Aufgabe 1: (9+6=15 Punkte)

Gegeben sei die Matrix A und der Vektor b wie folgt:

\[A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 1 & -2 \\ 2 & \alpha & 5 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}. \]

a) Berechnen Sie die Lösung des Gleichungssystems $Ax = b$ in Abhängigkeit von α.

b) Für welche $\alpha \in \mathbb{R}$ gilt $\dim(\ker(A)) = 1$? Geben Sie eine Basis des Kernes für alle diese α an.

Lösung:

a) Wir verwenden den Gauß-Algorithmus:

\[
\begin{pmatrix} 3 & 1 & 0 & 1 \\ 1 & 1 & -2 & 2 \\ 2 & \alpha & 5 & 3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & -2 & 2 \\ 2 & \alpha & 5 & 3 \\ 1 & 1 & -2 & 2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & -2 & 2 \\ 0 & 1 & -3 & \frac{5}{2} \\ 0 & \alpha - 2 & 9 & -1 \end{pmatrix}
\]

Ist $\alpha = -1$, dann besitzt das Gleichungssystem keine Lösung. Für $\alpha \neq -1$ können wir den Gauß-Algorithmus fortsetzen:

\[
\begin{pmatrix} 1 & 1 & -2 & 2 \\ 0 & 1 & -3 & \frac{5}{2} \\ 0 & \alpha - 2 & 9 & -1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 & \frac{2\alpha - 11}{6(\alpha + 1)} \\ 0 & 1 & 0 & \frac{13}{2(\alpha + 1)} \\ 0 & 0 & 0 & \frac{-5\alpha + 8}{6(\alpha + 1)} \end{pmatrix}
\]

Also ist $\begin{pmatrix} \frac{2\alpha - 11}{6(\alpha + 1)} \\ \frac{13}{2(\alpha + 1)} \\ \frac{-5\alpha + 8}{6(\alpha + 1)} \end{pmatrix}$ Lösung des Gleichungssystems für $\alpha \neq -1$.

b) Zur Bestimmung des Kernes der Matrix A ist das homogene Gleichungssystem $Ax = 0$ zu lösen. Wie in a) ergibt der Gauß-Algorithmus

\[
\begin{pmatrix} 3 & 1 & 0 & 0 \\ 1 & 1 & -2 & 0 \\ 2 & \alpha & 5 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & \alpha & 2 & 0 \end{pmatrix}
\]

Für $\alpha \neq -1$, ist der Nullvektor die einzige Lösung des Systems. Für $\alpha = -1$ erhalten wir weiter

\[
\begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\]

Also gilt hier $\dim(\ker(A)) = 1$ und der Vektor $\begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}$ bildet eine Basis des Kernes von A.
Aufgabe 2: (15 Punkte)

Bestimmen und skizzieren Sie die durch folgende Bedingung festgelegte Menge \(M \subseteq \mathbb{C} \setminus \{0\} \):

\[
1 \leq \left| \frac{1}{z} - \frac{1}{\bar{z}} \right| \leq 2
\]

Lösung: Sei \(z = x + iy \).
Zuerst formen wir die Gleichung um:

\[
1 \leq \left| \frac{1}{x+yi} - \frac{1}{x-yi} \right| \leq 2
\]

\[
1 \leq \left| \frac{x-yi}{x^2+y^2} - \frac{x+yi}{x^2+y^2} \right| \leq 2
\]

\[
1 \leq \left| \frac{-2yi}{x^2+y^2} \right| \leq 2
\]

\[
1 \leq \left| \frac{2|y|}{x^2+y^2} \right| \leq 2
\]

