍 ∈ R𝑠×𝑛 , strictly lower triangular matrices 𝑀, 𝐿 ∈ R𝑠×𝑠 , 𝑑 ∈
R, 𝑎 ∈ R𝑛, 𝑏 ∈ R𝑠 . Here and throughout, |𝑧 | denotes the componen-
twise absolute value of the vector 𝑧. Using a similar representation
also for piecewise linear constraints and ignoring a possible con-
stant shift in the objective, the piecewise linearly relaxed adversarial
problems to bemaximized for the function evaluations in the bundle
method can be described by

max
𝑥 ∈R𝑛,𝑧∈R𝑠

𝑎⊤𝑥 + 𝑏⊤𝑧
s.t. 0 = 𝑔 +𝐴𝑥 + 𝐵𝑧 +𝐶 |𝑧 |

0 ≥ ℎ + 𝐷𝑥 + 𝐸𝑧 + 𝐹 |𝑧 |
𝑧 = 𝑐 + 𝑍𝑥 +𝑀𝑧 + 𝐿 |𝑧 | ,

(3)

with additional constants 𝑔 ∈ R𝑚, ℎ ∈ R𝑝 , 𝐴 ∈ R𝑚×𝑛, 𝐵,𝐶 ∈
R𝑚×𝑠 , 𝐷 ∈ R𝑝×𝑛 and 𝐸, 𝐹 ∈ R𝑝×𝑠 to describe the 𝑚 piecewise
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linear equality and 𝑝 piecewise linear inequality constraints. For
each 𝑥 , we define the signature vector

𝜎 (𝑥) = (sign(𝑧𝑖 (𝑥)))𝑖=1...𝑠 ∈ {−1, 0, 1}𝑠 .
The signature vectors yield the inverse images

𝑃𝜎 ≡ {𝑥 ∈ R𝑛 : sign(𝑧 (𝑥)) = 𝜎} for 𝜎 ∈ {−1, 0, 1}𝑠 ,
which are relatively open polyhedra that form collectively a disjoint
decomposition ofR𝑛 . The signatures 𝜎 ∈ {−1, 1}𝑠 are called definite
and the associated 𝑃𝜎 are by continuity open.

Any uniformly convex continuous objective function must attain
a unique minimizer 𝑥𝜎 on each one of the closed sets 𝑃𝜎 . Further-
more, for a given definite 𝜎 , the optimization problem (3) restricted
to the corresponding 𝑃𝜎 is smooth. These observations motivated
the optimization strategy of CASM. To obtain a strictly convex
continuous objective function, a quadratic regularization term is
added to the target function in Eq. (3). Subsequently, standard KKT
theory for the resulting smooth constrained quadratic optimization
problem on 𝑃𝜎 can be applied yielding a system of 𝑛 + 2𝑠 +𝑚 + 𝑝
linear equations and 𝑛 + 2𝑠 +𝑚 +𝑝 unknowns as necessary optimal-
ity conditions. It can then be verified by checking the signs of the
corresponding Lagrange multipliers if the solution of this system
of equations is indeed a minimizer of the original problem. If this
is not the case, the computed solution can be used to determine a
descent direction and also a new polyhedron 𝑃𝜎̃ to be considered.
When changing from 𝑃𝜎 to 𝑃𝜎̃ one component 𝜎𝑖 of 𝜎 changes
its sign such that at a point 𝑥 ∈ 𝑃𝜎 ∩ 𝑃𝜎̃ one must have for the
signature vector that 𝜎𝑖 (𝑥) = 0 and 𝑧𝑖 (𝑥) = 0. Such a switching
variable 𝑧𝑖 (𝑥) is called active and the corresponding absolute value
evaluation yields a nonsmooth contribution.

Hence, the nonsmooth optimization algorithm CASM solves a
sequence of quadratic optimization problems where in each itera-
tion of CASM, a linear system𝑀𝑣 = 𝑤 has to be solved where𝑀 is
a usually very sparse (𝑛 + 2𝑠 +𝑚 + 𝑝) × (𝑛 + 2𝑠 +𝑚 + 𝑝) matrix with
real-valued entries. Due to the guaranteed existence of a minimizer
there always exists a solution 𝑣 of the linear system but it must not
be unique. Note, that 𝑣 is related to a Newton step. All remaining
steps in the algorithm are rather cheap linear algebra operations.

The convergence properties of the nonsmooth optimizer CASM
are analyzed in [6] including also the derivation of optimality condi-
tions for piecewise linear constrained optimization problems. These
results extend the work on the unconstrained case presented in [4].
Since the convergence analysis in both papers is based on KKT the-
ory, both algorithms terminate at local optimizers. In the nonconvex
case it is not ensured that a global solution is found.

CASM expects a feasible starting point and feasibility is main-
tained throughout. In the example from the gas market considered
here, a feasible starting point can be constructed in various ways.
We consider cascades of up to three successive relaxed adversarial
problems that result from the application of the bundle method to
problem (1). Hence, we need a feasible starting point for each of the
three different relaxations. We have no special previous knowledge
for the starting point of an optimization cascade, i.e., the coarsest
relaxation. Therefore, we determine a starting point by using the
nominal values for 𝑑 and 𝜆. If these two variables are fixed, the
physical states, i.e., the pressure 𝜋 and the flow 𝑞, are uniquely
determined as described in Section 2. Hence, they can be evaluated.

For the finer discretizations, i.e., the next two optimization tasks
in the provided cascade, a warm start strategy will be used, which
is an essential aspect of this paper. In the bundle method (cf. Sec. 2),
the MIP is solved anew after each refinement, without the old
solution having any influence since so far no warm start strategy is
known for MIP solvers. In contrast to that, we perform a warm start
when using CASM for the inner loop. That is, if the inner problem
is solved for a given discretization, a new starting point for the
next model with a finer discretization is calculated with the help of
the previous solution. For this purpose, the calculated values for
demand𝑑 and pressure loss coefficient 𝜆 are taken from the solution
and new starting values for pressure and flow are determined for
the refined model. This step coincides with the one for the starting
point, i.e., the coarsest discretization.

4 NUMERICAL RESULTS
In this section, we present numerical results for the application
of CASM to the adversarial problem of the robust gas transport
problem. We hence determine the worst-case values of uncertain
parameters for a given compressor control.

GasLib-Instances. We use data from a library of realistic gas net-
work instances [10]. In detail, we conduct numerical experiments
on the instances GasLib-11, GasLib-40 and GasLib-134, whichmodel
gas networks with 11, 40 and 134 nodes, respectively. For the net-
work with 40 nodes, we distinguish between a non robust feasible
and a robust feasible control. GasLib-134 thereby models the Greek
gas network. For all test cases, we consider in the end a piecewise
linear relaxation of the adversarial problem (2).

We investigate different choices of the compressor control Δ.
First, we use arbitrarily chosen controls, which are not robust feasi-
ble. Second, we consider a robust feasible control implying that the
optimal value of the adversarial problem is equal to 0. Furthermore,
we use different choices of the piecewise linear relaxation. That is,
we impose different allowed errors up to which the relaxed problem
deviates from the original one in terms of the nonconvex pressure
loss constraints leading to different discretizations in the piece-
wise linear approximation of the nonconvex term. As described in
Sec. 2, the error bounds are possibly refined during one iteration
of the applied bundle method. Therefore, we investigate here the
applicability of CASM for such a cascade of refinements.

In detail, we solve the adversarial problem for GasLib-11 with
an initial compressor control for two typical sizes of given error
bounds. The adversarial problems for GasLib-40 are taken from
runs of the adaptive bundle method. First, we applied the adaptive
bundle method with an uncertainty set for demand 𝑑 and pressure
loss coefficients 𝜆 that is [0.95𝑑, 1.05𝑑] × [𝜆, 1.1𝜆]. For this case,
multiple refinements of the relaxation of the adversarial problem
are requested in the bundle method’s last iteration, when a robust
feasible compressor control is investigated. To this series of ad-
versarial problems, we applied CASM. Second, we enlarged the
uncertainty set to [0.9𝑑, 1.1𝑑] × [𝜆, 1.5𝜆]. In this case, multiple re-
finements are requested in an earlier iteration of the bundle method
in which the compressor control is not robust feasible. We used
these data for another series of adversarial problems to which we
applied CASM. The adversarial problems for GasLib-134 are also
taken from a run of the adaptive bundle method, namely for the
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Figure 1: Topology of GasLib-11

Figure 2: Topology of GasLib-40

uncertainty set [0.8𝑑, 1.2𝑑] × [𝜆, 2𝜆]. Again, we applied CASM to
multiple refinements that are requested for a compressor control
that is not robust feasible. Sketches of the topologies of GasLib-11
and GasLib-40 can be seen in Figs. 1 and 2, respectively. There,
sources where gas can be injected are depicted in blue, sinks where
gas can be extracted in red, inner nodes, pipes and short pipes in
black and compressor stations in red.

Complexity & results. As described in Sec. 3, for CASM the num-
bers 𝑛 of variables,𝑚 of equality constraints, 𝑝 of inequality con-
straints and 𝑠 of absolute value evaluations are of primary impor-
tance for the complexity of the optimization problem. As explained
briefly in Sec. 3 the size of the system of equations that must be
solved in each iteration depends linearly on each of these numbers.
For the different GasLib instances and their respective refinements,
the corresponding numbers are given in Tab. 1, where the first
column states the GasLib instance and the third one the relaxations.
Note that the number of constraints is linear in the number of edges
and nodes of the underlying model. As can be seen from this table,
the improved approximations of the nonconvex term, i.e., the finer
discretizations, only influence the number 𝑠 of switching variables.
The growth in the size of the system matrix fits perfectly to the
number (𝑛+2𝑠+𝑚+𝑝)×(𝑛+2𝑠+𝑚+𝑝) stated in Sec. 3. The numbers
of iterations needed by CASM are stated in the last column.

For the GasLib-11 instance, Fig. 3 shows the development of the
function values during the optimization runs using CASM for the
two discretizations of the nonconvex function. The red line with the

GasLib-11 GasLib-40 GasLib-40
non robust feasible robust feasible

relaxation 1. 2. 1. 2. 3. 1. 2. 3.
variables 𝑛 44 170

equal. const.𝑚 19 54
inequal. const. 𝑝 70 314

switching variables 𝑠 175 183 331 341 573 315 315 319
rows/columns 484 500 1206 1226 1690 1174 1174 1182of eq. system
iterations 65 23 939 556 731 472 193 204

Table 1: Complexity of different GasLib instances for their
respective optimizations and iterations needed by CASM.
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Figure 3: Optimization history of CASM for the GasLib-11
instance. Left: Coarse discretization. Right: Fine discretiza-
tion.

label f_val1 depicts the function values for the coarse discretiza-
tion and the purple line (label f_val2) the function values for the
fine discretization. The blue line labeled with f_opt illustrates the
globally optimal function value, which is reached in both cases and
changes from the first optimization to the second one by less than
0.5. The values of the respective optimal variables vary also. During
the last iterations, there is a very small increase in the quadratic
regularization term that is added to the piecewise linear objective
in the CASM, see Sec. 3. However, the value of the nonregularized
objective function remains constant, a fact that could be used for
an improved termination criterion in the future.

The optimal values of the variables obtained from the optimiza-
tion for the coarse discretization do not provide a feasible starting
point for the fine optimization. Therefore, it is necessary to de-
termine a new feasible starting point for CASM. A corresponding
approach exploiting the results from the optimization for the coarse
discretization was described at the end of Sec. 3. Figure 3 shows
that this warm start strategy yields a larger initial function value
for the finer discretization.

For the GasLib-40 instance, we proceed in a similar way. As be-
fore, we consider one of the adversarial problems from the bundle
method, where subsequently refinements are made yielding a cas-
cade of two refinements, i.e., three optimization runs are performed.
From Tab. 1 we see, especially for the instance GasLib-40 with a
non robust feasible compressor control, that the refinements induce
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Figure 4: Optimization history of CASM for the non robust
feasible GasLib-40 instance

a significant increase in the dimension of the system of equations
and lead also to a noticeable effect on the run times. Despite the
fact that the models become more complex with each refinement,
the number of iterations does not increase in the same way.

Figure 4 illustrates the development of function values for the
three optimization runs in red, purple and blue, respectively (cf.
f_val). The constant lines depict the globally optimal function
values that can be achieved for the respective discretization (cf.
f_opt). Once more, the objective value at the starting point for the
next level of discretization is larger than the initial value for the
previous one.

To emphasize the effect of the warm start strategy, a comparison
with an optimization not using the warm start is shown in Fig. 5
for the finest discretization from the non robust feasible GasLib-40
instance. The blue graph (f_val3) shows again the development of
the function values using the warm start option. The dark red graph
(f_val4) shows the optimization history of the function values for
the case that an initial point is determined without exploiting the
previously performed optimization such that the function value at
the initial point is much smaller. In this case, 1118 iterations are
necessary and hence less than for the three individual optimizations
in total. However, the size of the system of equations is larger such
that one iteration is much more expensive. In addition, from a
technical point of view, the considered model with the adapted
finer discretization can only be generated if the solution of the
previous one is known. Otherwise, a refinement that leads to the
same a posteriori error would be even more complex to solve (cf.
Sec. 2) supporting also the warm start strategy proposed here.

Next, we consider the GasLib-40 instance with a robust feasible
compressor control yielding for the first two relaxations of the three-
part cascade the optimal function value 0.6965 and for the finest
one the optimal function value 0 corresponding to a robust feasible
compressor control. Here, CASM needs 472 iterations to solve the
first model with the coarsest discretization to reach a local optimum
that is not globally optimal. However, since CASM determines only
locally optimal points this fits to the theoretical analysis of CASM
as described in Sec. 3. The same behavior is observed also for the
second relaxation, where the number of iterations is clearly reduced
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Figure 5: Comparison of the third optimization for non ro-
bust feasible GasLib-40 with and without warm start

GasLib-134
relaxation 1. 2. 3.
variables 𝑛 534

equal. const.𝑚 230
inequal. const. 𝑝 784

switching variables 𝑠 737 1107 1985
rows/columns 3022 3762 5518of eq. system
iterations 869 327 328
solves 902 327 328

Table 2: Overview
of the complexity
of the GasLib-134
instances for their
respective optimiza-
tions and number of
iterations and solves
needed by CASM.

by the warm start (cf. Tab. 1). In the third optimization, however,
the global optimum is found again.

As last test case, we consider the much larger GasLib-134 in-
stance. Tab. 2 states the problem size and the numbers of iteration
needed by CASM. The last line gives the number of equation solves
required. In contrast to the previous instances, in some iterations
the system of equations was not solved accurately enough resulting
in an increase of the parameter in front of the quadratic regular-
ization term to improve the conditioning of the system matrix 𝑀 .
This causes the difference between the number of iterations and
the number of equation solves.

For this instance, the development of the function values is
shown in Fig. 6. It is particularly noticeable that after the warm
start in the second and third optimization, again the iterates just in-
crease the value of the quadratic penalty term and keep the value of
the nonregularized objective function constant. That is we observe
the same behavior as for the GasLib-11 instance. Solving the finest
discretization without a warm start, analogous to the GasLib-40
instance, the function value would be 361 at the initial iterate and
6339 iterations and 7727 equation solves are needed to reach the
global optimum.

Finally, we discuss the sparsity structure of the matrix𝑀 of the
linear system 𝑀𝑣 = 𝑤 in more detail. Fig. 7 shows the nonzero
entries of the matrix𝑀 in the first iteration of the first optimization
of the GasLib-11 instance, where nz indicates the total number of
nonzero entries of 𝑀 . Almost all rows have between two and four
nonzero entries. However, there are also some rows with up to 44
nonzero entries. These rows are directly related to the relaxation
of Eq. (2d) since for the relaxation more evaluation of the absolute
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Figure 6: Optimization history of CASM for the non robust
feasible GasLib-134 instance
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Figure 7: Sparsity of
the matrix 𝑀 in the
first iteration of the
first optimization
for the GasLib-11
instance

value function are needed. Hence,𝑀 is denser in these areas. This
sparsity of the matrix 𝑀 is currently not exploited in the imple-
mentation. Therefore, we do not compare computation times with
other solvers here but just state that the state-of-the-art MIP solver
Gurobi, which is implemented in C, is in the range of seconds when
solving the optimization problems, whereas a Matlab implementa-
tion of CASM is in the range of seconds for the GasLib-11. For the
GasLib-40 instances, the current implementation of CASM needed
a few minutes. For the optimizations of the GasLib-134 instance the
solution was obtained after a bit less than 2 hours. Since solving
the system of equations currently accounts for about 95% of the
computing time exploiting sparsity could reduce these run times
considerably.

5 CONCLUSION AND OUTLOOK
In this work, we have shown that adversarial problems in robust
gas transport optimization can be solved with a warm start strategy
obtained from nonsmooth optimization. This is a major advantage,
as typically MIP solvers cannot profit from earlier iterations, if
only a small part of the model is changed. The warm start ability is
very advantageous if the piecewise linear relaxation of a nonconvex
adversarial problem is required to have high quality, i.e., whenmany
iterative refinements are necessary in order to approximate well
the nonconvex functions via piecewise linear functions. Whereas

currently the corresponding series of mixed-integer linear problems
is always solved from scratch, CASM promises the ability of a warm
start strategy such that a subsequent iteration profits from earlier
ones, without the necessity to always start from scratch. This will
be very helpful for large robust gas network instances.

However, it is necessary to improve the run times needed by
CASM via algorithmical engineering in order to allow meaningful
comparisons with other solvers. An essential aspect is to speed
up the solution of the system of equations that is required in each
iteration of CASM. The system matrix is usually very sparse such
that sparse solvers would reduce the run time consierably. As can
be seen from the numerical results, CASM reached the global opti-
mum in three out of four test cases. Further studies are required to
analyse this behaviour in more detail and also the impact on the
outer optimization performed by the bundle method. Especially in
the scenario considered here, where one solves a cascade of opti-
mization problems with moderate refinements when going from
one level to the next one, it should be possible to develop a globali-
sation strategy to ensure that a global optimum is reached which
is required by the adaptive bundle method. Another goal will be
to integrate CASM directly into the bundle method. This will also
allow a more rigorous comparison to the MIP based approach.
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The energy transition to more sustainable sources universally imposes major challenges on future en-
ergy supply. This is particularly valid for Europe and Germany. The shift from centralized, fossil-fuel
based technologies to decentralized, regenerative technologies leads to an increased complexity of energy
systems. This is also reflected in the underlying mathematical models. For long-term expansion plan-
ning in specific, the number of decision options increases significantly, such that advanced mathematical
optimization methods are indispensable.

Energy production planning problems are traditionally represented by unit commitment or economic
dispatch models where energy demands need to be satisfied by internal generators or external imports.
Intertwined network structures and physical transport laws often need to be incorporated. There exists
a variety of related academic models for optimizing energy production portfolios that include some or
all of the above aspects. Industrial models, however, are significantly more demanding with respect to
the high level of detail in which generators have to be modeled in order to capture real-world practices
and provide relevant insights to decision makers. Furthermore, specific technological aspects, such as full
steam extraction condensation cycles for heat and power production, encompass an exhaustive range of
inter-dependent physical processes that can only be manifested by a high modeling granularity. To the
best of our knowledge, the literature of unit commitment models has hitherto failed to provide a holistic
framework for energy production systems. To bridge this gap, we hereby propose a new model class
that incorporates the mentioned aspects, by formalizing a consistent and generic network-based energy
modeling framework.

The model is based on a directed, time-expanded graph where nodes represent technological elements
of an energy system and arcs represent transport options for the involved resources such as fuel, heat and
power. For each time step, we define positive continuous variables on arcs that model resource flows and
binary variables on nodes that represent the operational status. An on-status means that the node is
active whereas an off-status means that the node is inactive. In the model, we have a spatial dimension
and a temporal dimension. In terms of spatial linkage, constraints are induced by nodes imposing a
feasible operation region on incoming and outgoing flow variables depending on the operational status.
If the status is inactive, flow variables are set to zero. If the status is active, the feasible operation region
of inflows and outflows depends on the specific technological element the node represents. This can be
a characteristic curve that models fuel-to-heat conversion, a polytope that defines operation modes for
combined heat and power plants or upper and lower limits of a power trading contract. The set does
neither need to be convex nor connected.

Operational costs are induced analogously using a term that depends on inflows, outflow and the
status variable of a node. The operation of certain nodes can depend on each other. For instance, certain
generators cannot work simultaneously whereas the operation of one generator is only possible, if another
generator is active. This is a relevant practical feature that is rarely found in existing modeling frame-
works. To cover those cases, we use hyper edges that impose a feasible region on the operation variables
of the respective nodes. Concerning the time dimension, there are several constraints such as storage
constraints as well as minimum up and down times. Moreover, to cover the expansion planning aspect,
we model investment decisions by using additional binary variables as bounds on the operational status
variables of the respective technological element. We use piecewise-linear formulations and additional
binary variables to reformulate the model as a mixed-integer linear program.

Realistic instances contain a high level of detail and need to be solved for time horizons of 20 to
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30 years. This leads to a model size of hundreds of millions of variables and constraints, and hence a
complexity that cannot be handled out-of-the-box using commercial solvers. In this way, the planning
horizon is often restricted to several months. To cover a realistic planning horizon, we develop a coarse-
to-fine hierarchical framework. The basic idea is to solve coarse-detailed models and to infer variable
fixings for the more refined models, such that the model in its full level of detail becomes computationally
tractable. To decrease the level of detail on higher levels, we relax certain constraints, apply linearizations
and aggregate time steps. The latter means to decrease time granularity or to use average or representative
time periods, which can be calculated using clustering, averaging and scaling methods. Our hierarchical
framework consists of three levels. On the highest level, we determine investment decisions. On the
intermediate planning level, we derive storage and operational variable fixings at specific time points.
In this way, the lowest level (unit commitment) decomposes into several independent sub problems that
can be solved in parallel. To solve the corresponding optimization problems in each level, we use rolling
horizon techniques. To assess the quality of our methods, we perform computational experiments on real-
world instances from the district heating network in Berlin. Results so far indicate that the hierarchical
framework can solve medium-scale optimization problems of this model class faster up to a factor of 4
than commercial solvers, without significant losses on the solution quality in terms of the objective value.

Nevertheless, particular large-scale instances are still posing ever-increasing computational challenges
to be addressed. The methods we propose so far mainly focus on the time dimension of the problem.
To accelerate the solution algorithm even further and to make use of the full model structure, there
is a potential room for improvement by explicitly incorporating the spatial dimension in the developed
procedures. Future planned research will thoroughly investigate the topological aspects of the network,
with the outlook of deriving useful information for the solution process, e.g., problem relaxations, bounds
or warm-start solutions.
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To alleviate the burden of communication networks and reduce the access latency of users, caching popular con-
tents at network edges has been recognized as a promising solution [4]. Proactively storing contents at base stations
(BSs) enables direct content delivery to users without involving the remote cloud. To efficiently utilize the cache
with limited capacity, a content delivery system tends to cache the most popular contents that are frequently re-
quested by users. A typical objective of caching optimization is to maximize the hit-ratio, which is the probability
that a requested content is cached.

The popularity of contents is influenced by many factors, among which recommendation systems [3] play a
major role. Embedded in content providing sites or applications, recommendation systems undertake the task of
recommending contents that best match the interests of users. Since the user preferences have a large diversity, the
recommendation is usually personalized. In practice, recommendation has dramatically boosted users’ engagement
and satisfaction. It is reported that up to 80% of requests on Netflix come from recommendation [3].

That recommendation has strong impact on content request calls for extending caching optimization to recom-
mendation, as a reshaping tool of content popularity to improve the hit-ratio. In fact, the emergence of content
delivery networks (CDNs) makes the joint optimization practically possible. Two widely known examples of CDN
are Netflix Open Connect and Google Global Cache. CDNs enable more network-efficient and user-friendly so-
lutions by optimizing jointly content caching and recommendation. Some studies [1, 2, 5] have taken steps in this
direction, with the target of maximizing the hit-ratio. In these works, heuristics are derived based on problem
decomposition, leading to sub-optimal solutions. However, these works only focus on recommendation based on
the long-term interest of users. In practice, the system need to also account for the short-term interest, namely
the content currently being consumed by the user. We use the term incumbent content to refer to the content
currently being selected and consumed by a user, and we call this recommendation scheme as incumbent-aware
recommendation.

We consider the joint optimization of caching and incumbent-aware recommendation for multiple users with
one BS, while accounting for user satisfaction of recommendation. The set of users is denoted by K. The cache
is deployed at the BS and controlled by the content provider, with a limited capacity denoted by C. Denote by
I the sets of all contents under consideration. Define a binary indicator xi for caching decision: If content i is
cached, xi = 1, otherwise xi = 0. For content i ∈ I, denote by si its size; denote by pk

i ∈ [0, 1] the probability
of user k requesting content i without recommendation. Denote by pk

ji ∈ [0, 1] the probability of user k requesting

content i via recommendation with incumbent content j. The value of
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the popularity of content i with recommendation. The maximum length of the recommendation list is denoted
by B. Denote by yk

ji a binary indicator of recommendation decision: If content i is in the incumbent-aware
recommendation list of content j for user k, yk

ji = 1, otherwise yk
ji = 0. To account for user satisfaction of the

recommendation system, for user k, if the probability of content i being requested from the recommendation is
lower than a threshold, denoted by βk, then content i will be not recommended.

The joint optimization of caching and incumbent-aware recommendation is formulated below, where (1a)
is the hit-ratio, and (1b)-(1d) are the cache capacity constraint, recommendation list length constraint, and user
satisfaction constraint, respectively.

First, regarding the problem complexity, we have proved Theorem 1.
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ji < βk, i, j ∈ I, i ∕= j, k ∈ K (1d)

yk
ji ∈ {0, 1}, i, j ∈ I, i ∕= j, k ∈ K (1e)

xi ∈ {0, 1}, i ∈ I (1f)

Theorem 1. The joint optimization problem of caching and recommendation in (1) is NP-hard, even for the
simplified case where |K| = 1, B = 1, si are of uniform size ∀i ∈ I, and (1d) is discarded.

The set of cached contents at the BS, denoted by Ic, is given by x. Second, we consider the recommendation
subproblem with given Ic, derive a greedy-based algorithm, and prove its optimality, as stated in Theorem 2.

Theorem 2. The recommendation subproblem with given Ic can be solved to optimum by a greedy-based algo-
rithm.

Third, we prove the monotone and submodular properties of the objective function with given Ic.

Theorem 3. Denote by f(Ic) as the optimal objective value of (1a) with given Ic. Function f(Ic) is a monotone
increasing submodular set function.

Based on Theorem 3, we derive a polynomial-time iterative algorithm. The proposed algorithm greedily adds
content i∗ to Ic at each iteration, by maximizing (f(Ic ∪ {i}) − f(Ic))/si. This process will in turn invoke the
algorithm indicated in Theorem 2. We prove that the proposed algorithm has 1 − e−1 approximation guarantee,
based on the submodularity, as claimed in Theorem 4.

Theorem 4. Let xOP T be the optimal x for the problem in (1), and x be the solution achieved by the proposed
algorithm. It holds that f(x) > (1 − 1/e)f(xOP T ).

At last, we assess the proposed algorithm using synthetic datasets as well as real-world datasets. Simulation
results show its good performance in terms of improving the hit-ratio.
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Introduction. Telecommunication networks frequently face technological advancements and need to
upgrade their infrastructure. In telecommunication industries, network migration is the process of up-
grading the existing infrastructure of a deployed network. A telecommunication network is composed
of a set of sites (demand points), and circuits that transmit the traffic between the sites. Migration of
such a network is performed by upgrading the circuits one by one. In order to upgrade every circuit,
two synchronized technicians migrate its two endpoints within a time window. The goal of the network
migration problem (NMP) is to find the upgrade order of these circuits such that the associated costs are
minimized. This is a defining step in the customer acquisition of telecommunications service suppliers,
and its outcome directly impacts the network owners’ purchasing behaviour. Migration of a network is a
strategic decision that can lead to immense savings of 10 to 100 times in power and space [1].

The NMP can also be stated in the context of the vehicle routing problem with synchronized con-
straints (VRPS), where at least one vertex or arc requires simultaneous visits of vehicles, or successive
visits resulting from some precedence constraints. In the NMP, vehicles and nodes correspond to techni-
cians and sites, respectively. Since the tasks (i.e., upgrading the circuit endpoints) are defined over the
nodes, the NMP is a special case of the vehicle routing problem with node synchronization constraints
and an application of the VRPS in the telecommunications domain. In regards to the applicability of the
exisiting studies on solving the VRPS problems to the NMP, an important issue is their local synchroni-
sation assumption, meaning that the arrival of vehicles is synchronized at the same node. However, the
NMP involves several sets of technicians distributed over multiple regions which can be synchronized with
several other technicians from the same or other regions based on the location of the circuit endpoints.
Besides, the only exact method that considers multiple depots and time windows (the same as the NMP),
can solve small instances that are far from the need of telecommunication networks [2]. Therefore, the
existing works in the literature of the VRPS are not suited for the NMP’s level of complexity.

In this work, we develop the first exact solution method for the network migration problem in or-
der to find the optimal planning solutions, i.e., the order of circuit upgrades, along with the technician
assignment and routing decisions. To the best of our knowledge, both in the context of the telecom-
munications problems and as a VRPS, this is the first method that exactly solves the NMP with a
certificate of optimality/infeasibility. We decompose the NMP into three problems and link them all by
designing a logic-based Benders decomposition (LBBD) approach that benefits from a hybrid constraint
programming-based column generation in its master problem and a constraint programming model in its
subproblem. By doing so, we are able to leverage the power of different solution techniques for linear
programming and combinatorial optimization, and delegate the task of solving each problem to the most
suitable optimization paradigm. Given that the NMP can be viewed as a VRPS, our method can also
be adapted to a wide class of integer programming problems. We also make several algorithmic enhance-
ments and considerably improve the basic version of the algorithm that only uses the classical adaption
of Benders decomposition and column generation.
Solution Methodology. Our solution approach relies on the notion of a shift. A shift is defined as
a set of circuit endpoints migrated by a single technician during a maintenance window, together with
any travels between the sites. We model the NMP as an ILP that returns a planning solution consisting
of a set of shifts. The proposed formulation is amenable to the LBBD framework, meaning that we
can decouple the problem into smaller subproblems that are easier to solve. Denote by m, a vector of
decision variables mss′w ∈ Z+ that determine the number of circuits between the pair of sites {s, s′}
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Figure 1: Overall framework of the LBBD method for the NMP.

migrated during a maintenance window w. LetM be the set of constraints defining a feasible m, ηw be
the migration cost at w, and SPLBBD

w (m) the problem of generating a set of shifts with minimum cost
for a given m. The problem can be formulated as follows:

min
{ ∑

∀w

ηw : m ∈M, ηw ≥ SPLBBD
w (m), ∀w, mss′w ∈ Z+∀s, s′, w

}
. (1)

We design an LBBD where the master problem (LBBD MP) decides on the number of migrated circuits
between the site pairs at each maintenance window, together with an estimation on the cost of such a
plan, and the second-stage (recourse) problems (SPLBBD

w (m)) verify if it is feasible to migrate the assigned
number of circuits with the available resources, and if so what is the actual cost of this migration.

In its current form, LBBD MP is oblivious to the structure of the NMP. We add the LP relaxation
of the subproblem to the LBBD MP to improve the performance of the algorithm. By relaxing the
integrality constraints of the subproblems, we now have integer first-stage and continuous second-stage
decision variables and the new problem is amenable to the Benders decomposition, with Benders MP
the same as the LBBD MP. For the subproblem, considering the exponential number of possible shifts,
we develop a column generation procedure that gradually generates improving shifts for the problem.
The Benders feasibility and optimality cuts derived for this Benders decomposition are also valid for the
LBBD MP. After the Benders decomposition converges, the first-stage solutions m̂ are passed to the
SPLBBD

w (m) for checking their feasibility/optimality. We formulate the SPLBBD
w (m) (our LBBD SP) as

a constraint programming (CP) model that creates a plan, i.e., a set of shifts corresponding to a set of
technicians working during the maintenance window w, consisting of connected paths (for the travels)
along with the number of circuit endpoints migrated between each site pair. By designing valid LBBD
feasibility/optimality cuts we guarantee the exactness of our solution method. Figure 1 depicts the overall
solution framework and its different levels of decomposition.
Results. We evaluate the proposed LBBD algorithm on instances defined over six real backbone and re-
gional networks and provide detailed algorithmic analysis and discussions on the implementation choices,
along with managerial insights on the trade-offs among the migration cost, resource usage, and the du-
ration of the migration. Our comprehensive evaluations demonstrate the computational efficiency of
the algorithm in obtaining quality solutions. We also show the merit of each incorporated optimization
paradigm in achieving this performance.
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The routing and spectrum allocation problem (RSA) arises as a result of one of the most promising
solutions to deal with huge data traffic demands in large communication networks, the flexible grid
(flexgrid) technology [4] specified in the ITU-T standard G.694.1. In these networks, the frequency
spectrum is divided into narrow frequency slots, and a sequence of consecutive slots forms a channel
that can be switched in the network nodes to create a lightpath between two nodes. One of the simplest
variations of the RSA consists in establishing the lightpaths for a set of end-to-end traffic demands that,
assuming the same modulation format for each, are expressed in terms of the number of required slots.
Since lightpaths are determined by a route and a selected channel that satisfies the volume, RSA involves
finding a route and assigning frequency slots to each demand. To comply with the ITU recommendation,
the following constraints must be respected in this setting: (I) slot continuity: the slots assigned to a
certain demand must remain the same on all the links of the corresponding route; (II) slot contiguity: the
slots allocated to each demand must be contiguous; and (III) non-overlapping slot: a slot can be assigned
to various demands if the routes assigned to these demands do not share any link.

Formally the offline version of RSA can be stated as follows. We are given a digraph G = (V, E)
representing the optical fiber network, a fixed number s̄ ∈ Z+ of available slots, and a set of demands
D = {di = (si, ti, vi)}k

i=1, where each demand di, i = 1, . . . , k, is composed by a source si ∈ V , a target
ti ∈ V , and a volume vi ∈ Z+. If d = di = (si, ti, vi) ∈ D is a demand, for some i ∈ {1, . . . , k}, we define
s(d) = si, t(d) = ti, and v(d) = di. We define a lightpath for a demand di = (si, ti, vi) to be a tuple
(l, r, p), where 1 ≤ l ≤ l + vi − 1 ≤ r ≤ s̄ and p is a (directed) path in G from si to ti.

In this setting, RSA consists in establishing a lightpath associated to each demand, in such a way
that lightpaths do not overlap. In other words, each demand di, for i = 1, . . . , k, must be assigned a path
pi (regarded as a sequence of arcs) in G between si and ti and an interval [li, ri] consisting of at least vi

consecutive slots in [1, s̄] in such a way that if pi ∩ pj ̸= ∅ then [li, ri] ∩ [lj , rj ] = ∅, for any two demand
indices i ̸= j.

