Mathematics (for BME) Problem Sheet 9

Problem 1: Consider the following function:

 $f: \mathbb{R} \longrightarrow \mathbb{R}: x \longmapsto 10x^6 + 24x^5 + 15x^4.$

Determine all minima and maxima of f.

Problem 2: Evaluate the following function limits:

a)
$$\lim_{x \to 0} \frac{\sin(x)}{x}$$

b)
$$\lim_{x \to 0} \frac{\cos(x)^2 - 1}{x^2}$$

c)
$$\lim_{x \to 0} x \cdot \log(x)$$

d)
$$\lim_{x \to \infty} \frac{x^2}{2^x}$$

Problem 3: Evaluate the following function limits:

a)
$$\lim_{x \to \frac{\pi}{2}} \frac{\tan(5x)}{\tan(x)}$$
 b)
$$\lim_{x \to \infty} \sqrt{1 + x^2} \cdot \sin(\frac{1}{x})$$

Problem 4: Determine the standard form of the following Taylor polynomials:

a) $T_{3,0}(x)$ for exp(x) b) $T_{2,1}(x)$ for log(x) c) $T_{3,0}(x)$ for $\frac{x^2+3}{x^2-3}$

Problem 5: For $|x| \le \delta$ with $\delta \in (0, 1)$, δ small, the function $(1 + x)^q$ is often approximated by 1 + qx with $q \in \mathbb{Q}$. Determine the maximal error of this approximation for $|x| \le 10^{-2}$ and

a) $q = \frac{1}{2}$, b) $q = -\frac{1}{2}$.

Problem 6: Prove the following inequations using the Mean Value Theorem:

a)
$$sin(x) \le x$$
 for all $x \ge 0$ b) $log(x+1) \ge \frac{x}{1+x}$ for all $x > 0$