Zugelassene Hilfsmittel:
Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite beschrieben, keine Fotokopien oder Ausdrucke). Das Konzeptpapier zur Bearbeitung der Aufgaben (Schmierblätter) ist von den Studierenden zur Klausur mitzubringen.
Sonstige Hilfsmittel wie zum Beispiel alte Klausuren, Skripte oder Taschenrechner sind nicht erlaubt.

Bewertung:
Benutzen Sie bitte zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten gewertet, die auf dem Antwortbogen stehen!

Hinweise zur Bewertung der einzelnen Klausurteile:

III: (Aufgabe III.1-III.3) Sie müssen Aussagen den Wahrheitswert “wahr” (W) oder “falsch” (F) zuordnen. Sie erhalten nur dann Punkte, wenn Sie in einer Teilaufgabe alle Wahrheitswerte richtig und komplett zuordnen. Es gibt keine Minuspunkte.
Bitte schreiben Sie keine Rechnungen oder Begründungen zu Teil III auf den Antwortbogen. Nutzen Sie dafür Ihr eigenes Konzeptpapier.

Beispiel:
Bestimmen Sie die Wahrheitswerte der folgenden zwei Aussagen: (2 Pkt.)
1. $2 \cdot 3 = 6$
2. $1 + 1 = 3$.

<table>
<thead>
<tr>
<th>Antwort</th>
<th>1.</th>
<th>2.</th>
<th>Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>W</td>
<td>W</td>
<td>0</td>
</tr>
<tr>
<td>(ii)</td>
<td>W</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>(iii)</td>
<td>F</td>
<td>W</td>
<td>0</td>
</tr>
<tr>
<td>(iv)</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>(v)</td>
<td>F</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(vi)</td>
<td>W</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(vii)</td>
<td>-</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>(viii)</td>
<td>-</td>
<td>W</td>
<td>0</td>
</tr>
</tbody>
</table>

Viel Erfolg!
Teil I

Aufgabe I.1: (5+7 Pkt.)

a) Beweisen Sie mit Hilfe der vollständigen Induktion, dass $3^{2n} + 7$ für alle $n \in \mathbb{N}$ durch 8 teilbar ist.

b) Sei die Matrix $A_n \in \mathbb{R}^{n \times n}$ mit den Einträgen

\[
a_{kl} = \begin{cases}
2 & , k = l \\
-1 & , k = l - 1 \\
-1 & , k = l + 1 \\
0 & , \text{sonst}
\end{cases}
\]

für $1 \leq k, l \leq n$ gegeben. Das bedeutet z.B.

\[
A_1 = \begin{pmatrix} 2 \end{pmatrix}, A_2 = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \quad \text{und} \quad A_n = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & \ldots & 0 & 0 \\ \vdots & \ddots \\ 0 & \ldots & \ldots & 0 & -1 & 2 & -1 & 0 \\ 0 & \ldots & \ldots & 0 & -1 & 2 & -1 & 0 \\ 0 & \ldots & \ldots & \ldots & 0 & -1 & 2 & \end{pmatrix}
\]

Zeigen Sie mit Hilfe der vollständigen Induktion, dass

\[\det(A_n) = n + 1\]

für alle $n \in \mathbb{N}$ gilt.

Hinweis: Zeigen Sie den Induktionsanfang für A_1 und A_2 und entwickeln Sie im Induktionsschritt die Matrix nach der ersten Zeile.

Lösung:

to a)

Induktionsanfang: $n = 1 \quad 3^2 + 7 = 16$ ist durch 8 teilbar. √

Induktionsschluss: $n \rightarrow n + 1$

Voraussetzung: $3^{2n} + 7$ ist durch 8 teilbar.

Behauptung: $3^{2(n+1)} + 7$ ist durch 8 teilbar.

Beweis:

\[3^{2(n+1)} + 7 = 9 \cdot 3^{2n} + 7 = 9 \cdot (3^{2n} + 7) - 8 \cdot 7 \]

Alternative Rechnung:

\[3^{2(n+1)} + 7 = 9 \cdot 3^{2n} + 7 = \frac{3^{2n} + 7 + 8 \cdot 3^{2n}}{\text{n. I.V. durch 8 teilbar}} \]

Damit ergibt sich nach dem Prinzip der vollständigen Induktion die Behauptung.
zu b)

Induktionsanfang:

\[n = 1 \quad \det(A_1) = \det(2) = 2. \quad \checkmark \]

\[n = 2 \quad \det(A_2) = \det \left(\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \right) = 3. \quad \checkmark \]

Induktionsschluss: \(n \to n + 1 \)

Voraussetzung: \(\det(A_n) = n + 1 \) (und \(\det(A_{n-1}) = n \)).

Behauptung: \(\det(A_{n+1}) = n + 2 \).