In the current work we show that this version of the problem belongs to the N P-hard class. We survey
the models present in the literature and classify some of them according to the most common criteria. In
particular, we analyze the different approaches with which they try to solve the three major restrictions
of RSA, i.e., contiguity, continuity and non-overlapping, as well as the used objective function. In [1]
we have presented twelve integer programming models that solve the offline version of RSA, by trying
with different families of variables and constraints, obtaining mixed results. In particular we considered
two natural ways of modeling feasbible solutions within an integer programming approach: either we
represent the routing with a set of variables and the slot allocation with a second set of variables, or we
represent both decisions with a single set of variables. For each model we presented a few variations. The
computational experiments, both real and random, suggested that one of the compact formulations that
uses only one set of variables, namely the DSL-BF formulation is the one with the best results, namely

min
∑

d∈D

∑

e∈E

∑

s∈S

udes/v(d) (1)

s.t.
∑

e∈δ−(j)

udes −
∑

e∈δ+(j)

udes = 0 ∀d ∈ D, ∀j ∈ V \{s(d), t(d)}, ∀s ∈ S (2)

∑

e∈δ+(s(d))

∑

s∈S

udes ≥ v(d) ∀d ∈ D (3)
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∑

e∈δ−(s(d))

∑

s∈S

udes = 0 ∀d ∈ D (4)

∑

d∈D

udes ≤ 1 ∀e ∈ E, ∀s ∈ S (5)

v(d)(udes − ude,s+1) ≤
s∑

s′=f

udes′ ∀d ∈ D, ∀e ∈ E, ∀s ∈ S, f = max{1, s − v(d) + 1} (6)

udes ∈ {0, 1} ∀d ∈ D, ∀e ∈ E, ∀s ∈ S. (7)
We concentrate on this formulation which, despite having a large number of variables, gave quite

encouraging results and seems to be very interesting from a theoretical point of view. In particular we
try to improve its performance by applying various techniques widely used in integer linear programming.
Firstly, we intend to study the formulation and, exploiting some of its properties, propose three main
theorems coming from symmetry considerations which allow us to generate valid inequalities that may
be used as cutting planes in a branch-and-cut algorithm. We present more than sixty families of valid
inequalities, equations and optimality cuts dealing with the non-overlapping restriction, and we continue
with the implementation of a branch-and-cut algorithm using these families as cutting planes [3]. In
order to select some of the inequalities from these families, we present several selection and filtering
strategies. We calibrate the parameters for each procedure and compare between the different strategies
and a generic branch-and-cut and branch-and-bound algorithm implemented by Cplex.

In spite of overcoming the two Cplex generic implementations, the results obtained with the branch-
and-cut algorithm suggested that starting with a feasible solution, the algorithm could obtain better
results faster. We review the state of the art related to heuristics for both RSA and SA, and then we
propose a primal heuristic as well as some variations. Given that the studied model allows solutions with
spurious cycles and paths, it was worth providing the proposed heuristics with an algorithm capable of
improving those solutions.

The math-heuristic developed (FRSAP) iteratively solves an ILP model and not only quickly returns
a near-optimal feasible solution, but is capable of detecting probably-infeasible instances with great
precision. The experiments on more than 550 instances showed that the times and the quality of the
solutions improved remarkably when adding the heuristics to the branch-and-cut, solving with optimality
a quarter more instances than the best Cplex solver configuration (FCP), i.e., pre-resolution, heuristics,
parallelization, and cutting planes. The number of sub-optimally solved instances was also around that
difference, while it had memory problems half as many times as Cplex.

Algorithm Time [hs] Solved Unknown Feasible Optimal Infeasible Prob. Inf. Memory
FCP 35.45 256 67 33 137 86 0 20
FRSAP 26.37 312 11 52 170 90 64 1

Table 1: FRSAP vs FCP comparison over the 323 instances solved by some algorithm, fixing the time limit in 15 mins.

Since to the best of our knowledge there are no complete instances available in the literature, but only
some topologies and parameters, and being a very common practice in the study of RSA and its variations
to generate the benchmark, we implemented an instance generator script based on real topologies and
parameters to be able to carry out the experiments. We also believe that it would be nice if these instances
together with the script, which is available in [2], are the start of a standardized benchmark for RSA.
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The internet is composed of a set of autonomous systems (AS). An autonomous system is a set of routers
under a single technical administration such as an internet service provider (ISP). To this day the internet
still relies on packet switching. Transferred data is broken down into packets for more efficient transfer.
The goal at the network layer of the internet is to provide the way to transport datagrams (IP packets),
from their source to their destination.

The paths to follow are chosen by the internet routing protocols. These can be divided into two
main groups: inter-domain and intra-domain routing protocols, also called respectively border gateway
protocols (BGP) and interior gateway protocols (IGP). As their names indicate, BGPs are used to handle
traffic between ASes and IGPs handle routing within ASes [1].

The branch that aims to improve the quality of service for IGP protocols is called Traffic Engineering
(TE). From an optimisation point of view, the aim is to send each packet using the most efficient route
across the network at that time by (re-)optimising the routing of the traffic, but leaving the network
topology and hardware configuration unchanged [3].

One of the most important problems TE has to deal with is network congestion, because it almost
always results in degradation of user experience. Network congestion occurs when the network has to
carry more data than what it can handle. Usually TE techniques try to minimise the maximum link
utilisation where the link utilisation is define as the total flow on the link divided by its capacity.

The most widely used IGP protocols rely on shortest path routing (SPR): traffic flowing from one
router to another will always be routed along the shortest path. The shortest paths are computed using a
link metric system, a weight is assigned to each link and these weights are used to determine the shortest
path from one node to another. In case multiple shortest paths exist, a usual rule is to split traffic
evenly on all outgoing arcs belonging to a shortest path. This technique is called Equal Cost Multi-Path
(ECMP).

A lot of research have been devoted to TE with SPR protocols, see [1, 4, 6] for surveys on the topic.
Even when optimized, SPR protocols suffer a number of drawbacks. Demand matrices and networks

change. As described in [7], operators do not like to change weights, because it can lead into transient
instability until the distributed computation of the shortest paths converges. Moreover, SPR might be
very far from an optimal routing where flow can be distributed freely in the network [8].

To provide more flexibility in routing and decrease the overhead induced by SPF protocols, Segment
Routing (SR) was recently introduced. SR is a modern variant of source routing in computer networks,
which is being developed within the SPRING and IPv6 working groups of the IETF [5, 10]. In a segment
routed network, an ingress node may prepend a header to packets that contain a list of segments, which
are instructions that are executed on subsequent nodes in the network. These instructions may be
forwarding instructions, such as an instruction to forward a packet to a specific destination or interface.
These instructions act on top of an existing protocol, like SPF ones. More precisely, an instruction
to forward a packet to a specific router to reach a destination will be performed using the underlying
protocol.

Here, we assume that routing in the underlying protocol, e.g. SPR with ECMP, is given, i.e. the link
metric system is fixed and cannot be modified. We consider the problem of routing given demand matrix
using node segments (i.e allowing to fix a set of nodes to visit to reach a destination from a given origin),
with a given upper bound K on the number of segments used. For K = 2, the problem was formulated as
a compact MIP in [2]. For K ≥ 2, a compact MIP formulation was proposed in [9], but with a very poor
linear relaxation. A path-based formulation was proposed in [11] and solved with a column-generation
based heuristic.
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In this talk, we introduce the notion of forward graph and extend it in the context of SR. We study
theoretical properties of forward graphs and derive a pre-processing technique allowing to eliminate more
than 90 % of the paths on realistic instances. These pre-processing techniques are made very efficient by
the use of adequate data structures to represent the forward graphs. We also show with an extensive set
of numerical experiments that the pre-processed models can be solved by state-of-the-art solvers without
the help of column generation.

In future research, we plan to consider the simultaneaous optimization of SPR metrics and SR paths,
and to consider uncertain demand matrices.
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ABSTRACT
Facility Location Problems with Capacities, Revenues, and
Closest Assignments (FLP-CRCA) are an extension of the well
known, stronglyNP-complete Facility Location Problem (FLP).
With this extension, we recognise that facilities have an upper
capacity on the customers to be served, but also need to generate a
minimum revenue to be operated economically. Furthermore, we
acknowledge that customers have a strong preference towards their
closest facility.

We show that finding a feasible solution for FLP-CRCA is already
strongly NP-complete if the underlying graph forms a star, but
that the problem can be solved efficiently on paths and cycles.
In the case where the number of facilities is fixed, we propose a
pseudo-polynomial algorithm and show that the problem is weakly
NP-complete under this condition. Our results also hold for FLPs
with closest assignments and either capacities or revenues.

1 INTRODUCTION
Facility Location Problems (FLPs) are one of the most fundamen-
tal problems in combinatorial optimization [15]. In their most basic
version, facilities providing some kind of service for customers
need to be opened at potential sites and customers are assigned
to these facilities. The aim is to minimize the total cost consisting
of opening cost for the facilites and the service cost or traveling
cost for assigning the customers. Part of this problem’s success is
based on the broad applicability to real-world problems [1, 16]. In
practice, further constraints need to be considered. Upper capaci-
ties on the facilities, i.e., the number of customers or the demand a
facility can serve, prevent that customers wait too long at facilities.
Such problems are referred to as Capacitated FLPs (CFLPs). One
main difference between CFLPs and FLPs is that now customers can
not always be served by their closest facility. In reality, however,
customers are often free to choose their facility and prefer their
closest one. This potentially leads to some facilities being over-
loaded, while others only serve few customers. In order to prevent
such situations, the property of closest assignments is demanded:
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a constraint stating that each customer is to be assigned to their
closest open facility; cf. [8, 10] for reviews of closest assignment
constraints in integer programming. The closest assignment and
upper capacities improve the service quality for the customers. Fa-
cilities, however, are often assumed to be operated by individual
owners. In order to economically survive, they have to generate
a minimum threshold of revenues by serving customer demands.
This is achieved by introducing lower bounds on the revenue a
facility accumulates. A real world example which can be modeled
through Facility Location Problems with capacities, revenues and
closest assignments is the optimized distribution of pharmacies in a
given area under the following assumptions: due to time and space
constraints only a limited number of customers can be served; a
minimum revenue has to be generated by serving citizens due to the
financial independence; citizens use their closest open pharmacy.

The basic FLP isNP-complete in the strong sense [6, 14], which
makes the computation of optimal solutions in acceptable time
unlikely. This complexity result can be extendend to all of the prob-
lem’s generalizations. However, if the FLP is defined on a graph,
where the assignment costs are equal to the distances between
the customer nodes and the facility nodes, the FLP can be solved
efficiently if the graph is a tree [6]. For CFLPs, (pseudo-)polynomial
algorithms are known in special cases [11, 12]. To the best of the
authors’ knowledge, the literature on FLPs with Closest Assign-
ments (and Capacities) focuses on strengthening integer program-
ming formulations or developing heuristics [2–4, 7, 8, 10, 13, 17].
Research on the computational complexity of FLPs with Closest
Assignments mixed with capacity- and revenue-constraints is still
missing.

In this paper, we analyse Facility Location Problems with
Capacities, Revenues, and Closest Assignments (FLP-CRCA)
and derive some settings that are NP-complete and some that are
polynomially solvable. More specifically, we show that:
• finding a feasible solution for the FLP-CRCA is stronglyNP-
complete on star graphs - contrary to the general FLP, where
an optimal solution on trees can be found in polynomial
time [6] (Section 3).
• the FLP-CRCA on paths and cycles can be solved efficiently,
contrary to the CFLP (Section 4).
• for a fixed number of facilities, there is a pseudo-polynomial
algorithm and the problem becomes weakly NP-complete
(Section 5).
• these complexity results hold for FLPs with Closest As-
signments and either capacities or revenues.

With this work we close the research gap regarding the computa-
tional complexity of Facility Location Problems with Closest
Assignments mixed with capacitiy- and revenue-constraints.
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2 PROBLEM DEFINITION AND NOTATION
In this paper, we study the following setting. As an underlying
structure consider an undirected graphG = (V ,E), whereV denotes
the set of nodes and E the set of edges. The nodes represent the
locations of customers as well as the locations for potential facilities,
while the edges represent the street network connecting these sites.

The costs of assigning node v ∈ V to facility f ∈ V are denoted
by τ (v, f ) ∈ Z>0 and are defined to be the distance of a short-
est (v, f )-path with respect to weights δe> 0 on the edges e ∈ E. To
each node v ∈ V , we assign parameters, (rv ,dv ,Rv ,Cv , cv ) ∈ Z5≥0,
where rv ∈ Z≥0 represents the revenue a customer generates for
the serving facility and dv ∈ Z≥0 represents the customer’s demand
a serving facility has to satisfy. Furthermore, if a facility opens at
node v , it has to accumulate a minimum amount of revenue, de-
noted with Rv ∈ Z≥0 and the aggregated demand must not exceed
the capacity Cv ∈ Z≥0. Lastly, parameter cv denotes the costs of
opening a facility at node v .

With these considerations, we define the optimization problem
studied here.

Definition 2.1 (FLP-CRCA). We are given an undirected graph
with five non-negative parameters for each node and positive
weights on the edges, G = (V ,E, (rv ,Rv ,dv ,Cv , cv )v ∈V , (δe )e ∈E ).
Then, the FLP-CRCA consists in finding a subset F ⊆ V of nodes
for opening facilities and an assignment Λ : V → F of customers
to these facilities such that

(1) for each open facility its lower bound on revenue and upper
bound on capacity are not violated, i.e., Rf ≤

∑
v ∈Λ−1(f ) rv

and
∑
v ∈Λ−1(f ) dv ≤ Cf for all f ∈ F ,

(2) each customer is assigned to their closest open facility, that
is, there exist no v ∈ V and f ∈ F with τ (v, f ) < τ (v,Λ(v)),

(3) the cost of opening facilities and distances of the customers
is minimized, that is

∑
f ∈F cf +

∑
v ∈V τ (v,Λ(v)) → min .

Note that we assume, that the demand of a customer cannot be
split between two different facilities.

3 COMPLEXITY OF THE FLP-CRCA
It is common knowledge that the CFLP is strongly NP-complete.
However, to emphazise the difference in the complexity of the FLP-
CRCA and the CFLP, we first provide a reduction showing that
it is already strongly NP-complete to construct any solution for
the CFLP at all. This demonstrates that the CFLP’s complexity is
independent of a potential underlying graph defining the costs – in
contrast to the FLP-CRCA, as we will see in Section 4.

Theorem 3.1. Finding a feasible solution for CFLP is strongly
NP-complete.

Proof. We reduce from the strongly NP-complete problem
3-Partition [9] to a CFLP-instance. Let I = (A, (sa )a∈A,B) be
an instance of 3-Partition, with A being a set of 3m elements,
sizes sa ∈ Z≥0 for each element a ∈ A, such that sa ∈ (B/4,B/2)
and

∑
a∈A sa =mB, for a bound B ∈ Z≥0. The task is to partition A

into disjunct subsetsA1, . . . ,Am such that
∑
a∈Ai s(a) = B holds for

all i ∈ {1, . . . ,m}. We construct from this a CFLP-instance without
costs I ′ = (J , (dj )j ∈J , I , (Ci )i ∈I ) with customers J , demands dj ,
facilities I , and capacities Ci . For each a ∈ A, we define one facility

and one customer, that is, J = I = A. Furthermore, we set the
demands equal to the sizes da = sa and the capacities equal to the
bound Ca = B.

Note that, there exists a partitioning A1, . . . ,Am of A that is a
solution to instance I of 3-Partition iff there exists a feasible
solution to constructed CFLP-instance I ′.

CFLP is inNP since we can test the feasibility of an assignment
of customers such that each open facility’s capacity constraint is
met in linear time w.r.t. the size of set A. □

Considering a lower bound on the revenue is a generalization of
CFLPs. The closest assignment condition, however, brings a certain
structure to feasible solutions of FLP-CRCA-instances. We will see
in the next section that this makes the considered problem easier on
certain graph classes. However, already considering trees or stars
as underlying networks leads to an NP-complete problem.

Theorem 3.2. Finding a feasible solution for FLP-CRCA on stars
is strongly NP-complete.

Proof. We reduce again from 3-Partition, this time to an
FLP-CRCA-instance. Let I = (A, (sa )a∈A,B) be an instance of 3-
Partition as defined in the proof of Theorem 3.1. Any such instance
will be transformed into an FLP-CRCA-instanceI ′ = (V ,E, (rv ,Rv ,
dv ,Cv , cv )v ∈V , (δe )e ∈E ) as follows. The set of nodes V contains
one node a for every element a ∈ A and one extra node ξ ; hence,
|V | = |A|+1. SetRa = Ca = B and ra = da = sa , for eacha ∈ V \{ξ }.
For node ξ , set rξ = Rξ = dξ = Cξ = 0. Next, introduce the set
of edges e ∈ E. Connect the nodes so that the underlying graph is
an |A|-star, where node ξ is the center. Set δe = 1 for all edges e ∈ E.
Note, due to the choice of parameters in I ′, all facilities need to be
opened at a leaf in a feasible solution. Due to the underlying star
structure, each customer is either indifferent between the facilities
or uses the facility located at its own node.

Again, there exists a partitioning A1, . . . ,Am of A that is a solu-
tion to instance I of 3-Partition iff there exists a feasible solution
to constructed FLP-CRCA-instance I ′.

Finding the nearest facility for a node takes O(|V |) on stars.
Hence, the problem is still inNP, as testing whether each customer
is served by their nearest open facility can be done in O(|V |2). □

Thus, no (pseudo-)polynomial algorithm exists, unless P = NP.
However, in the next section, we will see that, in contrast to the
CFLP, feasible solutions on paths and cycles can be computed effi-
ciently.

4 POLYNOMIAL SPECIAL CASES
If the underlying graph is either a path or a cycle, any instance of
the FLP-CRCA can be solved efficiently. We show this via a reduc-
tion to the polynomially solvable Shortest s-t-Path Problem on
Directed Acyclic Graphs.

4.1 FLP-CRCA on Paths
We first consider the case where the underlying graph of the FLP-
CRCA is a path p = (1, . . . ,n). Since we have positive edge weights,
paths have the important property that all customers between the
most-left and most-right customer of the same facility must be also
served by it. That is, for every solution (F ,Λ : V → F ), the set of
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customers Λ−1(f ) assigned to a facility f ∈ F forms an interval
{li , . . . ,ui } containing f . Hence, the customers can be partitioned
into such intervals and every solution can be represented by a
sequence of triples (li , fi ,ui )ki=1, where fi denotes the location
of the i-th facility and nodes li ,ui the most-left and most-right
customer served by it. Note that, for f1 < · · · < fk , we have
li = ui−1 + 1, with u0 B 0, for all i ∈ [k]. Hence, it suffices to
consider tuples (fi ,ui ) for a complete representation of a solution.
However, while any feasible solution corresponds to a sequence of
tuples (fi ,ui )ki=1, not every sequence represents a feasible solution.

Definition 4.1. We call (f ,u) ∈ V 2 a feasible tuple if f ≤ u. We
call a sequence of feasible tuples (fi ,ui )ki=1 a feasible sequence if it
meets the following properties:

(a) it holds ui−1 < fi and uk = n,
(b) the customers served by facility fi yield

∑ui
v=ui−1+1 rv ≥ Rfi

and
∑ui
v=ui−1+1 dv ≤ Cfi ,

(c) for i ≥ 2, facility fi is not closer to customer ui−1 than
facility fi−1 and facility fi−1 is not closer to customerui−1+1
than facility fi , that is, τ (ui−1, fi ) ≥ τ (ui−1, fi−1) as well as
τ (ui−1 + 1, fi ) ≤ τ (ui−1 + 1, fi−1).

The relation between a feasible sequence and a solution to the
FLP-CRCA is elaborated in the next lemma.

Lemma 4.2. There is a 1-1 correspondence between feasible solu-
tions of the FLP-CRCA on paths and feasible sequences (fi ,ui )ki=1.

Proof. We already stated above that every solution (F ,Λ) can
be represented by a sequence (fi ,ui )ki=1 with f1 < · · · < fk and
{ f1, . . . fk } = F as well as ui = max{v ∈ [n]|Λ(v) = fi }. This se-
quence meets Property (a), as otherwise the sets Λ−1(fi ) would not
form intervals. Furthermore, Properties (b) and (c) follow directly
from Properties (1) and (2) in Definition 1.1.

Conversely, every feasible sequence (fi ,ui )ki=1 defines a solution
F = { f1, . . . fk } with Λ−1(fi ) = {ui−1 + 1, . . . ,ui }. This solution
is feasible, as Property (1) in Definition 1.1 follows from Property
(b); Property (2) is fulfilled, as no customer in the interval Λ−1(fi )
wants to deviate from facility fi iff this is true for the customers at
the boundaries, which is ensured by Property (c). □

For finding a feasible solution to the FLP-CRCA, we construct
a directed auxiliary graph G ′ = (V ′,A′, (wa )a∈A′), in which each
s − t-path corresponds to a feasible sequence. We introduce one
node for each feasible tuple together with two extra nodes s, t , i.e.,
V ′ = {(f ,u) ∈ [n]2 | f ≤ u} ∪ {s, t}. Starting at node s , the first arc
that we choose on our s − t-path corresponds to the first tuple in
our sequence. Hence, we have (s, (f ,u)) ∈ A′ iff tuple (f ,u) meets
Property (b). Afterwards, choosing an arc from (f ′,u ′) to (f ,u)
corresponds to (f ,u) being the successor of (f ′,u ′) in our sequence.
Hence, this arc exists iff Properties (a) – (c) are fulfilled. The last
tuple in the sequence needs to meet u = n, thus ((f ,n), t) ∈ A′ for
all f ∈ [n]. In conclusion,

A′ = {(s, (f ,u)) ∈ {s} × (V ′ \ {s, t}) | fulfills (b)}
∪ {((f ′,u ′), (f ,u)) ∈ (V ′ \ {s, t})2 | fulfills (a) – (c)}
∪ {((f ,u), t) ∈ (V ′ \ {s, t}) × {t} | u = n}.

FLP-CRCA-instance on a path:

1 2 3 43 1 2

Rv

rv

Cv

dv

cv

2
2
3

5

1
2
1

1

5
2
6

6

3
4
4

2
2 1 2 3

Auxiliary Graph G ′ :

s t

1,1 1,2 1,3 1,4

2,2 2,3 2,4

3,3 3,4

4,4

5

11

1
8

2

2

28

9

Figure 1: An instance of FLP-CRCA with an optimal solu-
tion, opening facilities 3 and 4, of value 13 and the corre-
sponding auxiliary graphG ′with a shortest path of the same
value.

Finally, we define weights on the arcs such that the cost of an
s − t-path equals the cost of the corresponding solution:

wa =



0, if a = ((f ,u), t) ∈ A′
cf +

∑u
v=1 τ (f ,v), if a = (s, (f ,u)) ∈ A′

cf +
∑u
v=u′+1 τ (f ,v), if a = ((f ′,u ′), (f ,u)) ∈ A′.

For an example of the relationship between an FLP-CRCA-instance
on paths and its auxiliary graph, see Figure 1.

The following lemma states that there exists a solution to the FLP-
CRCA on paths iff there exists an s − t-path in the corresponding
auxiliary graph G ′. In this case, the cost of an optimal solution is
equal to the cost of a shortest s − t-path.

Lemma 4.3. There is a cost-preserving 1-1 correspondence between
solutions of the FLP-CRCA and s − t-paths in G ′.

Proof. By construction of auxiliary graph G ′, every s − t-path
p′ = (s, (f1,u1), . . . , (fk ,n), t) corresponds to exactly one feasible
sequence (fi ,ui )ki=1, and thus, due to Lemma 4.2, also to one solu-
tion (F ,Λ) with F = { f1, . . . fk } and Λ−1(fi ) = {ui−1 + 1, . . .ui }.
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For the cost of p′, it holds
∑
a∈p′

wa = w(s,(f1,u1)) +
k∑
i=2

w((fi−1,ui−1),(fi ,ui )) +w((fk ,n),t )

= cf1 +

u1∑
v=1

τ (f1,v) +
k∑
i=2
(cfi +

ui∑
v=ui−1+1

τ (fi ,v))

=
∑
f ∈F
(cf +

∑
v ∈Λ−1(f )

τ (f ,v))

=
∑
f ∈F

cf +
∑
v ∈V

τ (v,Λ(v)),

which is exactly the cost of solution (F ,Λ). □

Checking whether an arc is feasible and computing its weight
takes O(n) steps for each of the O(n4) possible arcs. Hence, we can
transform any FLP-CRCA instance on paths in such an auxiliary
graph in O(n5) steps. For computing a shortest s − t-path, first note
thatG ′ is an acyclic graph. This can be seen by sorting the nodes in
lexicographic order, i.e., s, (1, 1), (1, 2), . . . , (1,n), (2, 2), . . . , (n,n), t ,
and recognizing that there exists no backward-arc due to (a). Since
single-source shortest paths in directed acyclic graphs can be com-
puted in O(|V ′ | + |A′ |) [5] , we can compute a shortest path in
O(n4) steps. Altogether, we obtain the following.

Theorem 4.4. An optimal solution to FLP-CRCA can be computed
in O(n5) steps.

In practice, constructing the graph and finding a shortest path
can be sped up significantly by doing both in parallel. For this, we
iterate over the nodes in the lexicographic ordering. When reaching
node (f ,u), we only check whether there exist outgoing arcs if node
(f ,u) was reached before, as those arcs do not belong to a shortest
path otherwise.

From a modeler’s perspective, this result is useful if the real
world street network can be modeled as a path. For example, when
deciding where to open pharmacies in rural areas, where multiple
villages are connected by the same road, and each village is too
small such that at least one pharmacy could economically operate
in each of them. Real world examples are mountain passes with
hotels or small villages along the road in Switzerland.

Besides the practical applicability, it is also interesting to analyse
the theoretical impact of the constraints on the computational
complexity on basic graph structures. In the next subsection, for
example, we study how the algorithm on paths can be extended to
cycles.

4.2 FLP-CRCA on Cycles
In order to solve the FLP-CRCA on cycles, we reduce it to multiple
subproblems that are similar to the FLP-CRCA on paths.

Consider an instance on a cycle G = (V ,E) and an optimal
solution (F ∗,Λ∗ : V → F ∗). Note that there exists an edge e∗ ∈ E
such that the above solution is also feasible for the FLP-CRCA on
the path Ge∗ = (V ,E\{e∗}). To see this, consider a forest within G
that connects each customer v ∈ V with its serving facility Λ∗(v)
via a shortest path. The missing edges in the forest are exactly those
that can be deleted from E.

For now, assume that we are given e∗. Additionally, assume
w.l.o.g. e∗ = {n, 1}, that is, Ge∗ is the path pe∗ = (1, . . . ,n). In the
best case, we can compute a shortest path in the auxiliary graphG ′e∗ ,
as defined in the previous subsection, that corresponds to (F ∗,Λ∗).
However, it is possible that the computed shortest path in G ′e∗ cor-
responds to a solution (F ′,Λ′ : V → F ′) that is not feasible for the
original instance on G, as customer n might prefer facility Λ′(1)
over Λ′(n) or customer 1 might prefer facility Λ′(n) over Λ′(1).
Hence, we want to restrict ourselves to paths in G ′e∗ that can be
“glued together” at the first tuple (f1,u1) and the last tuple (fk ,n)
such that the corresponding solution is feasible on G. For this, we
require that (f1,u1) can be a successor of (fk ,n) in accordance to
Definition 4.1. Unfortunately, this yields a shortest path problem in
which the feasible paths depend on the first chosen arc (s, (f1,u1)),
which is usually problematic. We resolve this issue by fixing a po-
tential last arc ((fk ,n), t) and removing all arcs (s, (f1,u1)) fromG ′e∗
for which (f1,u1) is not a feasible successor of (fk ,n). Then every
s − (fk ,n)-path in the resulting graph corresponds to a solution
that is feasible to the original problem. Moreover, the path corre-
sponding to the optimal solution (F ∗,Λ∗) is contained in the graph
resulting from fixing arc ((Λ∗(n),n), t) and can thus be found by
computing a shortest s − (Λ∗(n),n)-path.

Naturally, we neither know Λ∗(n), nor do we have e∗ in advance.
However, testing all possible combinations e∗ ∈ E and Λ∗(n) ∈ V ,
we are guaranteed to find one yielding an optimal solution. In
summary, we solve n2 shortest path problems, each requiring O(n4)
steps. Deleting arcs (s, (f1,u1)) fromG ′e for a fixed last arc ((fk ,n), t)
can be done on the fly in constant time for each arc while computing
the shortest path. As stated in the previous subsection, computing
an auxiliary graph G ′e requires O(n5) steps. Note that G ′{i,i+1} can
be computed efficiently fromG ′{i−1,i } by reusing most of the graph.
This leads us to the following statement.

Theorem 4.5. The FLP-CRCA on cycles can be solved in O(n6).
For a better understanding of the procedure for solving FLP-

CRCA-instances on cycles, consider the following example.

Example 4.6. Consider an FLP-CRCA instance on a cycle with
parameters as introduced in Figure 1; cf. Figure 2. When fixing arc
((3, 4), t), arc (s, (3, 3)) has to be removed since tuple (3, 3) is not a
feasible successor of (3, 4); cf. auxiliary graphG ′{4,1} in Figure 2. An
optimal solution of value 14 can be achieved by opening facilities 1
and 4. Note that, arc (s, (3, 3)) has also to be removed when fixing
arc ((4, 4), t): otherwise, customer 1 would deviate from facility 3
to facility 4 in the underlying cycle.

5 FIXED NUMBER OF FACILITIES
If the number of open facilities k ∈ N is fixed, we refer to the
problem as the k-FLP-CRCA. That is, we consider instances of the
FLP-CRCA and are only interested in optimal solutions where k
facilities are opened and k is not part of the input.

Lemma 5.1. Finding a feasible solution for k-FLP-CRCA on stars
is at least weakly NP-complete, already for k = 2.

Proof. The claim can be seen by a reduction from the weakly
NP-complete problem Partition [9]. In Partition, a finite setA is
considered; each element a ∈ A has a weight, sa ∈ Z+. The question
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FLP-CRCA-instance on a cycle with parameters Rv , rv ,Cv ,dv , cv as
considered in Figure 1:

1 2 3 43 1 2

3

Auxiliary Graph G ′{4,1} :

s t

1,1 1,2 1,3 1,4

2,2 2,3 2,4

3,3 3,4

4,4

5

11

1
8

2

2

28

9

Figure 2: An instance of FLP-CRCA on a cycle with deleted
edge e∗ = {4, 1}. Note that, the optimal solution found in
Figure 1 is not feasible here.

is whether A can be partitioned into two disjunct sets A′,A \ A′
such that

∑
a∈A′ sa =

∑
a∈A\A′ sa C B.

For a given Partition instance I = (A, (sa )a∈A), we construct a
k-FLP-CRCA instance with k = 2 on a star analogously to the proof
of Theorem 3.2. We introduce one leaf node for each element a ∈ A
and one center node ξ . We set da = ra = sa and Ca = Ra = B, for
a ∈ V \ {ξ } as well as dξ = Cξ = rξ = Rξ = 0. Again, we define
δe = 1 for all edges e ∈ E of the star

Note that, there exists a partitioningA′,A \A′ ofA that is a solu-
tion to instance I of Partition iff there exists a feasible solution
to constructed k-FLP-CRCA-instance I ′.

As a special case of FLP-CRCA, the problem is in NP. □

In the following, we introduce a dynamic program that solves
anyk-FLP-CRCA-instance in pseudo-polynomial time, thus proving
that the problem is indeed weakly NP-complete. To that end, we
fix a set of facilities and test in pseudo-polynomial time whether
we find a closest assignment satisfying the revenue- and demand-
constraints. Let F ∈ (V

k
)
be a fixed set of facilities.We first determine

for each customer v ∈ V the set of closest facilities Fv ⊆ F to
which v can be assigned to. Afterwards, we compute labels

b : {1, . . . , |V |} ×
?

f ∈F

({0, . . . ,Cf } × {0, . . . ,Rf }) → R ∪ {∞},
where b(i,C ′f1 ,R

′
f1
, . . . ,C ′fk ,R

′
fk
) states the minimum cost of assign-

ing customers {1, . . . , i} ⊆ V so that facility f ∈ F accumulates
demand of at most C ′f and revenue of at least R′f , that is the value
of the subproblem

min
Λ:[i ]→F




∑
f ∈F

cf +
∑
v∈[i ]

τ (v, Λ(v))

������������

Λ(v) ∈ Fv ∀v ∈ [i]∑
v∈Λ−1(f )

dv ≤ C′f ∀f ∈ F
∑

v∈Λ−1(f )
rv ≥ R′f ∀f ∈ F



. (1)

Note that, the labels with finite cost and parameters i = |V |, C ′f ∈
{0, 1, . . . ,Cf } and R′ = Rf for all f ∈ F are exactly the labels cor-
responding to feasible solutions in (1) of considered k-FLP-CRCA-
instance with fixed set of facilities F ; the cost of an optimal solution
for fixed F is b(|V |,Cf1 ,Rf1 , . . . ,Cfk ,Rfk ).

To compute the labels, we use the recursion formula
b(i,C ′f1 ,R

′
f1
, . . . ,C ′fk ,R

′
fk
)

= min
fj ∈Fi
{b(i − 1, . . . ,C ′fj − di ,R

′
fj
− ri , . . . ,C ′fk ,R

′
fk
) + τ (i, fj )}

together with the base values

b(0,C ′f1 ,R
′
f1
, . . . ,C ′fk ,R

′
fk
) =




∑
f ∈F

cf , if C ′f ≥ 0, R′f ≤ 0 ∀f ∈ F

∞, otherwise.
This leads to the following result.

Theorem 5.2. The k-FLP-CRCA is weakly NP-complete and can
be solved in O(( |V |k ) ·k · |V | ·∏f ∈F (Cf ·Rf )) steps by using the above
dynamic program.

Proof. We show that the values computed by the recursion
formula are equal to the values of the subproblems (1).

For the base values, assigning no customers leaves us with the
opening costs

∑
f ∈F cf . Furthermore, assigning no customers meets

the capacity- and revenue-constraints of subproblem (1) iff C ′f ≥ 0
and R′f ≤ 0 holds for all f ∈ F .

When assigning customer i to a fixed facility f ′ ∈ Fi , the mini-
mum cost for assigning [i] and respecting capacities and revenues
(C ′f ,R′f )f ∈F in subproblem (1) is given by

τ (i, f ′) + min
Λ∈P



∑
f ∈F

cf +
∑

v ∈[i−1]
τ (v,Λ(v))



,

with

P =




Λ : [i − 1] → F

����������������������

Λ(v) ∈ Fv ∀v ∈ [i − 1]∑
v ∈Λ−1(f )

dv ≤ C ′f ∀f ∈ F \ { f ′}
∑

v ∈Λ−1(f ′)
dv ≤ C ′f ′ − di
∑

v ∈Λ−1(f )
rv ≥ R′f ∀f ∈ F \ { f ′}

∑
v ∈Λ−1(f ′)

rv ≥ R′f ′ − ri




,

which is by induction exactly the value of
b(i − 1, . . . ,C ′f ′ − di ,R′f ′ − ri , . . . ,C ′fk ,R

′
fk
) + τ (i, f ′).

Taking the minimum cost over all f ′ ∈ Fi yields the optimal assign-
ment, which proves the correctness of the recursion formula.

For each set of facilities F ∈ (V
k
)
, computing the closest facilities

Fi ⊆ F for a customer i ∈ V can be done inO(k) steps if we compute
all distances in a preprocessing step. Computing a label requires
comparing |Fi | ≤ k values and can thus be done in O(k) steps. For
every set of facilities F ∈ (V

k
)
, we compute |V | · ∏f ∈F (Cf · Rf )

many labels, which yields the time-complexity stated above.
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The weak NP-completeness of the k-FLP-CRCA follows to-
gether with Lemma 5.1. □

Thus, as in the general Facility Location Problem, the FLP-
CRCA is easier to solve if the number of open facilities is fixed.
Note that this result is independent of the underlying network.

6 CONCLUSION
We showed that Facility Location Problems with Capacities,
Revenue, and Closest Assignments (FLP-CRCA) are already
computationally intractable if the underlying graph forms a star
- contrary to the famous Facility Location Problem, which is
known to be tractable on trees [6]. On paths and cycles, however,
the FLP-CRCA turns out to be computationally tractable - unlike
Capacitated Facility Location Problems. This discrepancy is
caused by the closest assignment property, which brings a special
structure to the solutions for FLP-CRCA-instances. Furthermore,
we showed that, if the number of open facilities is fixed, the FLP-
CRCA is weakly NP-complete for any underlying graph class. All
results presented here also hold for Facility Location Problems
with Closest Assignments and either capacities or revenues.