1. Fall: \(y \geq 0 \)

\[
1 \leq \frac{2y}{x^2+y^2} \quad \text{und} \quad \frac{2y}{x^2+y^2} \leq 2
\]

\[
\Leftrightarrow \quad x^2+y^2 \leq 2y \quad \text{und} \quad y \leq x^2+y^2
\]

\[
\Leftrightarrow \quad x^2+y^2-2y+1 \leq 1 \quad \text{und} \quad \frac{1}{4} \leq x^2+y^2-y+\frac{1}{4}
\]

\[
\Leftrightarrow \quad x^2+(y-1)^2 \leq 1 \quad \text{und} \quad \frac{1}{4} \leq x^2+(y-\frac{1}{2})^2
\]

2. Fall: \(y < 0 \)

\[
1 \leq \frac{-2y}{x^2+y^2} \quad \text{und} \quad \frac{-2y}{x^2+y^2} \leq 2
\]

\[
\Leftrightarrow \quad x^2+y^2 \leq -2y \quad \text{und} \quad -y \leq x^2+y^2
\]

\[
\Leftrightarrow \quad x^2+y^2+2y+1 \leq 1 \quad \text{und} \quad \frac{1}{4} \leq x^2+y^2+y+\frac{1}{4}
\]

\[
\Leftrightarrow \quad x^2+(y+1)^2 \leq 1 \quad \text{und} \quad \frac{1}{4} \leq x^2+(y+\frac{1}{2})^2
\]

Der gesuchte Bereich ergibt sich aus den beiden Kreisen mit den Mittelpunkten 1 sowie \(-1\) und Radius 1 ohne die Kreisscheiben mit den Mittelpunkten \(\frac{1}{2} \) sowie \(-\frac{1}{2}\) und Radius \(\frac{1}{2} \), sowie allen Rändern außer \(z=0 \).

Insgesamt erhalten wir also

\[
M = \{ z = x + iy \in \mathbb{C} \setminus \{0\} \mid x^2+(y-1)^2 \leq 1, \quad \frac{1}{4} \leq x^2+(y-\frac{1}{2})^2, \quad x^2+(y+1)^2 \leq 1 \quad \text{und} \quad \frac{1}{4} \leq x^2+(y+\frac{1}{2})^2 \}.
\]
Bitte benutzen Sie zur Beantwortung der Multiple Choice Aufgaben die vorliegenden Blätter. Nur dort werden die Antworten gewertet!

<table>
<thead>
<tr>
<th>3</th>
<th>Beantworten Sie die folgenden Fragen zu reellen und komplexen Zahlen.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Berechnen Sie den Betrag von (z = \left(\frac{1}{\sqrt{3}} \cdot e^{i\frac{2\pi}{3}} \right)^4).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lösung: (</td>
<td>z</td>
<td>= \frac{1}{9})</td>
</tr>
<tr>
<td>Es gilt (</td>
<td>z</td>
<td>= \left</td>
</tr>
</tbody>
</table>

Geben Sie alle komplexen Lösungen der folgenden Gleichung an \(z^4 = 8 - i8\sqrt{3} \).

Lösung: \(z_0 = 2e^{-\frac{\pi}{12}}i, z_1 = 2e^{\frac{5\pi}{12}}i, z_3 = 2e^{\frac{11\pi}{12}}i \) und \(z_4 = 2e^{\frac{17\pi}{12}}i \).

Denn es gilt \(8 - i8\sqrt{3} = 16(\frac{1}{2} - i\frac{\sqrt{3}}{2}) = 16e^{-\frac{\pi}{2}}i \).

<table>
<thead>
<tr>
<th>4</th>
<th>Beantworten Sie die folgenden Fragen zu linearen Abbildungen und Vektorräumen.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestimmen Sie den Realteil der komplexen Zahl (z = \frac{1+2i}{3-i}).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lösung: (\text{Re}(z) = \frac{3}{25})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Es gilt (z = \frac{1+2i}{3-i} = \frac{(1+2i)(3+i)}{(3-i)(3+i)} = \frac{3+11i}{25} = \frac{3}{25} + \frac{11}{25}i).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Ist die Abbildung (f : \mathbb{R}^2 \rightarrow \mathbb{R}^3), (f \left(\left(\begin{array}{c} a \ b \end{array} \right) \right) = \left(\begin{array}{c} a + b \ a - b \ a \cdot b \end{array} \right)) R-linear?</th>
<th></th>
</tr>
</thead>
</table>
| Ja / Nein | | (M:-2/P:2)
Lösung:

\[
f \left(\alpha \left(\begin{array}{c} x \\ y \end{array} \right) \right) = \alpha \left(\begin{array}{c} x + y \\ x - y \end{array} \right) = \alpha f \left(\begin{array}{c} x \\ y \end{array} \right).
\]

ist die Abbildung nicht linear.

Ist die Abbildung
\[
f : \mathbb{R}^3 \rightarrow \mathbb{R}^{2 \times 2},
\]
\[
f \left(\begin{array}{c} a \\ b \\ c \end{array} \right) = \begin{pmatrix} a & b \\ c & b + 1 \end{pmatrix}
\]
\[-\text{linear}?
\]

Lösung:

\[
f \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.
\]

Das bedeutet, dass der Nullvektor nicht auf den Nullvektor abgebildet wird. Also ist die Abbildung nicht linear.

Ist die folgende Menge ein Untervektorraum von \(\mathbb{R}^3\)?
\[
\{(x, y, z)^t \in \mathbb{R}^3 \, | \, x + 2y - 4z = 0 \text{ und } 7x + z + 3 = 4\}
\]

Lösung:

Da \((0, 0, 0)^t \notin \{(x, y, z)^t \in \mathbb{R}^3 \, | \, x + 2y - 4z = 0 \text{ und } 7x + z + 3 = 4\}\), ist die Menge kein Vektorraum.

5

Beantworten Sie die folgenden Fragen über Darstellungsmatrizen linearer Abbildungen.

Sei \(\mathcal{A} = \{a_1, a_2, a_3\}\) eine Basis des \(\mathbb{R}^3\). Ferner sei \(f : \mathbb{R}^3 \rightarrow \mathbb{R}^2\) eine lineare Abbildung definiert durch \(f(a_1) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}\), \(f(a_2) = \begin{pmatrix} -5 \\ 7 \end{pmatrix}\) und \(f(a_3) = \begin{pmatrix} 1 \\ 4 \end{pmatrix}\). Dann gilt

\[M(\mathcal{E}_2, f, \mathcal{A}) = ?\]

a) \(\begin{pmatrix} 1 & -5 & 1 \\ 2 & 7 & 4 \end{pmatrix}\) oder b) \(\begin{pmatrix} 3 & -5 & 1 \\ 2 & 7 & 4 \end{pmatrix}\) oder c) \(\begin{pmatrix} 3 & 2 \\ -5 & 7 \\ 1 & 4 \end{pmatrix}\) oder d) \(\begin{pmatrix} -5 & 7 \\ 3 & 2 \\ 1 & 4 \end{pmatrix}\) oder e) Keine der angegebenen Matrizen.

Lösung:

\[M(\mathcal{E}_2, f, \mathcal{A}) = \begin{pmatrix} 3 & -5 & 1 \\ 2 & 7 & 4 \end{pmatrix}\]
Sei $A = \{a_1, a_2, a_3\}$ eine Basis des \mathbb{R}^3 und $B = \{b_1, b_2\}$ eine Basis des \mathbb{R}^2 mit $b_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $b_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Ferner sei $f : \mathbb{R}^3 \to \mathbb{R}^2$ eine lineare Abbildung definiert durch $f(a_1) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $f(a_2) = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ und $f(a_3) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Dann gilt $M(B, f, A) = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.

