Mathematics (for BME) Problem Sheet 3

some important values for $e^{i\varphi}$:

some properties of $e^{i\varphi}$:

φ	$e^{i \varphi}$
0	1
$\pi/12$	$(\sqrt{6}+\sqrt{2})/4+i(\sqrt{6}-\sqrt{2})/4$
$\pi/6$	$\sqrt{3}/2 + i/2$
$\pi/4$	$1/\sqrt{2} + i/\sqrt{2}$
$\pi/3$	$1/2 + i\sqrt{3}/2$
$5\pi/12$	$(\sqrt{6} - \sqrt{2})/4 + i(\sqrt{6} + \sqrt{2})/4$
π/2	i

$e^{i(\varphi+2\pi)} = e^{i\varphi}$	$e^{-i\varphi} = \overline{e^{i\varphi}}$
$e^{i(\varphi+\pi)} = -e^{i\varphi}$	$e^{i(\varphi+\pi/2)} = ie^{i\varphi}$

Problem 1: Determine Re(z), Im(z) and |z| for the following complex numbers: a) $\frac{1-i}{1-2i}z = \frac{2+2i}{1+3i}$ b) $(2+i)^2 + 7 - 3i$ c) $z = \frac{i+3}{2i-4}$ d) $\left(\frac{1-i}{2+3i} - \frac{6+2i}{1+i}\right)z = \frac{3-i}{3+i}$

Problem 2: Determine *z*:

- a) $2z + 3i\overline{z} 5\overline{z} = 5(i-1)$
- b) $-3z + \overline{z} 2i\overline{z} = 2i$

Problem 3: Find the polar coordinates of the following complex numbers:

- a) 1+i b) $\frac{-1}{2} + \frac{\sqrt{3}}{2}i$
- c) 4 d) -4
- e) $\sqrt{3} i$ f) -5i

g) $-\frac{5}{2}\sqrt{3} - \frac{5}{2}i$ h) $-\frac{3}{2} - \frac{3}{2}\sqrt{3}i$ Take the polar coordinates both for $arg(z) \in [0, 2\pi]$ and $arg(z) \in (-\pi, \pi]$. Try to find the polar coordinates of a) -f) without the help of the tabular. A calculator might be needed then. **Problem 4:** Determine and sketch $M \subset \mathbb{C}$ defined as followed:

a)
$$3z^2 - 10z\overline{z} + 3\overline{z}^2 + 16 = 0$$

- b) $Re(z) \le |z|^2$
- c) $|z-i| \le |z-2+i|$ and $|arg(z+2)| < \frac{\pi}{4}$

The argument is in $(-\pi, \pi]$.

Problem 5: Solve the equations for *z* and draw all roots into the complex plane.

a) $z^{3} - 1 = 0$ b) $z^{2} = 4i$ c) $z^{6} = 1$ d) $z^{3} = \frac{1}{\sqrt{2}}(1-i)$

Problem 6: Determine Re(z) and Im(z).

a)
$$z = \left(\frac{1-i}{1+i}\right)^{10}$$

b) $z = \left(\frac{-1+i\sqrt{3}}{6i}\right)^{1991}$

Problem 7: For the following polynomials p(x), q(x) determine polynomials a(x), r(x) such that deg(r) < deg(q) and $p(x) = q(x) \cdot a(x) + r(x)$:

a) $p(x) = x^3 - 2x + 1$, $q(x) = x^2$ b) $p(x) = x^4 - x^3 + 3x^2 - 2x + 2$, $q(x) = x^2 - x + 1$ c) $p(x) = x^n + x^{n-1} + \dots + x + 1$, q(x) = x + 1, n odd

Problem 8: Decompose (i. e. factorize) the following polynomials into irreducible factors (with coefficients in \mathbb{R}):

a)
$$x^3 - x^2 - x - 2$$

b) $x^2 - x + 1$
c) $x^3 + 3x^2 - 4$
d) $x^5 - x^3$

Those are too many questions to actually solve all in one exercise. The problem sheet is due wednesday but we will probably only do one part per problem.