Further work includes the study of approximation algorithms
and analysing the complexity of further graph classes.
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ABSTRACT
In this paper, we help humanitarian organizations provide service
via mobile facilities (MFs) to migrating refugees, who attempt to
cross international borders. Over a planning horizon, we aim to opti-
mize number and routes and relocations of the MFs over a planning
horizon. The problem is represented on a network where several
refugee groups relocate in their predetermined paths throughout
the periods. To incorporate continuity of service, each refugee group
should be served at least once every fixed consecutive periods via
capacitated MFs. We aim to minimize the total cost, consisting of
fixed, service provision, and MF relocation costs, while ensuring
the service continuity requirement. We formulate a mixed integer
linear programming (MILP) model for this problem. We develop a
matheuristic and an accelerated Benders decomposition algorithm
as an exact solution method. The proposed model and solution
methods are investigated over instances we extracted from the 2020
Honduras migration crisis.

Keywords: humanitarian logistics; capacitated mobile facility loca-
tion; mobile demand; en route refugees; Benders decomposition;
matheuristic

1 INTRODUCTION
Migration, caused by worldwide economic, political, social, and
environmental unfavorable conditions, has become a global phe-
nomenon. It is defined as the movement of people from one place to
another with a long-run settling purpose [18]. According to the UN
Refugee Agency [31], a refugee is someone who has been forced to
leave his or her home country because of violence, famine, or natu-
ral disasters. The United Nations High Commissioner for Refugees
(UNHCR) reported that about 65.6, 79.5, and 82.4 million individuals

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th 
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen, 
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

were forcibly displaced as refugees during 2017, 2019, and 2020,
respectively [30].

Refugees are prone to several health risks. They are highly vulnera-
ble to infectious diseases [32] and are often exposed to traumas due
to poor living conditions and forced displacements [8]. According
to a survey by Morina et al. [21], post-traumatic stress and anxiety
are the most prevalent mental disorders among refugees. Besides
psychological problems, refugees also suffer from physical traumas.
Comellas et al. [8] emphasizes that the somatic distress associated
with functional disabilities warrants more attention in both studies
and practice. Clearly, providing medical care, nutrition, and shelter
alleviates the difficulties of lengthy and long-lasting displacement
for refugees.

In recent years, Mobile Facilities (MFs) have been frequently uti-
lized in providing service for an increasing number of transiting
refugees. As an example, we can consider the 2015 refugee crisis,
where according to Shortall et al. [25], about 850,000 refugees and
asylum seekers moved to Greece in 2015. With the purpose of pro-
viding health service, the “Doctors of the World" established the
refugee ferry project and provided primary health care on-board a
commercial ferry. As another example, Médecins Sans Frontieres
(MSF; Doctors Without Borders) opened a mobile clinic on the
Serbia-Hungary border and treated almost 100 people each day.
This was while about 2,000 people crossed the border every day
[13]. These examples underline the significance of providing mobile
services such as basic health care and relief item delivery.

In this paper, we focus on the provision of various services includ-
ing food, medicine, or other relief items to transiting refugees by
means of MFs. We aim to support decision making while operating
the services efficiently, by optimizing the number, locations, and
re-locations of the MFs over time. While doing so, we consider
the capacities of the facilities and the service needs as well. We
represent the problem on a directed network over several time peri-
ods such that the refugee groups entering the network in different
periods follow distinct paths defined over the nodes and arcs of
the network toward their destination nodes. Meanwhile, the MFs
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relocate on the nodes to provide services to the refugee groups at
the same node and time period, depending on their service capaci-
ties. The service provision for refugee groups should be recurrent
and the goal is to serve each refugee group at least once every
fixed number of consecutive time periods, that is determined by
the service provider, in order to maintain continuity of service over
time.

In section 2, we provide a review of the related literature. We de-
fine the MCM-FLP-MD formally in section 3 and provide a mixed
integer linear programming (MILP) model. In section 4, we de-
velop two alternative solution methods for the problem: a Network
Decomposition Matheuristic (NDM) and an accelerated Benders
decomposition (BD) approach as an exact solution method. Section
5 presents computational results. Finally, section 6 concludes with
remarks and future work directions.

2 LITERATURE REVIEW
Our problem falls into the broad category of Facility Location Prob-
lems (FLPs). Such a problem decides where to locate facilities and
how to allocate clients while minimizing the costs of serving them
[19]. According to Farahani and Hekmatfar [10], FLPs have essen-
tially four components: 1) customers, 2) facilities, 3) a network
where customers and facilities are located, and 4) a metric that
represents the travel time or distance among customers and facili-
ties. Our focus is mainly on the Mobile Facility Location Problem
(MFLP) and Mobile Facility Routing Problem (MFRP), where MFs
can re-position on a network. The MFLP has increasingly gained
researchers’ attention mainly because of its applicability in social
outreach activities. Recent surveys of MFLP in health care systems
and humanitarian logistics include Afshari and Peng [1], Ahmadi-
Javid et al. [2], Song et al. [26], and Nasrabadi et al. [22]. The MFRP
was addressed by [14] with the aim of maximizing the served de-
mand via mobile fleets over a time horizon. The authors proposed
approximate solution methods for their proposed mixed integer
program and showed that although the problem is NP-Hard, it is
polynomially solvable for the single facility case. Later on, Halper
et al. [15] introduced an integer programming formulation forMFLP
and suggested a decomposition algorithm for the formulation fol-
lowed by local neighborhood search heuristics. Most studies of
MFLP aim to minimize the total distance traveled by the facilities,
while all demand is served [11]. On the other hand, Bélanger et al.
[4] discussed recent optimization models for location, relocation,
and dispatching of medical MFs such as ambulances. The authors
noted that the equity and fairness metrics have recently become
of highest importance in this context. Our problem inherently cap-
tures these metrics since we define an identical service frequency 𝜏
to cover the needs of all refugees uniformly.

Facility capacities have been ignored in most MFLP studies. Ragha-
van et al. [23] studied the capacitated version of the MFLP (CM-
FLP) where facilities may move only once, and clients travel to
the facilities. They developed a branch-and-price algorithm and
two heuristic algorithms for this problem. Our problem extends
this study in terms of multi-period planning and the continuity of
service frequency that is explicitly accounted for.

In addition to the mobility of facilities, we focus on the mobility of
demand as well. We see that demand mobility has been captured
in the flow-interception location problem (FILP) in the literature.
In fact, the single-period FILP was initially studied by Hodgson
[16, 17] and Berman [6]. The objective of FILP is to find locations for
facilities to maximize the coverage of demand flow. Applications of
the flow-demand coverage problem lie mostly in urban areas, where
providing a service only once is sufficient to cover a customer’s
requirements, as opposed to our case. Berman [7] studied the FILP
for customers who travel in a network, not just for the purpose of
receiving service. The author divided the customers into stationary
and mobile types and considered the existence of both demand
types in their formulations. Zeng et al. [33] introduced an “integer-
friendly" generalized formulation for the flow-interception model,
which can solve several deterministic flow-interception problems.
As an extension, the multi-period FILP was introduced by Sterle
et al. [27], where some portable facilities intercept the demand flow,
and various objectives such as maximizing the intercepted demand
or minimizing the relocation costs are inspected.

Most objective functions focus onminimizing fixed or variable costs,
or total distance or travel time, or maximizing total benefit under
demand coverage. Also, the mobility of both facilities and demand
followed by periodic services has been addressed scarcely in the
literature. Among solution techniques, heuristics are prevailing
solution methods suggested for the FLP and MFLP; however, we
provide an exact solution method in addition to a heuristic solution
approach. To the best of our knowledge, the MCM-FLP-MD with
periodic service provision is introduced for the first time in this
study.

3 PROBLEM DEFINITION
In this section, we provide details of the MCM-FLP-MD by first
explaining its key elements, then followed by formulating an MILP
model for the problem. This problem is set on a connected graph
𝐺 = (𝑉 ,𝐴), where node set 𝑉 and 𝐴 indicate locations of interest
and the roads connecting them, respectively. Refugee groups follow
predetermined paths on the network beginning from a source node
and ending at a destination node. Each arc on each path is defined
in the following way: it takes only one time period to move along
the arc according to a refugee group’s transportation mode, i.e., by
walking or by a vehicle.

We denote the set of paths by 𝑃 , which is w.l.o.g. finite. For each path
𝑝 ∈ 𝑃 , 𝑙𝑝 and 𝑛𝑝𝑘 represents the number of nodes, and 𝑘𝑡ℎ node
on the path, respectively. For instance, 𝑛𝑝,1 and 𝑛𝑝,𝑙𝑝 denote the
origin and destination nodes of path 𝑝 , respectively. Every period,
each refugee group moves from a node to the next node along its
path. More than one refugee group may follow the same path by
entering the path in different periods.

Refugees typically move in groups, and follow a path that is de-
termined at the beginning of their trip. Refugees who enter the
network in the same period and follow the same path are assumed
to form one refugee group 𝑟 ∈ 𝑅 in our study. We assume the hu-
manitarian organizations that provide services can predict these
paths for planning purposes [12, 28]. We denote the path traversed
by some refugee group 𝑟 ∈ 𝑅 by 𝑝𝑟 ∈ 𝑃 , and the time period when
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they enter the path by 𝑒𝑟 ∈ 𝑇 , where 𝑇 is the set of periods on
the planning horizon and each time period can stand for a single
day. The length of the planning horizon is determined such that all
refugee groups will leave the network by period |𝑇 | +1. Considering
the path lengths and time periods when refugee groups enter the
network, we note that it is important to determine |𝑇 | precisely to
avoid unnecessary variables. Accordingly, we use Equation (1) to
calculate |𝑇 |.

𝑇 = {1, ..., |𝑇 |} , |𝑇 | = max
𝑟 ∈𝑅
{𝑙𝑝𝑟 + 𝑒𝑟 − 1} (1)

Let 𝑑𝑟 represent the demand level of refugee group 𝑟 ∈ 𝑅, which
shows their population size. To guarantee demand satisfaction
under limited capacities of MFs, a refugee group can be served
simultaneously by multiple MFs at a node. For continuity of service,
the whole population of each refugee group must be served at least
once and could partially be served several times every consecutive
𝜏 periods.

𝑀 represents the set of available MFs. Each MF 𝑚 ∈ 𝑀 has a
capacity Δ𝑚 , indicating maximum number of refugees that facility
𝑚 can serve in a single period. Not all MFs need to be used in a
solution. Thus, |𝑀 | is an upper bound on the number of required
MFs and the model decides the number of MFs to be utilized based
on service requirements. Recruited MFs can enter the network at
any time. The entrance point of an MF is the first node where it
should provide service at.

State of being at node 𝑖 ∈ 𝑉 in period 𝑡 ∈ 𝑇 is represented by “(𝑖, 𝑡)
node-time pair" for both refugees andMFs. The process of providing
service via an MF𝑚 ∈ 𝑀 at node-time pair (𝑖, 𝑡) is referred to as a
‘service act’. A solution to the problem consists of a list of service
acts for each recruited MF. In each time period, Every MF can just
show up at one node-time pair and if it provides service at that
node, it incurs a service act cost. Indeed, each service act of an MF
occurs by the presence of that MF and at least one refugee group
at a specific node-time pair. Finally, the objective function of this
problem comprises three terms: 1) the total fixed cost of utilizing
the MFs, 2) the total operating costs associated with the service acts,
and 3) the total transportation cost associated with the relocation
of MFs on the network.

3.1 Mathematical Model
We propose the following MILP to formulate the MCM-FLP-MD.

Sets:

𝑉 Set of nodes
𝑃 Set of paths
𝑅 Set of refugee groups entering the network
𝑀 Set of potential mobile facilities
𝑇 Set of time periods

Parameters:

𝑑𝑟 Population of refugee group 𝑟 ∈ 𝑅
𝑝𝑟 Path traversed by refugee group 𝑟 ∈ 𝑅 (𝑝𝑟 ∈ 𝑃 )
𝑒𝑟

Time period in which refugee group 𝑟 ∈ 𝑅 enters path 𝑝𝑟
(𝑒𝑟 ∈ 𝑇 )

𝑙𝑝 Number of nodes on path 𝑝 ∈ 𝑃
𝑛𝑝𝑘 𝑘𝑡ℎ node on path 𝑝 ∈ 𝑃 where 𝑘 = 1, ..., 𝑙𝑝
Δ𝑚 Service capacity for mobile facility𝑚 ∈ 𝑀
𝑓𝑚 Fixed cost of using mobile facility𝑚 ∈ 𝑀
𝑜𝑚 Service act operating cost for mobile facility𝑚 ∈ 𝑀
𝑐𝑖 𝑗 Traveling cost from node 𝑖 ∈ 𝑉 to node 𝑗 ∈ 𝑉
𝜏 Service frequency level in terms of number of time periods

Decision Variables:

𝐴𝑖𝑟𝑡
Fraction of population of refugee group 𝑟 ∈ 𝑅 who are planned
to receive service at node 𝑖 ∈ 𝑉 in period 𝑡 ∈ 𝑇

𝑆𝑖𝑚𝑡
1, if mobile facility𝑚 ∈ 𝑀 provides service at node 𝑖 ∈ 𝑉 in
period 𝑡 ∈ 𝑇 ; 0, otherwise

𝑋𝑖 𝑗𝑚𝑡

1, if mobile facility𝑚 ∈ 𝑀 is located at node 𝑖 ∈ 𝑉 in period
𝑡 ∈ 𝑇 and at node 𝑗 ∈ 𝑉 in period 𝑡 + 1; 0, otherwise (Since
there is no refugee group in the network in 𝑡 = |𝑇 | + 1, MFs
remain at their nodes in between 𝑡 and 𝑡 + 1 where 𝑡 = |𝑇 |)

𝑌𝑚 1, if mobile facility𝑚 ∈ 𝑀 is used; 0, otherwise

MILP Mathematical Model:
min

∑
𝑚∈𝑀

(𝑓𝑚𝑌𝑚 +
∑
𝑖∈𝑉

∑
𝑡∈𝑇

𝑜𝑚𝑆𝑖𝑚𝑡 +
∑
𝑖∈𝑉

∑
𝑗∈𝑉

∑
𝑡∈𝑇

𝑐𝑖 𝑗𝑋𝑖 𝑗𝑚𝑡 ) (2)

subject to

𝜏−1∑
𝑡
′
=0

𝐴(𝑛
𝑝𝑟 ,𝑞+𝑡′ +1 ),𝑟 ,(𝑒𝑟 +𝑞+𝑡

′ ) ≥ 1 ∀𝑟 ∈ 𝑅, 0 ≤ 𝑞 ≤ 𝑙𝑝𝑟 − 𝜏 (3)

∑
𝑚∈𝑀

Δ𝑚𝑆𝑖𝑚𝑡 ≥
∑
𝑟∈𝑅

𝑑𝑟𝐴𝑖𝑟𝑡 ∀𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇 (4)

𝑆𝑖𝑚𝑡 ≤
∑
𝑗∈𝑉

𝑋𝑖 𝑗𝑚𝑡 ∀𝑖 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (5)

∑
𝑗∈𝑉

𝑋 𝑗𝑖𝑚𝑡 ≤
∑
𝑗∈𝑉

𝑋𝑖 𝑗𝑚 (𝑡+1) ∀𝑖 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 = 1, ..., |𝑇 | − 1 (6)

∑
𝑖∈𝑉

∑
𝑗∈𝑉

𝑋𝑖 𝑗𝑚𝑡 ≤ 𝑌𝑚 ∀𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (7)

𝐴𝑖𝑟𝑡 ≥ 0 ∀𝑖 ∈ 𝑉 , 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (8)

𝑆𝑖𝑚𝑡 ∈ {0, 1} ∀𝑖 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (9)

𝑋𝑖 𝑗𝑚𝑡 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (10)

𝑌𝑚 ∈ {0, 1} ∀𝑚 ∈ 𝑀 (11)

The objective function (2) minimizes the total costs consisting of the
MF establishment costs, service act costs and relocation costs. Con-
straints (3) guarantee that each refugee group is served at least once,
and could partially be served multiple times during consecutive
𝜏 periods. Constraints (4) ensure that the total capacity provided
by MFs at each node-time pair satisfies the fractional demand of
refugee groups who are planned to receive service. Constraints (5)
indicate that an MF can provide service at a node-time pair only if
it is located there. Constraints (6) define flow conservation of MFs
among the nodes of the network from one period to the next. Con-
straints (7) determine whether an MF is used. Finally, constraints
(8)-(11) define the domains of the decision variables.

4 SOLUTION METHODS
In this section, we introduce two solution methods to solve the
MCM-FLP-MD.We first develop aNetworkDecompositionMatheuris-
tic (NDM), which requires relatively short run time compared to
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run times of our MILP formulation. Second, we develop an acceler-
ated Benders decomposition (BD) algorithm as an exact solution
method. We describe the NDM and the BD in detail in sections 4.1
and 4.2, respectively.

4.1 Network Decomposition Matheuristic
The Network Decomposition Matheuristic (NDM) algorithm aims
to manage the complexity associated with variables having multiple
indices by decomposing the problem based on paths. Each path
𝑝 ∈ 𝑃 traversed by some refugee groups, corresponds to a smaller
network and forms a subproblem for MCM-FLP-MD, referred to
as (𝑆𝑃𝑝 ). Instead of solving the problem over the entire network,
NDM solves 𝑛 ≤ |𝑃 | subproblems independently, each having con-
siderably tighter solution space. Results of each subproblem creates
a partial solution to the original problem, independent of other
subproblems. Aggregation of all solution pieces forms the solution
associated with the entire network.

For each subproblem (𝑆𝑃𝑝 ), 𝑅𝑝 denotes the set of refugee groups
that migrate along path 𝑝 . Also, the set of MFs required for serving
𝑅𝑝 on path 𝑝 ∈ 𝑃 is referred to as𝑀𝑝 and the minimum number of
these MFs is calculated by Equation (12).

|𝑀𝑝 | =
⌈∑

𝑟 ∈𝑅𝑝 𝑑𝑟
Δ𝜏

⌉
(12)

While solving the 𝑆𝑃𝑝 , insufficient |𝑀𝑝 | may lead to infeasible
solutions. In such cases, we can simply increment |𝑀𝑝 | by one unit
and solve the (𝑆𝑃𝑝 ) again until we reach a feasible solution. The
planning horizon for each subproblem is kept the same as that of the
original problem to facilitate the consolidation of the subproblem
solutions. The mathematical model corresponding to subproblem
𝑆𝑃𝑝 given below, is a simplified version of the MILP for the original
problem where the 𝑌𝑚 variables are excluded. By defining the sets
and parameters independently for each path, the problem size is
reduced significantly.

New Sets:
𝑉 𝑝 Set of nodes of the network that lie on path 𝑝 ∈ 𝑃
𝑅𝑝 Set of refugee groups entering path 𝑝 ∈ 𝑃
𝑀𝑝 Set of recruited mobile facilities to provide service along

path 𝑝 ∈ 𝑃
Mathematical Model:

min
∑

𝑖∈𝑉𝑝

∑
𝑚∈𝑀𝑝

∑
𝑡∈𝑇

𝑜𝑚𝑆𝑖𝑚𝑡 +
∑

𝑖∈𝑉𝑝

∑
𝑗∈𝑉𝑝

∑
𝑚∈𝑀𝑝

∑
𝑡∈𝑇

𝑐𝑖 𝑗𝑋𝑖 𝑗𝑚𝑡 +
∑

𝑚∈𝑀𝑝

𝑓𝑚 (13)

subject to

𝜏−1∑
𝑡
′
=0

𝐴(𝑛
𝑝,𝑞+𝑡′ +1 ),𝑟 ,(𝑒𝑟 +𝑞+𝑡

′ ) ≥ 1 ∀𝑟 ∈ 𝑅𝑝 , 0 ≤ 𝑞 ≤ 𝑙𝑝 − 𝜏 (14)

∑
𝑚∈𝑀𝑝

Δ𝑚𝑆𝑖𝑚𝑡 ≥
∑

𝑟∈𝑅𝑝
𝑑𝑟𝐴𝑖𝑟𝑡 ∀𝑖 ∈ 𝑉𝑝 , 𝑡 ∈ 𝑇 (15)

𝑆𝑖𝑚𝑡 ≤
∑
𝑗∈𝑉𝑝

𝑋𝑖 𝑗𝑚𝑡 ∀𝑖 ∈ 𝑉𝑝 ,𝑚 ∈ 𝑀𝑝 , 𝑡 ∈ 𝑇 (16)

∑
𝑗∈𝑉𝑝

𝑋 𝑗𝑖𝑚𝑡 ≤
∑
𝑗∈𝑉𝑝

𝑋𝑖 𝑗𝑚 (𝑡+1) ∀𝑖 ∈ 𝑉𝑝 ,𝑚 ∈ 𝑀𝑝 , 𝑡 = 1, ..., |𝑇 | − 1 (17)

𝐴𝑖𝑟𝑡 ≥ 0 ∀𝑖 ∈ 𝑉𝑝 , 𝑟 ∈ 𝑅𝑝 , 𝑡 ∈ 𝑇 (18)

𝑆𝑖𝑚𝑡 ∈ {0, 1} ∀𝑖 ∈ 𝑉𝑝 ,𝑚 ∈ 𝑀𝑝 , 𝑡 ∈ 𝑇 (19)

𝑋𝑖 𝑗𝑚𝑡 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑉𝑝 ,𝑚 ∈ 𝑀𝑝 , 𝑡 ∈ 𝑇 (20)

The NDM procedure is described in detail in Algorithm 1. In this
algorithm, we initially set both the number of MFs and the overall
objective value to 0. Then, for each path 𝑝 ∈ 𝑃 , we determine
the refugee groups traversing path 𝑝 and calculate the required
MFs to serve on path 𝑝 based on Equation (12). After solving the
subproblem 𝑆𝑃𝑝 , we update the list of MFs and the objective value
of the problem solved up to that point.

Algorithm 1 NDM Framework
1: 𝑁𝑁𝐷𝑀

𝑀𝐹 ,𝑍𝑁𝐷𝑀 ← 0. // Total number of MFs to be used in the final solution and final objec-
tive function value.

2: for 𝑝 ∈ 𝑃 do:
3: if 𝑝 ∈ {𝑝𝑟 ; ∀𝑟 ∈ 𝑅 } then: // Checking if the path 𝑝 is traversed by refugee groups. If

true, we solve 𝑆𝑃 .
4: 𝑅𝑝 ← {𝑟 ∈ 𝑅 : 𝑝𝑟 = 𝑝 } // Defining 𝑅𝑝 .
5: Calculate |𝑀𝑝 | using Equation (12). // Calculating number of MFs to be used in path 𝑝 .
6: while True do: // Checking feasibility of the solution of 𝑆𝑃𝑝 considering |𝑀𝑝 |.
7: 𝑀𝑝 ← {𝑁𝑁𝐷𝑀

𝑀𝐹 + 1, ..., 𝑁𝑁𝐷𝑀
𝑀𝐹 + |𝑀𝑝 | }. // Updating the elements of set𝑀𝑝

to differentiate the MFs of subproblems.
8: Solve MILP for the subproblem 𝑆𝑃𝑝 and obtain 𝑍 (𝑆𝑃𝑝 ) if 𝑆𝑃𝑝 is feasible.
9: if 𝑆𝑃𝑝 is infeasible then:
10: |𝑀𝑝 | ← |𝑀𝑝 | + 1.
11: continue
12: end if
13: break
14: end while
15: 𝑁𝑁𝐷𝑀

𝑀𝐹 ← 𝑁𝑁𝐷𝑀
𝑀𝐹 + |𝑀𝑝 | // Updating the number of MFs used up to this iteration.

16: 𝑍𝑁𝐷𝑀 ← 𝑍𝑁𝐷𝑀 +𝑍 (𝑆𝑃𝑝 ) // Updating the costs of the network up to this iteration.
17: end if
18: end for
Output: 𝑁𝑁𝐷𝑀

𝑀𝐹 ,𝑍𝑁𝐷𝑀 // Return the number of MFs and the objective value of the solution of
NDM.

4.2 Benders Decomposition Algorithm
The Benders Decomposition (BD) method was introduced in the
early 1960s as a partition-based solution strategy for large-scale
MILPs [5]. BD is successfully applied in diverse fields [24]. In the
field of transportation, Costa [9] presented a review of BD applica-
tions on network design problems, where integer and continuous
variables are mainly associated with arc selection and commodity
flow amounts, respectively. The author indicated that BD outper-
forms some traditional techniques such as Branch-and-Bound or
Lagrangian Relaxation for network design problems because of
their special structure.

In BD, the problem is divided into a restricted master problem (RMP)
and a linear subproblem (LSP). The RMP consists of constraints
that contain pure integer variables. The LSP, is obtained via fixing
the values of integer variables based on the solution of the RMP.
Iteratively, the solution of the RMP is used in the dual of the LSP,
referred to as dual subproblem (DSP) and the solution of the DSP
generates Benders feasibility or optimality cuts for the RMP. This
procedure is continued until a stopping criterion is met. The LSP,
DSP, and RMP models associated with our mathematical model are
introduced next.

LSP: (Contains the continuous decision variables 𝐴𝑖𝑟𝑡 )

min 0 (21)

Session 5C: location problems

INOC 2022 174 Aachen,7–10 June 2022



A Capacitated Mobile Facility Location Problem with Mobile Demand: Recurrent Service Provision to En Route Refugees INOC 2022, June 7-10 2022, Aachen, Germany

subject to

𝜏−1∑
𝑡
′
=0

𝐴(𝑛
𝑝𝑟 ,𝑞+𝑡′ +1 ),𝑟 ,(𝑒𝑟 +𝑞+𝑡

′ ) ≥ 1 ∀𝑟 ∈ 𝑅, 0 ≤ 𝑞 ≤ 𝑙𝑝𝑟 − 𝜏 (22)

∑
𝑚∈𝑀

Δ𝑚𝑆
𝜃
𝑖𝑚𝑡 ≥

∑
𝑟∈𝑅

𝑑𝑟𝐴𝑖𝑟𝑡 ∀𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇 (23)

𝐴𝑖𝑟𝑡 ≥ 0 ∀𝑖 ∈ 𝑉 , 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (24)

In the LSP, 𝑆𝜃𝑖𝑚𝑡 are defined to be equal to the values of 𝑆𝑖𝑚𝑡 vari-
ables of the RMP at iteration 𝜃 . Since the 𝐴𝑖𝑟𝑡 do not contribute to
the objective function of the problem, the objective function of the
LSP is set to 0.

Dual Decision Variables: (Corresponding to const. (22) and (23))
𝑢𝑟𝑞 ∀𝑟 ∈ 𝑅, 𝑞 = 0, ..., 𝑙𝑝𝑟 − 𝜏
𝑣𝑖𝑡 ∀𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇

DSP: (Dual of the LSP model)
max

∑
𝑟∈𝑅

∑
𝑞=0,...,𝑙𝑝𝑟 −𝜏

𝑢𝑟𝑞 −
∑
𝑖∈𝑉

∑
𝑚∈𝑀

∑
𝑡∈𝑇

Δ𝑚𝑆
𝜃
𝑖𝑚𝑡 𝑣𝑖𝑡 (25)

subject to ∑
𝑚𝑎𝑥 {0,𝑘−𝜏 }≤𝑞≤𝑚𝑖𝑛{𝑘−1,𝑙𝑝𝑟 −𝜏 }

𝑢𝑟𝑞 − 𝑑𝑟 𝑣𝑛𝑝𝑟 𝑘 ,𝑒𝑟 +𝑘−1 ≤ 0 ∀𝑟 ∈ 𝑅, 𝑘 = 1, ..., 𝑙𝑝𝑟

(26)

𝑢𝑟𝑞 ≥ 0 ∀𝑟 ∈ 𝑅,𝑞 = 0, ..., 𝑙𝑝𝑟 − 𝜏
(27)

𝑣𝑖𝑡 ≥ 0 ∀𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇
(28)

We refer to the objective function of the DSP at iteration 𝜃 as𝑊 𝜃
𝐷𝑆𝑃 .

RMP: (Consists of pure binary variables and 𝜂 ≥ 0)

min
∑

𝑚∈𝑀
𝑓𝑚𝑌𝑚 +

∑
𝑖∈𝑉

∑
𝑚∈𝑀

∑
𝑡∈𝑇

𝑜𝑚𝑆𝑖𝑚𝑡 +
∑
𝑖∈𝑉

∑
𝑗∈𝑉

∑
𝑚∈𝑀

∑
𝑡∈𝑇

𝑐𝑖 𝑗𝑋𝑖 𝑗𝑚𝑡 + 𝜂 (29)

subject to

𝑆𝑖𝑚𝑡 ≤
∑
𝑗∈𝑉

𝑋𝑖 𝑗𝑚𝑡 ∀𝑖 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (30)

∑
𝑗∈𝑉

𝑋 𝑗𝑖𝑚𝑡 ≤
∑
𝑗∈𝑉

𝑋𝑖 𝑗𝑚 (𝑡+1) ∀𝑖 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 = 1, ..., |𝑇 | − 1 (31)

∑
𝑖∈𝑉

∑
𝑗∈𝑉

𝑋𝑖 𝑗𝑚𝑡 ≤ 𝑌𝑚 ∀𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (32)

𝑆𝑖𝑚𝑡 ∈ {0, 1} ∀𝑖 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (33)

𝑋𝑖 𝑗𝑚𝑡 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (34)

𝑌𝑚 ∈ {0, 1} ∀𝑚 ∈ 𝑀 (35)

𝜂 ≥ 0 (36)

The feasibility and optimality cuts are incorporated into the RMP
throughout the iterations according to Equations (37) and (38).

0 ≥
∑
𝑟∈𝑅

∑
𝑞=0,...,𝑙𝑝𝑟 −𝜏

𝑢𝜃𝑟𝑞 −
∑
𝑖∈𝑉

∑
𝑚∈𝑀

∑
𝑡∈𝑇

Δ𝑚𝑆𝑖𝑚𝑡 𝑣
𝜃
𝑖𝑡 “feasibility cut" (37)

𝜂 ≥
∑
𝑟∈𝑅

∑
𝑞=0,...,𝑙𝑝𝑟 −𝜏

𝑢𝜃𝑟𝑞 −
∑
𝑖∈𝑉

∑
𝑚∈𝑀

∑
𝑡∈𝑇

Δ𝑚𝑆𝑖𝑚𝑡 𝑣
𝜃
𝑖𝑡 “optimality cut" (38)

Proposition 4.1. The optimal value for 𝜂 is 0.

Proof. Since the optimal objective value of the LSP is 0, according
to the duality theory, optimal objective value of DSP must be 0.
This implies that we can directly 0 to the variable 𝜂. □

Proposition 4.2. Starting from any feasible solution, if𝑊 𝜃
𝐷𝑆𝑃 = 0

at an iteration 𝜃 , then the stopping criterion for our BD algorithm is
met and the solution of RMP in the corresponding iteration is optimal
solution of the original problem.

Proof. 𝑍𝑅𝑀𝑃 provides a lower bound (LB) for the optimal objec-
tive value. The term 𝑐𝑇𝑦 +𝑊 𝜃

𝐷𝑆𝑃 (where 𝑦 and 𝑐𝑇 represent the
binary variables (𝑆, 𝑋,𝑌 ) and their coefficients in the objective
function of the original problem, respectively), provides an upper
bound (UB). The algorithm stops when 𝐿𝐵 = 𝑈𝐵. We showed in
Proposition 4.1 that the optimal value for variable 𝜂 is 0. Letting
𝜂 = 0 implies 𝑍𝑅𝑀𝑃 = 𝑐𝑇𝑦. Therefore, we conclude that 𝐿𝐵 = 𝑈𝐵
and the algorithm stops, if𝑊 𝜃

𝐷𝑆𝑃 = 0 is obtained at any iteration
𝜃 . □

4.3 Improvements for the proposed BD
algorithm

Although BD benefits a powerful theory, the straightforward appli-
cation of classical BD is usually slow in convergence. In this section,
we applied two refinements on the proposed BD.

(1) Multi-cut implementation: At each iteration of the classic
BD, a single Benders cut is inserted to the RMP. However, the
multi-cut reformulation outperforms the single-cut approach
as it strengthens the RMP more quickly [24]. So, we generate
multiple Benders cuts by solving DSP several times at a single
iteration and insert those cuts simultaneously into the RMP.

(2) Linear RMP Relaxation: Solving the RMP is usually time
consuming and solving it to optimality in the initial iterations
is not necessary. McDaniel and Devine [20] showed that valid
Benders cuts can be generated by the solutions to the LP re-
laxation of RMP. We solve the linear relaxation of the RMP
(LR-RMP) at early iterations of the algorithm. By applying this
approach, the RMP is enriched with high-quality Benders cuts.

5 COMPUTATIONAL ANALYSIS

We implemented the MILP formulation and solution methods on
the real-life migration crisis, took place in Honduras in late 2020,
when groups of refugees began migrating from Central America,
with the hope of reaching Mexico and the USA, often on foot and
in groups known as “caravans". Guatemalan migration officials es-
timated that about 6,000 migrants, most of them Honduran, were
corralled between Chiquimula and the border with Honduras. An-
other caravan of about 4,000 refugees, mostly Honduran migrants,
had camped out near the village of Vado Hondo in Guatemala. The
migrants were traveling by a combination of walking, hitchhiking,
and bus [3, 29].

In section 4, we proposed two solution methods for the MCM-FLP-
MD. In addition to these solution methods, we directly solved the
instances via the proposed MILP formulation. We implemented the
MILP formulation and the two proposed solution methods in the
Python programming environment, Spyder Anaconda IDE 4.1.5
platform and solved them using the Pyomo optimization package
and the solver CPLEX 12.10.0.. All experiments are conducted on
a workstation with 64-bit operating system, Xenon(R) 2.60 GHz

Session 5C: location problems

INOC 2022 175 Aachen,7–10 June 2022



INOC 2022, June 7-10 2022, Aachen, Germany

CPU and 128 GB of RAM (18 cores and 36 processors). Considering
instance complexities and solution specifications, 0.01% and 0.02%
optimality gaps are allowed for the medium- and large-sized in-
stances. Moreover, all instances are solved with a 6-hour (21600s)
time limit. Due to relatively short run times associated with small-
sized instances, we applied the accelerated BD procedure only to
medium- and large-sized instances.

According to Table 1, the MILP formulation is preferred for small-
sized networks with approximately 20 nodes and a time horizon of
about two weeks as it achieves optimal solutions quickly. Also, the
accelerated BD is preferred for medium-sized networks comprised
of approximately 30 nodes and with a time horizon of about 3 weeks.
Finally, the NDM is preferred when the instance sizes are large,
consisting of about 50 nodes or more and lasting for more than a
month. Finally, we observed a 2.6% objective value gap between
the NDM and MILP results among all 60 instances.

Instance Average run-time Average Obj. value ratio Solver mip Gap %
set NDM MILP BD NDM/MILP NDM/BD MILP/BD MILP BD
Small 24.8 118.2 - 1.017 - - - -

Medium 152.5 996.4 624.1 1.031 1.031 1 - -
Large 856.2 19095.2 12919.2 1.027 1.036 1.009 1.55 0.71

Table 1: Overall results corresponding to instance sets

6 CONCLUSION
In this paper, we studied a multi-period capacitated mobile facil-
ity location problem with mobile demands (MCM-FLP-MD). This
problem aims to provide recurrent humanitarian aid to en route
refugee groups during their migration in an effective manner using
capacitated Mobile Facilities (MFs). We proposed an MILP formula-
tion for the problem followed by two solution methods: a Network
Decomposition Matheuristic (NDM) and an accelerated Benders
decomposition (BD) approach as an exact solution method. Our
observations indicated that regarding tun times, the MILP formu-
lation, accelerated BD and NDM algorithm are most suitable for
solving small, medium, and large-sized instances, respectively.