Lösung:

$f(a_1) = 1 \cdot b_1 + 1 \cdot b_2$, $f(a_2) = 2 \cdot b_1 + 1 \cdot b_2$ und $f(a_3) = 0 \cdot b_1 + 1 \cdot b_2$

$\Rightarrow M(B, f, A) = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix}$

Sei $A = \left\{ \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ eine Basis des \mathbb{R}^2. Ferner sei die lineare Abbildung $f : \mathbb{R}^2 \to \mathbb{R}^2$ gegeben durch $f \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ und $f \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$. Dann gilt $M(E_2, f, A) = \begin{pmatrix} -2 & 3 \\ 7 & 6 \end{pmatrix}$, $M(E_2, id, A) = \begin{pmatrix} 3 & 1 \\ 1 & 4 \end{pmatrix}$ oder $f) Keine der angegebenen Matrizen.

Lösung:

$M(E_2, f, E_2) = \begin{pmatrix} 3 & 1 \\ 1 & 4 \end{pmatrix}$ und $M(E_2, id, A) = \begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}$

$\Rightarrow M(E_2, f, A) = M(E_2, f, E_2) \cdot M(E_2, id, A) = \begin{pmatrix} -1 & 4 \\ 7 & 5 \end{pmatrix}$

6 Beantworten Sie die folgenden Fragen zu Basen und Dimension.

Für welche $\alpha \in \{0, \frac{1}{3}, 1\}$ bilden die folgenden Polynome eine Basis des Vektorraumes P_2 der reellen Polynome vom Grad ≤ 2?

$x^2 + \alpha$, $x + 1$ und $3x^2 + 1$

$\begin{array}{c}
\circ 0 \\
\circ \frac{1}{3} \\
\circ 1 \\
\circ für keines dieser α
\end{array}$

(M:-2/P:6)
Lösung:

\[A(x^2 + \alpha) + B(x + 1) + C(3x^2 + 1) = 0 \]
\[\iff x^2(A + 3C) + xB + (\alpha A + B + C) = 0 \]
\[\iff A + 3C = 0, \ B = 0, \ \alpha A + B + C = 0 \]

Aus \(A + 3C = 0 \) und \(A + C = 0 \) bzw. \(A + 3C = 0 \) und \(C = 0 \) folgt jeweils \(A = 0, \ B = 0, \ C = 0 \). Für \(\alpha = 0 \) und \(\alpha = 1 \) bilden die Polynome also eine Basis. \(A + 3C = 0, \ B = 0, \ \alpha A + C = 0 \)

Sind \(n + 1 \) Vektoren im \(\mathbb{R}^n \)

a) immer linear unabhängig oder
b) immer linear abhängig oder
c) Das hängt von den Vektoren ab.

Lösung:

Im \(\mathbb{R}^n \) gibt es maximal \(n \) linear unabhängige Vektoren, die Antwort b) ist also richtig.

Bilden die Vektoren
\[
\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \text{ und } \begin{pmatrix} 3 \\ 2 \\ 7 \end{pmatrix}
\]
eine Basis von einem Untervektorraum des \(\mathbb{R}^3 \)?

Lösung:

Die Vektoren spannen zwar einen Untervektorraum auf, sie bilden aber keine Basis, denn sie sind nicht linear unabhängig:

\[
\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 7 \end{pmatrix}
\]
Bearbeiten Sie die folgenden Aufgaben zu Eigenwerten und Eigenvektoren:

Es sei die Matrix $B := \begin{pmatrix} 1 & 0 & 2 \\ -1 & -1 & 1 \\ 1 & 2 & 2 \end{pmatrix}$ mit charakteristischem Polynom

$P(\lambda) = (\lambda - 1)(\lambda + 2)(\lambda - 3)$ gegeben. Bestimmen Sie einen Eigenvektor zu jedem Eigenwert der Matrix.

Lösung:

Die Eigenwerte von A sind die Nullstellen des charakteristischen Polynoms, also $\lambda = 1$, -2 und $\lambda = 3$.

$\lambda = 1$:

$\begin{pmatrix} 0 & 0 & 2 \\ -1 & -2 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Also ist $\begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$ ein Eigenvektor zu $\lambda = 1$.

