Mathematics (for BME) Problem Sheet 11

Problem 1: Solve the following differential equations:

- a) $2xyy' y^2 + 1 = 0$ with y(1) = -3
- b) $(x+1)y' = x^2(y+1)$ with y(1) = 1
- c) $4yy' = (1+2y^2)(3x^2 + \frac{1}{x})$ with y(1) = -1

Problem 2: Solve the following differential equations:

- a) $x^2y' + 2y = 4e^{-\frac{2}{x}}$ with $(2, \frac{2}{e})$
- b) $x^2y' + 2y = e^{\frac{2}{x}}$ with $x_0 \neq 0$
- c) $y' = 3\cos x y\cos x$ with (0,2)

Problem 3: Solve the following non linear differential equations:

a)
$$y' - xy = e^{-x^2}y^3$$
 with $y(x_0) = y_0 < 0$
b) $x^2y' + 8y = 4e^{\frac{2}{x}}y^{\frac{3}{4}}$ with $y(1) = 0$
c) $y' = y^2 + 1 - x^2$

Problem 4: Solve the following systems of differential equations:

a)
$$y' = Ay$$
 with $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$
b) $y' = Ay$ with $A = \begin{pmatrix} -8 & 3 \\ -18 & 7 \end{pmatrix}$

Hint: Even though *A* in part *b*) is not symmetric you may still use the theorem from the lecture.

Problem 5: Prove the following: If $\lambda \in \mathbb{R}$ is an eigenvalue of A with eigenvector $v \in \mathbb{R}^n \setminus \{0\}$, then a solution to the sytem y' = Ay is given by

$$y = v e^{\lambda x}.$$