Beweis:

\[\det(A_{n+1}) = \det \left(\begin{pmatrix} 2 & -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \ldots & 0 & -1 & 2 & -1 \\ 0 & \ldots & 0 & 0 & -1 & 2 \end{pmatrix} \right) \]

\(\in \mathbb{R}^{(n+1) \times (n+1)} \)

Entwicklung nach der 1. Zeile

\[= 2 \det \left(\begin{pmatrix} 2 & -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \ldots & 0 & -1 & 2 & -1 \\ 0 & \ldots & 0 & 0 & -1 & 2 \end{pmatrix} \right) \]

\(\in \mathbb{R}^{n \times n} \)

\[- (-1) \det \left(\begin{pmatrix} -1 & -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \ldots & 0 & -1 & 2 & -1 \\ 0 & \ldots & 0 & 0 & -1 & 2 \end{pmatrix} \right) \]

\(\in \mathbb{R}^{n \times n} \)

Entwicklung der 2. Matrix nach der 1. Spalte

\[= 2 \det \left(\begin{pmatrix} 2 & -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \ldots & 0 & -1 & 2 & -1 \\ 0 & \ldots & 0 & 0 & -1 & 2 \end{pmatrix} \right) \]

n. I.V. \(= n + 1 \)
\[
+ (-1) \det \begin{pmatrix}
2 & -1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & \cdots & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & \cdots & 0 & 0 \\
\vdots & \ddots \\
0 & \cdots & 0 & -1 & 2 & -1 \\
0 & \cdots & 0 & -1 & 2 \\
\end{pmatrix}
\in \mathbb{R}^{(n-1) \times (n-1)} \Rightarrow n. I.V. = n
\]

\[
= 2 \cdot (n + 1) - n = n + 2 = (n + 1) + 1
\]

Damit ergibt sich nach dem Prinzip der vollständigen Induktion die Behauptung.
Aufgabe I.2: (4+6+2+4 Pkt.)

a) Bestimmen Sie die Eigenwerte (inklusive algebraischer Vielfachheit) der Matrix

\[A = \begin{pmatrix} 4 & 2 & -2 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}. \]

b) Gegeben sei die Matrix

\[B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -30 & 1 & 6 \end{pmatrix} \]

mit dem charakteristischen Polynom \(p_B(x) = -(x + 2)(x - 3)(x - 5) \). Bestimmen Sie je einen Eigenvektor zu jedem Eigenwert von \(B \).

c) Gegeben sei die Matrix

\[C = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix} \]

mit den Eigenwerten 1 (einfach) und 2 (zweifach). Eine Basis des Eigenraumes von \(C \) zum Eigenwert 1 lautet \(\left\{ \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix} \right\} \). Die Menge \(\left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \right\} \) stellt eine Basis des Eigenraumes von \(C \) zum Eigenwert 2 dar.

Bestimmen Sie eine Matrix \(P \in \mathbb{R}^{3\times3} \), so dass \(P^{-1}CP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \) gilt.

d) Bestimmen Sie den Typ und die Normalform der Kurve im \(\mathbb{R}^2 \), die durch die folgende Gleichung beschrieben wird:

\[8x_1^2 + 2x_2^2 - 8x_1x_2 = 14. \]

Lösung:

a) Zunächst berechnen wir das charakteristische Polynom \(p_A(x) \) der Matrix \(A \). Es gilt

\[
p_A(x) = \det \left(\begin{pmatrix} 4 - x & 2 & -2 \\ -1 & 1-x & 0 \\ 0 & 0 & 2-x \end{pmatrix} \right) = (2-x) \cdot \det \left(\begin{pmatrix} 4 - x & 2 \\ -1 & 1-x \end{pmatrix} \right) \\
= (2-x)[(4-x)(1-x) + 2] = (2-x)(x^2 - 5x + 6) = (2-x)(x-2)(x-3) \\
= -(x-2)^2(x-3).
\]

Damit erhalten wir die Eigenwerte 2 (zweifach) und 3 (einfach).

b) Um die gesuchten Eigenvektoren zu erhalten, müssen Lösungen der folgenden Gleichungssysteme gefunden werden:

\[
\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ -30 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 16 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1/4 \\ 0 & 1 & 1/2 \\ 0 & 0 & 0 \end{pmatrix}
\]
\[
\begin{pmatrix} -3 & 1 & 0 \\ 0 & -3 & 1 \\ -30 & 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1/9 \\ 0 & 1 & -1/3 \\ 0 & 0 & 0 \end{pmatrix}
\]
\[
\begin{pmatrix}
-5 & 1 & 0 \\
0 & -5 & 1 \\
-30 & 1 & 1 \\
\end{pmatrix} \rightarrow \begin{pmatrix}
-5 & 1 & 0 \\
0 & -5 & 1 \\
0 & 0 & 0 \\
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & -1/25 \\
0 & 1 & -1/5 \\
0 & 0 & 0 \\
\end{pmatrix}
\]

Damit kann man Eigenvektoren ablesen: \[
\begin{pmatrix}
1 \\
-2 \\
4 \\
\end{pmatrix}
\]
ist ein Eigenvektor zum Eigenwert \(-2\), \[
\begin{pmatrix}
1 \\
3 \\
9 \\
\end{pmatrix}
\]
ist ein Eigenvektor zum Eigenwert \(3\) und \[
\begin{pmatrix}
1 \\
5 \\
25 \\
\end{pmatrix}
\]
ist ein Eigenvektor zum Eigenwert \(5\).

c) Die Lösung kann man direkt ablesen:

\[
P = \begin{pmatrix}
2 & 2 & 3 \\
1 & 0 & -1 \\
0 & 1 & 3 \\
\end{pmatrix}
\text{ oder } P = \begin{pmatrix}
2 & 2 & 3 \\
0 & 1 & -1 \\
1 & 0 & 3 \\
\end{pmatrix}.
\]

d) Die Gleichung kann man zunächst in Matrixschreibweise umformen. Dies ergibt

\[
(x_1, x_2) \begin{pmatrix}
8 & -4 \\
-4 & 2 \\
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2 \\
\end{pmatrix} = 14.
\]