$\lambda = -2$:

$\begin{pmatrix} 3 & 0 & 2 \\ -1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Also ist $\begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$ ein Eigenvektor zu $\lambda = -2$.

$\lambda = 3$:

$\begin{pmatrix} -2 & 0 & 2 \\ -1 & -4 & 1 \\ 1 & 2 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Also ist $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ ein Eigenvektor zu $\lambda = 3$.

Berechnen Sie die Eigenwerte der Matrix $A := \begin{pmatrix} 0 & -4 & -2 \\ -1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$.

(M:0/P:6)
Lösung:
Die Eigenwerte der Matrix A sind 0, 3 und -1. Denn es gilt:
\[
\begin{vmatrix}
-\lambda & -4 & -2 \\
-1 & 1-\lambda & 0 \\
0 & 2 & 1-\lambda \\
\end{vmatrix}
= -\lambda(1-\lambda)^2 - (-4)(-1)(1-\lambda) + (-2)(-2)
= -\lambda(1-\lambda)^2 + 4\lambda = -\lambda(1-2\lambda + \lambda^2 - 4)
= -\lambda(\lambda^2 - 2\lambda - 3) = -\lambda(\lambda - 3)(\lambda + 1)
\]

Lösen Sie die folgenden Aufgaben.

Bestimmen Sie alle Vektoren $a \in \mathbb{R}^3$ mit $|a| = 2$, $\angle(a, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}) = \frac{\pi}{4}$ und $a \perp \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$.

Lösung: Der Krimi hat genau die Lösungsvektoren $\begin{pmatrix} 0 \\ 4/3 \\ 4/3 \end{pmatrix}$ und $\begin{pmatrix} -4/3 \\ 4/3 \\ 2/3 \end{pmatrix}$.

Berechnen Sie den Grenzwert der Folge
\[
\frac{12n^4 - 3n^2 + 5n + 3}{36n^3 + 2n^2 + 5}.
\]
Lösung:
Die Folge divergiert. Denn es gilt

\[
\frac{12n^4 - 3n^2 + 5n + 3}{36n^3 + 2n^2 + 5} = \frac{12 - \frac{3}{n^2} + \frac{5}{n} + \frac{3}{n^4}}{\frac{36}{n} + \frac{2}{n^2} + \frac{5}{n^4}} \xrightarrow{n \to \infty} 0.
\]

Berechnen Sie den Grenzwert der Folge \((\frac{n^2-n}{n^2-1})^n\).

(M:0/P:4)

Lösung:
\[
\left(\frac{n^2-n}{n^2-1}\right)^n = \left(\frac{n(n-1)}{(n-1)(n+1)}\right)^n = \left(\frac{n}{n+1}\right)^n = \left(1 + \frac{1}{n}\right)^{-n} = \frac{1}{\left(1 + \frac{1}{n}\right)^n} \xrightarrow{n \to \infty} \frac{1}{e} = e^{-1}.
\]

Untersuchen Sie die folgende Reihe auf Konvergenz bzw. Divergenz.

\[
\sum_{n=1}^{\infty} \frac{\pi^2 \cdot n^n}{n! \cdot 2^n}
\]

(\bigcirc \text{konvergent} \bigcirc \text{divergent})

(M:-2/P:3)

Lösung:
Die Reihe ist divergent. Zur Lösung verwenden wir das Quotientenkriterium:
Mit \(a_n = \frac{\pi^2 \cdot n^n}{n! \cdot 2^n}\) folgt

\[
\left|\frac{a_{n+1}}{a_n}\right| = \frac{n! \cdot 2^n \cdot \pi^2 \cdot (n+1)^{n+1}}{\pi^2 \cdot n^n \cdot (n+1)! \cdot 2^{n+1}} = \frac{\pi^2 (n+1)^{n+1}}{2^{n+1}} = \frac{\pi^2}{2} \left(\frac{n+1}{n}\right)^n \xrightarrow{n \to \infty} \frac{\pi^2}{2} \cdot e > 1
\]