A future research direction for this problem is to further improve
both the MILP model by incorporating suitable valid inequalities,
and the NDM algorithm in order to better utilize capacities of MFs
in the network. Also, incorporating uncertainties in the network, es-
pecially regarding the predetermined paths assigned to the refugees
and their displacement patterns is another research direction for
which stochastic dynamic programming can be investigated. Con-
structive heuristics and metaheuristic solution methods may also
be applicable for extensions of this problem.
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Location problem with interconnected facilities is a cost minimization problem deciding on which facility
nodes to open and how to allocate customers to open facilities, under an additional constraint that all open
facilities should be interconnected, i.e., neighboring open facilities should be within some radius r ≥ 0 from
each other. Interconnectivity between the facilities is an important feature for modeling communication
between sensors [6], or in the context of designing the radio networks [2]. What distinguishes our problem
from related ones studied in the literature under the common name of Generalized Steiner Tree-Star
problems (see, e.g., [4] and further references therein) is the cost function. There is a fixed cost associated
to opening a facility, and a cost for allocating a customer to an open facility. However, we do not incur
costs for the edges interconnecting the open facilities. This assumption can be explained by the nature of
such connection, informational, not physical, between facilities. We can further require facilities to serve
only customers within a radius R.

In this work, we consider two problem variants:

• the Median Problem with Interconnected Facilities (MPIF), and

• the Covering location Problem with Interconnected Facilities (CPIF).

Both problems have been introduced by [1]. For the former problem, we are bound to cover all customers
by open facilities, and we search for a subset of facilities to open so that the opening plus allocation cost
is minimized. For the latter problem, we incur a penalty for not covering a customer, and the goal is to
find a subset of facilities to open so that the sum of facility opening cost together with the penalties for
customers that remain uncovered is minimized. A feasible solution to the CPIF is shown in Figure 1.

We introduce new ways to model the MPIF and the CPIF problems by combining non-compact for-
mulations for connectivity, allocation, and coverage constraints. We first provide some theoretical insights
concerning the quality of lower bounds of such obtained formulations. We also provide an empirical com-
parison of these new models based on experiments conducted on a dataset from the literature. Finally, we
also conduct a sensitivity analysis discussing the major input properties that make some instances more
difficult to solve than others. Our results show that by developing tailored branch-and-cut algorithms,
we can outperform off-the-shelf methods provided by the commercial solver CPLEX.

Future research on these problems would be to find under which conditions the problems could be
solved in polynomial-time. In particular, what happens if the input network is very sparse (i.e., if it is a
tree or a cactus graph), as it is known that without the interconnectivity requirements such algorithms
exist for the p-median problem [3], [7]. Similarly, it is an interesting open question to find out whether
the MPIF or the CPIF are fixed parameter tractable as it was the case for some of the related network
design problems [5].
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Figure 1: Sample network of interconnected facilities with customers. We illustrate a CPIF solution in
which the black square represents the root node, triangles represent open facilities, and crosses stand for
uncovered customers. Colored circles represent customers covered by the facility of the same color.
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Extended Abstract
One of the most fundamental problems in location science is the (vertex) p-center problem (pCP) (see,
e.g., Laporte et al. [8]). In this problem we are given customer demand points and potential facility
locations. The task is to choose p of these locations to open a facility such that the maximum distance of
any customer demand point to its closest open facility is minimized. More formally, given an integer p,
a set of customer demand points I with cardinality |I| = n, a set of potential facility locations J of
cardinality |J | = m ≥ p and a distance dij from a customer demand point i to the potential facility
location j for every i ∈ I and j ∈ J , the task is to find a subset S ⊆ J with cardinality |S| = p of facilities
to open such that the maximum distance between a customer demand point and its closest open facility
is minimized, i.e., such that maxi∈I minj∈S{dij} is minimized.

The pCP was first mentioned in 1965 by Hakimi [6] and was shown to be NP-hard by Kariv and
Hakimi [7]. However, there are several applications of the pCP, in particular whenever it is critical that
at least one open facility can be reached quickly by each customer demand point. This is for example
the case for emergency service locations, such as ambulances or fire stations, and also relief actions in
humanitarian crisis.

In literature there are various integer programming (IP) formulations for the pCP. The classical
textbook formulation (see for example Daskin [4]) has bad linear programming (LP)-relaxation bounds
(see, e.g., Snyder and Chen [9]) and scalability issues, as there are many variables and constraints. As
a consequence, exact state-of-the-art approaches (see, e.g., Chen and Chen [2] and Contardo et al. [3])
for the pCP exploit the connection to the so-called set cover problem, by iteratively solving SCPs for
different input values.

Elloumi et al. [5] introduced a new IP formulation for the pCP in 2004. They proved that the lower
bound obtained by the LP-relaxation of their IP formulation is better than the one from the LP-relaxation
of the classical IP formulation. Also Çalık and Tansel [1] introduced a new IP formulation in 2013. They
also investigated the connection of their IP formulation to the one of [5] and showed that their formulation
yields the best LP-relaxation for the pCP so far. Çalık and Tansel also use their IP formulation within
an exact solver for the pCP.

We present a novel solution approach for the pCP that uses an IP formulation that can be viewed as
an projection from the classical formulation presented in Daskin [4]. This IP is solved with a branch-and-
cut, where cuts for customer demand points are iteratively generated. As a consequence this method is
suited for large scale instances, because it is not necessary that the complete distance matrix is kept in
memory.

Furthermore, we point out how our IP formulation can be strengthened with combinatorial information
in order to obtain a much tighter LP-relaxation compared to the LP-relaxation of the classical formulation
presented in Daskin [4]. This strengthening procedure utilizes a new way to use lower bound information in
order to obtain stronger cuts. We prove that the bound obtained by the LP-relaxation of our strengthened
IP formulation has the same quality as the best known bound in literature, which is based on a semi-
relaxation. Moreover, we also demonstrate how our formulation is connected to the set cover problem.

In addition to that, we conduct a computational comparison on instances from literature with up to
more than 700,000 customers and locations with state-of-the-art solution algorithms.
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ABSTRACT
In public transport planning, the operational costs are mainly de-
termined by the vehicle schedule. However, in the traditionally
sequential planning approach, vehicle scheduling is one of the last
problems that is considered. We therefore propose an integrated for-
mulation for line planning and vehicle scheduling problem, which
brings an appropriate approximation of the operational costs into
the first planning stages. We model the integrated problem as a
mixed-integer program and propose a heuristic solution approach.
Both approaches are tested on close-to real-world data sets from
the open source software framework LinTim.

1 INTRODUCTION
With growing urban areas, public transport can play an important
role in achieving sustainable mobility by consolidating demand
and reducing traffic. For being a viable alternative to individual
motorized transport modes, public transport has to be attractive for
the passengers, e.g., by offering frequent service and short travel
times, and economically viable for the operator. The tasks of finding
a public transport supply that is attractive for both passengers and
operators, is intricate and comprises various subproblems that are
closely interrelated. Some of the most important subproblems are
line planning, timetabling and vehicle scheduling, three problems
that are traditionally solved sequentially and in that order, see
[5, 6]. All three problems are extensively studied, see e.g., [2, 9, 15].
In recent years, the optimization potential arising when several
subproblems are considered in an integratedmanner has been under
research, e.g., in [8, 14].

One important aspect of integration is summarized in the con-
cept of the eigenmodel [16], i.e., to change the order in which the
subproblems are considered. In this paper, we combine the idea
of the eigenmodel and integrate several subproblems by consider-
ing line planning and vehicle scheduling simultaneously in order
to minimize the operational costs. Therefore, we construct lines,
i.e., paths in the infrastructure network that have to be operated
by one vehicle end-to-end, and arrange them into vehicle routes.
By refraining from using a fixed line pool, we allow for a larger
solution space. Additionally, we provide the possibility to create ve-
hicle schedules for a limited number of vehicles and vehicles with a
limited range such as electric vehicles. We provide a mixed-integer

∗This work is partially funded by DFG under grants SCHO 1140/8-2.

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th 
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen, 
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
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programming formulation for a restricted version of the integrated
line planning and vehicle scheduling problem and propose a fast
heuristic to solve close-to real-world instances. Additionally, our
approach can be used for creating line pools to serve as a basis for
further planning approaches.

Similar approaches in the literature include the transit route
network design problem which often comprises determining routes
with corresponding frequencies. Here, many of the approaches are
(meta-)heuristics or designed for very specific networks, see [7] for
an overview. An integrated model for line planning, timetabling
and vehicle scheduling is proposed in [12] but due to its size, it can
only be used for very small instances. In [11], a heuristic line pool
generation procedure from [4] is adapted to generate lines which
allow for cost-efficient vehicle schedules for the case of an undi-
rected public transport network and when no depot is considered.
A heuristic sequential approach for first creating a vehicle schedule
and then lines is presented in [10] where the goal is to maximize
the attractiveness for the passengers.

The remainder of the paper is structured as follows. Section 2
gives an overview on the classical sequential approach to public
transport planning. In Section 3, we present our model for the
integrated line planning and vehicle routing problem as well as a
short analysis. The restricted version with the correspondingmixed-
integer program and a heuristic solution approach are presented in
Section 4 and experimentally evaluated in Section 5. The paper is
concluded in Section 6.

2 SEQUENTIAL PLANNING PROCESS
As input we assume that a public transport network (PTN), i.e., a
digraph (V ,A), is given. Here, the nodes V represent stations and
the arcsA direct connections between them, such as roads or tracks.
As we optimize the operational costs of the public transport supply,
we assume that the passengers’ demand is given and their routes
in the PTN are fixed. For a simple path P in (V ,A) we denote by
A(P) the arcs of P and by α(P),ω(P) the first and last node of P ,
respectively. Similarly, we call for arcs a = (u,v) the incident nodes
α(a) = u and ω(a) = v .

For the classical line planning problem as described, e.g., in [15],
lower and upper frequency bounds f min

a ≤ f max
a , a ∈ A, are given

which guarantee that passengers can travel on their routes while
safety restrictions are respected. The goal is to find a set of lines,
i.e., paths in the PTN which adhere to the given bounds.

Definition 2.1. Let a public transport network (V ,A) with upper
and lower frequency bounds f min

a ≤ f max
a , a ∈ A, and a line pool,

i.e., a set of possible lines L0 be given. The line planning problem is
to find a subset L ⊂ L0 with frequencies f (l) ∈ N>0, l ∈ L, such
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that
f min
a ≤

∑
l ∈L:a∈A(l )

f (l) ≤ f max
a .

We call (L, f ) the corresponding line concept.

Obviously, the line pool L0 has a large influence on the line
concept and the quality of the public transport supply, especially
if it is too restrictive, see [4]. For the remainder of the paper, we
assume that lines have to be simple paths and start and end at
terminal stations V̄ ⊂ V but do not impose further restrictions.

During the timetabling stage, (periodic) times are assigned to
arrivals and departures at each station of each line, i.e., the events
are repeated periodically with a fixed period length T . The depen-
dencies between events are modeled as activities, which represent,
e.g., vehicles driving or dwelling, and transfers of passengers. Each
activity imposes a lower and an upper bound on the difference
of the corresponding event times. The resulting problem is the
well-known NP-hard periodic event scheduling problem, see [17].

However, for the remainder of the paper, we do not consider
headway constraints and assume that transfers between lines have
no restricting upper bound. Therefore, a feasible timetable can be
constructed easily by considering each line separately.

For a given timetable, a vehicle schedule is constructed with
the objective of minimizing the operational costs. We consider a
periodic vehicle scheduling problem where all vehicles start from
the same depot dep.

Definition 2.2. Let a public transport network (V ,A), a line con-
cept (L, f ) and a periodic timetable π with period lengthT be given.
A periodic vehicle schedule is a multiset of paths or (vehicle) routes
R such that
• each route r ∈ R is a concatenation of pairwise disjoint lines
l ∈ L and
• each line l ∈ L is contained in exactly f (l) vehicle routes.

The distance covered by a vehicle route r ∈ R is

dist(r ) =
∑
l ∈r

∑
a∈A(l )

dist(a) + dist(dep,α(r )) + dist(ω(r ), dep)

+
∑

l ,l ′consecutive
lines in r

dist(ω(l),α(l ′))

where dist(a) is the distance from α(a) to ω(a). We call

dist(R) =
∑
r ∈R

dist(r )

the distance of the vehicle schedule.
Similarly, the duration of a vehicle route r ∈ R for timetable π is

dur(r , π ) :=
∑
l ∈r

∑
a∈A(l )

dur(a, l, π )

+ dur(dep,α(r )) + dur(ω(r ), dep) + dur(dep)
+

∑
l ,l ′consecutive

lines in r

dur(ω(l),α(l ′))

where dur(a, l, π ) is the duration between the time scheduled for
the departure of line l at α(a) and at ω(a) and dur(ω(l),α(l ′)) the
duration of relocating between lines l and l ′. Note that the duration
for getting from the depot to the first station of r and from the last

station of r to the depot does not depend on the timetable. The
minimal turn-over time at the depot is represented by dur(dep). We
call

dur(R, π ) =
∑
r ∈R

dur(r , π )

the duration of the vehicle schedule.
For each route r ∈ R, the number of vehicles needed to operate

it is
veh(r , π ) =

⌈
dur(r , π )

T

⌉
.

The total number of vehicles needed to operate R is

veh(R, π ) =
∑
r ∈R

veh(r , π ).

For parameters (λ, µ,κ) ∈ R3
≥0, we define the costs of vehicle

schedule R for timetable π as
cost(R, π ) := λ · dist(R) + µ · dur(R, π ) + κ · veh(R, π ).

In the basic definition, there are no restrictions on the vehicle
routes. However, restricting the duration of a vehicle route might
be important, especially if electric vehicles are considered. In this
case, restricting the duration of a route according to the battery ca-
pacity and choosing dur(dep) such that the battery can be reloaded
guarantees that the vehicle schedule can be operated by electric
vehicles.

3 MODELING THE LINE PLANNING AND
VEHICLE SCHEDULING PROBLEM

As in the sequential planning process a vehicle schedule is con-
structed for a given line plan and timetable, we have to adapt our
notation for defining the integrated problem.

Definition 3.1. Let a public transport network (V ,A) with min-
imal and maximal frequency f min

a ≤ f max
a , a ∈ A, arc duration

dur(a), a ∈ A, minimal turn-over time dur(dep) at the depot and
set of terminal stations V̄ ⊂ V as well as a maximal line duration
K and maximal number of routes R be given. The line planning
and vehicle scheduling problem (LVP) is to find a multiset of simple
paths R, i.e., vehicle routes, such that
• for all arcs a ∈ A

f min
a ≤ |{r ∈ R : a ∈ A(r )}| ≤ f max

a ,

i.e., each arc a is contained in at least f min
a and at most f max

a
vehicle routes,
• for all routes r ∈ R

dur(r ) :=
∑

a∈A(r )
dur(a) + dur(dep)

+ dur(dep,α(r )) + dur(ω(r ), dep)
≤ K,

i.e., the duration of each route r does not exceed K ,
• the number of vehicle routes |R | ≤ R,
• α(r ),ω(r ) ∈ V̄ , i.e., the first and the last node of each vehicle
route r are contained in the set of terminal stations and
• for parameter set (λ, µ,κ) ∈ R3

≥0 the approximated costs

cost(R) := λ · dist(R) + µ ·
∑
r ∈R

dur(r ) + κ ·
∑
r ∈R

⌈
dur(r )
T

⌉
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are minimized.
The corresponding set of linesL consists of the paths fromR where
the multiplicity of r ∈ R corresponds to the frequency f (r ).

Note that for a feasible solution of (LVP) the vehicle schedule R
and the line concept (L, f ) are feasible by construction. As each
vehicle route consists of only one line, we do not have to consider
relocating between lines.

Unfortunately, (LVP) is NP-hard even when no restrictions on K
and R are imposed.

Theorem 3.2. (LVP) is NP-hard, even if K = R = ∞ and V̄ = V .

Proof. In this setting, (LVP) is equivalent to finding a costs-
minimal line concept from the set of all simple paths. Setting λ =
κ = 0 and dur(dep,v) = dur(v, dep) = 0 for all v ∈ V leads to the
same cost structure as in [4] where this problem is shown to be
NP-hard. �

Themaximal route durationK and themaximal number of routes
R can be used to influence the structure of the resulting line concept
and vehicle schedule. R restricts the number of vehicle routes and
therefore the number of lines such that there are not too many
- possible very short - lines which would be undesirable from a
passengers’ point of view.K restricts the duration of a vehicle route,
which is beneficial from a robustness viewpoint as long vehicle
routes tend to propagate delays.

Together, they can also be used to bound the number of operated
vehicles.

Lemma 3.3. Let π be a feasible timetable with dur(a) ≥ dur(a, l, π )
for all a ∈ A(l), l ∈ L. Then

R ·
⌈
K

T

⌉
≥ |R| ·

⌈
K

T

⌉
≥

∑
r ∈R

⌈
dur(r )
T

⌉
≥ veh(R, π ).

Proof. The first inequality follows directly from |R | ≤ R, the
second from dur(r ) ≤ K and the last from dur(a) ≥ dur(a, l, π ) for
all a ∈ A(l), l ∈ L. �

Note that we can choose dur(a) ≥ dur(a, l, π ) a priori when the
construction of the bounds for timetabling is known. Additionally,
we can bound the costs cost(R, π ) of the vehicle schedule for a
feasible timetable π .

Lemma 3.4. Let π be a feasible timetable with dur(a) ≥ dur(a, l, π )
for all a ∈ A(l), l ∈ L. Then

cost(R) ≥ cost(R, π ).
Proof. This follows directly from Lemma 3.3, as dist(R) is inde-

pendent of the timetable and dur(a) ≥ dur(a, l, π ) for all a ∈ A(l),
l ∈ L. �

4 SOLVING THE RESTRICTED LINE
PLANNING AND VEHICLE SCHEDULING
PROBLEM

To solve the integrated line planning and vehicle scheduling prob-
lem, we consider the following restriction (rLVP): For each arc
a ∈ A, we suppose that an arc frequency f (a) ∈ { f min

a , . . . , f max
a }

is given and we have to find a solution to (LVP) such that

• for all arcs a ∈ A
f (a) = |{r ∈ R : a ∈ r }|,

i.e., each arc a is contained in exactly f (a) vehicle routes and
• for parameter set (λ, µ,κ) ∈ R3

≥0 the approximated costs

¯cost(R) := λ · dist(R) + µ ·
∑
r ∈R

dur(r ) + κ · |R | ·
⌈
K

T

⌉

are minimized.
From Lemma 3.3, we know that the optimal objective value of

(rLVP) is an upper bound on the optimal objective value of (LVP).

Corollary 4.1. Let R be an optimal solution of (LVP) and R̄ an
optimal solution of (rLVP). Then

¯cost(R̄) ≥ cost(R̄) ≥ cost(R).
Proof. The first inequality follows directly from Lemma 3.3

while the second inequality follows as R̄ is a feasible solution of
(LVP). �

4.1 Graph Construction for Vehicle Routing
Formulation

We can model (rLVP) as a slightly modified capacitated vehicle
routing problem on the following digraph G̃ = (Ṽ , Ã). The idea is
that the nodes Ṽ represent the arcs of PTN (V ,A). By setting the
demand of each node in Ṽ to the duration of the arc in A and the
capacity of the vehicle routing problem to K − dur(dep), we get a
direct correspondence between the vehicle routes in both graphs.

An example of the construction is given in Figure 1.
We set

Ṽ := {via : a ∈ A, i ∈ {1, ..., f (a)}} ∪ {ṽ0},
i.e., we create | f (a)| nodes for each arc a ∈ A in the public transport
network and an artificial depot node ṽ0.
To indicate the corresponding arc a = (v,w) ∈ A of the created
nodes ṽ ∈ Ṽ in the vehicle routing graph, we use ṽ ′ := a if ṽ = via
for i ∈ {1, ..., f (a)}.

For each node v ∈ V and each incoming arc a ∈ δ−(v) and
outgoing arc b ∈ δ+(v) in PTN (V ,A) we create arcs (via,v jb ),
i ∈ {1, ..., f (a)}, j ∈ {1, ..., f (b)}, in the vehicle routing graph G̃.

v1 v2

v3

v4
f (a1) = 2 f (a2) =

1

f (a3) = 1

f (a4 ) = 1

(a) PTN (V , A).

v1
a1

v2
a1 v1

a2

v1
a3 v1

a4

ṽ0

(b) Vehicle routing graph G̃ = (Ṽ , Ã).

Figure 1: Transformation of the public transport network
(V ,A) to the vehicle routing graph G̃. Terminal stations are
V̄ = {v1,v4}.
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To ensure that each line begins and ends at a terminal station, we
have arcs from the artificial depot node ṽ0 to each node ṽ whose
corresponding left station α(ṽ ′) is a terminal station and the other
way round if the corresponding right station ω(ṽ ′) is a terminal
station. Formalized we have

Ã :={(via,v jb ) : a,b ∈ A, i ∈ {1, ..., f (a)}, j ∈ {1, ..., f (b)},
ω(a) = v = α(b) for v ∈ V }

∪ {(ṽ0,v
i
a ) : a ∈ A, i ∈ {1, ..., f (a)},α(a) = v for v ∈ V̄ }

∪ {(via, ṽ0) : a ∈ A, i ∈ {1, ..., f (a)},ω(a) = v for v ∈ V̄ }.
The demand of each node ṽ ∈ Ṽ is defined as d(ṽ) := dur(a) for

ṽ ′ = a, whereas the capacity of the vehicles is set to
C := K − dur(dep) and the maximal number of vehicles is set
to R.

For a feasible solution to the vehicle routing problem in G̃ we
know
• there are at most R tours,
• the demand of all nodes in a tour does not exceed K and
• all nodes Ṽ are covered by exactly one tour.

We can translate such a tour (ṽ0, ṽ1, ..., ṽn, ṽ0) in G̃ back to a
not necessarily simple path (ṽ ′1, ..., ṽ ′n ) in (V ,A). By construction,
the resulting set of paths covers all arcs according to their frequen-
cies f (a), there are at most R paths and the duration of each path
including the turn-over time does not exceed K .

Before we consider how simple paths can be constructed, we
define the costs of arcs Ã to correspond to ¯cost.

cost(via,v jb ) = λ · dist(a) + µ · dur(a),

if via , ṽ0 , v
j
b ,

cost(ṽ0,v
j
b ) = λ ·dist(dep,v)+µ · (dur(dep,v)+dur(dep))+κ ·

⌈
K

T

⌉
,

if α(b) = v and

cost(v ja, ṽ0) = λ · dist(w, dep) + µ · dur(w, dep),
if ω(a) = w .

4.2 MIP Formulation for Simple Lines
We formulate the mixed-integer program as a modified capacitated
vehicle routing problem in (1)-(13).

The first part up to constraints (7) is equal to the formulation of
the capacitated vehicle routing problem as in [18].

The variable xã indicates if the corresponding arc ã ∈ Ã is used
and uṽ describes the summed up demands of the nodes on the
corresponding tour starting at ṽ0 up to ṽ ∈ Ṽ . Constraints (6) -
(7) ensure that the capacity C is not exceeded. Constraints (4)-(5)
ensure that no more than R vehicles are used.

By construction, we can have multiple nodes in the transformed
vehicle routing graph corresponding to the same arc in the public
transport network. As a consequence, it is possible to obtain non-
simple paths after translating the vehicle routing solution back to a
line concept, i.e., multiple identical arcs on the same line.

Therefore we adapt the previously mentioned capacity con-
straints to ensure that all lines are simple paths.

min
∑
ã∈Ã

xã · cost(ã) (1)

s .t .
∑

ã∈δ−(ṽ)
xã = 1 ṽ ∈ Ṽ \ {ṽ0} (2)

∑
ã∈δ+(ṽ)

xã = 1 ṽ ∈ Ṽ \ {ṽ0} (3)

∑
ã∈δ−(ṽ0)

xã ≤ R (4)

∑
ã∈δ+(ṽ0)

xã ≤ R (5)

d(ṽ) ≤ uṽ ≤ C ṽ ∈ Ṽ \ {ṽ0} (6)
uṽ + d(w̃) − uw̃
≤ (1 − x(ṽ ,w̃ )) · (C + d(ṽ)) (ṽ, w̃) ∈ Ã (7)

uap,ṽ = 1 p ∈ A, ṽ ∈ Ṽ \ {ṽ0},p = ṽ ′ (8)

uap,ṽ − uap,w̃ ≤ 1 − x(ṽ ,w̃ ) p ∈ A, (ṽ, w̃) ∈ Ã, ṽ , ṽ0 , w̃
(9)

uaw̃ ′,ṽ ≤ 1 − x(ṽ ,w̃ ) (ṽ, w̃) ∈ Ã, ṽ , ṽ0 , w̃ (10)

xã ∈ {0, 1} ã ∈ Ã (11)

uṽ ≥ 0 ṽ ∈ Ṽ \ {ṽ0} (12)

0 ≤ uap,ṽ ≤ 1 p ∈ A, ṽ ∈ Ṽ \ {ṽ0} (13)

We introduce the variable uap,ṽ that indicates if the tour that
contains node ṽ ∈ Ṽ also contains a node w̃ ∈ Ṽ with w̃ ′ = p ∈ A,
i.e., the arc p ∈ A of the public transport network is already covered
by the vehicle routing tour containing node ṽ . Obviously, uap,ṽ = 1
if p = ṽ ′ (see constraints (8)).

If we use arc (ṽ, w̃), i.e., x(ṽ ,w̃ ) = 1, we copy the value of uap,ṽ
to uap,w̃ for all p ∈ A in (9). Additionally, this tour may not have
covered the public transport network arc w̃ ′ ∈ A before node w̃ ∈ Ṽ ,
i.e., uaw̃ ′,ṽ = 0 and is ensured in constraints (10).

4.3 MIP Formulation for Elementary Lines
In a similar way, we can ensure that we only obtain elementary
lines after translating the vehicle routing solution back to a line
concept, i.e., we get lines with no repeating nodes.

Therefore, we use nearly the same constraints as (8) - (10) to
exclude repeating source nodes (see constraints (14) - (17)) and
target nodes (see constraints (18) - (21)) in the lines translated back
from the vehicle routing tours.

Again, we have the variable uαp,ṽ that indicates if the tour that
contains node ṽ ∈ Ṽ also contains a node w̃ ∈ Ṽ with α(w̃ ′) = p ∈
V , i.e., the node p ∈ V of the public transport network is already
covered (as source node) by the vehicle routing tour containing
node ṽ . The same applies for the variablesuωp,ṽ and the target nodes.
By this construction, it is possible that a line begins and ends at the
same node.
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Note that if we ensure elementary lines, we do not have to ensure
simple lines.

uαp,ṽ = 1 p ∈ V , ṽ ∈ Ṽ \ {ṽ0},p = α(ṽ ′) (14)

uαp,ṽ − uαp,w̃ ≤ 1 − x(ṽ ,w̃ ) p ∈ V , (ṽ, w̃) ∈ Ã, ṽ , ṽ0 , w̃ (15)

uαα (w̃ ′),ṽ ≤ 1 − x(ṽ ,w̃ ) (ṽ, w̃) ∈ Ã, ṽ , ṽ0 , w̃ (16)

0 ≤ uαp,ṽ ≤ 1 p ∈ V , ṽ ∈ Ṽ \ {ṽ0} (17)

uωp,ṽ = 1 p ∈ V , ṽ ∈ Ṽ \ {ṽ0},p = ω(ṽ ′) (18)

uωp,ṽ − uωp,w̃ ≤ 1 − x(ṽ ,w̃ ) p ∈ V , (ṽ, w̃) ∈ Ã, ṽ , ṽ0 , w̃ (19)

uωω(w̃ ′),ṽ ≤ 1 − x(ṽ ,w̃ ) (ṽ, w̃) ∈ Ã, w̃ , ṽ0 , w̃ (20)

0 ≤ uωp,ṽ ≤ 1 p ∈ V , ṽ ∈ Ṽ \ {ṽ0} (21)

4.4 Heuristic Solution Approach
In addition to solving the MIP directly, we can use modifications
of know heuristics for the capacitated vehicle routing problem to
solve (rLVP). In particular, we tested a modification of the savings
algorithm by Clarke and Wright [3].

The algorithm is initialized with |Ṽ − 1| tours (ṽ0, ṽ, ṽ0) for all
ṽ ∈ Ṽ . After that, the saving

s(ṽi , ṽj ) = cost(ṽi , ṽ0) + cost(ṽ0, ṽj ) − cost(ṽi , ṽj )
is calculated for all ṽi , ṽj ∈ Ṽ with ṽi , ṽ0 , ṽj and sorted in
non-increasing order.
Now, the first unused saving s(ṽi , ṽj ) is taken and the tours Ti ,Tj
corresponding to node ṽi and ṽj are merged by removing arcs
(ṽi , ṽ0), (ṽ0, ṽj ) and adding (ṽi , ṽj ), if the following conditions are
fulfilled:
• Ti , Tj
• there exists arc (ṽi , ṽ0) in Ti and (ṽ0, ṽj ) in Tj
• the summed up demand of both tours Ti and Tj does not
exceed the capacity C .

Subsequently, the next unused saving is taken and this step is
repeated until R tours are left.

As in the MIP, by adding further conditions we can ensure simple
and elementary lines, respectively. To guarantee the former, we
only merge two tours Ti ,Tj , if the corresponding public transport
network arcs of the Ti are not the same as those in Tj .

In a similar way we proceed with the target and source nodes of
the corresponding public transport network arcs of tour Ti and Tj
to ensure elementary lines.

In some cases, the algorithm may terminate even though there
are still more than R tours. This is due to the significantly increased
number of conditions for merging two tours.

5 EXPERIMENTAL EVALUATION
We test the two solution approaches for (rLVP) on three data
sets from the open source software framework LinTim [13], grid,
long-distance and goettingen, see Figure 2, and compare them
to the traditional sequential solution approach. The data sets rep-
resent an artificial benchmark instance, the long-distance train
network in Germany and the bus network in Göttingen, respec-
tively.

(a) grid. (b) long-distance. (c) goettingen.

Figure 2: Public transport networks for various data sets.

Table 1: Instance size and mean solver time (in seconds) and
gap of the MIP formulation as well as the mean run time
the heuristic approach in seconds. Note that for the MIP so-
lution approach a time limit of 60 minutes is applied.

PTN Heu. MIP
Data Set |V | |A| Time Time Gap
grid 25 80 0 3600 100%
long-distance 250 652 2 3600 99%
goettingen 257 548 12 3600 66%

For each data set, we evaluate the approximated costs ¯cost(R)
and the actual costs cost(R, π ) for various settings of K and R for
the MIP formulation and the heuristic solution approach of (rLVP)
for simple lines. For the MIP formulation, we use Gurobi 8.1.1
[1] and report the best solution found within a time limit of 60
minutes. These solutions are compared to the traditional approach
of sequentially finding a line plan for a given pool, a timetable and
a vehicle schedule.

Note that the runtime for the heuristic is considerably smaller
than for the MIP-formulation, especially on the largest data set
goettingen. The mean runtimes for all settings of K and R are
reported in Table 1.

The results are depicted in Figure 3. We make the following
observations:
• By using an integrated approach to line planning and vehicle
scheduling, it is possible to find solutions that are much
cheaper than by using the sequential solution approach, even
when the duration of a vehicle route is restricted. For data
sets goettingen, grid and long-distance, the costs can
be reduced by up to 18%, 36% and 75%, respectively.
• For smaller K , i.e., for shorter vehicle routes, more routes R
have to be allowed to find feasible solutions.
• With the heuristic approach, it is not possible to find feasible
solutions for all given combinations of K and R.
• For larger K , the error of using ¯cost(R) instead of cost(R, π )
increases.
• While the costs cost(R, π ) do increase slightly for smaller,
i.e., more restrictive K , the difference is much smaller than
suggest by ¯cost(R).

For data set grid, we additionally compared using simple paths
for the vehicle route to restricting the routes to elementary paths.
Here, the costs of the heuristic solutions increased by about 8%
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(a) grid.

(b) long-distance.

(c) goettingen.

Figure 3: Costs for the different solution approaches for var-
ious data sets.

compared to the simple paths. Additionally, there are more infeasi-
ble combinations of K and R when the routes are restricted further.

However, for some applications it might be necessary to restrict
the set of lines to elementary instead of simple lines.

6 CONCLUSION AND OUTLOOK
In this paper, we modeled the integrated line planning and vehicle
scheduling problem and proposed a solution approach for fixed
arc frequencies. While the heuristic solution approach is especially
fast and therefore can be used for larger data sets, the MIP-based
solution approach outperforms the classical sequential solution
approach even when restricting the duration of vehicle routes.

To better incorporate the passengers’ perspective, it is also pos-
sible to use (rLVP) to generate a line pool instead of a line concept
by choosing higher values for f (a), a ∈ A. This allows for creat-
ing a larger set of potential lines which can be operated within
the duration restriction K from which a line concept can be cho-
sen separately. Evaluating these line pools in comparison to the
approach from [4] and in combination with other integrated solu-
tion approaches such as integrated line planning, timetabling and
passenger routing may lead to interesting new solution approaches.
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Public transport planning includes several planning stages, one of which is fare planning. Fare planning
(or tariff design) deals with the question which fare strategy to choose (e.g., a distance- or zone-based one
with or without particularities) and how to configure it. A fare strategy together with specific prices is
called a fare structure. Tariff design concerns not only the financial requirements of the public transport
operator, but also the passenger satisfaction. A fare structure needs to be comprehensible and should be
perceived as fair [2]. Our focus lies on the design of zone tariffs with a counting zones pricing because
this fare strategy is very popular in practice [1,2]. We formulate and analyze multiple problem variations
of the zone tariff design problem.

For fare planning, we assume that a public transport network (PTN) is given. This is an undirected,
connected graph with stations V and edges E between the stations along which traveling is possible. A
fare structure then assigns a price to each path in the PTN. In a zone tariff with counting zones pricing,
the stations in the PTN are partitioned into zones, and the price of a path depends on the number of
zones that are traversed on this path.

We distinguish four versions of the zone tariff design problem. First, it has to be specified how to count
zones. Multiple counting means that a zone is counted each time that it is traversed, whereas single
counting means that the number of different zones that are traversed is counted. Secondly, we distinguish
between two types of zonings, namely connected and arbitrary zonings, i.e., whether the subgraph induced
by the stations of a zone needs to be connected or not.

There are many possible objectives like maximizing the demand, the user benefit or the income of the
public transport operator. We consider an objective function based on reference prices. For each origin-
destination (OD) pair (v, w) in the PTN, a reference price pvw is given, which can be the price of a former
fare structure when the fare strategy is changed or it can be a price that is considered as fair or otherwise
preferable. The goal is to determine new prices πvw that fit as good as possible to the reference prices,
i.e., we minimize the sum of absolute deviations

∑
(v,w) Cvw|πvw − pvw|, where Cvw denotes the number

of passengers traveling from v to w. The objective function ensures that the new prices do not deviate
too much in any direction, meaning that the income of the operator does not decrease too much and that
the prices for the passengers do not increase tremendously compared to the former fare structure.

The zone tariff design problem which we consider thus is the following: Given a PTN (V,E), the number
of passengers Cvw which travel between stations v and w on a fixed path Wvw and reference prices pvw,
determine a zoning, i.e., a partition of the stations into zones, and a price list such that the sum of
absolute deviations from the reference prices is minimized in the resulting zone tariff. Considering the
distinctions mentioned above, we receive the following four versions of the zone tariff design problem:

multiple counting single counting
arbitrary
zoning ZD-MA ZD-SA [2]

connected
zoning ZD-MC ZD-SC [2]

We show the following results about the four problems:

• For all four problems it holds: The version with an upper bound on the number of allowed zones is
a relaxation of the version with a fixed number of zones.

Int. Network Optimization Conf. (INOC) 2022 Aachen, March 2022

Session 6A: public transport

INOC 2022 188 Aachen,7–10 June 2022



REFERENCES REFERENCES

• ZD-MA is a relaxation of ZD-MC, and ZD-SA is a relaxation of ZD-SC, i.e., the version with
arbitrary zoning is a relaxation of the version with connected zoning.

• If the number of zones is bounded, the optimal objective value for ZD-MA can be strictly smaller
than for ZD-MC. The same holds for ZD-SA and ZD-SC.

• If the number of zones is unbounded, then ZD-MA and ZD-MC yield the same optimal objective
value. Even if the number of zones is unbounded, the optimal objective value for ZD-SA can be
strictly smaller than for ZD-SC.

