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4 1 Basic concepts in mathematics

1 Basic concepts in mathematics

1.1 Set theory and number systems

Sets are some of the basic concepts in mathematics. They are the collections of ele-
ments. Unlike other structures it is inevitable that the elements are distinguishable.

Definition 1.1. (set)
A set is a collection of distinguishable elements.

Sets are uniquely determined by their elements. In particular, two sets are equal if
and only if they contain the same elements. It is of no importance how often one
element is contained in the set. It is only mandatory that that element ist in the set.
Furthermore the order of the elements is unimportant.

Example 1.2.

{1, 2, 3} = {1, 1, 2, 3, 3} = {3, 1, 2}

From now on we only place each number only once in a set.

There are two ways to describe sets. One may describe a set by explicitly stating the
elements like

A := {1, 3, 4, 5, 6}

or by implicitly describing the properties which the elements need to satisfy like

B := {n | n is an odd number on a dice}.

In this case the set B may als be stated as {1, 3, 5}.

But not all sets need to contain elements.
Definition 1.3. (empty set)
The set without any elements is called empty set and will be denoted by {} or ∅.

The empty set is an element itself. Therefore the set with the empty set exists. So {∅}
is not empty but contains exactly one element.
We want to define relationships between sets.

Definition 1.4. (subset)
Let A and B be sets. If all elements of A are also elements of B, then A is a subset of
B and will be denoted by A ⊆ B
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We can now describe the equality of sets with the notation of subsets.

Lemma 1.5.
Let A and B be two sets. A equals B e.g. A = B if and only if A ⊆ B and B ⊆ A holds.

To define relationships between elements and sets we introduce the following impor-
tant notations along with basic logic statements.

Definition 1.6.
Let a be an element and A be a set. Then the following notations describe:

i) “a ∈ A” means a is an element of the set A,

ii) “a /∈ A” means a is not an element of the set A,

iii) “∃” means there is or there exists,

iv) “@” means there exists no ...,

v) “∀” means for all,

vi) “⇒” means implies,

vii) “⇔” means is equivalent to or if and only if.

Example 1.7.
With the newly defined notations we can rewrite the subset symbol as follows:

(A ⊆ B) ⇔ (∀a ∈ A : a ∈ B)

Sets may not only be included in others. We can also intersect and unite sets as well
as take one set out of another.

Definition 1.8. (union, intersection and difference of sets)
Let A and B be sets.

i) Then the union of A and B is denoted by A ∪ B := {x | x ∈ A or x ∈ B}.

ii) Then the intersection of A and B is denoted by A ∩ B := {x | x ∈ A and x ∈ B}.
If A ∩ B = ∅ holds, then the two sets A and B are called disjoint .

iii) Then the difference of A and B is denoted by A \ B := {x | x ∈ A and x /∈ B}.

Example 1.9.
The definition above can be illustrated by the following pictures:

i) The union of sets A and B.
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A ∪ B

A B

ii) The intersection of the sets A and B.

A ∩ B

A B

iii) The difference between the sets A and B.

A

A \ B

B

Up to know we only looked at sets that consisted of distinct elements like single
numbers. We can expand our view by taking in ordered pairs and the more general
n-tuples.

Definition 1.10. (ordered pairs and n-tuples)
Two ordered pairs (a, b) and (c, d) are equal if and only if a = c and b = d holds. If
an ordered pair consists of more than two numbers, we call that object (a1, a2, ..., an) a
n-tuple. Equality of n-tuples is defined analogously.

There are some operations defined on ordered pairs and n-tuples. We have a closer
look on the operation called the cartesian product.
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Definition 1.11. (cartesian product)
Let A and B be two sets. Then the cartesian product is defined as A× B := {(a, b) | a ∈
A, b ∈ B}.
The cartesian product is generalized for sets A1, A2, ..., An as A1 × A2 × ...× An :=
{(a1, a2, ..., an) | a1 ∈ A1, a2 ∈ A2, ..., an ∈ An}.

We want to illustrate the concepts that we just learned with some numbers.

Example 1.12.
Let A = {1, 3, 5, 7, 9} and B = {1, 2, 3, 4} be two sets.

⇒ A ∪ B = {1, 2, 3, 4, 5, 7, 9},
A ∩ B = {1, 3},
A \ B = {5, 7, 9},
B \ A = {2, 4},

A× B = {(1, 1), (1, 2), (1, 3), (1, 4),

(3, 1), (3, 2), (3, 3), (3, 4),

...,

(9, 1), (9, 2), (9, 3), (9, 4)}.