Das charakteristische Polynom von \(D\) lautet

\[
p_D(x) = \det(D - Ix) = \det \begin{pmatrix}
8 - x & -4 \\
-4 & 2 - x \\
\end{pmatrix} = (8 - x)(2 - x) - 16 = x^2 - 10x = x(x - 10).
\]

Daher besitzt die Matrix die Eigenwerte \(0\) und \(10\). Führt man nun neue Koordinaten \((u, v)\) (entlang der entsprechenden Eigenvektoren von \(D\)) ein, so erhält man die Kurve in neuen Koordinaten und damit in der Normalform

\[
10u^2 = 14.
\]

Es handelt sich hierbei um zwei parallele Geraden \((u = \pm \sqrt{7/5} \text{ und } v \text{ beliebig})\).

\textbf{Alternativ} berechnen wir die Eigenvektoren von \(D\). Wir erhalten die folgenden zwei Gleichungssysteme:

\[
\begin{pmatrix}
8 & -4 \\
-4 & 2 \\
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & -1/2 \\
0 & 0 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
-2 & -4 \\
-4 & -8 \\
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 2 \\
0 & 0 \\
\end{pmatrix}.
\]

Damit ist \(v_1 = \frac{1}{\sqrt{5}} \begin{pmatrix}
1 \\
2 \\
\end{pmatrix}\) ein normierter Eigenvektor zum Eigenwert \(0\) und \(v_2 = \frac{1}{\sqrt{5}} \begin{pmatrix}
-2 \\
1 \\
\end{pmatrix}\) ein normierter Eigenvektor zum Eigenwert \(10\). Führen wir nun neue Koordinaten \(\begin{pmatrix} u \\ v \end{pmatrix} = V^T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\) mit \(V = \frac{1}{\sqrt{5}} \begin{pmatrix}
-2 & 1 \\
1 & 2 \\
\end{pmatrix}\) ein, so erhalten wir

\[
(x_1, x_2) \begin{pmatrix}
8 & -4 \\
-4 & 2 \\
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2 \\
\end{pmatrix} = 14 \quad \Leftrightarrow \quad (x_1, x_2)V^T \begin{pmatrix}
8 & -4 \\
-4 & 2 \\
\end{pmatrix}V \begin{pmatrix}
x_1 \\
x_2 \\
\end{pmatrix} = 14 \quad \Leftrightarrow \quad (u, v) \begin{pmatrix}
10 & 0 \\
0 & 0 \\
\end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 14 \quad \Leftrightarrow \quad 10u^2 = 14.
\]

Es handelt sich hierbei um zwei parallele Geraden \((u = \pm \sqrt{7/5} \text{ und } v \text{ beliebig})\).
Aufgabe I.3: (5+4 Pkt.)

a) Finden Sie alle Vektoren $v \in \mathbb{R}^3$, die die folgenden Bedingungen i), ii) und iii) erfüllen:

i) v liegt im Erzeugnis der Menge
$$\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \\ \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ \end{pmatrix} \right\},$$

ii) v ist orthogonal zum Vektor $p = \begin{pmatrix} -1 \\ 1 \\ 1 \\ \end{pmatrix}$ und

iii) v hat die Länge 3.

b) Bestimmen Sie die Orthogonalprojektion von $\begin{pmatrix} 1 \\ 0 \\ 2 \\ \end{pmatrix}$ auf die Ebene
$$E = \left\{ v \in \mathbb{R}^3 \mid \begin{pmatrix} v \\ \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \\ 2 \\ \end{pmatrix} + \beta \begin{pmatrix} -2 \\ 1 \\ 1 \\ \end{pmatrix} \text{ mit } \alpha, \beta \in \mathbb{R} \right\}.$$

Lösung:

a) Die Vektoren $v \in \mathbb{R}^3$, die

i) im Erzeugnis der Menge $\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \\ \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ \end{pmatrix} \right\}$ liegen, haben die Form $\alpha \begin{pmatrix} 1 \\ 2 \\ 3 \\ \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 0 \\ 1 \\ \end{pmatrix}$ mit $\alpha, \beta \in \mathbb{R}$.

ii) Sind solche Vektoren orthogonal zum Vektor $p = \begin{pmatrix} -1 \\ 1 \\ 1 \\ \end{pmatrix}$, so erhält man
$$\langle v, p \rangle = \left\langle \alpha \begin{pmatrix} 1 \\ 2 \\ 3 \\ \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 0 \\ 1 \\ \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \\ \end{pmatrix} \right\rangle$$
$$= \alpha \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \\ \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \\ \end{pmatrix} \right\rangle + \beta \left\langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \\ \end{pmatrix} \right\rangle$$
$$= \alpha \cdot 4 + \beta \cdot 0 = 4\alpha \neq 0.$$

Das bedeutet, dass $\alpha = 0$ gilt.

iii) Haben die Vektoren zusätzlich Länge 3, dann folgt
$$3 = \sqrt{\beta^2 + 0^2 + 1^2} = \sqrt{2|\beta|}$$
und somit gilt $\beta = \pm \frac{3}{\sqrt{2}}$.

