Mathematics (for BME) Problem Sheet 11

Problem 1: Solve the following differential equations:
a) $2 x y y^{\prime}-y^{2}+1=0$ with $y(1)=-3$
b) $(x+1) y^{\prime}=x^{2}(y+1)$ with $y(1)=1$
c) $4 y y^{\prime}=\left(1+2 y^{2}\right)\left(3 x^{2}+\frac{1}{x}\right)$ with $y(1)=-1$

Problem 2: Solve the following differential equations:
a) $x^{2} y^{\prime}+2 y=4 e^{-\frac{2}{x}}$ with $\left(2, \frac{2}{e}\right)$
b) $x^{2} y^{\prime}+2 y=e^{\frac{2}{x}}$ with $x_{0} \neq 0$
c) $y^{\prime}=3 \cos x-y \cos x$ with $(0,2)$

Problem 3: Solve the following non linear differential equations:
a) $y^{\prime}-x y=e^{-x^{2}} y^{3}$ with $y\left(x_{0}\right)=y_{0}<0$
b) $x^{2} y^{\prime}+8 y=4 e^{\frac{2}{x}} y^{\frac{3}{4}}$ with $y(1)=0$
c) $y^{\prime}=y^{2}+1-x^{2}$

Problem 4: Solve the following systems of differential equations:
a) $y^{\prime}=A y$ with $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$
b) $y^{\prime}=A y$ with $A=\left(\begin{array}{cc}-8 & 3 \\ -18 & 7\end{array}\right)$

Hint: Even though A in part b) is not symmetric you may still use the theorem from the lecture.

Problem 5: Prove the following: If $\lambda \in \mathbb{R}$ is an eigenvalue of A with eigenvector $v \in \mathbb{R}^{n} \backslash\{0\}$, then a solution to the sytem $y^{\prime}=A y$ is given by

$$
y=v e^{\lambda x} .
$$