The well known basic number systems are also an example of sets. We have the set
of natural numbers N = {1, 2, 3, ...}, the set of integers Z = {...,−2,−1, 0, 1, 2, ...}, the
set of rationals Q = { a

b | a ∈ Z, b ∈ N} and the set of all real numbers, that include
both rational and irrational numbers. As we know by definiton N ⊆ Z ⊆ Q holds.
Furthermore Q ⊆ R holds, since R contains Q and all irrational numbers. We want
to proof that R 6= Q.

Theorem 1.13.√
2 is an irrational number, that is there is no rational number solving the equation

x2 = 2.

Proof:
The proof will be indirect. That means we make an assumption, i.e. the negation
of the statement and show that this can’t be true. Assume there is a fraction p

q with
( p

q )
2 = 2 (p, q ∈ N). We may assume that the fraction is reduced, that is the greatest

common denominator is 1. By p2 = 2q2 follows that p is even. Denote p = 2p′

(p′ ∈N). Hence

p2 = (2p′)2 = 4p′2 = 2q2

⇒ 2p′2 = q2.

Therefore q is also even. But then the greatest common denominator is at least 2,
which yields an contradiction. �
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The real numbers have an important property, that the rational numbers are missing.
The existing of an infimum and a supremum of any bounded set.

Definition 1.14. (supremum/infimum, maximum/minimum)
Let A ⊆ R be a subset. If A has an upper bound (a lower bound), i.e. there is
some M ∈ R with a ≤ M (a ≥ M) ∀a ∈ A, then A also has a unique smallest
upper bound (greatest lower bound), called the supremum (infimum) of A which is
denoted by sup(A) (inf(A)). If sup(A) ∈ A (inf(A) ∈ A) then max(A) :=sup(A)

(min(A) :=inf(A)) is called the maximum (minimum) of A.

We can also rewrite the definition for a supremum (infimum):

sup(A) : a ≤ sup(A) ∀a ∈ A and sup(A)− ε is no upper bound ∀ε > 0.

inf(A) : a ≥ inf(A) ∀a ∈ A and inf(A) + ε is no lower bound ∀ε > 0.

In the last definition it was stated, that all upper bounded (lower bounded) subsets of
R have a supremum (infimum).

Example 1.15.
i) sup{1, 2, 3} =max{1, 2, 3} = 3,

ii) inf{ 1
n | n ∈N} = 0,

iii) sup{x ∈ R | x2 < 2} =
√

2 and
√

2 /∈ {x ∈ R | x2 < 2}.

Note that the boundaries of examples i) and ii) are also rational numbers, yet the
supremum of iii) is irrational. Therefore the supremum won’t exists in Q, that is
sup{x ∈ Q | x2 < 2} does not exist.

1.2 Functions

Functions express relations between two sets. They are used in all branches of math-
ematics.

Definition 1.16. (function)
Let A, B be non-empty sets. A function assigns to every element a ∈ A precisely one
element f (a) ∈ B. We write

f : A→ B : a 7→ f (a).

A is called the domain of f , B is called the co-domain of f , f (a) is called the image of a
under f and f (A) := { f (a) | a ∈ A} is called the image of f .

Example 1.17.
A := {−1, 1, 2, 3}, B := {1, 2, 3, ..., 10}, f : A→ B : a 7→ a2
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9
10

f

Definition 1.18. (injective, surjective, bijective)
Let A, B be non-empty sets and f : A→ B : a 7→ f (a) a function. Then we define the
following:

i) The function f is called injective, if for all a1, a2 ∈ A we have if f (a1) = f (a2)

holds, then a1 = a2 follows.

ii) The function f is called surjective, if f (A) = B, that is the co-domain equals the
image of f .

iii) The function f which is both injective and surjective is called bijective.

Injective means in simple words, that there are no two elements of the domain, that
maps to the same element of the co-domain. Surjective may be described as every
element of the co-domain is hit by an element of the domain.

By this definition the last example is neither injective nor surjective. One important
funtion, the identity, is the most trivial example of a bijective function.

Definition 1.19. (identity function)
The function

idA : A→ A : a 7→ a

is called the identity on A.

Definition 1.20. (composition of functions)
Let A, B and C be non-empty sets and f : A → B and g : B → C be two functions.
Then g ◦ f : A→ C : a 7→ g( f (a)) is called the composition of f and g.

A B C
f g

g ◦ f
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Remark 1.21.
Usually the composition of g and f and the composition of f and g yield different
result, that is g ◦ f 6= f ◦ g.