Damit gibt es zwei Vektoren, die die drei Bedingungen erfüllen:
$$v_1 = \frac{3}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \\ \end{pmatrix} \text{ und } v_2 = -\frac{3}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \\ \end{pmatrix}.$$
b) Um die Orthogonalprojektion von \(\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \) auf die Ebene

\[
E = \left\{ v \in \mathbb{R}^3 \mid v = \alpha \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \text{ mit } \alpha, \beta \in \mathbb{R} \right\}
\]

zu bestimmen, müssen wir aus den Vektoren, die die Ebene aufspannen, ein Orthonormalsystem bilden. Dazu verwenden wir das Gram-Schmidt Verfahren:

\[
u_1 := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
\]

\[
\tilde{u}_2 := \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} - \left\langle \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} , \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}
\]

\[
u_2 := \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}
\]

Jetzt ist die Orthogonalprojektion von \(\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \) auf \(E \) gegeben durch

\[
\left\langle \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} , \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \left\langle \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} , \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \right\rangle \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \left(\frac{2}{5} \right) \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 10 \end{pmatrix}
\]

Alternativ:

\[
u_1 := \frac{1}{\sqrt{6}} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}
\]

\[
\tilde{u}_2 := \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} - \left\langle \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} , \frac{1}{\sqrt{6}} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \right\rangle \frac{1}{\sqrt{6}} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}
\]

\[
u_2 := \frac{1}{\sqrt{30}} \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}
\]

Jetzt ist die Orthogonalprojektion von \(\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \) auf \(E \) gegeben durch (da \(u_1 \perp (1 \ 0 \ 2)^T \))

\[
\left\langle \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} , \frac{1}{\sqrt{30}} \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} \right\rangle \frac{1}{\sqrt{30}} \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 4 \\ -2 \\ 10 \end{pmatrix}
\]
Teil II

Aufgabe II.1: (3 Pkt.)
Gegeben seien die beiden in der Skizze eingezeichneten Zahlen \(z_1, z_2 \in \mathbb{C} \). Tragen Sie das Produkt
\[
z_1 \cdot z_2
\]
in die Skizze auf dem Antwortbogen ein.

Lösung:
Es gilt \(z_1 = 1.5e^{i\frac{1\pi}{4}} = 1.5e^{i\frac{2\pi}{8}} \) und \(z_2 = 2e^{i\frac{7\pi}{8}} \).
Damit gilt für das Produkt
\[
z_1 \cdot z_2 = 1.5 \cdot 2 \cdot e^{i\left(\frac{2\pi}{8} + \frac{7\pi}{8}\right)} = 3 \cdot e^{i\frac{9\pi}{8}}.
\]
Skizze:
Aufgabe II.2: (3+2+5 Pkt.)

a) Stellen Sie die komplexe Zahl \(z = 4 + \frac{4}{3} \sqrt{3} i \) in Polarkoordinaten dar.

b) Bestimmen Sie alle Lösungen \(z \in \mathbb{C} \) der Gleichung
\[
z^3 = 8 e^{i \frac{\pi}{2}}.
\]

c) Bestimmen Sie das geometrische Objekt, das durch die Menge
\[
M := \left\{ z \in \mathbb{C} \setminus \{0\} \mid \left| \frac{1}{z} + 2 \right| = 1 \right\}
\]
festgelegt wird und beschreiben Sie dessen Lage im Koordinatensystem.

Hinweis: Multiplizieren Sie die gegebene Gleichung zunächst mit \(|z| \).

Lösung:

a) Für den komplexen Betrag von \(z \) gilt
\[
|z| = \left| 4 + \frac{4}{3} \sqrt{3} i \right| = \sqrt{16 + \frac{48}{9}} = \sqrt{\frac{48}{3} + \frac{16}{3}} = \sqrt{\frac{64}{3}} = \frac{8}{\sqrt{3}}.
\]
Damit erhalten wir
\[
z = \frac{8}{3} \sqrt{3} \cdot \left(\frac{\sqrt{3}}{2} + \frac{1}{2} i \right) = \frac{8}{3} \sqrt{3} e^{i \frac{\pi}{2}}.
\]

b) Nach der Formel von De Moivre erhält man unverzüglich die drei Lösungen
\[
z_k = \sqrt[3]{8} \cdot e^{i \left(\frac{\pi + 2k \pi}{3} \right)} = 2 \cdot e^{i \left(\frac{\pi + 6k \pi}{3} \right)} \quad \text{für} \quad k = 0, 1, 2.
\]

Damit gilt:
\[
\begin{align*}
z_0 &= 2 \cdot e^{i \frac{\pi}{3}} \\
z_1 &= 2 \cdot e^{i \frac{5\pi}{3}} \\
z_2 &= 2 \cdot e^{i \frac{3\pi}{3}}
\end{align*}
\]

c) Für \(z = x + iy \) mit \(x, y \in \mathbb{R} \) gilt:
\[
\begin{align*}
\frac{1}{z} + 2 &= 1 \\
\Rightarrow \quad |z| \left| \frac{1}{z} + 2 \right| &= |z| \\
\Rightarrow \quad |1 + 2z| &= |z| \\
\Rightarrow \quad |2x + 1 + 2iy| &= |x + iy| \\
\Rightarrow \quad (2x + 1)^2 + 4y^2 &= x^2 + y^2 \\
\Rightarrow \quad 3x^2 + 3y^2 + 4x + 1 &= 0 \\
\Rightarrow \quad x^2 + \frac{4}{3} x + y^2 + \frac{1}{3} &= 0 \\
\Rightarrow \quad x^2 + \frac{4}{3} x + \frac{4}{9} + y^2 &= \frac{1}{9} \\
\Rightarrow \quad \left(x + \frac{2}{3} \right)^2 + y^2 &= \frac{1}{9}.
\end{align*}
\]