Based on the mixed-integer programming (MIP) formulation by [2], we provide a first MIP formulation
for ZD-MC and ZD-MA. As parameters it needs the PTN (V,E), the set of OD-pairs D ⊆ V ×V with the
numbers of passengers Cvw and fixed paths Wvw for (v, w) ∈ D, a maximum number of allowed zones N ,
the maximum number of stations on a path K and a sufficiently large M . The MIP formulation is as
follows:

min
∑

(v,w)∈D Cvw|πvw − pvw|

s.t.
N∑

z=1
xvz = 1 v ∈ V, (1)

{Connectivity constraints from [2]} (2)
xvz − xwz ≤ cvw {v, w} ∈ E, z ∈ {1, . . . , N}, (3)
cvw ≤ 2− xvz − xwz {v, w} ∈ E, z ∈ {1, . . . , N}, (4)
K∑

k=1
dk

vw = 1 (v, w) ∈ D, (5)

1 +
∑

e∈Wvw

ce =
K∑

k=1
k · dk

vw (v, w) ∈ D, (6)

πvw ≤ pk + (1− dk
vw) ·M (v, w) ∈ D, k ∈ {1, . . . ,K}, (7)

pk ≤ πvw + (1− dk
vw) ·M (v, w) ∈ D, k ∈ {1, . . . ,K}, (8)

xvz ∈ {0, 1} v ∈ V, z ∈ {1, . . . , N}, (9)
ce, d

k
vw ∈ {0, 1} e ∈ E, (v, w) ∈ D, k ∈ {1, . . . ,K}, (10)

pk, πvw ∈ R≥0 k ∈ {1, . . . ,K}, (v, w) ∈ D. (11)

This is a MIP formulation of ZD-MC when including the connectivity constraints (2), and a MIP formu-
lation of ZD-MA when dropping (2). Each station is assigned to exactly one zone (1). If Constraints (2)
are included, the zoning is connected. In order to compute the number of zones traversed on a path, it
needs to be determined whether an edge {v, w} crosses a zone border, i.e., whether v and w are in different
zones (3,4). Then the number of traversed zones on the path Wvw is determined for each OD-pair (v, w).
Finally, the new price πvw for the OD-pair (v, w) is set to the price pk of k zones if and only the v-w-path
traverses k zones (7,8). Further constraints for the no-stopover and no-elongation property, introduced
in [3], can be included.
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During the last decades, many middle-European railway companies changed the philosophy of their long-
term infrastructure design ([8], [3]). Instead of new railway lines and extensions of existing tracks based on
demand estimations, the development is based on a long-term timetable. The Swiss federal railways SBB
were the first who designed such a nationwide, long-term timetable within their Bahn-2000 development
program. All further infrastructure expansions were afterwards planned according to the needs of the
timetable. The goal was to connect cities as fast as necessary, not as fast as possible. The immense success
of the new timetable prompted other countries in Europe to follow the swiss example. In Germany, the
third and final draft for a nationwide timetable concept called the Deutschlandtakt has been published
in 2020 [6].

With this shift of perspective, the traditional planning process of railway and public transport oper-
ations has been fundamentally changed. The old process contains three different planning levels (from
long-term to short-term planning): the strategical, the tactical and the operational level. The strategic
level includes network design and line planning, followed by the timetabling process at the tactical level.
The operational level comprises both vehicle and crew scheduling as well as crew rostering. This process
is very well supported by different optimization models. Many researchers and companies have also ap-
plied various levels of integration, most often by combining crew and vehicle scheduling or timetabling
and vehicle scheduling. However, there exists a gap in the literature regarding models that deal with the
recent approach of timetable-based network design.

Many approaches to network design use an adaptation of the network-design problem, made popular
by [4]. It has been used for a variety of different applications, including transportation planning in general
and railway network design in particular, for example in [7], where the network design problem for railway
infrastructure is introduced. It is used to design cost-optimal but timetable-independent networks based
on a complete multigraph, where each arc includes different stages of capacity extensions. There has also
been an interest in freight-focussed models which combine Network Design and capacity extensions, most
recently in [5]. However, these models also lack the consideration of an input timetable.

When considering papers that deal with network design and timing or timetabling, one comes across
time-expanded networks, which are used in a variety of papers. An overview is given in [1] which focuses on
service network design problems. Apart from using time-expanded networks, there have been approaches
to continuous-time modelling by specifying time points not as nodes in the network, but as variables [2].

This abstract presents an expansion of the very well-known Fixed Charge Network Design Problem.
Based on an input timetable which consists of a set of trains, each having an origin node, a destination
node, and fixed time bounds, a cost-optimal railway network is designed. The railway infrastructure is
modelled in a macroscopical way, where the nodes in the graph symbolize stations or interlockings while
the arcs represent train line tracks. The underlying graph is defined as a MultiGraph with bidirectional
arcs, so multiple arcs can be constructed between two nodes. In this way, lines with one or more tracks
can be modelled. By assigning train-type-dependant travel times to each arc and using minimal headway
times, the capacity on the railway lines is realistically estimated. The minimal headway times depend on
both the running order and the direction of trains.

The optimization model has been split into two steps to assure a decent performance. The first one,
which focuses on the network design, chooses a set of arcs, which allow each train to find a feasible
path while respecting the time bounds set by the timetable. Both building costs and travel times are
minimized by the objective function. This first stage uses a worst-case capacity measure which assumes
that the longest headway time occurring anywhere in the data has to be respected between all trains.
This underestimation of the capacity is used to ensure that the solution contains enough parallel tracks
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to accommodate all trains, which in turn leaves enough flexibility for the second stage. The network
resulting in the first stage can be interpreted as an upper bound for the second step of the optimization.

Based on the result of the first step, the second stage further refines the network while focussing
on timetabling. Therefore, continuous-time variables are introduced for every train and every line it is
running on. The routing of the first step is fixed in a way that a train can still switch between parallel
tracks of the same line, but re-routing a train via different lines is not possible anymore. The use of
variables for both departure and arrival times allows to respect minimal headway times and to estimate
the capacity in a much more precise way than the worst-case capacity measure of the first optimization
step. This combined with the possibility to reroute trains between parallel tracks makes it possible to
further reduce the number of tracks needed in the network. The result is a cost-minimal network and a
macroscopical timetable.

The model is implemented in python and solved with Gurobi 9.1.2. Test instances have been generated
from the publicly available timetable drafts of the Deutschlandtakt. For the largest test case, which
comprises 92 trains in a network with 110 nodes and 149 possible train lines, an optimal solution for
the first stage can be calculated in about 11 minutes. The second stage needs significantly more time to
solve, after 1 hour the optimality gap could be reduced to 3,7 %.

Further improvements and extensions to the model will include the consideration of uncertainty in
the input timetable, the usage of decomposition or heuristic solution approaches to reduce calculation
times and the inclusion of different railway specific features such as buffer times, connections between
several trains and basic station capacity measures.
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Public transport companies are under pressure to reduce operational costs and increase the number
of passengers and revenue. The design of the tariff system has been proven valuable to impact revenues
in public transportation. There exist different tariff systems in public transport [3]. The most widely
accepted public transport tariff system is the counting zones tariff system. The literature on combining
zoning and fare problems is scarce. The study of Hamacher and Schöbel [1] and Otto and Boysen [2] are
two examples of the literature that consider a counting zones tariff system. Otto and Boysen can optimally
solve problems with up to 5 zones, 50 customers (demand points), and 10 stops. While Hamacher and
Schöbel use heuristics to solve instances up to 400 stops. We contribute to this literature by a new
approach yielding a counting zones tariff system that maximizes the revenue (R). This paper presents a
new mixed-integer programming (MIP) model and a MIP-based heuristic method. Our approach allows
specific spatial patterns of the tariff zones (rings and stripes, for example).

The revenue maximizing tariff zone problem (RMTZP) consists of partitioning the service area of
the public transport service provider into zones and to find a price per zone (price system) such that
R is maximized. The proposed methods can optimally solve instances of sizes of more than 120 stops.
Moreover, the methods are flexible enough to enforce the counting zones tariff system to any spatial
pattern. The results show that enforcing tariff zones to a specif spatial pattern reduces R and CPU time.

The contributions of this paper are:

• Design a counting zones tariff system that maximizes R.

• Formal description of the price and districting (zoning) problem.

• Development of a MIP-based heuristic method.

• Inclusion of constraints to enforce a desired spatial pattern.

1 Modeling
Our approach relies on the assumptions (i) that passengers always choose the time-shortest path and (ii)
that feasible values for the price per zone are denumerable. We have developed a MIP model P1 to solve
RMTZP. One innovative feature of our modeling approach is that we employ dual graph theory to ensure
zone contiguity and desired spatial patterns. Our MIP model maximizes R in the service area for a given
price system p ∈ P ("price per zone"). Following, we summarize the variables and main constraints of
RMTZP:

Decision variables F
Xijt = 1, if t = 1, . . . , Tij tariff zones are visited on the shortest path from i ∈ I to j ∈ I (0, otherwise),

with Tij as the maximum number of tariff zones visited along the shortest path from i to j
Ynm = 1, if a tariff zone border is established along border arc (n,m)∈ B (0, otherwise)
Wnm = artificial flow along the border arc (n,m) ∈ B

Constraints
• The number of tariff zones visited from i to j is equal to 1 plus the number of tariff zone borders

visited along the shortest path from node i to j.

Int. Network Optimization Conf. (INOC) 2022 Aachen, March 2022

Session 6A: public transport

INOC 2022 192 Aachen,7–10 June 2022



REFERENCES

• Flow constraints that indicate flow out minus flow in along a border arc (n,m) ∈ B must equal to
bn at border node n. Values of bn depend on the desired spatial pattern of the tariff zone. The flow
conservation constraints ensure contiguous tariff zones.

Relaxation of RMTZP: The size of the RMTZP is mainly influenced by the number of O-D tuples.
For this reason, we consider a subset, C of all O-D tuples. Set C contains γ· | I | of O-D tuples with
highest R. We propose a MIP-based heuristic to find C. Then, the model P1 is solved by considering
O-D tuples i-j ∈ C instead of all i ∈ I and j ∈ I.

Fare problem: The zone problem P1 depends on a given price system p ∈ P. The trip price under
a counting zone tariff system depends on the visited zones along the trip and the price per zone. Let
rijt(πpt

) represent R on the shortest path from i ∈ I to j ∈ I given price system p ∈ P, with πpt
as the

price per zone when visiting t zones under price system P. The total R in P1 is given by:

Maximize R(p) =
∑

i∈I

∑

j∈I

Tij∑

t=1
rijt(πpt

) ·Xijt (1)

2 Computational experiments
We generate a set of artificial instances representing a city. Public transport travel-time and hence demand
and R follow a random distribution. We solve 12 problem sets with 10 instances each to optimality using
GAMS/CPLEX and compare the MIP model against the MIP-based heuristic, considering the constraints
to enforce tariff zones to have a ring pattern. For instance, on average, our heuristic underestimates
optimal R by 2.54% but is faster by 42.97%. Results demonstrate that solutions with a lower R are
obtained when constraints are included to enforce a specific spatial pattern than when there is no specific
pattern. Solutions without any spatial pattern have a R of 0.43% higher than solutions with a ring
pattern, for example. The CPU time for the solutions with no spatial pattern is 85.12% higher than
solutions with ring patterns.

3 Conclusion
We investigate how to design a counting zones tariff system to maximize the revenues of public trans-
portation service companies. We design a MIP model and MIP-based heuristic method to design an
optimal counting zones tariff system and solve the fare problem. Our approach basis on dual and primal
graph properties to deal with contiguity between tariff zones and enforce the tariff system to a desired
spatial pattern. The proposed approaches can optimally solve instances up to | I |=120 in a reasonable
time. Moreover, the methods are flexible enough to enforce the counting zones tariff system to various
spatial patterns. The results show that enforcing tariff zones to a desired spatial pattern reduces R and
CPU time. Currently, we are working on testing our MIP-based heuristic approach with real data from
the San Francisco Bay Area with | I |=1,415 districts. We are particularly interested in studying how
to enforce tariff zones to follow a desired pattern. In addition, we plan to analyze a price system with
discounts.
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When adopting a novel mobile technology, a mobile network operator faces the dilemma of determining
which is the best time to install the next generation equipment onto the existing infrastructure. In a
strategic context, the optimal deployment time is the best response to competitors’ actions, subject to
normative and material constraints and to the customer’s adoption curve. To capture the main features
of the problem, we formulate in this paper a timing game in discrete time for a two-player setting.
Under mild assumptions on the time scale at which operators decide on the installation, we provide a
methodology to obtain a subgame-perfect equilibrium for the resulting extensive form game.

The proposed model describes two telecommunication operators, or Service Providers (SP), whose
objective is to optimize their deployment strategy as a pair of actions. First, each operator chooses
the subsidy to offer to customers from a discrete set Si of possible subsidy budgets. Afterwards, they
schedule when and where to deploy the new technology on their own sites. Operators act on a discrete
time horizon. The timing game is described by N = {1, 2}, the set of players, Si, the set of possible
budgets allowed for subsidies by player i ∈ N (chosen at time t = 0), T = {1, ..., |T |}, i.e., the set of
time-intervals over which operators act to install the new technology and, finally, A, the set of sites where
to deploy the new technology.

We introduce zi,a,t ∈ {0, 1}, a binary variable indicating if the new technology is installed on site a
by operator i at time t ≥ 1. We call ti,a the time at which operator i installs it on site a. The operators’
schedule is bounded by some constraints:
• Logistic constraints: the operator i can invest on a limited number Zi of sites at each time t ≥ 1. Thus
for every player it holds

∑
a∈A(zi,a,t+1 − zi,a,t) ≤ Zi;

• Regulator constraints: before every time t at least R(t) sites have to support the new technology. Thus
for all players and for all t ≥ 1 it holds

∑
a∈A zi,a,t ≥ R(t).

Furthermore, we assume that players can observe, at time t, the history of actions taken by the other
player for t′ < t, and react accordingly; the choice of the opponent’s subsidy is observable by both players
at time t = 0.

A convenient model that complies to such assumption is that of a game in extensive form [2], whose
mathematical model is based on a game tree. Every combination of chosen strategies {(si, zi), i = 1, 2}
leading to a leaf of such tree is called an outcome. The utility function evaluates such outcomes for every
operator; it increases with their market share and it decreases with the costs incurred for the technology
upgrades and subsidies. The higher the value of ui, the higher the value a player assigns to an outcome.

Definition 1 (Service providers (SP) game). The service providers game ⟨N, S1, S2, A, T, u⟩ is an exten-
sive form game with two players N = {1, 2} competing over set of sites A in which:
• at the root vertex, i.e., at t = 0, both players choose independently the subsidies s1 ∈ S1 and s2 ∈ S2;
• the players act in sequence at every round t ≥ 1, starting from player 1. At every step they can decide
on which sites A1t ⊆ A and A2t ⊆ A install the new technology, given the constraints;
• after |T | rounds the game ends and the actions chosen at each round are evaluated for every player i
by the utility functions ui : S1 × S2 × (A × T )2 → R.

The solution i.e., an equilibrium of the game, is determined in two steps. First, at t = 0 the operators
pick a subsidy at the same time. The second operator does not know what the first operator has played,
and vice versa. Then, in the second part (all subtrees rooted at t = 1), they get to know what the
other operator has chosen and decide one after another if installing on a site or not at each time step,
starting by player 1. Let us denote with Γ(s1, s2) the subgame which starts at t = 1, given that the first
operator has chosen s1 ∈ S1 and the second operator s2 ∈ S2. If no player has the same payoffs at two
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different outcomes, such game has a unique subgame perfect equilibrium [2] σ(s1, s2) ∈ (A × T )2, i.e., a
Nash equilibrium [3] for every subgame (which is represented by a subtree). We define the matrix M
which maps a couple of choices for the subsidies to the utility of such outcome (s1, s2) → σ(s1, s2) →
M(s1, s2) = u(s1, s2, σ(s1, s2)). Matrix M defines a game, which has at least one Nash equilibrium [3].
Operators pick the optimal combination of strategies within the set of such Nash equilibria.

Definition 2 (SP game equilibrium). Given a SP game ⟨N, Si, A, T, u⟩ and its correspondent matrix
M : (s1, s2) 7→ u(s1, s2, σ(s1, s2)), with (s1, s2) chosen at time t = 0 and σ(s1, s2) ∈ (A × T )2 the optimal
installation times chosen at times t ≥ 1, we say (s1, s2) ∈ S1 × S2 is an equilibrium if for all s1 ∈ S1 and
s2 ∈ S2 we have: M1(s1, s2) ≥ M1(s1, s2), M2(s1, s2) ≥ M2(s1, s2).

Note that the choice of the order of the players can be arbitrary. Indeed, in reality the players act
simultaneously, so there is no natural order to be followed. Moreover, the solution does not change
significantly if the order of the players is inverted. Operators play in turns with very small difference of
time between one and another turn: postponing an action of one interval does not change the outcome
significantly. This intuition is formalised in Proposition 1.

Proposition 1 (Order insensitivity). Given two games Γ = {znt, n = {1, 2}} and Γ′ = {z′
n′t, n′ = {2, 1}}

in which players act in inverted order, if there is for every t ∈ T and for every subsequence znt ∈ Γ an
action zit that can allow a player i ∈ N to postpone their action without changing significantly their
utility (within an interval ϵ > 0):

|ui(. . . , zit, . . . , zi,t+1, . . . ) − ui(. . . , zit, . . . , zi,t, . . . )| < ϵ,

then given two subgame perfect equilibria σ ∈ Γ, σ′ ∈ Γ′ we have |ui(σ) − ui(σ′)| < ϵ ∀i.

Hereafter we describe an example of utility function u, which describes the dynamics on a model
with only one site |A| = 1. We fix some assumptions: 1) every customer on the site decides to switch
to the new technology at a given time t and stick to the choice till the end of the horizon [1]; 2) the
quantity of customers switching at every time is known a priori by both operators according to a given
dynamics; 3) every customer has a preference over the two operators which they subscribe for; if their
preferred operator does not offer the technology at time t they subscribe to the other operator if it offers
it, otherwise they wait for one of them to offer it; 4) an operator can admit only a limited amount of
customers per time interval; 5) once subscribed, customers remain with the chosen operator till t = |T |.

Operators choose a pair of subsidies (s1, s2) ∈ S1 × S2; those influence the potential market of
customers willing to switch to the new technology, which varies in time. For every t ∈ T , such customers
are identified by the parameter {yt}t∈T , which is subject to the condition that

∑
t yt = 1, i.e. that all the

customers eventually switch to the new technology. In order to capture these customers the operators
have to install the new technology. We suppose that operators need τ > 0 intervals of time to fill it. This
constraint is due to the fact that customers do not discover the technology all at once, but little by little.

Let α1(t) and α2(t) the number of customers acquired at time t ∈ T with the new technology by
operators 1 and 2, respectively. Since the customers, once acquired, are kept until the end of the horizon
the final market share is α(|T |). On the other hand, there exist some costs related to the installation of
the new technology and to subsidies. We denote the installation costs c ∈ (0, 1): they are discounted by
a factor e−γt which accounts for the depreciation since installation time t and lower maintenance costs
over the period. The utilities for the players are thus ui(s1, s2, t1, t2) = αi(|T |) − c · e−γti − si, where c
and γ are parameters known a priori. Here, subsidies si are fixed costs, thus they do not depend on the
quantity of customers acquired. Such utility function satisfies the conditions of Proposition 1.
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ABSTRACT
The routing and spectrum assignment problem is an NP-hard prob-
lem that has received increasing attention during the last years.
The majority of existing models for the problem uses edge-path for-
mulations where variables are associated with all possible routing
paths so that the number of variables grows exponentially with the
size of the instance. To bypass this difficulty, precomputed subsets
of all possible paths per demand are typically used, which cannot
guarantee optimality of the solutions in general. Our contribution
is to provide a framework for the use of edge-path formulations to
minimize the spectrum width of a solution. For that, we select an
appropriate subset of paths to operate on with the help of combina-
torial properties in such a way that optimality of the solution can
be guaranteed. Computational results indicate that our approach
is indeed promising to solve the routing and spectrum assignment
problem.

1 INTRODUCTION
Optical networks represent a crucial infrastructure for our infor-
mation society and use light as a communication medium between
sending and receiving nodes. For over two decades, Wavelength-
Division Multiplexing (WDM) has been the most popular technology
used in fiber-optic communications. WDM combines multiple wave-
lengths to simultaneously transport signals over a single optical
fiber, but has to select the wavelengths from a rather coarse fixed
grid of frequencies specified by the International Telecommunica-
tion Union (ITU) and leads to an inefficient use of spectral resources.
In response to the sustained growth of data traffic volumes in com-
munication networks, so-called flexgrid optical networks have been
introduced to enhance the spectrum efficiency and enlarge the net-
work capacity. In such networks, the frequency spectrum of an
optical fiber is divided into narrow frequency slots and any se-
quence of consecutive slots can form a channel on optical fibers
to create an optical connection, called lightpath, and thus enables
capacity gain by allocating minimum required bandwidth [8].

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th 
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen, 
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

The Routing and Spectrum Assignment (RSA) problem consists
of establishing the lightpaths for a set of traffic demands, given as
sending and receiving nodes and frequency slot numbers. Since
lightpaths are determined by a route and a channel, the RSA prob-
lem involves finding a route and assigning a channel of frequency
slots for each demand. To comply with ITU recommendation, the
following constraints need to be respected:
• slot continuity: the slots remain the same on all the links of
a route;
• slot contiguity: the slots allocated to a demand must be con-
tiguous;
• non-overlapping slot: on each link, a slot can be allocated to
at most one demand.

More precisely, we are given an optical network G = (V ,E) with
edge length le for all e ∈ E, an optical spectrum S = {1, . . . , s̄}, and a
setD of demands between pairs ok ,dk of nodes inG specifying the
maximum length l̄k of a route and the numberwk of required slots.
The routing selects, for each demand k = (ok ,dk , l̄k ,wk ) ∈ D,
an (ok ,dk )-path Pk of length at most l̄k as route from ok to dk
throughG . The spectrum assignment consists of selecting, for each
k ∈ D, a channel Sk ⊆ S of wk consecutive frequency slots that
satisfies the three above constraints. We denote a routing of D by
P = {Pk : k ∈ D}, and a spectrum assignment byS = {Sk : k ∈ D}
so that any pair (P,S) is a solution to the RSA problem.

In addition, the selected set of lightpaths is supposed to minimize
a chosen objective function, e.g. minimize the number of edges in
the routing paths Pk [19], minimize the number of edges from the
network used to route the demands [17], or minimize the spectrum
width (and, thus, the width of the subspectrum of S used for the
spectrum assignment) [2].

The RSA problem has been shown to be NP-hard [3, 18]. In
fact, if all routes are already known or uniquely determined (e.g.
if the optical network is a tree), then the RSA problem reduces
to the spectrum assignment and only consists of determining the
demand’s channels. It is NP-complete to decide whether there is
a feasible spectrum assignment within a given optical spectrum,
even if the optical network is a path, see e.g. [16]. This makes
the RSA problem much harder than the WDM problem which is
polynomially solvable on paths, see e.g. [5].

To solve the RSA problem, various approaches have been studied
in the literature, based on different Integer Linear Programming
(ILP) models. Few models use edge-node formulations which are
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compact in terms of the number of variables and constraints, see e.g.
[2, 17, 19] and [1] for an overview, but have the disadvantage that
the routing is rather involved. As noticed in [7], the models from
[2, 17, 19] are incomplete as their feasible region is a superset of all
feasible solutions to the RSA problem. The first complete edge-node
formulation presented in [7] exactly encodes the feasible solutions,
but requires an exponential number of constraints.

The majority of the existing models uses an edge-path formula-
tion where for each demand, variables are associated with all pos-
sible routes for this demand, leading to an exponential number of
variables issued from the total number of all feasible paths between
origin-destination pairs in the network, which grows exponentially
with the size of the network. To bypass the exponential number of
variables, edge-path formulations with a restricted precomputed
subset of all possible paths per demand have been studied, e.g. in
[10, 12, 17, 19], see [19] for an overview. However, such formula-
tions cannot guarantee optimality of the solutions in general (as
only a subset of paths is considered and, thus, a restricted problem
is solved). In order to find optimal solutions to the RSA problem
w.r.t. any objective function with the help of an edge-path formu-
lation, all possible paths have to be taken into account. As the
explicit models are far too big for computation, it is in order to
apply column-generation methods. However, computational results
from [11, 13, 15] show that the size of the instances that can be
solved that way is rather limited1.

Our goal is to compute the minimum spectrum width which has
turned out to be particularly difficult, see e.g. [2, 7]. For that, we
provide a framework for the use of edge-path formulations that
selects an appropriate subset of paths to operate on with the help of
combinatorial properties in such a way, that it is neither necessary
to enumerate all possible routing paths nor to apply generic column
generation techniques, but that optimality of the solution can still
be guaranteed.

The idea is to iterate twomajor steps: on the one hand, a min-cost
multi-commodity flow computes a lower bound on the minimum
spectrum width and provides us with routing paths, on the other
hand, solving an edge-path formulation using the already generated
subset of routing paths provides a solution and an upper bound on
the minimum spectrum width. As long as there is a gap between
the lower and upper bounds, we add constraints to forbid (partial
or full) routings that cause the use of a larger spectrum than the
current lower bound, and iterate both major steps until the lower
bound equals the upper bound and, thus, an optimal solution has
been found (or infeasibility of the instance has been detected).

In the following, we present details on all steps involved in
the framework in Section 2, we provide computational results in
Section 3, and close with some concluding remarks and lines of
future research.

1An exception is an edge-path formulation from [4] that seems to be scalable to real-size
instances by using column-generation methods. However, the authors of [4] consider
an asymmetric version of the RSA problem where each link of the optical network is
composed by two optical fibers to be used to transmit signals in one direction only.
This makes the spectrum assignment easier (as less restrictions have to be taken into
account), but is not used very often in practice by network operators as that way it is
not possible to use the full spectral resources of the optical links.

2 FRAMEWORK TO COMPUTE THE
MINIMUM SPECTRUM WIDTH

In order to compute the minimum spectrum width, we adopt a
reinterpretation of the spectrum assignment as interval coloring of
the edge intersection graph I (P) of the routing P [9]. Each path
Pk ∈ P becomes a node of I (P), two nodes are joined by an edge
if their corresponding paths in G are in conflict as they share an
edge. An interval coloring in I (P) corresponds to the spectrum
assignment: assign a frequency interval Sk ofwk consecutive fre-
quency slots (slot contiguity) to every node k and, thus, to every
path Pk (slot continuity) such that the intervals of adjacent nodes
are disjoint (non-overlapping slots).

Letw ∈ Z |D |+ be the vector whose entrieswk are the slot require-
ments associated with the demands k ∈ D. The interval chromatic
number χI (I (P),w) is the smallest size of a spectrum such that
I (P) weighted withwk for each path Pk has a proper interval color-
ing. Given G and D, the minimum spectrum width of any solution
to the RSA problem thus equals

χI (G,D) = min{χI (I (P),w) : P ∈ R}
where R denotes the set of all possible routings of the demands D
in G. Our goal is to compute χI (G,D) which has turned out to be
particularly difficult, see e.g. [2, 7].

Lower bounds on χI (G,D). Consider the following two lower
bounds of χI (G,D) that are exclusively related to the routing as-
pect of the problem (not yet taking the spectrum assignment into
account).

We denote by ℓ(G,D) the minimum number of slots that need
to be installed on all edges of the optical network G to allow a
routing of all demands in D. The value ℓ(G,D) corresponds to
the maximum edge load w (P) = max{∑Pk ∋e wk : e ∈ E} in the
most balanced routing P, i.e., to the minimum maximum edge load,
taken over all possible routings: we call

ℓ(G,D) = min{w (P) : P ∈ R}
the load bound. Due to the non-overlapping slot condition, all chan-
nels Sk of paths routed along a same edge of G need to be disjoint,
thus, ℓ(G,D) is a lower bound of χI (G,D).

We further consider the weighted clique number ω (I (P),w)
of the edge intersection graph I (P) of the routing P (that is the
maximum weight of a clique, a set of pairwise adjacent nodes, in
I (P), taking the node weights w into account). We denote by

ω (G,D) = min{ω (I (P),w) : P ∈ R}
the clique bound, i.e., the minimum over all maximum weighted
cliques in I (P), taken over all possible routings P. On the one
hand, all paths in a routing P passing through a same edge e of G
are mutually in conflict and form a clique in I (P), which shows
that ℓ(G,D) is a lower bound of ω (G,D). On the other hand, all
channels Sk of paths Pk forcing a clique in I (P) need to be disjoint
due to the non-overlapping slot condition such that ω (I (P),w) ≤
χI (I (P),w) holds for any I (P) and, thus,ω (G,D) is a lower bound
of χI (G,D):

ℓ(G,D) ≤ ω (G,D) ≤ χI (G,D). (1)
There are instances of the RSA problem where there is a gap

between any two parameters from this chain, see Exp. 2.1.
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Example 2.1. Consider the following instance of the RSA problem
with the optical network G shown in Fig. 1 and the following set
D of demands:

k ok → dk l̄k wk path Pk channel Sk
1 a → c 3 1 a → b → c 1 2 3
2 c → e 3 2 c → b → d → e 1 2
3 e → f 3 2 e → d → f 1 2 3 4
4 f → д 3 2 f → d → д 1 2
5 д → h 3 2 д → d → h 1 2 3 4
6 h → a 3 2 h → d → b → a 1 2 3 4 5 6

As the networkG is a tree, there is a unique routing P, as indicated
in the table above.

b

a c

eh

d

fg

1

3

4

26

5

Figure 1: A network G and I (P) of the routing.

Since the load of all edges incident to node d equals 4, ℓ(G,D) =
4 follows. The edge intersection graph I (P) of the routing is also
shown in Fig. 1. The nodes 1, 2, 6 form a clique of weight 5, hence
we haveω (G,D) = 5. Any interval coloring of I (P) needs at least 6
colors, as indicated in the table above. Hence, there is a gap between
any two parameters from the chain (1).

We call a clique Q in I (P) a non-edge clique if the routing paths
composing Q pairwise intersect, but do not all meet in a same edge
(like the clique formed by nodes 1, 2, 6 in the above example). Only
non-edge cliques can cause a gap between ℓ(G,D) and ω (G,D).

A graph is superperfect if and only if the weighted clique number
and the interval chromatic number coincide for all possible non-
negative integral node weights, see e.g. [6]. Only non-superperfect
subgraphs of I (P) can cause ω (I (P),w) < χI (I (P),w) for the
given weight w (as the 5-hole formed by nodes 2, 3, 4, 5, 6 in the
above example), and, thus a gap between ω (G,D) and χI (G,D).

We here restrict to the search for cliques as it has been shown in
[9] that there are too many different non-superperfect subgraphs
that may occur in I (P) and thus, it is questionable whether the
time spent for their analysis is a gain for the overal running time.

Multi-commodity flows (MCF). We use multi-commodity flows
in an auxiliary networkGf constructed fromG to handle the lower
bound and to determine routings P.

We denote by Gf = (V ,A) the directed graph obtained from the
optical network G = (V ,E) by replacing every edge e = uv of G by
a pair of oppositely-directed arcs a = (u,v ), ā = (v,u). We say that
a = (u,v ) is the arc outgoing from u and incoming to v and denote
by δ− (v ) the set of arcs incoming to v and by δ+ (v ) the set of arcs
outgoing from v .

Each demand k ∈ D corresponds to a commodity fk with source
ok ∈ V and sink dk ∈ V in Gf . The ILP to determine the minimum
number cap of slots needed on all edges of G to allow the routing

of all demands k ∈ D is as follows:
min cap∑
a∈δ+ (ok ) fk (a) = 1 ∀k∑
a∈δ− (ok ) fk (a) = 0 ∀k∑
a∈δ− (dk ) fk (a) = 1 ∀k∑
a∈δ+ (dk ) fk (a) = 0 ∀k∑
a∈δ− (v ) fk (a) −

∑
a∈δ+ (v ) fk (a) = 0 ∀k,∀v , ok ,dk∑

a∈δ− (v ) fk (a) ≤ 1 ∀k,∀v , ok ,dk∑
a∈δ− (v ) la fk (a) ≤ l̄k ∀k∑
k ∈D wk fk (a) +

∑
k ∈D wk fk (ā) ≤ cap ∀ pairs a, ā ∈ A

fk (a) ∈ {0, 1}∀k,a

(2)

As the sum of flow values on each pair of oppositely-directed
arcs a = (u,v ), ā = (v,u) (and, thus, on each edge e = uv of G) is
bounded by cap and the value of cap is minimized, ILP (2) indeed
computes the load bound by

ℓ(G,D) = cap.

This happens in the initial run of the multi-commodity flow. If
ℓ(G,D) > s̄ , the considered instance (G, s̄,D) is infeasible. Oth-
erwise, the computed multi-commodity flow provides us with a
routing P which allows us to continue with solving an edge-path
formulation.

In later runs of the multi-commodity flow, we have to take forbid-
den cliques Q (of weightw (Q ) > ℓ(G,D)) and forbidden routings
(to never consider a same routing twice) into account. For that,
ILP (2) is enhanced by the following constraints: forbidden routing
constraints associated with a routing P

∑

k ∈D

∑

a∈AkP
fk (a) ≤

∑

k ∈D
|AkP | − 1 (3)

where AkP denotes the subset of arcs with fk (a) > 0 in P and
forbidden clique constraints associated with a clique Q

∑

k ∈Q

∑

a∈AkQ
fk (a) ≤

∑

k ∈Q
|AkQ | − 1 (4)

whereAkQ is the subset of arcs a corresponding to edges inG where
two paths from Q meet.

The objective function value cap computed by ILP (2) enhanced
by constraints (3) and (4) does not necessarily equal the load bound
ℓ(G,D) anymore, but corresponds to the maximal edge load of
a most-balanced routing, taking forbidden cliques and forbidden
previous routings into account.

That way, it is possible to increase the lower bound towards a
match with the current upper bound, coming from the spectrum
width of the best solution found so far.

An edge-path formulation (EPF). For the framework to compute
χI (G,D), any edge-path formulation to solve the RSA problem can
be used. Here we make use of the edge-path formulation related
to the novel edge-node model from [7], i.e., we will adopt the way
to encode the spectrum assignment from [7], but will simplify the
routing as follows.

Let P̄ be the set of currently-considered routing paths, parti-
tioned into P̄ = P̄1 ∪ . . . ∪ P̄ |D | where P̄k = {P1

k , . . . , P
mk
k }

denotes the subset of routing paths currently available for demand
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k ∈ D. To find a routing P, we use path selection variables

yik =

{
1 if path P ik ∈ P̄k is selected for P,
0 otherwise,

and have to ensure that one path per demand is taken.
For the spectrum assignment, we adopt the following sets of

binary variables from [7]: For each demand k ∈ D and each edge
e ∈ E, variable xke ∈ {0, 1} indicates whether or not demand k
is routed through edge e . For each demand k ∈ D and each slot
s ∈ S , variable zks ∈ {0, 1} encodes the fact of whether or not the
slot s is the last slot of the channel assigned to demand k . For each
demand k ∈ D, each slot s ∈ S and each edge e ∈ E, variable
tske ∈ {0, 1} indicates whether or not demand k uses the slot s
on edge E. Moreover, a variable smax ∈ S is used to express the
maximum slot used.