Es handelt sich also um einen Kreis mit Mittelpunkt \(-\frac{2}{3}\) bzw. \((-\frac{2}{3}, 0)\) und Radius \(\frac{1}{3}\).
Alternativ:

\[
\begin{align*}
\frac{1}{x + iy} + 2 &= 1 \\
\frac{x - iy}{x^2 + y^2} + 2 &= 1 \\
\frac{x - iy + 2x^2 + 2y^2}{x^2 + y^2} &= 1 \\
\iff \quad |x - iy + 2x^2 + 2y^2| &= x^2 + y^2 \\
\iff \quad (2x^2 + 2y^2 + x)^2 + (-y)^2 &= (x^2 + y^2)^2 \\
\iff \quad 4x^4 + 4y^4 + x^2 + 8x^2y^2 + 4x^3 + 4xy^2 + y^2 &= x^4 + 2x^2y^2 + y^4 \\
\iff \quad 3x^4 + 3y^4 + 6x^2y^2 + 4x^3 + 4xy^2 + x^2 + y^2 &= 0 \\
\iff \quad 3(x^2 + y^2)^2 + 4x(x^2 + y^2) + x^2 + y^2 &= 0 \\
\iff \quad (x^2 + y^2)(3x^2 + 3y^2 + 4x + 1) &= 0 \\
\iff \quad 3x^2 + 3y^2 + 4x + 1 &= 0 \\
\iff \quad x^2 + \frac{4}{3}x + y^2 + \frac{1}{3} &= 0 \\
\iff \quad x^2 + \frac{4}{3}x + \frac{4}{9} + y^2 &= \frac{1}{9} \\
\iff \quad \left(x + \frac{2}{3}\right)^2 + y^2 &= \frac{1}{9}.
\end{align*}
\]
Aufgabe II.3: \((3+2+3+4\text{ Pkt.})\)

Es sei \(\mathcal{P}\) der Vektorraum der Polynome mit Koeffizienten in \(\mathbb{R}\) und bezeichne \(\mathcal{P}_n \subset \mathcal{P}\) den Unterraum der Polynome vom Grad höchstens \(n\) (mit \(n \in \mathbb{N}\)). Bestimmen Sie die Dimension der Unterräume von \(\mathcal{P}\), die von den angegebenen Mengen erzeugt werden.

a) \(A = \{x^2 + x + 2, \, x^2 + 2x + 1, \, 2x^2 + x + 1\}\).

b) \(B = \{1, \, x, \, 1 + x, \, x^2\}\).

c) \(C = \{(x - 2)(x - 3), \, (x - 3)(x - 4), \, (x - 4)(x - 5)\}\).

d) \(D = \{p \in \mathcal{P}_{11} \mid p(0) = 0\}\).

Lösung:

a) Versucht man, aus der Menge \(A = \{x^2 + x + 2, \, x^2 + 2x + 1, \, 2x^2 + x + 1\}\) das Nullpolynom linear zu kombinieren, gelangt man zu folgender Gleichung

\[
\alpha(x^2 + x + 2) + \beta(x^2 + 2x + 1) + \gamma(2x^2 + x + 1) = 0.
\]

Sortiert man den linken Term nun nach den verschiedenen Potenzen von \(x\), erhält man das folgende Gleichungssystem in den Variablen \(\alpha, \beta\) und \(\gamma\)

\[
\begin{pmatrix}
1 & 1 & 2 & 0 \\
1 & 2 & 1 & 0 \\
2 & 1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta \\
\gamma
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & -3 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & -4 & 0
\end{pmatrix},
\]

das nur die triviale Lösung besitzt. Damit sind die Vektoren aus \(A\) linear unabhängig und bilden eine Basis des von ihnen aufgespannten Raumes. Dieser hat die Dimension 3.

b) Die Menge \(B = \{1, \, x, \, x^2\}\) bildet eine Basis von \(U_B\), dem von der Menge \(B = \{1, \, x, \, 1 + x, \, x^2\}\) aufgespannten Raum \(U_B\). Dies liegt daran, da \(B\) im Erzeugnis von \(B\) enthalten ist und damit auch alle Vektoren aus \(U_B\). Außerdem sind die Vektoren in \(B\) linear unabhängig. Deswegen hat \(U_B\) die Dimension 3.

c) Hier kann man analog zu Aufgabenteil a) vorgehen, wenn man zunächst die Polynome der Menge \(C = \{(x - 2)(x - 3), \, (x - 3)(x - 4), \, (x - 4)(x - 5)\}\) ausmultipliziert.