Letblow be the current lower bound andbup be the current upper
bound on χI (G,D), then the edge-path formulation based on the
edge-node model from [7] reads as minimum violation problem:

min |D|smax +
∑
blow<s<bup,k ∈D zsk∑

P ik ∈P̄k y
i
k = 1 ∀k

∑
P ik ∈P̄k ,e ∈P ik y

i
k = xek ∀k, e∑

1≤s<wk z
s
k = 0 ∀k∑

wk ≤s<bup z
s
k = 1 ∀k

∑
1≤j≤wk z

s+j
k + xek ≤ te,sk + 1 ∀k, e, s ∈ {1, . . . ,bup − 1}∑

1≤s<bup t
e,s
k = wkx

e
k ∀k, e∑

k ∈D te,sk ≤ 1∀e, s ∈ {1, . . . ,bup − 1}∑
wk ≤s<bup sz

s
k ≤ smax ∀k

smax ≤ bup − 1
yik ,x

e
k , z

s
k , t

e,s
k ∈ {0, 1}

(5)
The objective function ensures that a span-minimal solution is
found and that the use of frequency slots within {blow +1, . . . ,bup−
1} is penalized. The path selection constraints ensure that one path
per demand is selected, the remaining constraints are adopted from
[7] where it was shown that they correctly encode a solution (when
all demands have to be served).

Note that for the first run of the edge-path formulation, the
intitial values areblow = ℓ(G,D) andbup = s̄+1 so that we operate
on the full spectrum {1, . . . , s̄}; each subset P̄k contains exactly one
path, obtained from the initial routing P. If the first run of the edge-
path formulation does not result in a solution, we have to go back
to the multi-commodity flow to find another routing. If a solution
(P,S) with span smax has been found, we proceed as follows: if
smax equals blow , then (P,S) is clearly optimal; otherwise, we
have blow < smax < bup , update bup = smax and keep (P,S) as
currently best solution.

To analyze the solution (P,S) in terms of cliques of weight
greater than blow , we proceed as follows. Determine from (P,S)
the subset Dc ⊂ D of critical demands k whose channel Sk ∈ S
uses frequency slots within {blow +1, . . . ,bup−1}. Critical demands
k may be contained in a clique Q of weightw (Q ) > blow , and this
clique Q must be contained in the closed neighborhood N [k] =
N (k )∪{k } of k in the edge intersection graph I (P) of the routing P.
Hence, for each critical demand k ∈ Dc , we construct the subgraph
Hk of I (P) induced by N [k], enumerate in Hk all cliques Q of

weight w (Q ) > blow and include them in a set Q of forbidden
cliques as triples (PQ ,EQ ,w (Q )) with PQ = {Pk ∈ P : k ∈ Q } and
EQ subset of edges of G where paths from PQ meet.

In later runs of the edge-path formulation, the use of the spec-
trum {1, . . . ,bup − 1} ensures that every new solution improves the
current upper bound. In addition, we have to take forbidden cliques
Q (of weightw (Q ) > blow ) and forbidden routings (to never con-
sider a same routing twice) into account. For that, (5) is enhanced
by forbidden (partial or full) routing constraints: for a forbidden
clique or a forbidden routing P ′,

∑

P ik ∈P′
yik ≤ |P ′ | − 1 (6)

ensures that not all paths P ik ∈ P ′ can be selected together again.
Note that if P ′ corresponds to a clique, then all routings containing
this subset of paths are forbidden, to exclude all routings P with
ω (I (P),w) > blow . If in later runs of the edge-path formulation,
the current lower bound blow is larger than the weight of a forbid-
den clique Q , then the clique Q has to be reallowed to operate on
the whole set of routings with blow as lower bound. For that, an in-
termediate value bq indicating the weight of the lightest forbidden
clique will be used.

Framework to compute χI (G,D). Here, we summarize the results
from the previous sections to formulate a framework to compute
χI (G,D).

Input: We take as input an instance (G, s̄,D).
Output: The output will be a solution (P∗,S∗) with span χI (G,D)
or a certificate for infeasibility.
Initialization: We initialize
• an upper bound by bup = s̄ + 1, a clique bound by bq = s̄ + 1,
• a set of previously used routings by F = ∅, and a set of
critical non-edge cliques by Q = ∅.

We construct the auxiliary network Gf from G and compute in
Gf a multi-commodity flow f using ILP (2) with the objective to
minimize cap.

If no feasible solution has been found then
• return “instance infeasible (due to transmission reach)”

Else (flow f with capacity cap has been found):
• if cap > s̄ return “instance infeasible (as ℓ(G,D) > s̄)”
• else set lower bound blow = cap
determine from f the according routing Pf
initialize a set of considered paths by P̄ = Pf .

Edge-Path Formulation (EPF): Launch the edge-path formula-
tion (5) with P̄ as set of paths, enhanced by forbidden (partial or
full) routing constraints (6) for all P ′ ∈ Q ∪ F as a minimum
violation problem where the objective is to minimize the span of
the solution and penalties.

If no feasible solution has been found:
• Let F := F ∪ {Pf } and continue with MCF.

Else (i.e. a solution (P,S) with span smax has been found):
• If smax = blow , then return (P,S) as optimal solution.
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• Else update bup = smax and keep (P,S) as currently best
solution.
Determine from (P,S) the subset Dc ⊂ D of critical de-
mands k whose channel Sk ∈ S uses frequency slots within
{blow + 1, . . . ,bup − 1}. For each critical demand k ∈ Dc :
– Construct the subgraph Hk of I (P) induced by N [k], find
in Hk all cliques Q of weightw (Q ) > blow .

– Include them in Q; ifw (Q ) < bq then update bq = w (Q ).
Let F = F ∪ {Pf ,P} and continue with MCF.

Multi-Commodity Flow (MCF): Compute a multi-commodity
flow f minimizing cap using ILP (2), enhanced by forbidden rout-
ing constraints (3) associated with P ∈ F and forbidden clique
constraints (4) associated with Q ∈ Q. If no flow has been found:
• if bq = bup = s̄ + 1, return “instance infeasible (χI (G,D) >
s̄)”
• else if bup ≤ bq , s̄ , return (P∗,S∗) as optimal solution
• else (i.e. we have blow < bq < bup ≤ s̄): remove from Q
all cliques Q of weightw (Q ) = bq , update bq to min(w (Q ) :
Q ∈ Q) or to s̄ + 1 if Q = ∅, continue with MCF.

Else (i.e. a flow f with capacity cap has been found):
• if bq = bup = s̄ + 1 ≤ cap, return “instance infeasible
(χI (G,D) > s̄)”
• else if (bq = bup ≤ s̄ and bup ≤ cap) or (bup < bq and
bup ≤ cap), return (P∗,S∗) as optimal solution
• else (we make some updates and continue):
if (cap < bq and cap < bup ), set blow = cap,
if (bq ≤ cap and bq < bup ), set blow = bq , remove from Q
all cliques Q of weightw (Q ) = bq ,
update bq to min{w (Q ) : Q ∈ Q} or to s̄ + 1 if Q = ∅,
determine from f the routing Pf , add the paths from Pf to
P̄ and continue with EPF.

With the help of the above given arguments and a case analysis
of the possible situations after running the multi-commodity flow,
we can show:

Theorem 2.2. Given an instance (G, s̄,D) of the RSA problem, the
above described framework correctly computes a solution (P∗,S∗)
with span χI (G,D) or certifies infeasibility.

3 COMPUTATIONAL RESULTS
In this section, we present some preliminary computational results
to evaluate the computational performances achieved with the
herein proposed framework for the use of edge-path formulations
in comparison with the related edge-node formulation from [7] (i.e.,
where both formulations use the same way to encode the spectrum
assignment).

For that, we use two different sets of test instances. On the one
hand, we use artificially constructed test instances (G, s̄,D) with
networks having up to 14 nodes and only few demands, some of
them having the property that ℓ(G,D) < χI (G,D), some being
infeasible due to s̄ < χI (G,D), indicated by “inf.” in Table 1.

On the other hand, three network topologies from the litera-
ture are investigated: Spain, NSF and German [14, 17]. The Spain
topology has 21 nodes, 35 edges and 50 slots; the NSF topology
has 14 nodes, 21 edges and 60 slots; the German topology has 17
nodes, 25 edges and 60 slots. For each network topology, three sets

of randomly generated demands are evaluated. Each considered
demand requires either 3, 5 or 6 slots and supports, respectively,
100 Gb/s (3000 km reach), 200 Gb/s (1500 km reach), or 400 Gb/s
(600 km reach). The computational results are listed in Table 2.

Network s̄ ℓ(G, D) χI (G, D) # FWK (ms) ENF (ms)
Test net 1 5 3 4 2 58 95
Test net 2 5 - inf. 0 4 15
Test net 2 8 6 6 2 36 137
Test net 3 16 11 13 3 368 1182
Test net 4 20 11 16 9 1247 17738
Test net 5 16 12 14 4 454 1425
Test net 6 12 8 10 3 227 233
Test net 7 7 - inf. 0 7 151
Test net 7 8 - inf. 1 50 211
Test net 7 9 8 9 2 61 251
Test net 7 10 7 9 3 245 654

Table 1: Comparison between the two approaches on artifi-
cially constructed test instances.

Network s̄ |D | ℓ(G, D) χI (G, D) # FWK (ms) ENF
Spain 50 10 4 4 2 20523 n.t.
Spain 50 20 7 7 9 647694 n.t.
Spain 50 30 8 n.t. n.t.
German 60 10 12 12 4 241565 n.t.
German 60 20 23 23 2 190286 n.t.
German 60 30 32 n.t. n.t.
NSF 60 30 32 32 2 100851 n.t.
NSF 60 60 38 38 2 60650 n.t.
NSF 60 90 50 50 2 2135706 n.t.

Table 2: Comparison between the two approaches on net-
works from the literature.

All experiments are performed using the state-of-the-art MIP
solver CPLEX 12.10 on the high performance platform available at
LIMOS. For each instance, the lower bound ℓ(G,D) and the mini-
mum spectrumwidth χI (G,D) are given, followed by the number #
of iterations needed by the framework FWK. For both formulations,
the herein proposed framework (FWK) and the related edge-node
formulation (ENF), the total time in milliseconds required for the op-
timization is displayed. A closer analysis of the overall running time
spent by our framework FKW shows moreover that the percentage
of the time spent solving the subproblems with the edge-path for-
mulation increases with the number of demands (up to 99 % for the
last instance in Table 2).

A time limit of 100 hours was imposed in each run. The absence
of results for some instances indicates that the computation could
not terminate within this time limit2, indicated by “n.t.” in Table 2.

We clearly see that, for all artificially constructed test instances,
the computation time of the herein proposed framework is cer-
tainly smaller than for the related edge-node formulation from [7].
Moreover, the herein proposed framework could solve substantially
more instances to optimality within the time limit than the related
edge-node formulation, see Table 2.

2Unfortunately, the high performance platform does not return any information (e.g.
on the objective function value of the best solution found) when the process exceeds
the time limit so that no information about the remaining gap can be provided.
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4 CONCLUDING REMARKS
In this paper, we studied the routing and spectrum assignment
problem. The majority of existing models for the problem uses edge-
path formulations where variables are associated with all possible
routing paths so that the number of variables grows exponentially
with the size of the instance. Therefore, either precomputed subsets
of all possible paths per demand are used (which cannot guarantee
optimality of the solutions) or column-generation methods have to
be applied (as the explicit models are far too big for computation).
However, computational results show that the size of the instances
that can be solved to optimality that way is rather limited, see e.g.
[2, 7, 11, 13, 15].

Our contribution is to provide a framework for the use of edge-
path formulations to minimize the spectrum width of a solution.
For that, we select an appropriate subset of paths to operate on with
the help of combinatorial properties in such a way that optimality
of the solution can be guaranteed due to a match of a lower bound
(derived from the edge load of the routings) and an upper bound
(coming from the span of the best solution found so far).

First computational results suggest that the herein proposed
framework for the use of edge-path formulations is competitive in
comparison with the related edge-node formulation from [7] (i.e.,
where both formulations use the same way to encode the spectrum
assignment).

Our future work includes comparing different edge-path for-
mulations from the literature (or edge-path formulations derived
from edge-node formulations) to see which one behaves best in the
context of our framework.

Moreover, there are different directions to further improve the
current framework. On the one hand, we observe that two demands
k,k ′ ∈ D with the same origin-destination pair operate on the
same set of routing paths P̄k = P̄k ′ . If, in addition, wk = wk ′
holds, then both the routes and the channels assigned to k and k ′
can be exchanged while keeping the same physical solution in the
network. With an increasing number of demands, this effect causes
a large number of symmetric solutions so that applying symmetry
breaking techniques seems to be advantageous.

On the other hand, the cliques Q ∈ Q are used to prevent that
all routings containing them are explored during the process. We
note that all forbidden clique contraints (4) for MCF and (6) for EPF
are redundant if they are associated with cliques Q ∈ Q properly
contained in another clique Q ′ ∈ Q. This observation shall be used
to reduce the number of redundant constraints in order to speed
up the computation.

Finally, our future work includes proposing similar frameworks
to handle the RSA problem w.r.t. other objectives like minimizing
the number of edges in routing paths, the lengths of the routing
paths, or the number of edges from the network used to route the
demands.
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ABSTRACT
In this work, we address the problem of optimally placing Virtual
Network Functions throughout a 5G network so that a given set of
Service Function Chains can achieve high levels of end-to-end avail-
ability. We tackle this problem from a combinatorial perspective
and propose a probabilistic approach to evaluate the real end-to-end
availability of a service. This generates a non-linear character to
the problem which is then linearized to derive an original integer
programming formulation for it. We also introduce new families of
valid inequalities reinforcing the proposed formulation. Based on
these inequalities, we derive an efficient branch-and-cut algorithm.

KEYWORDS
Network reliability, combinatorial optimization, valid inequalities

1 INTRODUCTION
Network Function Virtualization (NFV) is one of the key enabler
technologies for tackling the challenges of the upcoming 5G use-
cases requirements. These high-level-requirement use-cases include
autonomous vehicles, smart factories, smart cities, e-health, for in-
stance. With virtualization, Network Functions gain the ability to be
run as applications in Virtual Machines (VMs) or containers on off-
the-shelf hardware. This allows higher scalability, more flexibility
and reduces network management costs.

Virtual Network Functions (VNF) however are more prone to
errors and failures when compared to purpose-built hardware
[10, 14, 16]. Indeed, a major challenge for NFV is to ensure high
availability levels for its services. The service availability refers to
its probability of being operational when required and is defined as
the ratio between its expected uptime and total time values (see [2]).
A service in NFV-based networks – also called a Service Function
Chain (SFC) – is an origin-destination traffic demand composed of
a set of VNFs that must be visited in a given order along its route.

In this sense, an SFC is available if and only if all its VNFs can be
properly processed. Strict Service Level Agreements (SLAs) impose
that SFCs should be highly available (in some cases, for more than

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th 
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen, 
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

99.999% of the time, which roughly translates to 25.9 s downtime per
month [11, 15]). Then, backup VNFs must be placed on the network
so that the services can still be ensured even if some network nodes
fail.

Most of the literature related to SFC’s resilience is devoted to
securing the network against single-node failures. In this case, it
suffices to find two node-disjoint routes (a nominal and a backup)
for each SFC. In [4], nominal SFC routes are known in advance
and the goal is to find a minimum cost backup VNF placement. In
[13], the authors impose a single route for each SFC and focus on
minimizing the number of SFCs affected by a single node failure.

A few papers deal with multi-node failures. In [8, 9], heuristic
methods treating the multi-node failure scenario are presented.
These heuristics (i) construct a VNF assignment for each SFC based
on node’s remaining resources, (ii) reinforce the assignments by se-
quentially adding backup VNFs until the availability requirements
are met, and (iii) routing is then done through 𝑘-shortest paths com-
putations. An interesting exact approach is presented in [5], where
service availabilities are computed using a probabilistic approach.
However, each service is supposed to request only one VNF which
reduces the end-to-end availability computation complexity. In [16],
an in-between approach is considered where the goal is to protect
the network against single-node failures while knowing that the
failure of a node may impact other nodes (failure events are not
independent and are related to the network topology structure).

In this paper, we further explore the service availability defini-
tion considered in [5] with the purpose of providing a mathematical
model that optimizes VNF placements while formally taking into
account the SFCs’ availability. This allows us to ensure the required
SLAs within a multi-node failure scenario. The paper is organized
as follows. The problem is formally defined in Section 2 and its com-
putational complexity is briefly discussed in Section 3. In Section
4, we propose an original ILP formulation for the problem which
is then reinforced with valid inequalities in Section 5. To verify
the efficiency of the proposed inequalities, Section 6 is devoted
to the description of a branch-and-cut framework based on such
inequalities and Section 7 presents the preliminary computational
results obtained with this approach.

2 PROBLEM DEFINITION
Let 𝐺 = (𝑉 ,𝐴) be a directed, loopless, connected graph. Each node
𝑣 ∈ 𝑉 has a capacity 𝐶𝑣 ∈ R+, and an availability 0 < 𝑎𝑣 < 1, (i.e.,
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Figure 2: Illustration of a VNF assignment and the possible
SFC routes induced by it.

a risk of 1 − 𝑎𝑣 of being down). Moreover, let F be the set of VNF
types, where each VNF 𝑓 ∈ F has a resource consumption 𝑟 𝑓 ∈ R+,
and a placement cost 𝑐 𝑓𝑣 ∈ R+ for each node 𝑣 ∈ 𝑉 . Finally, let 𝐾
be the set of SFC demands, where each demand 𝑘 ∈ 𝐾 is defined
by (i) an origin 𝑜𝑘 ∈ 𝑉 and a destination 𝑑𝑘 ∈ 𝑉 , (ii) a bandwidth
𝑏𝑘 ∈ R+, (iii) a required availability 𝐴𝑘 ∈ [0, 1], and (iv) an ordered
set of distinct VNFs 𝐹𝑘 ⊆ F that should be visited.

While different VNFs should be placed in series along the SFC
route (see Figure 1a), redundant VNFs must be placed in parallel
(see Figure 1b) so that whenever one fails, the SFC can be rerouted
through one of the redundancies. In serial composition, all sub-
components need to be operational for the system to be available.
For a parallel composition, however, it suffices that one subcompo-
nent is operational [12]. It follows that given two subcomponents
𝑖 and 𝑗 with respective availabilities 𝑎𝑖 and 𝑎 𝑗 , the availability
induced by their serial (resp. parallel) composition is 𝑎𝑖𝑎 𝑗 (resp.
1 − [(1 − 𝑎𝑖 ) (1 − 𝑎 𝑗 )]). Based on these remarks, we next describe
the VNF assignment of an SFC as well as the availability it induces.

Given an SFC requiring the visit of 𝑝 distinct VNFs, let S =
{𝑆1, . . . , 𝑆𝑝 } denote a VNF assignment for such SFC, where each
nonempty subset 𝑆𝑖 ⊆ 𝑉 , for 𝑖 = 1, . . . , 𝑝 , represents the set of
nodes where its 𝑖-th VNF can be processed. Figure 2 illustrates such
assignment. The subset 𝑆𝑖 ∈ S is also called the 𝑖-th section of an
SFC. From now on, let 𝐼𝑘 = {1, . . . , |𝐹𝑘 |} denote the set of sections
associated with SFC 𝑘 . The probability that the 𝑖-th VNF of the
considered SFC can be properly processed (i.e. the availability of its
𝑖-th section) is the probability that at least one of the nodes in 𝑆𝑖 is
operational. This probability, denoted by 𝑎(𝑆𝑖 ), is hence defined by

𝑎(𝑆𝑖 ) = 1 −
∏
𝑣∈𝑆𝑖

(
1 − 𝑎𝑣

)
. (1)

For an SFC to be operational, all its VNFs must be properly
processed. The end-to-end SFC availability induced by a VNF as-
signment S is denoted by 𝐴(S) and given by

𝐴(S) =
∏
𝑆 ∈S

𝑎(𝑆) =
∏
𝑆 ∈S

(
1 −

∏
𝑣∈𝑆

(
1 − 𝑎𝑣

))
. (2)

A VNF assignment S is said to satisfy the availability requirements
of an SFC 𝑘 if and only if 𝐴(S) ≥ 𝐴𝑘 .

Given a VNF assignment S𝑘 for each 𝑘 ∈ 𝐾 , let G = {S𝑘 :
𝑘 ∈ 𝐾} denote the associated global VNF assignment. A global VNF
assignment G is said to be feasible if the availability requirements of
each SFC 𝑘 ∈ 𝐾 is satisfied and the amount of resources consumed
on any given node 𝑣 ∈ 𝑉 is at most the node’s capacity 𝐶𝑣 , that is,∑

𝑘∈𝐾,𝑖∈𝐼𝑘 :𝑣∈𝑆𝑘𝑖
𝑏𝑘𝑟

𝑓 (𝑖,𝑘) ≤ 𝐶𝑣 ∀𝑣 ∈ 𝑉 ,

where 𝑓 (𝑖, 𝑘) is a function mapping the 𝑖-th element of 𝐹𝑘 , that is,
the 𝑖-th VNF of SFC 𝑘 .

Notice that a node 𝑣 ∈ 𝑉 can only process a given VNF 𝑓 ∈ F if 𝑓
is placed on such node. Therefore, given a global VNF assignement
G, let 𝑉𝑓 (G) ⊆ 𝑉 denote, for any 𝑓 ∈ F , the set of nodes where 𝑓
must be placed, that is,

𝑉𝑓 (G) =
⋃
𝑘∈𝐾

⋃
𝑖∈𝐼𝑘 :

𝑓 (𝑖,𝑘)=𝑓

𝑆𝑘𝑖 .

The cost induced by a global VNF assignment G is therefore∑
𝑓 ∈F

∑
𝑣∈𝑉𝑓 (G)

𝑐
𝑓
𝑣 ,

and our goal is to find the feasible global VNF assignment inducing
the minimum cost.

3 COMPUTATIONAL COMPLEXITY
Even without taking into account the availability restrictions, the
problem is already NP-Hard. Indeed, if each SFC requires the same
and only one VNF, then the problem reduces to choosing aminimum
cost subset of nodes 𝑆 ⊆ 𝑉 where the VNF should be placed such
that 𝑆 is able to treat all SFCs. This is equivalent to a Variable Cost
and Size Bin-Packing Problem1 (see [6, 7]) where bins and items
correspond to nodes and SFCs, respectively.

Furthermore, dealing with availability restrictions on their own
is also an NP-Hard problem. Indeed, if node capacities are said to
be unlimited and there is only one SFC (i.e., 𝐾 = {𝑘}) requiring a
single VNF to be considered, then the problem reduces to finding
a minimum cost subset of nodes 𝑆 ⊆ 𝑉 where the VNF should
be placed such that the SFC required availability is achieved, i.e.,
𝑎(𝑆) ≥ 𝐴𝑘 . This is clearly equivalent to a (Nonlinear) Knapsack
Problem (see [3]) where each item corresponds to a node in 𝑉 .

4 ILP FORMULATION
In this section, a natural formulation for the problem is described.
The binary variables 𝑥𝑣𝑖𝑘 indicate whether or not the 𝑖-th VNF of
SFC 𝑘 can be processed on node 𝑣 (i.e., if 𝑥𝑣𝑖𝑘 = 1 then 𝑣 ∈ 𝑆𝑘𝑖 ,
otherwise 𝑣 ∉ 𝑆𝑘𝑖 ). For each node 𝑣 ∈ 𝑉 and VNF 𝑓 ∈ F , the
variable 𝑦 𝑓𝑣 indicates whether or not VNF 𝑓 is placed on node 𝑣 .

min
∑
𝑣∈𝑉

∑
𝑓 ∈F

𝑐
𝑓
𝑣𝑦

𝑓
𝑣 (3)

subject to

1The Variable Cost and Size Bin-Packing Problem is a generalization from the well-
known Bin-Packing Problem where each bin has its own capacity and cost.
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∑
𝑣∈𝑉

𝑥𝑣𝑖𝑘 ≥ 1 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼𝑘 , (4)

𝑥𝑣𝑖𝑘 ≤ 𝑦 𝑓 (𝑖,𝑘)𝑣 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼𝑘 , 𝑣 ∈ 𝑉 , (5)∑
𝑘∈𝐾

∑
𝑖∈𝐼𝑘

𝑏𝑘𝑟
𝑓 (𝑖,𝑘)𝑥𝑣𝑖𝑘 ≤ 𝐶𝑣 ∀𝑣 ∈ 𝑉 , (6)

∏
𝑖∈𝐼𝑘

(
1 −

∏
𝑣∈𝑉

(
1 − 𝑎𝑣𝑥𝑣𝑖𝑘

))
≥ 𝐴𝑘 ∀𝑘 ∈ 𝐾, (7)

𝑥𝑣𝑖𝑘 ∈ {0, 1} ∀𝑣 ∈ 𝑉 , 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼𝑘 , (8)

𝑦
𝑓
𝑣 ∈ {0, 1} ∀𝑣 ∈ 𝑉 , 𝑓 ∈ F . (9)

The objective function (3) evaluates the total VNF placement
cost. The assignment constraints (4) ensure that at least one VNF
should be assigned to each section of each SFC. The VNF placement
constraints (5) impose that a VNF can only be assigned to an SFC if
it is already placed. The capacity constraints (6) guarantee that the
capacity of each node is not exceeded. Availability constraints (7)
force the SFCs’ Service Level Agreement to be respected. Finally,
constraints (8) and (9) settle the domains of variables.

The presence of constraints (7) however clearly makes the pro-
posed formulation non-linear. Such non-linearity is difficult to be
handled by traditional commercial solvers (e.g., CPLEX, Gurobi).
Thereby we next propose a linear reformulation of such constraints.
For this, consider the following set of inequalities.∑
(𝑣,𝑖) ∈(𝑉×𝐼𝑘 )\S

𝑥𝑣𝑖𝑘 ≥ 1 ∀𝑘 ∈ 𝐾,S ⊆ 𝑉 × 𝐼𝑘 : 𝐴(S) < 𝐴𝑘 . (10)

Proposition 4.1. An integer solution 𝑥 satisfies inequalities (7) if
and only if it satisfies inequalities (10).

Proof. Let G = {S𝑘 : 𝑘 ∈ 𝐾} denotes the global VNF assign-
ment associated with solution 𝑥 , where S𝑘 = {(𝑣, 𝑖) : 𝑥𝑣𝑖𝑘 = 1}. Let
𝑥 be an integer solution satisfying inequalities (7). Then, 𝐴(S𝑘 ) ≥
𝐴𝑘 for any 𝑘 ∈ 𝐾 . We next show that inequalities (10) are all sat-
isfied by 𝑥 . For this, suppose there exists 𝑘 ′ ∈ 𝐾 and S′ ⊆ 𝑉 × 𝐼𝑘′
for which ∑

(𝑣,𝑖) ∈(𝑉×𝐼𝑘′ )\S′
𝑥𝑣𝑖𝑘′ = 0.

By definition, S𝑘 ⊆ S′ and hence 𝐴(S′) ≥ 𝐴(S𝑘 ) ≥ 𝐴𝑘 , which
concludes the first part of the proof. To finish the proof, suppose
now that 𝑥 does not satisfy inequalities (7). Then, there exists𝑘 ′ ∈ 𝐾
for which 𝐴(S𝑘′) < 𝐴𝑘

′ . It follows that, by definition, inequality
(10) associated with 𝑘 ′ and S𝑘′ is violated. □

Proposition 4.1 shows that inequalities (10) are sufficient for en-
suring the required availabilities and hence, we can now replace
the non-linear inequalities (7) for (10). The resulting formulation
– defined by (3)-(6),(8)-(10) – is linear but also non-compact since
it requires an exponential number of constraints. A standard ap-
proach is hence to relax such constraints and append them when
violated. For this, one needs to deal with the separation problem
associated with inequalities (10). Recall that for a family of valid
inequalities I, the separation problem for I consists of either find-
ing an inequality in I violated by a given vector (𝑥,𝑦) or proving
that (𝑥,𝑦) satisfies all the inequalities in I. For inequalities (10),

the associated separation problem amounts to solve a (non-linear)
Knapsack Problem (c.f. Section 3), that is, an NP-Hard problem.

Proposition 4.2. The separation problem for inequalities (10) can
be solved in linear time when vector (𝑥,𝑦) is integer.

Proof. Notice that every component of vector (𝑥,𝑦) is binary.
For each 𝑘 ∈ 𝐾 , let S𝑘 = {(𝑣, 𝑖) : 𝑥𝑣𝑖𝑘 = 1}. There exists an
inequality in (10) violated by (𝑥,𝑦) if and only if there exists 𝑘 ∈ 𝐾
such that 𝐴(S𝑘 ) < 𝐴𝑘 , which can be checked in linear time. □

As a consequence, we propose to solve the associated separa-
tion problem heuristically2 whenever the solution is fractional and
exactly otherwise. Nevertheless, such an approach leads to perfor-
mance issues and the reasons are twofold:

(1) The initially relaxed constraints are the only ones enforc-
ing the assignment of backup VNFs (which directly impacts
the objective function). Since their separation problem is
only solved exactly on integer solutions, the dual bound
convergence is significantly slowed down.

(2) Even if inequalities (10) well-define the availability require-
ments, they are not strong inequalities. Indeed, the inclusion
of a violated inequality (10) imposes that one non-assigned
VNF should be in the solution. Such information is quite
vague and hence the inclusion of a huge number of inequali-
ties is required to obtain a feasible solution.

The next section is thus dedicated to the reinforcement of the
studied formulation through the investigation of valid inequalities.

5 FORMULATION STRENGTHENING
As briefly discussed in the previous section, a major challenge
consists of providing good bounds on the number of VNFs required
to secure a given SFC without having to appeal to the linearized
availability constraints (10). In order to derive such bounds, let us
consider the following related combinatorial problem.

Given a set of nodes𝑉 and an SFC composed of 𝑝 VNF types, find
the VNF assignmentS∗ that induces the highest possible availability
for such SFC while placing exactly 𝑛 ∈ N VNFs (𝑛 ≥ 𝑝) over the
node-set 𝑉 . We next show that this combinatorial problem may be
solved in polynomial time and we use it to derive valid inequalities
reinforcing the previously considered formulation.

Claim 1. If S = {𝑆1, . . . , 𝑆𝑝 } is an optimal assignment, then each
subset 𝑆𝑖 is composed of the |𝑆𝑖 | most available nodes.

Claim 2. If S = {𝑆1, . . . , 𝑆𝑝 } is an optimal assignment, then every
assignment built from a permutation of sets 𝑆1, . . . , 𝑆𝑝 is also optimal.

Proof. The availability function 𝐴(S) defined by (2) is commu-
tative over the elements of S. □

Claim 3. If S = {𝑆1, . . . , 𝑆𝑝 } is an optimal assignment, then the
difference between the number of nodes in any two sets 𝑆𝑖 and 𝑆 𝑗
within S is at most one, that is, |𝑆𝑖 | − |𝑆 𝑗 | ≤ 1.

Proof. The proof is done by contradiction. Suppose that S =
{𝑆1, . . . , 𝑆𝑝 } is an optimal assignment where there exists 𝑖 and 𝑗 for
which |𝑆𝑖 | − |𝑆 𝑗 | ≥ 2. From Claim 1, 𝑆𝑖 and 𝑆 𝑗 are composed of the
2Our heuristic procedure greedily constructs a VNF assignment S for each SFC 𝑘 by
iteratively picking the pair (𝑣, 𝑖) that maximizes 𝑥𝑣𝑖𝑘 and minimizes𝐴(S ∪ (𝑣, 𝑖)) .
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most available nodes and hence 𝑆 𝑗 ⊂ 𝑆𝑖 . Let 𝑢𝑖 ∈ 𝑆𝑖 be the least
available node in 𝑆𝑖 . By definition, 𝑢𝑖 ∉ 𝑆 𝑗 .

Consider the VNF assignment S∗ = {𝑆∗1 , . . . , 𝑆∗𝑝 }, where 𝑆∗𝑘 = 𝑆𝑘
for any 𝑘 ∈ {1, . . . ,𝑚} \ {𝑖, 𝑗}, 𝑆∗𝑗 = 𝑆 𝑗 ∪𝑢𝑖 and 𝑆∗𝑖 = 𝑆𝑖 \𝑢𝑖 . Since 𝑢𝑖
is the least available node in 𝑆𝑖 , we have 𝑎(𝑆𝑖 ) > 𝑎(𝑆∗𝑖 ) > 𝑎(𝑆∗𝑗 ) >
𝑎(𝑆 𝑗 ). Moreover,

𝑎(𝑆∗𝑖 ) = 1 −
∏
𝑣∈𝑆𝑖 (1 − 𝑎𝑣)

1 − 𝑎𝑢𝑖
=
𝑎(𝑆𝑖 ) − 𝑎𝑢𝑖

1 − 𝑎𝑢𝑖
,

and

𝑎(𝑆∗𝑗 ) = 1 −

©­«
∏
𝑣∈𝑆 𝑗
(1 − 𝑎𝑣)ª®¬

(
1 − 𝑎𝑢𝑖

)
= 𝑎(𝑆 𝑗 ) + 𝑎𝑢𝑖 (1 − 𝑎(𝑆 𝑗 )) .

Next we show that 𝐴(S∗) > 𝐴(S), a contradiction since S is
optimal. By definition,

𝐴(S∗) = 𝐴(S)
𝑎(𝑆∗𝑗 )𝑎(𝑆∗𝑖 )
𝑎(𝑆 𝑗 )𝑎(𝑆𝑖 ) = 𝐴(S)

(
1 +

𝑎𝑢𝑖 (𝑎(𝑆𝑖 ) − 𝑎(𝑆∗𝑗 ))
𝑎(𝑆 𝑗 )𝑎(𝑆𝑖 ) (1 − 𝑎𝑢𝑖 )

)
.

Since 𝑎(𝑆𝑖 ) > 𝑎(𝑆∗𝑗 ), we have 𝐴(S∗) > 𝐴(S). □

As a result of Claims 1, 2 and 3, a simple greedy algorithm –
see Algorithm 1 – solves the previously presented combinatorial
problem.

Algorithm 1: Computation of VNF assignment S∗ induc-
ing the highest possible availability with exactly 𝑛 VNFs
Let 𝑆∗𝑖 = ∅ for 𝑖 = 1, . . . , 𝑝 ;
for 𝑗 = 0, . . . , 𝑛 − 1 do

𝑖 ← 𝑗 mod 𝑝 + 1;
Add the most available node in 𝑉 \ 𝑆∗𝑖 to 𝑆∗𝑖 ;

end
Return S∗ = {𝑆∗1 , . . . , 𝑆∗𝑝 } ;

5.1 Valid inequalities
Remark 1. If S is a VNF assignment such that 𝐴(S) ≥ 𝐵, then

𝐴(S′) ≥ 𝐵 for any S′ ⊆ S, since from equations (1) and (2) we have
that 𝐴(S′) ≥ 𝐴(S).

We next combine the results obtained from Remark 1 and Algo-
rithm 1 in order to derive reinforcing valid inequalities. For this,
let 𝜂 (𝑈 , 𝑝, 𝐵) ∈ N denote the minimum number of VNFs required
to be installed within node-set 𝑈 ⊆ 𝑉 so that an SFC composed
of 𝑝 sections can meet the availability requirement 𝐵. Notice that
𝜂 (𝑈 , 𝑝, 𝐵) can be easily computed in polynomial time with the help
of Algorithm 1. From the definition of 𝜂 (𝑈 , 𝑝, 𝐵), the following
inequalities are obviously valid.∑

𝑖∈𝐼𝑘

∑
𝑣∈𝑉

𝑥𝑣𝑖𝑘 ≥ 𝜂 (𝑉 , |𝐼𝑘 |, 𝐴𝑘 ) ∀𝑘 ∈ 𝐾.

Such inequalities provide a lower bound on the number of VNFs
required to be assigned to a given SFC. This can be further extended
using Remark 1, which gives rise to the following Chain Cover
inequalities.∑

𝑖∈𝑄

∑
𝑣∈𝑉

𝑥𝑣𝑖𝑘 ≥ 𝜂 (𝑉 , |𝑄 |, 𝐴𝑘 ) ∀𝑘 ∈ 𝐾,𝑄 ⊆ 𝐼𝑘 . (11)

Proposition 5.1. The Chain Cover inequalities (11) are valid.

Proof. From Remark 1, the VNF assignment associated with sec-
tions in𝑄 must induce an availability of at least 𝐴𝑘 . Thus, inequali-
ties (11) are clearly valid from the definition of 𝜂 (𝑉 , |𝑄 |, 𝐴𝑘 ). □

Chain Cover inequalities provide important information con-
cerning the minimum number of VNFs to be assigned over the
sections of an SFC. However, such a number is constructed follow-
ing the principles of Algorithm 1, that is, only the most available
nodes in 𝑉 are actually taken into account. If for any reason (e.g.,
elevated cost, insufficient capacity, etc) some of these nodes are
banned from being used, such lower bound might increase. We next
focus on this case to derive a new family of valid inequalities. For
this, consider the following Node Cover inequalities.∑

𝑣∈𝑉 \𝑈
𝜂 (𝑈 , 1, 𝐴𝑘 )𝑥𝑣𝑖𝑘 +

∑
𝑣∈𝑈

𝑥𝑣𝑖𝑘 ≥ 𝜂 (𝑈 , 1, 𝐴𝑘 )

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼𝑘 ,𝑈 ⊆ 𝑉 . (12)

Proposition 5.2. The Node Cover inequalities (12) are valid.

Proof. Let 𝑆 denote the set of nodes where the 𝑖-th VNF of SFC 𝑘
can be processed for an arbitrary feasible solution. If there is a node
𝑣 ∈ 𝑆 such that 𝑣 ∈ 𝑉 \𝑈 , then the inequality is clearly satisfied.
Hence, suppose 𝑆 ⊆ 𝑈 . In this case, we have that |𝑆 | ≥ 𝜂 (𝑈 , 1, 𝐴𝑘 )
from Remark 1 and thus the inequality is also verified. □

Notice that inequalities (12) might become quite loose when
there exists a node 𝑣 ∈ 𝑉 \ 𝑈 that can process the 𝑖-th VNF of
SFC 𝑘 . For this reason, we next propose a lifted version of such
inequalities. For this, let 𝛽 (𝑣 ′,𝑉 , 𝐵) denote the minimum number
of backup VNF replicas that need to be assigned in parallel to 𝑣 ′
within the node-set 𝑉 so that a certain availability requirement
𝐵 is reached. Remark that such number can be easily obtained by
slightly modifying the computation of 𝜂 (𝑉 , 1, 𝐵). Indeed, it suffices
to oblige node 𝑣 ′ to be part of the VNF assignment in Algorithm 1.
Moreover, let𝑉 (𝑣) denote the subset of nodes in𝑉 that are at most
as available as 𝑣 , that is,

𝑉 (𝑣) =
{
𝑢 ∈ 𝑉 : 𝑎(𝑢) ≤ 𝑎(𝑣)

}
. (13)

The Lifted Node Cover inequalities are defined as follows.∑
𝑣∈𝑉 \𝑈

𝑐𝑣𝑥𝑣𝑖𝑘+
∑
𝑣∈𝑈

𝑥𝑣𝑖𝑘 ≥ 𝜂 (𝑈 , 1, 𝐴𝑘 ) ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼𝑘 ,𝑈 ⊆ 𝑉 , (14)

where 𝑐𝑣 = max
(
𝜂 (𝑈 , 1, 𝐴𝑘 ) − 𝛽 (𝑣,𝑈 ∪𝑉 (𝑣), 𝐴𝑘 ), 1

)
.

Proposition 5.3. Lifted Node Cover inequalities (14) are valid.

Proof. Let 𝑆 denote the set of nodes where the 𝑖-th VNF of
SFC 𝑘 can be processed for an arbitrary feasible solution. That is,
𝑆 = {𝑣 ∈ 𝑉 : 𝑥𝑣𝑖𝑘 = 1}. If 𝑆 ⊆ 𝑈 , then the inequality is satisfied
since inequalities (12) are valid. Hence, let us focus on the case
where 𝑆 ⊈ 𝑈 . Let 𝑣 ′ denote the most available node in 𝑆 \𝑈 . By
definition, 𝑆 ⊆ 𝑈 ∪𝑉 (𝑣 ′) and hence |𝑆 \ 𝑣 ′ | ≥ 𝛽 (𝑣 ′,𝑈 ∪𝑉 (𝑣 ′), 𝐴𝑘 ).
Since 𝑐𝑣′ ≥ 𝜂 (𝑈 , 1, 𝐴𝑘 )−𝛽 (𝑣,𝑈 ∪𝑈𝑣, 𝐴𝑘 ) and every other coefficient
is at least 1, the inequality is verified. □
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Chain Cover inequalities (11) deal with the non-linearity of the
availability function arising from the chaining of VNFs. Node Cover
inequalities (12) treat the availability non-linearity appearing rather
from the parallel assignment of VNFs. These two ideas are next
combined to form a single large family of valid inequalities. The
Generalized Cover inequalities are defined as follows.

∑
𝑖∈𝑄

∑
𝑣∈𝑉 \𝑈

𝜂 (𝑈 , |𝑄 |, 𝐴𝑘 )𝑥𝑣𝑖𝑘 +
∑
𝑖∈𝑄

∑
𝑣∈𝑈

𝑥𝑣𝑖𝑘 ≥ 𝜂 (𝑈 , |𝑄 |, 𝐴𝑘 )

∀𝑘 ∈ 𝐾,𝑄 ⊆ 𝐼𝑘 ,𝑈 ⊆ 𝑉 . (15)
Proposition 5.4. Generalized Cover inequalities (15) are valid.

Proof. Let S = {𝑆1, . . . , 𝑆 |𝐼𝑘 |} denote the VNF assignment of
SFC 𝑘 for an arbitrary feasible solution. That is, 𝑆𝑖 = {𝑣 ∈ 𝑉 : 𝑥𝑣𝑖𝑘 =
1}, for any 𝑖 ∈ 𝐼𝑘 . If there exists a node 𝑣 ∈ 𝑆𝑖 , for any 𝑖 ∈ 𝑄 , such
that 𝑣 ∈ 𝑉 \𝑈 , then the inequality is clearly satisfied. Hence, suppose
𝑆𝑖 ⊆ 𝑈 , for every 𝑖 ∈ 𝑄 . In this case, at least𝜂 (𝑈 , |𝑄 |, 𝐴𝑘 ) VNFsmust
be assigned to SFC 𝑘 and hence

∑
𝑖∈𝑄

∑
𝑣∈𝑈 𝑥𝑣𝑖𝑘 ≥ 𝜂 (𝑈 , |𝑄 |, 𝐴𝑘 ).

The inequality is thus verified. □

Next, consider the following Section Failure inequalities.∑
𝑣∈𝑉

(
log

(
1 − 𝑎𝑣

) )
𝑥𝑣𝑖𝑘 ≤ log

(
1 −𝐴𝑘 ) ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼𝑘 . (16)

Proposition 5.5. The Section Failure inequalities (16) are valid.

Proof. LetS = {𝑆1, . . . , 𝑆 |𝐼𝑘 |} denote a feasible VNF assignment
for an SFC 𝑘 ∈ 𝐾 , that is, 𝐴(S) ≥ 𝐴𝑘 . It follows directly from
Remark 1 that 𝑎(𝑆𝑖 ) ≥ 𝐴𝑘 for any 𝑖 ∈ 𝐼𝑘 , i.e.,∏

𝑣∈𝑆𝑖

(
1 − 𝑎𝑣

)
≤ 1 −𝐴𝑘 ∀𝑖 ∈ 𝐼𝑘 . (17)

Notice that if inequalities (17) hold, then

log ©­«
∏
𝑣∈𝑆𝑖

(
1 − 𝑎𝑣

)ª®¬
≤ log

(
1 −𝐴𝑘

)
∀𝑖 ∈ 𝐼𝑘 ,

also hold. Using the fundamental property of logarithms that states
log(𝑎𝑏) = log(𝑎) + log(𝑏), such inequalities can be rewritten as∑

𝑣∈𝑆𝑖

(
log

(
1 − 𝑎𝑣

) ) ≤ log
(
1 −𝐴𝑘

)
∀𝑖 ∈ 𝐼𝑘 .

Since by definition 𝑥𝑣𝑖𝑘 = 1 for 𝑣 ∈ 𝑆𝑖 and 𝑥𝑣𝑖𝑘 = 0 for 𝑣 ∈ 𝑉 \ 𝑆𝑖 ,
inequalities (16) are hence valid. □

It is worth noting that if one searches for Cover inequalities (see
[1]) associated with Section Failure inequalities (16), the inequalities
obtained form a subset of the linearized availability constraints (10).

So far, all the introduced valid inequalities have dealt with the
availability restrictions. We next propose a family of valid inequali-
ties reinforcing the capacity constraints (6). The Stronger Capacity
inequalities are defined as follows.∑

𝑘∈𝐾,𝑖∈𝐼𝑘 :𝑓 (𝑖,𝑘)=𝑓
𝑏𝑘𝑟

𝑓 𝑥𝑣𝑖𝑘 ≤ 𝐶𝑣𝑦 𝑓𝑣 ∀𝑣 ∈ 𝑉 , 𝑓 ∈ 𝐹 . (18)

Proposition 5.6. Stronger Capacity inequalities (18) are valid.

Proof. If a VNF is placed on node 𝑣 , then the amount of re-
sources it consumes must be at most the node’s capacity. □

6 BRANCH-AND-CUT FRAMEWORK
We next describe the branch-and-cut framework we have developed
based on the results obtained from Section 5. In this framework
we consider the linearized formulation (3)-(6),(8)-(10) presented
in Section 4 reinforced with Chain Cover inequalities (11), Lifted
Node Cover inequalities (14), Section Failure inequalities (16) and
Stronger Capacity inequalities (18).

As stated in Section 4, the separation problem for the linearized
availability constraints (10) is solved exactly whenever an integer
solution is found. This allows us to guarantee the feasibility of the
solution provided by the end of the optimization procedure.

Since the Section Failure inequalities (16) and the Stronger Ca-
pacity inequalities (18) appear in polynomial numbers, storing them
in a pool and checking, by enumeration, whether they all are sat-
isfied remains an efficient way of handling them. For the Chain
Cover inequalities (11) and Lifted Node Cover inequalities (14) we
next focus on their separation problems.

Proposition 6.1. The separation problem for the Chain Cover
inequalities (11) can be solved in polynomial time.

Proof. For a given SFC 𝑘 ∈ 𝐾 , the right-hand side of the inequal-
ity depends only on the cardinality of subset 𝑄 ⊆ 𝐼𝐾 . Therefore,
one can compute 𝜂 (𝑉 , |𝑄 |, 𝐴𝑘 ), for |𝑄 | = 1, . . . , |𝐼𝑘 |, in polynomial
time. Additionally, for each chosen cardinality of 𝑄 , the left-hand
side can be easily minimized by choosing the sections 𝑖 ∈ 𝐼𝑘 with
the smallest values of

∑
𝑣∈𝑉 𝑥𝑣𝑖𝑘 . □

Solving the separation problem for Lifted Node Cover inequali-
ties (14) is less trivial since the value of the right-hand side depends
not only on the cardinality of subset 𝑈 ⊆ 𝑉 but also on its com-
position. For this reason, we consider the following sub-family of
inequalities (14) that can be separated in polynomial time by simple
enumeration:∑

𝑣∈𝑉 \𝑉 (𝑢)
𝑐𝑣𝑥𝑣𝑖𝑘 +

∑
𝑣∈𝑉 (𝑢)

𝑥𝑣𝑖𝑘 ≥ 𝜂 (𝑉 (𝑢), 1, 𝐴𝑘 ), (19)

for any 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼𝑘 , 𝑢 ∈ 𝑉 , where 𝑉 (𝑣) is defined as in (13) and

𝑐𝑣 = max
(
𝜂 (𝑉 (𝑢), 1, 𝐴𝑘 ) − 𝛽 (𝑣,𝑉 (𝑣), 𝐴𝑘 ), 1

)
.

At each node of the branch-and-cut tree, the separation routines
are called following a hierarchical order defined by their compu-
tational complexity – from the simplest to the hardest – and once
a violated inequality is found, the node is re-optimized with the
additional cut. All cuts are globally valid. A branching operation is
performed once no separation routine can find a violated inequality.

7 COMPUTATIONAL RESULTS
In order to evaluate the efficiency of our approach, this section pro-
vides some preliminary results on the computational performances
obtained over a small set of randomly generated instances. Two
availability scenarios – denoted by Constant and Variable – were
examined on a small network containing 15 nodes. In Constant case,
all nodes are considered to have the same fixed availability which
is set to 0.90. On Variable, each node has an availability taken at
random between 0.90 and 0.99. For each availability scenario, five
sets of |𝐾 | ∈ {10, 20, 30, 40} SFCs were randomly generated, where
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Table 1: Computational results comparison

Instance opt time (s) gap (%)
|𝐾 | Type (I) (R) (I) (R) (I) (R)

10 C 4/5 5/5 0.07 0.04 3.94 0
20 C 3/5 5/5 2.9 1.12 4.35 0
30 C 3/5 5/5 65.5 16.9 15.9 0
40 C 1/5 2/5 2236 540.6 9.48 1.35
10 V 5/5 5/5 3.3 0.2 0 0
20 V 4/5 5/5 95.7 65.8 0.72 0
30 V 0/5 2/5 - 1776 13.3 7.70
40 V 0/5 0/5 - - 25.3 14.9

each SFC is required to visit between 1 and 5 VNFs chosen at ran-
dom from a set of 8 VNF types. Moreover, each SFC has a required
availability between 0.9999 and 0.999999, which is in accordance
with specifications in [15].

Table 1 summarizes the computational results obtained using
the initial linearized formulation (3)-(6), (8)-(10) – columns (I)
– and the reinforced formulation featured in our branch-and-cut
framework – columns (R). All our computational experiments
were implemented in C++ and performed using the state-of-the-art
MIP solver CPLEX 12.10 on a computer equipped with a 1.60 GHz
Intel Core i5-8265U processor and 16 Gb RAM. A time limit of one
hour was imposed in each run. For each instance size and type
(C for Constant and V for Variable), the number of instances that
could be solved to optimality within the time limit is displayed
under column opt. Column time (s) provides the average time in
seconds required to achieve optimality. Column gap (%) displays
the average remaining gap for the instances that could not be solved
within time limit.

For the Constant scenario, out of the 20 tested instances, only
11 could be solved to optimality within the time limit by the initial
formulation. Our branch-and-cut approach allowed us to solve up
to 17 instances to optimality in less than one hour. Indeed, up to
30 demands, all instances could be optimally solved. Moreover, the
remaining instances were left with a relatively small gap. For the
Variable scenario, the performance of the initial formulation was
even worse. Only 9 out of the 20 tested instances could be solved
to optimality and none of them had more than 20 demands. With
our branch-and-cut framework, 3 more instances could be opti-
mally solved. Besides, the average remaining gaps for the unsolved
instances were considerably reduced.

The gain of performance observed with our branch-and-cut ap-
proach is largely due to its capability of rejecting unfeasible solu-
tions earlier in the optimization. Indeed, the average number of
linearized availability constraints added by the exact separation
problem (and hence later in the optimization) dropped from 1440 to
13 in the Constant case and from 1608 to 748 in the Variable case. In
addition, considering only the instances that could be solved with
both approaches, the branch-and-cut framework was on average
2.92 times faster, and the average number of nodes that were re-
quired to be explored in the enumeration tree to prove optimality
went down from 148.3 thousand to 38 thousand in the Constant
case and from 55.6 thousand to 7.5 thousand in the Variable case.

8 FINAL REMARKS AND NEXT STEPS
In this work, we have studied the problem of optimally placing
VNFs throughout a given network so that a set of SFCs can achieve
their required availability. The non-linearity inherent to the defi-
nition of the end-to-end availability of an SFC represents a major
challenge in such problem. We have proposed an original ILP for-
mulation that solves the addressed optimization problem. Such ILP
was then reinforced through the investigation of valid inequalities
and preliminary computational results testify in favor of their ef-
ficiency. Even with the improvements proposed in this paper, our
approach can only solve instances of limited size. With this in mind,
the use of heuristics can help improve the primal bounds faster
and hence speed up the convergence towards the optimal solution.
The next steps may also include the consideration of SFCs’ routing
aspect explicitly into the formulation so that maximum SFC delay
constraints and link capacity constraints can be imposed in order
to treat a more generalized problem.
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ABSTRACT
The paper deals with two complementary optimization problems
related to the resilience of communication networks against tar-
geted node attacks, where the proper functioning of the network
requires that the nodes are connected to the so called controllers
that are placed in selected node locations – a node that looses such
a connection in the result of an attack is considered lost. These
two problems can be used to optimize (maximize in the case of a
network operator and minimize in the case of an attacker) the re-
silience in question when the interaction between these two parties
is considered within the framework of game theory. The presented
formulations and their solution algorithms are original. The effi-
ciency of the algorithms is illustrated for a medium size network
by means of a numerical example.

1 INTRODUCTION
We consider a network that offers some kind of service in a given
set of network locations. Each location houses a service node that
actually provides the service, and might also house a controller
node (controller in short). The service node needs a controller to
operate; for that it may use either the local controller that is placed
in the same location or, if the location does not house a controller,
a remote controller in some other location. In the latter case the
service node must communicate with the controller node using
some network path. That is why the locations are interconnected
with transport links.

Such a setting is directly applicable, in particular, to software
defined networks (SDN) [2, 3]. Note however that it may also arise
in a number of other contexts. In the ICT area it may also apply to
content delivery networks (CDN): delivery nodes, which deliver
content to the user, correspond to the service nodes, and origin
nodes, which are the primary sources of the original content, cor-
respond to the control nodes (storage node, which are responsible
for storing copies of original data, may correspond either to the
service nodes or to the control nodes). One may find applications
of the considered model in other areas as well, would it be utilities,
manufacturing, logistics, sales, or medicine. In those areas the ser-
vice nodes and the control nodes might correspond, respectively, to
power dispatch stations and power plants, factories and transporta-
tion hubs, dispatch centers or warehouses and factories, sale points
or supermarkets and warehouses, clinics or testing points and med-
ical laboratories, etc. Depending on the context, those nodes are

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th 
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen, 
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons 
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interconnected with different kinds of utility and transportation
networks, and their inaccessibility may result not only from attacks,
but, e.g., from technical malfunctioning and natural disasters.

We aim at protecting the network against targeted node attacks.
The attack targets a set of selected locations making both service
nodes and controller nodes (if any) at those locations unavailable.
Moreover, the attack makes unavailable the transport links that are
terminated at the attacked locations, potentially disconnecting the
network graph into a number of (connected) components. After
the attack, the service node will still provide service (and will be
called a surviving (service) node) only if its location has not been
attacked and the component it belongs to still contains at least one
location with a controller node.

In the paper we consider two complementary optimization prob-
lems for the so described network layout. The first of them consists
in finding a placement of a given number of controllers that maxi-
mizes the number of nodes that survive the worst case attack from
a given, in general non-compact, list of attacks. The complementary
problem, in turn, is to find an attack targeted at a given number
of locations that minimizes the number of surviving nodes for any
placement from a given list (also in general non-compact) of con-
troller placements. We note here that although related problems
have been widely researched in the literature (mainly in the con-
text of SDN, see [1, 5–7] and references therein), the two problem
formulations and algorithms for solving them presented below are
original.

2 NOTATION AND PROBLEM DESCRIPTION
2.1 Notation
First, we model the service network by means of a connected undi-
rected graph G = (V, E), where the set of nodesV = {1, 2, . . . ,𝑉 }
represents network locations, and E (E ⊆ {X ⊆ V : |X| = 2})
is the set of transport links represented by unordered nodes pairs
that interconnect the locations; for each 𝑒 ∈ E, let 𝛼 (𝑒), 𝛽 (𝑒) ∈ V
denote the end nodes of link 𝑒 , and for each 𝑣 ∈ V , let 𝛿 (𝑣) = {𝑒 ∈
E : 𝑣 ∈ {𝛼 (𝑒), 𝛽 (𝑒)}} denote the set of links incident with node 𝑣 .

Next, we assume that the network is equipped with controllers
and the set of (allowable) controller placements is denoted by S.
Each placement 𝑠 ∈ S is characterized by the setV(𝑠) (V(𝑠) ⊆ V)
where the controllers are actually placed (apart form the service
nodes). A typical example of the set of placements S is the set
of all 𝑀-node placements (where 0 < 𝑀 ≤ 𝑉 ), i.e., the set of all
placements 𝑠 with |V(𝑠) | = 𝑀 ; such a set will be denoted by S(𝑀).

Then, we consider a setA of attacks targeted at networks nodes.
Each attack 𝑎 ∈ A, is characterized by the set of the attacked
locations V(𝑎) (V(𝑎) ⊆ V), which defines the set C(𝑎) of (non-
empty) connected components into which the network graph G
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Table 1: Summary of notation.

V, E sets of nodes and links (𝑉 = |V |, 𝐸 = |E |)
𝛼 (𝑒), 𝛽 (𝑒) end nodes of link 𝑒 ∈ E
𝛿 (𝑣) set of links incident with node 𝑣 ∈ V
S set of allowable controller placements
V(𝑠) set of controller nodes locations in placement 𝑠 ∈ S
A set of expected attacks
V(𝑎) set of nodes affected by attack 𝑎 ∈ A
C(𝑎) set (family) of components induced by attack 𝑎 ∈ A
V(𝑐) set of nodes of component 𝑐 ∈ C(𝑎)
S (𝑀) set of all placements composed of𝑀 controllers
A(𝐾) set of all 𝐾-node attacks
𝑉 (𝑠, 𝑎) number of nodes that survive attack 𝑎 ∈ A when place-

ment 𝑠 ∈ S is assumed
𝑎 (𝑠) the worst attack in A for a given placement 𝑠 ∈ S
𝑠 (𝑎) the best placement in S for a given attack 𝑎 ∈ A
R+ set of nonnegative real numbers

is split as the result of attack 𝑎. For each component 𝑐 ∈ C(𝑎),
V(𝑐) will denote the set of its nodes. A typical example of the
set of attacks A is the set of all 𝐾-node attacks, i.e., the set of all
attacks 𝑎 with |V(𝑎) | = 𝐾 , for a given integer parameter 𝐾 (where
0 < 𝐾 < 𝑉 ); such a set will be denoted by A(𝐾).

Finally, we assume that as a result of an attack 𝑎 in each (directly
attacked) location in V(𝑎) its service node and the controller (if
any) become out of service. Moreover, all service nodes in those
components in C(𝑎) that do not contain any controller also stop
working. In effect, the service nodes that are still operational after
the attack (called the surviving nodes) are precisely those nodes that
belong to the components in C(𝑎) that contain a controller.

The basic resilience (to attack) measure considered in this paper
is the number of nodes, denoted by 𝑉 (𝑠, 𝑎) (𝑠 ∈ S, 𝑎 ∈ A), that
survive a given attack 𝑎 in the network equipped with controllers
deployed according to placement 𝑠 . For such a measure, we can
introduce the notions of the worst attack and the best controller
placement. Taking the operator’s point of view, the worst attack
with respect to a given placement 𝑠 ∈ S (denoted by 𝑎(𝑠)) is defined
as any attack 𝑎 inA that minimizes the number of surviving nodes
𝑉 (𝑠, 𝑎), i.e., 𝑉 (𝑠, 𝑎(𝑠)) = min𝑎∈A 𝑉 (𝑠, 𝑎). Symmetrically, the best
placement with respect to a given attack 𝑎 ∈ A (denoted by 𝑠 (𝑎))
is defined as any controller placement 𝑠 in S that maximizes the
value of𝑉 (𝑠, 𝑎), i.e.,𝑉 (𝑠 (𝑎), 𝑎) = max 𝑠∈S 𝑉 (𝑠, 𝑎). (Certainly, there
can be multiple worst attacks and multiple best placements.)

2.2 Problem description
Since the network operator is interested in maximizing the value
of 𝑉 (𝑠, 𝑎) while the attacker seeks to minimize it, both sides need
to consider some kind of optimization approaches for finding con-
troller placements (the operator) and for constructing attacks (the
attacker). In this paper we introduce a mathematical model aimed
at solving optimization problems related to these issues.

The optimization problems we consider stem from the assump-
tion that the set of possible controller placements S and the set of
possible attacksA are known to both the operator and the attacker,
and each of them is trying to find a solution that is most effective in
the case of the worst attacks (the operator) and the best placements

(the attacker). Hence, it is natural to consider the following two
problems.
Controller Placement Optimization Problem (CPOP): Find
a placement 𝑠∗ whose resilience measure observed for its worst
attack, i.e., 𝑉 (𝑠∗, 𝑎(𝑠∗)), is the maximum over set S:
𝑉 (𝑠∗, 𝑎(𝑠∗))=max 𝑠∈S 𝑉 (𝑠, 𝑎(𝑠))=max 𝑠∈S min𝑎∈A 𝑉 (𝑠, 𝑎). (1)

Each placement 𝑠∗ that solves problem (1) will be called the best
placement for a given set of attacks A. Clearly, such a placement
𝑠∗ guarantees that the number of surviving nodes is equal at least
to 𝑌 ∗ for any attack in A, where 𝑌 ∗ is the maximum number with
this property.
Node Attack Optimization Problem (NAOP): Find an attack
𝑎∗ whose resilience measure observed for its best placement, i.e.,
𝑉 (𝑠 (𝑎∗), 𝑎∗), is the minimum over set A:
𝑉 (𝑠 (𝑎∗), 𝑎∗)=min𝑎∈A 𝑉 (𝑠 (𝑎), 𝑎)=min𝑎∈A max 𝑠∈S 𝑉 (𝑠, 𝑎). (2)

Each attack 𝑎∗ that solves problem (2) will be called the worst attack
for a given set of placements S. Thus, attack 𝑎∗ guarantees that the
number of surviving nodes is equal at most to 𝑍 ∗ for any placement
in S, where 𝑍 ∗ is the minimum number with this property.

3 OPTIMIZATION PROBLEMS
In this section we will present integer programming (IP) formula-
tions of the two basic optimization problems (CPOP and NAOP)
described in Section 2.2, with an intention to be able to solve them
using commercial IP solvers.

3.1 Max-min controller placement optimization
problem (CPOP)

In the formulation of CPOP presented below we assume that S =
S(𝑀) (i.e., we consider the set of all 𝑀-node placements) and A
is an arbitrary set of attacks. This means that we consider the
problem of finding an𝑀-node controller placement that maximizes
the number of nodes surviving its worst attack from set A.

Let 𝑠𝑣 (𝑣 ∈ V) be a binary variable that equals 1 if, and only if, a
network controller is placed at location 𝑣 . (Each vector 𝑠 = (𝑠𝑣)𝑣∈V
specifies placement 𝑠 withV(𝑠) = {𝑣 ∈ V : 𝑠𝑣 = 1}.) And for all
𝑎 ∈ A, 𝑣 ∈ V , let 𝑦𝑎𝑣 be a binary variable that equals 1 if, and only
if, service node at location 𝑣 survives attack 𝑎. The formulation
(abbreviated by P[𝑀,A]) is as follows:

P[𝑀,A] : max 𝑌 (3a)∑
𝑣∈V 𝑠𝑣 = 𝑀 (3b)

𝑦𝑎𝑣 = 0 𝑎 ∈ A, 𝑣 ∈ V(𝑎) (3c)∑
𝑣∈V(𝑐) 𝑦𝑎𝑣 ≤ |V(𝑐) |

∑
𝑣∈V(𝑐) 𝑠𝑣 𝑎 ∈ A, 𝑐 ∈ C(𝑎) (3d)

𝑌 ≤ ∑
𝑣∈V 𝑦𝑎𝑣 𝑎 ∈ A (3e)

𝑠𝑣, 𝑦
𝑎
𝑣 ∈ {0, 1} 𝑎 ∈ A, 𝑣 ∈ V (3f)
𝑌 ∈ R+ . (3g)

Constraint (3b) sets the number of deployed controllers to𝑀 . Then,
constraints (3c) explicitly force variables 𝑦𝑎𝑣 with node 𝑣 directly
destroyed by attack 𝑎 to be equal to 0 (these nodes do not survive
after attack 𝑎 wherever the controllers are placed).

Constraints (3d), in turn, imply that when a component 𝑐 induced
by attack 𝑎 does not contain any controller (

∑
𝑣∈V(𝑐) 𝑠𝑣 = 0) then
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all nodes in 𝑐 do not survive and hence the corresponding variables
𝑦𝑎𝑣 are explicitly set to 0 (because

∑
𝑣∈V(𝑐) 𝑦𝑎𝑣 is forced to be equal

to 0). Otherwise, when 𝑐 contains at least one controller, then the
right-hand side of (3d) is greater than or equal to the number of
elements in component 𝑐 and hence it allows all 𝑦𝑎𝑣 with 𝑣 in 𝑐 to
be greater than 0 (but not greater than 1 since these are binary
variables). Now we note that for any fixed vector of controller
placement variables 𝑠 = (𝑠𝑣)𝑣∈V , optimization objective (3a) and
constraints (3e) will force the value of variable 𝑌 to be equal to the
actual number of surviving nodes after at least one attack 𝑎 for
which this number is minimal over A, because for such an attack
the values of those variables 𝑦𝑎𝑣 that are not explicitly set to 0 will
reach their maximum, i.e., 1.

Hence, when variables 𝑠 are optimized, the final value 𝑌 ∗ of the
objective function will be equal to the maximum, over all place-
ments in S(𝑀), of the number of surviving nodes (i.e., the total
number of nodes appearing in the components containing one or
more controllers) when the worst attack is assumed for each of the
considered placements.

In summary, the maximum value 𝑌 ∗ of objective (3a) is equal to

𝑉 (𝑠∗, 𝑎(𝑠∗)) = max 𝑠∈S(𝑀) min𝑎∈A 𝑉 (𝑠, 𝑎), (4)

where 𝑠∗ denotes an arbitrary optimal placement resulting from
(3); this means that any optimal 𝑠∗ is one of the best placements in
S(𝑀) with respect to the set of attacks A.

3.2 Min-max node attack optimization problem
(NAOP)

In the formulation of NAOP presented below we assume that A =
A(𝐾) (i.e., we consider the set of all 𝐾-node attacks) and S is
an arbitrary set of placements. This means that we consider the
problem of finding a 𝐾-node attack that minimizes the number of
surviving nodes when the best placement in the set S with respect
to this attack is considered.

In the formulation (abbreviated by A[𝐾,S]), for each 𝑣 ∈ V , 𝑎𝑣
is a binary variable equal to 1 if, and only if, node 𝑣 is attacked.
(Each vector 𝑎 = (𝑎𝑣)𝑣∈V specifies attack 𝑎 withV(𝑎) = {𝑣 ∈ V :
𝑎𝑣 = 1}.) Next, for each 𝑒 ∈ E, 𝑡𝑒 is a binary variable that equals 1
if, and only if, link 𝑒 is not available as a result of the attack (i.e.,
one or both of its end-nodes are attacked). Finally, for each 𝑠 ∈ S
and 𝑣 ∈ V , 𝑧𝑠𝑣 is a binary variable equal to 1 if, and only if, node
𝑣 survives the constructed attack when controller placement 𝑠 is
assumed. The formulation uses the fact that if after the attack a
node can still provide service, then every node in its neighborhood
(i.e., in a location interconnected with it by a transport link) can
also provide service unless its location was directly attacked, and
is as follows:

A[𝐾,S] : min 𝑍 (5a)∑
𝑣∈V 𝑎𝑣 = 𝐾 (5b)

𝑡𝑒 ≥ 𝑎𝑣 𝑣 ∈ V, 𝑒 ∈ 𝛿 (𝑣) (5c)
𝑡𝑒 ≤ 𝑎𝛼 (𝑒) + 𝑎𝛽 (𝑒) 𝑒 ∈ E (5d)
𝑧𝑠𝑣 ≤ 1 − 𝑎𝑣 𝑠 ∈ S, 𝑣 ∈ V (5e)
𝑧𝑠𝑣 ≥ 1 − 𝑎𝑣 𝑠 ∈ S, 𝑣 ∈ V(𝑠) (5f)

𝑧𝑠𝛼 (𝑒) ≥ 𝑧𝑠𝛽 (𝑒) − 𝑡𝑒 𝑠 ∈ S, 𝑒 ∈ E (5g)

𝑧𝑠𝛽 (𝑒) ≥ 𝑧𝑠𝛼 (𝑒) − 𝑡𝑒 𝑠 ∈ S, 𝑒 ∈ E (5h)
𝑍 ≥ ∑

𝑣∈V 𝑧𝑠𝑣 𝑠 ∈ S (5i)
𝑎𝑣, 𝑡𝑒 , 𝑧

𝑠
𝑣 ∈ {0, 1} 𝑠 ∈ S, 𝑣 ∈ V, 𝑒 ∈ E (5j)
𝑍 ∈ R+ . (5k)

Constraint (5b) sets the number of attacked nodes to 𝐾 . Then, con-
straints (5c) and (5d) force, as required, the value of each binary
variable 𝑡𝑒 to be equal to 0 (which means that link 𝑒 is available after
attack 𝑎) if, and only if, both end nodes of 𝑒 are not directly attacked.
Next, constraints (5e) set 𝑧𝑠𝑣 to 0 (which means that node 𝑣 does not
survive attack 𝑎 if node 𝑣 is attacked directly, whatever placement
is selected. Constraints (5f), in turn, set 𝑧𝑠𝑣 to 1 (which means that
node 𝑣 survives attack 𝑎 when placement 𝑠 is assumed) if node 𝑣 is
not directly attacked and its location contains a controller.

The next two sets of constraints, (5g) and (5h), make sure that
if link 𝑒 is available after attack 𝑎 (i.e., when 𝑡𝑒 = 0), then its end
nodes either simultaneously survive or are simultaneously out of
service. This property assures that all nodes in any component
𝑐 ∈ C(𝑎) (i.e., in any component 𝑐 resulting from the constructed
attack 𝑎) have the same values of 𝑧𝑠𝑣 (for any fixed placement 𝑠):

𝑧𝑠𝑣 = 𝑧
𝑠
𝑤 , 𝑣,𝑤 ∈ 𝑐, 𝑐 ∈ C(𝑎), 𝑠 ∈ S. (6)

Moreover, for any given placement 𝑠 ∈ S, if a location 𝑣 ∈ V(𝑐)
contains a controller then the inequality in (5f) sets 𝑧𝑠𝑣 to 1 since, by
definition, this location is not attacked. In this case the equalities in
(6) imply that the values of 𝑧𝑠𝑣 are set to 1 for all 𝑣 ∈ V(𝑐), i.e., all
nodes in 𝑐 survive the attack, as required. In effect, for any 𝑠 ∈ S,
all these nodes are counted in the summation on the right hand
side of inequality (5i).

On the other hand, when component 𝑐 ∈ C(𝑎) does not contain
any controller from placement 𝑠 , then in the feasible solutions of
the considered formulation all values of 𝑧𝑠𝑣, 𝑣 ∈ V(𝑐), are simul-
taneously equal either to 0 or to 1. This, however, is not an issue.
To see this consider an optimal solution of (5) and let S∗ denote
the set of all placements in S for which the inequalities in (5i) are
binding, i.e., 𝑍 ∗ =

∑
𝑣∈V 𝑧𝑠𝑣 if, and only if, 𝑠 ∈ S∗, where 𝑍 ∗ is the

optimal value of 𝑍 . Denoting the optimized attack by 𝑎∗, we can
rewrite the equalities in question as follows

𝑍 ∗ =
∑
𝑣∈V 𝑧𝑠𝑣 =

∑
𝑐∈C(𝑎∗)

∑
𝑣∈V(𝑐) 𝑧𝑠𝑣, 𝑠 ∈ S∗ (7)

(becauseV = V(𝑎∗) ∪⋃
𝑐∈C(𝑎∗) V(𝑐) and 𝑧𝑠𝑣 = 0 for 𝑣 ∈ V(𝑎∗),

i.e., when 𝑎𝑣 = 1). This shows that for each 𝑠 ∈ S∗, the sum∑
𝑣∈V(𝑐) 𝑧𝑠𝑣 must be equal to 0 for all components 𝑐 ∈ C(𝑎∗) that

do not contain a controller from placement 𝑠 . Otherwise, 𝑍 ∗ would
not be minimal since if any of such sums were greater than 0 then
setting it to 0, which is allowed by the constraints, would result
in a feasible solution with 𝑍 < 𝑍 ∗. (Note that this argumentation
reveals that in fact constraints (5e) are redundant.)