Eine andere Möglichkeit ist die folgende: Wieder versucht man aus der Menge \(C\) das Nullpolynom linear zu kombinieren. Dies führt zu folgender Gleichung

\[
\alpha(x - 2)(x - 3) + \beta(x - 3)(x - 4) + \gamma(x - 4)(x - 5) = 0.
\]

Unabhängig davon, welchen Wert man für \(x\) einsetzt, steht auf der rechten Seite der Gleichung immer 0.

\[
x = 3 : \alpha \cdot 0 + \beta \cdot 0 + \gamma \cdot 2 = 0 \quad \Rightarrow \gamma = 0,
\]

\[
x = 4 : \alpha \cdot 2 + \beta \cdot 0 + \gamma \cdot 0 = 0 \quad \Rightarrow \alpha = 0.
\]

Damit muss auch \(\beta = 0\) gelten und wieder kann das Nullpolynom nur auf die triviale Weise kombiniert werden. Damit sind die Vektoren aus \(C\) linear unabhängig und bilden eine Basis des von ihnen aufgespannten Raumes. Dieser hat die Dimension 3.

d) \(D = \{p \in \mathcal{P}_{11} \mid p(0) = 0\}\). Die Menge selbst bildet schon einen Unterraum. Also muss nur noch die Frage beantwortet werden, welche Dimension \(D\) hat. Nicht jedes Polynom aus \(\mathcal{P}_{11}\) liegt in \(D\) (z.B. konstante Polynome nicht). Damit muss die Dimension echt kleiner als 12 sein, der Dimension des gesamten Raumes. Andererseits liegen die Polynome \(x, x^2, x^3, \ldots, x^{11}\) alle in \(D\).

Sie sind offensichtlich linear unabhängig und es sind 11 Stück. Damit hat \(D\) mindestens Dimension 11. Insgesamt gilt also, dass die Dimension von \(D\) gleich 11 ist.
Hinweis: \mathcal{E}_n bezeichnet die Standardbasis des \mathbb{R}^n.

a) Sei $f: \mathbb{R}^2 \to \mathbb{R}^3$ eine lineare Abbildung definiert durch

$$f\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}\right) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad \text{und} \quad f\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}. $$

Bestimmen Sie $\mathcal{M}(\mathcal{E}_3, f, \mathcal{E}_2)$.

b) Sei $g: \mathbb{R}^3 \to \mathbb{R}^3$ eine lineare Abbildung definiert durch die Abbildungsmatrix

$$\mathcal{M}(\mathcal{E}_3, g, \mathcal{E}_3) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 3 \end{pmatrix}. $$

Sei weiterhin $B = \left\{ \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} \right\}$ eine Basis des \mathbb{R}^3.

Bestimmen Sie

i) $\mathcal{M}(\mathcal{E}_3, g, B)$

ii) $\mathcal{M}(B, g, \mathcal{E}_3)$.

c) Sei $h: \mathbb{R}^2 \to \mathbb{R}^2$ eine lineare Abbildung definiert durch

$$h\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \quad \text{und} \quad h\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}\right) = \begin{pmatrix} 1 \\ 4 \end{pmatrix}. $$

Weiterhin sei $C = \left\{ \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right\}$ eine Basis des \mathbb{R}^2. Bestimmen Sie $\mathcal{M}(\mathcal{E}_2, h, C)$.

Lösung:

a) Aus

$$f\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}\right) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, f\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

und $\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und der Linearität von f folgt, dass

$$f\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad \text{und} \quad f\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{pmatrix}. $$

Damit ist

$$\mathcal{M}(\mathcal{E}_3, f, \mathcal{E}_2) = \begin{pmatrix} 0 & \frac{1}{2} \\ 1 & 0 \\ 1 & -\frac{1}{2} \end{pmatrix}. $$
b) i) Es gilt
\[\mathcal{M}(E_3, g, B) = \mathcal{M}(E_3, g, E_3) \cdot \mathcal{M}(E_3, id, B), \]
wobei die erste Matrix gegeben ist und die zweite direkt aus der Basis gebildet wird. Damit erhält man
\[\mathcal{M}(E_3, g, B) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 0 \\ 0 & 0 & 3 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 3 \\ 1 & 0 & 2 \\ 5 & 1 & 9 \end{pmatrix}. \]

ii) Für die Matrix \(\mathcal{M}(B, g, E_3) \) gilt
\[\mathcal{M}(B, g, E_3) = \mathcal{M}(B, id, E_3) \cdot \mathcal{M}(E_3, g, E_3) = \mathcal{M}(E_3, id, B)^{-1} \cdot \mathcal{M}(E_3, g, E_3). \]
Daher invertieren wir nun \(\mathcal{M}(E_3, id, B) \).
\[\begin{pmatrix} 2 & 1 & 0 \\ 0 & 0 & 3 \\ 1 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1/2 & 2 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]
\[\rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \]
Es ergibt sich
\[\mathcal{M}(B, g, E_3) = \begin{pmatrix} 0 & -2/3 & 1 \\ 1 & 4/3 & -2 \\ 0 & 1/3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 7/3 \\ -2 & -1 & -14/3 \\ 0 & 0 & 1/3 \end{pmatrix}. \]

c) Durch die Linearität von \(h \) kann man aus den Funktionswerten
\[h\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \text{ und } h\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}\right) = \begin{pmatrix} 1 \\ 4 \end{pmatrix} \]
die Bilder der Basisvektoren aus \(C \) berechnen: Stelle dazu die Vektoren \(\begin{pmatrix} 2 \\ 3 \end{pmatrix} \) und \(\begin{pmatrix} 0 \\ -1 \end{pmatrix} \) in der Basis \(\mathcal{H} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\} \) dar. Berechne dafür
\[\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}. \]
D.h. es gilt
\[\begin{pmatrix} 2 \\ 3 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} \text{ und } \begin{pmatrix} 0 \\ -1 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + (-1) \begin{pmatrix} 1 \\ 2 \end{pmatrix}. \]