In summary, the minimum value 𝑍 ∗ of objective (5a) is equal to

𝑉 (𝑠 (𝑎∗), 𝑎∗) = min𝑎∈A(𝐾) max 𝑠∈S 𝑉 (𝑠, 𝑎), (8)

where 𝑎∗ denotes an arbitrary optimal attack resulting from (5),
that is one of the worst attacks in A(𝐾) for the assumed set of
placements S.
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𝑣1 𝑣3 𝑣5 𝑣7 𝑣9

𝑣2 𝑣6

𝑣4 𝑣8

Figure 1: Sample 9-node and 11-link network.

𝑣1 𝑣3 𝑣5 𝑣7 𝑣9

𝑣2 𝑣6

𝑣4 𝑣8

Figure 2: One of 32 best placements (withV(𝑠) = {1, 8, 9}).

𝑣1 𝑣3 𝑣5 𝑣7 𝑣9

𝑣2 𝑣6

𝑣4 𝑣8

Figure 3: One of 2 worst attacks (withV(𝑎) = {5, 7}).

3.3 An example
We will now characterize solutions of formulations P[𝑀,A(𝐾)]
and A[𝐾,S(𝑀)] for the network depicted in Figure 1 and the 3-
node placements (𝑀 = 3) and the 2-node attacks (𝐾 = 2).

Then, in the setA(2) there are 2 worst attacks (out of all (92) = 36
attacks in A(2)) with respect to S(3). Each of them guarantees
that at most 6 nodes will survive whatever 3-node placement is
selected. These two attacks, 𝑎1 and 𝑎2, have the sets of attacked
nodes equal to V(𝑎1) = {3, 7} and V(𝑎2) = {5, 7}; the second of
them is shown in Figure 3.

It turns out that in the set S(3) there are 32 best placements (out
of all

(9
3
)
= 84 placements in S(3)) with respect to the set A(2) of

all 2-node attacks. Each of them guarantees that at least 4 nodes
will survive whatever 2-node attack is selected. We do not list all
placements because there are too many of them; instead we show
one of these placements (with the set of controller nodes {1, 8, 9})
in Figure 2.

Now let us assume that the attacker decides to use one of the two
worst attacks to attack the network. Knowing that, the operator
will select one of the best placements with respect to the set A =
{𝑎1, 𝑎2} and deploy it. Actually, there are four such best placements,
𝑠1, 𝑠2, 𝑠3, 𝑠4 (with V(𝑠1) = {1, 8, 9},V(𝑠2) = {2, 8, 9},V(𝑠3) =
{1, 6, 8},V(𝑠4) = {2, 6, 8}, all of them belonging to the set of 32 best
placements with respect to A(2)), and each of them guarantees
that at least 6 nodes will survive any of the two considered attacks.
Note that this value is substantially better than 4, i.e., the number
of surviving nodes guaranteed by the best placement with respect
to the full set of the 2-node attacks. Moreover, there is no single
2-node attack ensuring that less than 6 nodes will survive if any of
the placements in the set S = {𝑠1, 𝑠2, 𝑠3, 𝑠4} is deployed.

4 SOLVING NON-COMPACT VERSIONS OF
CPOP AND NAOP

Note that both formulations P[𝑀,A] and A[𝐾,S] are in general
non-compact as the number of attacks in the set A appearing in
the first formulation, and the number of placements in the set
S appearing in the second formulation may grow exponentially
with the number of nodes 𝑉 . When this is the case, CPOP can be
approached using an attack generation procedure (provided A can
be characterized in a tractable way) while NAOP can be approached
using a controller placement generation procedure (provided S can
be characterized in a tractable way).

Such non-compactness can appear for A = A(𝐾) (for example
when 𝑉 = 2𝐾), and for S = S(𝑀) (for example when 𝑉 = 2𝑀).
Therefore, below we present an algorithm for solving formulation
P[𝑀,A(𝐾)] (Section 4.1) and a similar algorithm for solving for-
mulation A[𝐾,S(𝑀)] (Section 4.2).

4.1 Solving P[𝑀,A(𝐾)] by attack generation
In the algorithm, the list of attacks A is iteratively extended by
means of solving consecutive formulations of NAOP of the form
A[𝐾, {𝑠∗}] for a particular placement 𝑠∗ (NAOP is called the pricing
problem in this context), and at each iteration, for the current listA,
an optimal placement 𝑠∗ is found by means of solving formulation
P[𝑀,A] (CPOP is called the master problem in this context). In
effect, in each iteration we find out whether there exists an attack
𝑎 ∈ A(𝐾) \ A such that when 𝑎 is added to the current list of
attacks A, then the number of surviving nodes after attack 𝑎 is
smaller than the maximum number of surviving nodes guaranteed
for any attack in A (achieved for the current optimal placement).
If this is the case, we re-optimize 𝑠∗ and continue.

A1:Algorithm for controller placement optimization bymeans
of attack generation

Step 0: Generate a random𝑀-node controller placement 𝑠∗;
A := ∅, 𝑌 ∗ := 𝑉 .
(Comment: forA = ∅ any placement inS(𝑀) solvesP[𝑀,A]
giving 𝑌 ∗ = 𝑉 .)
Step 1: Solve A[𝐾, {𝑠∗}] to get the worst attack 𝑎∗ (assuring
𝑍 ∗ surviving nodes) with respect to placement 𝑠∗. If 𝑍 ∗ ≥ 𝑌 ∗
then go to Step 3.
Step 2:A := A ∪ {𝑎∗}. Solve P[𝑀,A] to get the best place-
ment 𝑠∗ (assuring at least 𝑌 ∗ surviving nodes) with respect
to set A. Go to Step 1.
(Comment: 𝑌 ∗ is equal to

𝑉 (𝑠∗, 𝑎(𝑠∗)) = max 𝑠∈S(𝑀) min𝑎∈A 𝑉 (𝑠, 𝑎) .)
Step 3: Stop: current placement 𝑠∗ is an optimal solution of
P[𝑀,A(𝐾)], that is

𝑌 ∗ = 𝑉 (𝑠∗, 𝑎(𝑠∗)) = max 𝑠∈S(𝑀) min𝑎∈A(𝐾) 𝑉 (𝑠, 𝑎).

4.2 Solving A[𝐾,S(𝑀)] by controller placement
generation

In the algorithm, the list of placements S is iteratively extended by
means of solving consecutive formulations of CPOP of the form
P[𝑀, {𝑎∗}] for a particular attack 𝑎∗ (CPOP is called the pricing
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problem in this context), and in each iteration, for the current list
S, an optimal attack 𝑎∗ is found by means of solving formulation
A[𝐾,S] (NAOP is called the master problem in this context). In
effect, in each iteration we find out whether there exists a placement
𝑠 ∈ S(𝑀) \ S such that when 𝑠 is added to the current list of
placements S, then the number of surviving nodes for 𝑠 is greater
than the minimum number of surviving nodes guaranteed for any
placement in S (achieved for the current optimal attack). If this is
the case, we re-optimize 𝑎∗ and continue.

A2: Algorithm for attack optimization bymeans of controller
placement generation

Step 0: Generate a random𝐾-node attack 𝑎∗; S := ∅, 𝑍 ∗ := 0
(Comment: for S = ∅ any attack in A(𝐾) solves A[𝐾,S]
giving 𝑍 ∗ = 0.)
Step 1: Solve P[𝑀, {𝑎∗}] to get the best placement 𝑠∗ (assur-
ing 𝑌 ∗ surviving nodes) with respect to attack 𝑎∗. If 𝑌 ∗ ≤ 𝑍 ∗
then go to Step 3.
Step 2: S := S ∪ {𝑠∗}. Solve A[𝐾,S] to get the worst attack
𝑎∗ (assuring at most 𝑍 ∗ surviving nodes) with respect to set
S. Go to Step 1. (Comment: 𝑍 ∗ is equal to

𝑉 (𝑠 (𝑎∗), 𝑎∗) = min𝑎∈A(𝐾) max 𝑠∈S 𝑉 (𝑠, 𝑎).)
Step 3: Stop: current attack 𝑎∗ is an optimal solution of
A(S(𝑀)), that is

𝑍 ∗ = 𝑉 (𝑠 (𝑎∗), 𝑎∗) = min𝑎∈A(𝐾) max 𝑠∈S(𝑀) 𝑉 (𝑠, 𝑎).

5 NUMERICAL EXPERIMENTS
Below we will illustrate the performance of the two algorithms in-
troduced in the previous section. For this purpose we expressed the
formulated problems and the algorithms as models and procedures
in the AMPL language. We ran the computations on a standard
laptop using the AMPL runtime and the CPLEX MIP solver. In our
experiment we set the number of controller nodes𝑀 to 6 and the
number of attacked locations 𝐾 to 4.
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Figure 4: The cost266 network instance.

The results of applying algorithm A1 to CPOP are summarized in
Table 2. In the second row, a medium size network instance cost66
available in SNDlib [4], whose graph is composed of 𝑉 = 37 nodes
and 𝐸 = 57 links, is considered. The optimal objective function value

𝑌 ∗ = 29 shows that the optimal placement is capable of assuring that
at least 29 nodes out of𝑉 = 37 nodes will survive any 4-node attack.
The optimal solution of P[6,A(4)] was reached in 29 iterations
of A1, which took 16 seconds of the total computation time on a
standard laptop. Most of this time (15 seconds) was spent in Step 1
on solving NAOP. It is remarkable that while the total number of
different 4-node attacks equals 66, 045, we needed to generate only
29 of them to get the optimal solution of the considered problem.

The third row of Table 2 shows analogous results for coronet conus
[8], a network instance substantially larger than cost66. This time
the optimal placement protects at least 𝑌 ∗ = 64 nodes out of 99
nodes for any 4-node attack, and only 72 attacks (out of 3, 764, 376
possible 4-node attacks) need to be generated (which takes only 63
seconds).

Table 2: Results of optimal controller placement.

𝑉 𝐸 𝑀 𝐾 𝑌 ∗ |A | T(P[6,A]) T(A[4, {𝑠∗ }])
37 57 6 4 29 29 1 sec. 15 sec.
75 99 6 4 64 72 3 sec. 63 sec.

The results of applying algorithm A2 to NAOP for cost266 are sum-
marized in Table 3. The optimal objective function value 𝑍 ∗ = 33
indicates that the optimal attack is capable of guaranteeing that
(only) 4 nodes out of 𝑉 = 37 nodes will be damaged if any of the
6-node controller placements can be deployed. The optimal solu-
tion of A[4,S(6)] was reached in 40 iterations of A2, which took
1102 seconds in total, and, similarly as for A1, virtually the entire
computation time was spent on solving the NAOP problem (this
time in Step 2). Again, it is worth noticing that, while the num-
ber of different 6-node placements equals 2, 324, 784, we needed to
consider only 40 of them to get the optimal solution of A[4,S(6)].
Table 3 shows no results for coronet conus because for this network
it took too much computational time to run A2 on the laptop.

Table 3: Results of attack optimization.

𝑉 𝐸 𝑀 𝐾 𝑍 ∗ |S | T(P[6, {𝑎∗ }]) T(A[4, S])
37 57 6 4 33 40 1 sec. 1101 sec.

In conclusion, A1 solves the controller placement problem CPOP
very quickly, much faster than A2 solves the node attack optimiza-
tion problem NAOP. So in the case of large networks the efficiency
of A2 (which is determined by the efficiency of solving formulation
[𝐾,S]) needs to be improved. Fortunately, the limited number of
iterations required by A2 will help to achieve this goal.

6 AN ALTERNATIVE RESILIENCE MEASURE
The resilience (to attacks) measure assumed in the previous sections
expresses the number of nodes surviving a given attack 𝑎. In this
section we consider another important measure of this kind, namely
the number of surviving (unordered) node-pairs {𝑣,𝑤}, i.e., the pairs
for which both nodes belong to the same component 𝑐 ∈ C(𝑎) and
this component contains a controller. Note that such a measure is
able to account for the traffic relations affected by an attack.
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In order to extend the introduced optimization model to the
new measure, we need to specify formulations for the counterparts
of the two basic problems presented in Section 3. In fact, in the
case of CPOP a modified formulation (denoted by P′[𝑀,A]) is
straightforward and merely replaces constraints (3d) with∑

𝑣∈V(𝑐) 𝑦𝑎𝑣 ≤
( |V (𝑐) |

2
) ∑

𝑣∈V(𝑐) 𝑥𝑣 𝑎 ∈ A, 𝑐 ∈ C(𝑎) (9)

in the P[𝑀,A] formulation (3).
However, in the case of NAOP, modification of formulation

A[𝐾,S] is not that obvious, and is achieved as described below.
In the modification, apart from variables 𝑎 = (𝑎𝑣)𝑎∈V , 𝑡 =

(𝑡𝑒 )𝑒∈V , 𝑧 = (𝑧𝑠𝑣)𝑠∈S,𝑣∈V and 𝑍 , the following additional binary
variables are used. For all 𝑣,𝑤 ∈ V , let 𝑦𝑣𝑤 be a binary variable
equal to 1 if, and only if, at least one path between nodes 𝑣 and𝑤
composed of links not affected by the constructed attack is available.
And for all 𝑠 ∈ S, 𝑣,𝑤 ∈ V and 𝑣 < 𝑤 , let 𝑋𝑠𝑣𝑤 be a binary variable
equal to 1 if, and only if, service relation {𝑣,𝑤} still provides service
after the attack, i.e., there still exists a path between nodes 𝑣 and𝑤
and both 𝑣 and𝑤 are still connected to a controller in placement 𝑠
(we notice that if the path exists and one of the nodes is connected
to a controller, the other node is also connected to a controller).
Using these variables the considered modification of the NAOP
formulation is as follows:

A′[𝐾,S] : min 𝑍 (10a)∑
𝑣∈V 𝑎𝑣 = 𝐾 (10b)

𝑡𝑒 ≥ 𝑎𝑣 𝑣 ∈ V, 𝑒 ∈ 𝛿 (𝑣) (10c)
𝑡𝑒 ≤ 𝑎𝛼 (𝑒) + 𝑎𝛽 (𝑒) 𝑒 ∈ E (10d)
𝑧𝑠𝑣 ≤ 1 − 𝑎𝑣 𝑠 ∈ S, 𝑣 ∈ V (10e)
𝑧𝑠𝑣 ≥ 1 − 𝑎𝑣 𝑠 ∈ S, 𝑣 ∈ V(𝑠) (10f)

𝑧𝑠𝛼 (𝑒) ≥ 𝑧𝑠𝛽 (𝑒) − 𝑡𝑒 𝑠 ∈ S, 𝑒 ∈ E (10g)

𝑧𝑠𝛽 (𝑒) ≥ 𝑧𝑠𝛼 (𝑒) − 𝑡𝑒 𝑠 ∈ S, 𝑒 ∈ E (10h)
𝑦𝑣𝑤 = 𝑦𝑤𝑣 𝑣,𝑤 ∈ V (10i)
𝑦𝑣𝑣 = 1 − 𝑎𝑣 𝑣 ∈ V (10j)

𝑦𝑣𝛼 (𝑒) ≥ 𝑦𝑣𝛽 (𝑒) − 𝑡𝑒 𝑣 ∈ V(𝑠), 𝑒 ∈ E (10k)
𝑦𝑣𝛽 (𝑒) ≥ 𝑦𝑣𝛼 (𝑒) − 𝑡𝑒 𝑣 ∈ V(𝑠), 𝑒 ∈ E (10l)
𝑋𝑠𝑣𝑤 ≥ 𝑦𝑣𝑤 + 𝑧𝑠𝑣 − 1 𝑠 ∈ S, 𝑣,𝑤 ∈ V : 𝑣 < 𝑤 (10m)
𝑍 ≥ ∑

𝑣,𝑤∈V: 𝑣<𝑤 𝑋
𝑠
𝑣𝑤 (10n)

𝑎𝑣, 𝑡𝑒 , 𝑧
𝑠
𝑣 ∈ {0, 1} 𝑠 ∈ S, 𝑣 ∈ V, 𝑒 ∈ E (10o)

𝑦𝑣𝑤 ∈ {0, 1} 𝑠 ∈ S, 𝑣,𝑤 ∈ V (10p)
𝑋𝑠𝑣𝑤 ∈ {0, 1} 𝑠 ∈ S, 𝑣,𝑤 ∈ V : 𝑣 < 𝑤 (10q)
𝑍 ∈ R+ . (10r)

In the formulation, constraints (10b)-(10h) imposed on variables
𝑎, 𝑡 and 𝑧 are the same as constraints (5b)-(5h) in formulation (5).
Additional constraints (10i)-(10l), in turn, force that for each node 𝑣
and each link 𝑒 unaffected by the constructed attack, node 𝑣 is either
connected (by a path composed of unaffected links) to both ends
of the link or is not connected to any of them (i.e., 𝑦𝑣𝛼 (𝑒) = 𝑦𝑣𝛽 (𝑒)
when 𝑡𝑒 = 0).

Clearly, a necessary and sufficient condition for a pair of nodes
{𝑣,𝑤} to be in service for a given placement 𝑠 is that these nodes
are connected by means of a path (not necessarily elementary) of

surviving links containing an unaffected controller, that is if, and
only if, both 𝑦𝑣𝑤 and 𝑧𝑠𝑣 are equal to 1. To express this condition,
constraints (10m) that force variable𝑋𝑠𝑣𝑤 to be equal to 1 only when
𝑦𝑣𝑤 = 𝑧𝑠𝑣 = 1 is introduced.

Finally, for the reasons similar to those used for formulation
(5), constraint (10n) together with objective (10a) assure (by set-
ting appropriate values in 𝑧𝑠𝑣 , 𝑦𝑣𝑤 and 𝑋𝑠𝑣𝑤 to 0 when needed) the
proper value of the objective function for optimal solutions of the
considered formulation.

Clearly, algorithms A1 and A2 formulated in Sections (4.1) and
(4.2) remain unchanged when used for the so modified versions
of CPOP and NAOP, provided that in the max-min and min-max
quantities, respectively, defined at the end of Section 2, the value
of 𝑉 (𝑠, 𝑎) expresses the number of surviving node-pairs instead of
the number of surviving nodes.

7 FINAL REMARKS
The two problems studied in this paper become important when
both the network operator and the attacker are trying to optimize
their decisions about, respectively, controller placement and attack
selection. In such a case, the presented problems can be of value
when the interaction between the two parties is considered within
the framework of game theory.

Regarding the direct extensions of the material presented in this
paper, we plan to improve the efficiency of the NAOP formulation
and thanks to that extend the numerical studies to large networks
(e.g., with 100 nodes), also taking into account the alternative re-
silience measure considered in Section 6.

Finally, let us emphasize that the presented optimization model
can be applied to systems other than SDN, mentioned in Section 1.
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1 INTRODUCTION
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Abstract

The refueling station location problem with routing (RSLP-R) is defined as a maximal
coverage problem that locates alternative fuel refueling stations (AFSs) on a road network
to maximize the refueled alternative fuel vehicle flows by considering the limited range of
vehicles and the willingness of drivers to deviate from their paths for refueling. In this study,
we consider the RSLP-R under decision-dependent polyhedral flow uncertainty. We model
the flow uncertainty set using a hybrid model that comprises a hose model and individual
flow bounds. To take into account the fact that vehicle flows are affected by AFS deployment
decisions in their neighborhoods, we incorporate the decision-dependency notion into the
flow uncertainty set. We propose two linear mixed integer programming formulations and
a Benders reformulation. We confirm the effectiveness of the reformulation in solving larger
instances based on the road network of Belgium and also assess the value of incorporating
uncertainty and decision-dependency into the problem.
Keywords: Alternative fuel vehicles, Location, Routing, Robust optimization, Hose model,
Decision-dependent uncertainty, Benders reformulation

1 Introduction
Transportation is heavily dependent on fossil fuels, especially petroleum-based products. This strong
dependency has two main drawbacks; consuming fossil fuels results in greenhouse gas emissions and fossil
fuels have limited reserves that may be depleted in the near future. Using alternative fuels is one of the
solutions to deal with the problems caused by fossil fuel consumption. In recent years, there has been a
substantial increase in the promotion of vehicles that need alternative fuels (electricity, hydrogen, natural
gas, etc.) to break the transportation sector’s reliance on fossil fuels. The lack of alternative fuel station
(AFS) infrastructure and the rather limited range of alternative fuel vehicles (AFVs) are two significant
obstacles that are slowing down the introduction of AFVs and, as a result, the wide adoption of these
vehicles by drivers. In this regard, the refueling station location problem (RSLP) has recently started
to be studied in the literature. In the RSLP, the stations can be located on the drivers’ predetermined
paths, which are usually the shortest paths. Since the drivers may sometimes tolerate deviating from
their paths to refuel their vehicles, the refueling station location problem with routing (RSLP-R) extends
the RSLP and determines the locations of stations and routes of drivers simultaneously.

It is likely to observe uncertainties in the flows because the rollout of AFVs and the development
of the AFS network are still at their initial stages. Moreover, the relationship between the lack of
AFS network design and the low level adoption of AFVs is regarded as a “chicken-egg-problem" in the
literature because the statistical data shows that the insufficient number of AFSs causes a poor incentive
for drivers to use AFVs and vice versa. It is thus important to consider that the availability of AFSs in
the neighborhood affects the proliferation of AFVs during the development of infrastructure. Hence, we
incorporate robustness and decision-dependency into the RSLP-R.

In this study, we introduce the robust RSLP-R under decision-dependent polyhedral vehicle flow
uncertainty. We derive mathematical programming formulations and propose a Benders reformulation and
a branch-and-cut algorithm. We perform the following computational experiments: We first compare the
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performances of the proposed mathematical models and the Benders reformulation. Then, we investigate
the changes in station locations and total covered flows when the optimal solutions of the deterministic,
robust and decision-dependent robust problems are employed. We also analyze the changes under different
parameter settings. We observe that recognizing the uncertainty in flows and the decision-dependency of
uncertain flow realizations may lead to significant gains in the total AFV flows covered.

2 Problem Definition and Solution Methods
The RSLP-R is defined on a road network and an AFV demand is defined by the origin node of the flow,
the destination node of the flow, the vehicle flow volume, the range of vehicle, and the total distance
tolerated by drivers. The RSLP-R aims to maximize the total amount of AFV flows that can be refueled
by locating a predetermined number of AFSs on a network by considering the willingness of drivers to
deviate from their shortest paths to refuel their vehicles as well as the limited range of the vehicles.
We use the deterministic problem introduced by [1]. We introduce our uncertainty set using the hybrid
model ([2]; [4]). The hybrid model comprises a hose model for the aggregate flow bounds of nodes and
an interval model for the lower and upper bounds of individual flows. We define the hybrid uncertainty
set of the vehicle flows under the impact of station location decisions. We suppose that, when a new
station is opened, vehicle flows in the neighborhood increase because the drivers will be more willing
to use AFVs if there are AFSs nearby. We investigate the case where the aggregate and individual
bounds are affine functions of the location decisions. Since introducing decision-dependent flow bounds
results in bilinear terms in the objective function, for linearization, we use two different ways leading to
an aggregated and a disaggregated formulation. As the problem size grows, we encounter difficulties in
solving the aggregated and disaggregated models and thus we propose a Benders reformulation based on
the disaggregated model. We solve this formulation using a branch-and-cut algorithm. The separation,
which is exact and polynomial, is done by inspection.

3 Computational Results
We use four data sets to perform our computational experiments. The first one is a commonly used data
set in the RSLP literature. We generated the other data sets based on the road network of Belgium. The
sets differ in the number of nodes, edges, and origin-destination pairs. The nominal flow volumes are
computed using the gravity model and the decision-dependency parameters are chosen using a similar
way to that presented by [3]. We first evaluate the performances of the branch-and-cut algorithms to
solve the Benders reformulation and the aggregated and disaggregated formulations. We observe that the
Benders reformulation outperforms the other formulations. Then, we compare the station location deci-
sions obtained by solving the deterministic, robust (without decision-dependency) and decision-dependent
robust problems. We assess the importance of considering only uncertainty and uncertainty and decision-
dependency simultaneously. In these experiments, we also examine the effect of different parameter
settings, e.g., range, tolerance, and uncertainty level, on the results. Under all settings, we highlight the
gain of incorporating uncertainty and decision-dependency into strategic-level decisions.
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1 Introduction
Research in combinatorial optimization has provided efficient algorithms to solve a large variety of complex
discrete decision problems, providing exact or near-optimal solutions in reasonable amounts of time. The
applications are countless, ranging from logistics (network design, facility location, . . .) to scheduling,
including even important data science applications such as clustering. Many of these applications amount
to select a subset of edges of a graph G = (V, E) among a family of feasible subsets F and that minimizes
its total weight. Among those, we focus on spatial graphs on a given metric space (M, d), where each
vertex i is assigned a position ui ∈ M and the cost of set F ∈ F is given by

∑
{i,j}∈F d(ui, uj), leading

to the combinatorial optimization problem

min
F ∈F

∑

{i,j}∈F

d(ui, uj). (1)

Problem (1) encompasses many applications, such as network design, facility location, and clustering.
These are typically subject to data uncertainty, be it because of the duration of the decision process,
measurement errors, or simply lack of information.

One successful framework that has emerged to address uncertainty is robust optimization [2], model-
ing the uncertain parameters with convex sets, such as polytopes, or finite sets of points, among which
combinatorial robust optimization focuses on discrete robust optimization problems [4]. We enter this
framework by considering the model where the positions of the vertices are subject to uncertainty, there-
fore impacting the distances among the vertices. The resulting problem thus seeks to find the feasible
subgraph that minimizes its worst-case sum of distances. Formally, we introduce for each vertex i ∈ V
the set of possible locations as the uncertainty set Ui ⊆ M. Using the notations u = (u1, . . . , u|V |) and
U = ×i∈V Ui, the general problem considered in this paper can be cast as

min
F ∈F

max
u∈U

∑

{i,j}∈F

d(ui, uj). (2)

2 Literature
Traditionally, robust optimization problems with an objective function that is concave in the uncertain
parameters are reformulated as monolithic models using conic duality [2]. These techniques do not readily
extend to function d(ui, uj) as the latter is non-concave in general. Actually, for Euclidean metric spaces
based on the vector space R`, ` ∈ Z+, d(ui, uj) = ‖ui − uj‖2 is convex in ui and uj . Function ‖ui − uj‖2
is closely related to the second-order cone (SOC) constraints considered by [5] for robust problems with
polyhedral uncertainty sets. The authors of [5] linearize such robust SOC constraints by introducing
adjustable variables, turning the problem into an adjustable robust optimization problem.

A second work closely related to (2) is [3], which relies on computational geometry techniques to
provide constant-factor approximation algorithms in the special case where F contains all Hamiltonian
cycles of G. They propose in particular to solve a deterministic counterpart of (2) where the uncertain
distances are replaced by the maximum pairwise distances dmax

ij = maxui∈Ui,uj∈Uj
d(ui, uj), for each

(i, j) ∈ V 2, i 6= j.
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3 Contributions
Our contributions can be summarized as follows:

• We prove that problem (2) is NP-hard even when F consists of all s − t paths and (M, d) is the
one-dimensional Euclidean metric space or when F consists of all spanning trees of G. These results
illustrate how the nature of problem (2) fundamentally differs from the classical min-max robust
problem with cost uncertainty, which is known to be polynomially solvable whenever the costs lie
in independent uncertainty sets [1].

• We provide a general cutting-plane algorithm for problem (2) that relies on integer programming
formulations for F . We further show that the separation problem c(F ) = maxu∈U

∑
{i,j}∈F d(ui, uj)

is NP-hard and provide two algorithms for computing c(F ). One is based on integer programming
formulations while the other one relies on a dynamic programming algorithm that involves the
threewidth of F .

• We extend the approximation algorithm based on dmax to general sets F and metric spaces different
from the Euclidean one. We study in depth the resulting approximation ratios, which depend on
the structure of F and (M, d).

• We provide a dynamic programming algorithm for the special case where F consists of all s−t paths,
which is turned into a fully-polynomial time approximation scheme by rounding data appropriately.

• We compare numerically the exact cutting plane algorithm with the approximation algorithm that
relies on dmax. The benchmark is composed of two families of instances. The first family includes
Steiner tree instances that illustrate subway network design. The second one is composed of strategic
facility location instances. The former application relies on two-dimensional Euclidean metric spaces
so we can further include the affine decision rule reformulation from [5] to the comparison.
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Introduction
It has long been observed that basing location decisions on oversimplified cost models can lead to inferior
solutions with costs significantly exceeding those of an optimal solution [6, 10, 9]. This motivates the
study of Capacitated Location Routing (CLR), an integrated approach that combines Facility Location
with a Vehicle Routing problem: Given a finite set F of possible facility locations, the task is to determine
a subset of these facilities that is to be opened and to plan tours originating from the open facilities in
order to supply clients and satisfy their demand. These tours have to respect capacity constraints for
vehicles (the total demand served by a single tour must be less than or equal to ū) and facilities (the
total demand served by a facility w ∈ F must be less than or equal to u(w)). All of this should be done
at minimum total cost, which is the sum of opening costs for the facilities and the routing cost, i.e., the
total length of all tours.

By combining Facility Location and Vehicle Routing, each of which is an NP -hard problem in its
own right, Location Routing constitutes a computationally challenging problem. Numerous heuristic and
exponential-time exact approaches have been proposed in literature; see [7] and [4] for recent surveys.
In this paper, we study approximation algorithms for Location Routing, that is, algorithms that come
with a proven worst-case guarantee both on their running time and the quality of the produced solution,
measured in terms of deviation from the cost of an optimal solution. In particular, we provide a bifactor
approximation algorithm, which computes solutions in which the capacity of any facility can be exceeded
by at most a small, adjustable factor while the cost is within a constant factor of the optimal solution.
Moreover, our algorithm allows us to solve instances of considerably larger size than those considered
in the literature so far. Previously, constant-factor approximation guarantees have only been known for
variants of the problem in which facilities are uncapacitated [8, 5] or for soft-capacitated variants, where
facility capacities can be extended arbitrarily at linear cost [2, 3].

Algorithm
The algorithm and the accompanying analysis prove the following result:

Theorem 1. There is an algorithm that, given ε ∈ (0, 1], computes in polynomial time a solution to a
given instance of CLR such that each tour originates from an open facility, the demand of every client is
served entirely by the tours visiting it, the total demand served by any tour is at most the vehicle capacity,
the load at any facility w ∈ F is no more than u(w)+εū, and the total cost is no more than (4+ 2α

ε ) OPT,
where α ≥ 1 is the approximation factor of an algorithm for Capacitated Facility Location (CFL).

The algorithm consists of three steps. In the first step, a minimum spanning tree for a modified
instance is partitioned into clusters such that each cluster contains clients with a total demand of at most
¯̄u and every cluster with demand less than ¯̄u/2 contains a facility. The clustering technique is based on
a procedure for relieving overloaded subtrees by [1] and [8]. This minimum spanning tree constitutes a
lower bound to the optimal CLR solution. In the second step, the clusters are assigned to open facilities
via a rounding procedure for an assignment LP. Using the fact that most clusters have large aggregated
demand, it is shown that solutions to a certain CFL instance, derived from the original CLR instance,
induce feasible solutions of bounded cost for this LP (similarly to the aforementioned spanning tree, the
cost of this CFL solution is a lower bound to the optimal CLR solution). The rounding procedure might
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allocate one additional cluster per facility, thus resulting in an additional demand of at most ¯̄u at any
open facility. Finally, each cluster is converted into a tour by adding an edge to its assigned facility an
using the classic doubling-and-shortcutting technique for TSP.

Our theoretical results can be seen as a natural next step towards an approximation algorithm strictly
respecting hard capacities. However, as we also show with an appropriate class of example instances,
such an algorithm would require the use of new and stronger lower bounds on the optimal solution value,
beyond the known spanning tree and CFL lower bound.

Variations and Computational Experiments
Complementing our theoretical results, we devise several heuristic modifications to the algorithm that
improve its practical performance. In particular, by replacing the aforementioned load-balancing linear
program by an integer program of moderate size, we show how our framework can be used to obtain
solutions that strictly respect the original facility capacities while still achieving a comparably low cost.
We analyze the empirical performance of the algorithm with and without heuristic improvements in an
extensive computational study on different sets of benchmark instances from literature and additional
newly generated instances. These new instances include up to 10000 customers, which is considerably
larger than what has been previously solved in the literature. This is not only a display of the scalability
of our method, but these instances could also result in a new benchmark set for the discipline.

Clearly outperforming its theoretical worst-case guarantee, the algorithm is capable of computing
near-optimal solutions that either slightly exceed facility capacities (when using the original polynomial-
time variant) or strictly respect these capacities (when using the integer program) in a fraction of the
running time necessary for exact or other heuristic approaches.
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Integrated planning systems can be used to better coordinate processes and better align decisions within
supply chains. A system that integrates the three key processes production, inventory and distribution
is called the Production Routing Problem (PRP) [3].

In this work, a stochastic PRP (SPRP) is considered, which includes the production and distribution
of a single product from a production plant to multiple retailers using capacitated vehicles in a discrete
and finite time horizon. Since demand is a critical information for decision making and is only known
approximately by forecasts in most cases, the uncertainty is represented by demand scenarios.
The PRP solely considering demand uncertainty has only been addressed three times. [2] are the first to
deal with demand uncertainty and introduce the SPRP under demand uncertainty in a two-stage deci-
sion process and rolling horizon framework for the multistage SPRP. [4] and [5] tackle the SPRP allowing
backlog and solve a similar two-stage decision process using different Sample Average Approximation
(SAA) methods and extend the general SAA with several heuristic approaches. Within these three ar-
ticles, setup and routing decisions are made on the first stage and quantity decisions can be adjusted
after demand realisation. This might lead to retailer visits, where retailers have little or no demand and
unnecessary costs may occur. Therefore, a new assumption is made - routes can be adjusted at short
notice in the second stage.

As the new two-stage stochastic optimization model can only be solved for very small instances in rea-
sonable computing time, a heuristic approach is presented. The approach is based on a common method
used in the literature. As in [1] and [10] the PRP is decomposed into a production and distribution prob-
lem (PrDP) and into a vehicle routing problem (VRP). The PrDP is solved with approximated routing
costs and the identified delivery quantites and planned retailer visits can be transferred to the VRP to
determine better routing costs. The process is repeated multiple times, until there is no change in the
production decisions or another termination criterion is met. The heuristic can be transferred into an
SAA approach. Several small scenario sets are solved using a two-stage stochastic PrDP and a common
VRP solution method. The first stage decision provided by the smaller scenario sets are evaluated by
a larger scenario set. Then, the first stage decisions resulting in the lowest total cost are chosen. First
computational results show significant improvements of the heuristic-based SAA framwork compared to
the expected-value problem of the SPRP for a moderate number of periods. For solving the VRP a
simple Sweep-based heuristic [8] is used. Instances of five or ten retailers and up to seven periods can be
improved 1% to 3.75% on average. As a second approach, the heuristic will be applied to an adjustable
SAA framework as described in [4]. To find promising variables, which can be partially fixed for further
replications and/or larger scenario sets, decisions’ weights are calculated according to their objective
value. By this, a bigger scenario space can be examined and the solution might be improved.
To further investigate the influence of the VRP on the solution, two methods are compared. A GRASP-
based metaheuristic according to [9] and a Sweep-based heuristic. First results show slight improvements
using the GRASP-based metaheuristic over the Sweep-based heuristic. But the GRASP-based method
increases the computation time significantly. Since a VRP must be solved for each scenario and period,
an intensive metaheuristic may not be appropriate for larger instances and a simple heuristic like the
Sweep-based heuristic might be more applicable.

Due to the ability to adjust routing decisions at short notice, these findings could be used to get closer to
real-world applications, as noted in [7] or [6]. Also the solution approaches could be used to investigate,
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if there is a crucial difference in the solution quality and therefore in the overal costs, considering the
routing decision in the first or second stage.
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