Also gilt
\[h\left(\begin{pmatrix} 2 \\ 3 \end{pmatrix}\right) = h\left(1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} 1 \\ 2 \end{pmatrix}\right) = h\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right) + h\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}\right) = \begin{pmatrix} 3 \\ 4 \end{pmatrix} + \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix}. \]

und
\[h\left(\begin{pmatrix} 0 \\ -1 \end{pmatrix}\right) = h\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \end{pmatrix}\right) = h\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right) - h\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}\right) = \begin{pmatrix} 3 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}. \]
Damit gilt
\[\mathcal{M}(E_2, h, C) = \begin{pmatrix} 4 & 2 \\ 8 & 0 \end{pmatrix}. \]

Teil III

Aufgabe III.1: (5+3 Pkt.)

a) Es sei \mathcal{P} der Vektorraum der Polynome mit Koeffizienten in \mathbb{R}. Beurteilen Sie den Wahrheitswert der folgenden Aussagen.

1. $f: \mathcal{P} \rightarrow \mathbb{R}^3, p(x) \mapsto \begin{pmatrix} p(0) \\ p(1) \\ p(2) \end{pmatrix}$ ist eine lineare Abbildung.
2. $g: \mathcal{P} \rightarrow \mathcal{P}, p(x) \mapsto p(x) \cdot x^3$ ist eine lineare Abbildung.
3. $h: \mathcal{P} \rightarrow \mathcal{P}, p(x) \mapsto p(x) + x^3$ ist eine lineare Abbildung.

b) Beurteilen Sie den Wahrheitswert der folgenden Aussagen.

1. $j: \mathbb{R}^3 \rightarrow \mathbb{R}^3, \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} |x-y| \\ |y-z| \\ |x-z| \end{pmatrix}$ ist eine lineare Abbildung.
2. $k: \mathbb{R}^3 \rightarrow \mathbb{R}, \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto x + y + z$ ist eine lineare Abbildung.
3. $l: \mathbb{R}^3 \rightarrow \mathbb{R}^3, \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 2x + 2y + 2z \\ 4x + 4y + 4z \\ 6x + 6y + 6z \end{pmatrix}$ ist eine lineare Abbildung.

Lösung:

a) i) $f: \mathcal{P} \rightarrow \mathbb{R}^3, p(x) \mapsto \begin{pmatrix} p(0) \\ p(1) \\ p(2) \end{pmatrix}$.

* $f(p+q) = \begin{pmatrix} (p+q)(0) \\ (p+q)(1) \\ (p+q)(2) \end{pmatrix} = \begin{pmatrix} p(0)+q(0) \\ p(1)+q(1) \\ p(2)+q(2) \end{pmatrix} = \begin{pmatrix} p(0) \\ p(1) \\ p(2) \end{pmatrix} + \begin{pmatrix} q(0) \\ q(1) \\ q(2) \end{pmatrix} = f(p) + f(q)$.

* $f(\lambda p) = \begin{pmatrix} \lambda p(0) \\ \lambda p(1) \\ \lambda p(2) \end{pmatrix} = \lambda \begin{pmatrix} p(0) \\ p(1) \\ p(2) \end{pmatrix} = \lambda f(p)$.

Daraus folgt, dass f eine lineare Abbildung ist.

ii) $g: \mathcal{P} \rightarrow \mathcal{P}, p(x) \mapsto p(x) \cdot x^3$.

* $g(p+q) = (p(x) + q(x)) \cdot x^3 = p(x) \cdot x^3 + q(x) \cdot x^3 = g(p) + g(q)$.

* $g(\lambda p) = (\lambda p(x)) \cdot x^3 = \lambda (p(x) \cdot x^3) = \lambda g(p)$.

Daraus folgt, dass g eine lineare Abbildung ist.

iii) $h: \mathcal{P} \rightarrow \mathcal{P}, p(x) \mapsto p(x) + x^3$. Die Abbildung h ist nicht linear, da das Nullpolynom auf das Polynom $x^3 \neq 0$ abgebildet wird.

b) i) $j: \mathbb{R}^3 \rightarrow \mathbb{R}^3, \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} |x-y| \\ |y-z| \\ |x-z| \end{pmatrix}$. Die Abbildung j ist nicht linear, da

\[
j \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = j \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \neq \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix} = (-1) \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = (-1) \cdot j \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.
\]
ii)+iii) $k : \mathbb{R}^3 \to \mathbb{R}$, $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto x + y + z$ ist eine lineare Abbildung, da

$$k \left(\begin{pmatrix} a \\ b \\ c \end{pmatrix} + \begin{pmatrix} d \\ e \\ f \end{pmatrix} \right) = (a + d) + (b + e) + (c + f) = (a + b + c) + (d + e + f)$$

$$= k \begin{pmatrix} a \\ b \\ c \end{pmatrix} + k \begin{pmatrix} d \\ e \\ f \end{pmatrix}$$

und

$$k \left(\lambda \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right) = (\lambda a) + (\lambda b) + (\lambda c) = \lambda (a + b + c) = \lambda k \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

Dasselbe Prinzip kann man auf die drei Bildkomponenten von $l : \mathbb{R}^3 \to \mathbb{R}^3$, $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 2x + 2y + 2z \\ 4x + 4y + 4z \\ 6x + 6y + 6z \end{pmatrix}$ anwenden. Daraus folgt die Linearität beider Abbildungen.
Aufgabe III.2:

(4+4 Pkt.)

a) Bestimmen Sie \(z \in \mathbb{C} \) aus der Gleichung

\[
2z + 5iz - 3\bar{z} + 4i\bar{z} = 1 + i.
\]

Beurteilen Sie den Wahrheitswert der folgenden Aussagen.

1. \(z = 3 + 2i \)
2. \(z = -3 + 2i \)
3. \(z = 5 - 2i \)
4. \(z = 3 - 5i \)
5. \(z = \frac{3}{2} + i \frac{5}{2} \)
6. \(z = \frac{3}{2} - i \frac{5}{2} \)
7. \(z = \frac{5}{2} + i \frac{3}{2} \)
8. \(z = -\frac{2}{5} + i \frac{2}{3} \)

b) Bestimmen Sie den Real- und Imaginärteil von \(z \in \mathbb{C} \), welches durch die Gleichung

\[
\frac{3 + 5i}{1 + 2i} \cdot z = 3 - 6i
\]

gegeben ist. Beurteilen Sie den Wahrheitswert der folgenden Aussagen.

1. \(\text{Re}(z) = \frac{45}{34} \)
2. \(\text{Re}(z) = \frac{45}{16} \)
3. \(\text{Re}(z) = \frac{33}{34} \)
4. \(\text{Re}(z) = \frac{33}{16} \)
5. \(\text{Im}(z) = -\frac{81}{34} \)
6. \(\text{Im}(z) = -\frac{75}{34} \)
7. \(\text{Im}(z) = -\frac{75}{16} \)
8. \(\text{Im}(z) = -\frac{81}{16} \)

Lösung:

a) Zunächst setzen wir \(z = x + iy \). Dann gilt

\[
2z + 5iz - 3\bar{z} + 4i\bar{z} = 1 + i
\]

\[
\iff 2(x + iy) + 5(ix - y) - 3(x - iy) + 4(ix + y) = 1 + i
\]

\[
\iff -x - y + i(9x + 5y) = 1 + i
\]

Damit ergibt sich das Gleichungssystem

\[
\begin{pmatrix}
-1 & -1 & 1 \\
9 & 5 & 1
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & -1 \\
0 & -4 & 10
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & -1 \\
0 & 1 & -5/2
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 0 & 13/2 \\
0 & 1 & -5/2
\end{pmatrix}
\]

Somit erhalten wir \(z = \frac{3}{2} - i \frac{5}{2} \).

b) Bestimmen Sie den Real- und Imaginärteil von \(z \in \mathbb{C} \), welches durch die Gleichung

\[
\frac{3 + 5i}{1 + 2i} \cdot z = 3 - 6i
\]

geleistet ist.

\[
z = (3 - 6i) \cdot \frac{1 + 2i}{3 + 5i} \iff z = (3 - 6i) \cdot \frac{1 + 2i}{3 + 5i} \cdot \frac{3 - 5i}{3 - 5i} = \frac{1}{34}(3 - 6i)(13 + i) = \frac{45}{34} - i \frac{75}{34}.
\]

Damit ergibt sich \(\text{Re}(z) = \frac{45}{34} \) und \(\text{Im}(z) = -\frac{75}{34} \).
Aufgabe III.3: (3+3+3 Pkt.)

Beurteilen Sie den Wahrheitswert der folgenden Aussagen.

a) Es sei eine invertierbare Matrix $A \in \mathbb{R}^{n \times n}$ gegeben.

1. Der Rang von A ist gleich n.
3. Es gibt ein $b \in \mathbb{R}^n$, sodass das lineare Gleichungssystem $Ax = b$ keine Lösung besitzt.

b) Sei P_3 der Raum der Polynome mit Grad höchstens 3 und Koeffizienten in \mathbb{R}.
Die Menge $M_1 := \{ p \in P_3 \mid p(1) = 1, p(2) = 2, p(3) = 3 \}$ sei gegeben.

1. M_1 enthält kein Element.
2. M_1 enthält genau ein Element.
3. M_1 enthält mindestens zwei Elemente.

c) Sei P_3 der Raum der Polynome mit Grad höchstens 3 und Koeffizienten in \mathbb{R}.
Die Menge $M_2 := \{ p \in P_3 \mid p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 4 \}$ sei gegeben.

1. M_2 enthält kein Element.
2. M_2 enthält genau ein Element.
3. M_2 enthält mindestens zwei Elemente.

Lösung:

a)
 ii) Wahr.
 iii) Falsch.

b)+c) Die Mengen $M_1 = \{ p \in P_3 \mid p(1) = 1, p(2) = 2, p(3) = 3 \}$ und $M_2 := \{ p \in P_3 \mid p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 4 \}$ sind Lösungsmengen zweier Interpolationsprobleme. M_1 enthält alle Polynome vom Grad kleiner gleich 3, deren Graph durch die Stützstellen $(1, 1), (2, 2)$ und $(3, 3)$ verläuft. Nutzt man nun die Lagrange-Interpolation zum Auffinden solcher Polynome, könnte man eine vierte Stützstelle frei wählen. Das heißt, dass dieses Problem mehrere Lösungen hat.
Die Menge M_2 enthält alle Polynome vom Grad kleiner gleich 3, deren Graph durch die Stützstellen $(1, 1), (2, 2), (3, 3)$ und $(4, 4)$ verläuft. Mit Hilfe der Lagrange-Interpolation kann man das zu M_2 gehörende Interpolationsproblem eindeutig lösen. Damit enthält die Menge M_2 genau ein Element.