Definition 1.22. (inverse function)
Let A, B be non-empty sets and f : A → B be a bijective function. Then there is a
unique function f−1 : B→ A, called the inverse of f , with the property

f (a) = b ⇔ f−1(b) = a, ∀a ∈ A, b ∈ B.

This means actually that the composition of f and f−1 and the composition of f−1
and f both yield the identity function. That is f ◦ f−1 = idA and f−1 ◦ f = idB.

−1
1
2
3

1
2
3
4

f

Lemma 1.23.
Let A, B and C be non-empty sets and f : A → B and g : B → C be two bijective
functions. Then the composition of f and g, that is g ◦ f : A → C, has the inverse
(g ◦ f )−1 = f−1 ◦ g−1.

Our functions are usually algebraic expressions like x 7→ x
x2+1 . The non-empty set

that we do operate on with our functions will be usually some subsets of R. We call
the following specific subsets of R intervals.

Definition 1.24. (interval)
An interval I ⊆ R is a subset of the following form:

• (a, b) := {x ∈ R | a < x < b},

• (a, b] := {x ∈ R | a < x ≤ b},

• [a, b) := {x ∈ R | a ≤ x < b},

• [a, b] := {x ∈ R | a ≤ x ≤ b}.

A one sided unbounded interval is denoted by (−∞, b] and [a, ∞).

Remark 1.25.
The interval of the real numbers may be denoted as (−∞, ∞) = R. Analogously the
interval of the non-negative real numbers is [0, ∞) = R+.

Next we define operations for functions if the co-domain is R.
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Definition 1.26.
Let A be a non-empty set, λ ∈ R and f , g : A → R functions. Then we define the
following operations for all x ∈ A:

• ( f ± g)(x) := f (x)± g(x),

• (λ · f )(x) := λ · f (x),

• ( f · g)(x) := f (x) · g(x),

• ( f
g )(x) := f (x)

g(x) if 0 /∈ g(A).

Lastly we want to define the monotonic functions on the ordered set R. R is ordered
by the equivalent relation “≤”.

Definition 1.27. (monotonically increasing/decreasing)
Let f : A → R be a function with A ⊆ R. Furthermore let I ⊆ A be an interval. f is
called monotonically increasing (decreasing) on I, if

x ≤ y⇒ f (x) ≤ f (y)
(x ≤ y⇒ f (x) ≥ f (y))

holds for all x, y ∈ I. We call a function stricktly monotonically increasing (decreasing) if
all “≤”,“≥” are replaced by “<” and “>” respectively.

Lemma 1.28.
Let f : I → R be a function on the Interval I ⊆ R. If f is either stricktly increasing or
decreasing on I then f is injective.

1.3 Induction

After the indirect proof, used in
√

2 is not a rational number earlier, the concept of
proof by induction is another way of proving mathematical theorems. A mathematical
proof of a statement is in generala series of implications that leads to the inevitable
conclusion, that this statement is true. In mathematics we can use proofs to establish
facts for an infinite number of cases. The proof by induction is a method to show and
infinite number of cases of a statement S = S(n) where each case is dependant on a
natural number n ∈N. Induction proves all those cases in one stroke for all n ∈N.

Theorem 1.29. (Induction Principle)
Let S(n) be any statement depending on n ∈ N. Furthermore the following two
conditions hold:

i) S(1) is true (base case),

ii) ∀n ∈N holds: S(n) is true⇒ S(n + 1) is true. (inductive step)
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Then S(n) is true for all n ∈N.

Example 1.30.
We prove the Gauß’ Sum Formula:

n

∑
i=1

i = 1 + 2 + ... + n =
n(n + 1)

2
, ∀n ∈N.

Proof:
The proof will be done by induction. The statement is

S(n)
n

∑
i=1

i =
n(n + 1)

2
.

base case:

S(1)
1

∑
i=1

i︸︷︷︸
=1

= 1 =
1(1 + 1)

2︸ ︷︷ ︸
=1

.

inductive step: We assume that S(n) is true for some n ∈N. This is called the induction
hypothesis (I.H.). Then we will show:

S(n + 1)
n+1

∑
i=1

i =
(n + 1)(n + 1 + 1)

2
.

So

n+1

∑
i=1

i =

(
n

∑
i=1

i

)
+ n + 1

I.H.
=

n(n + 1)
2

+ n + 1

=
n(n + 1) + 2(n + 1)

2

=
(n + 2)(n + 1)

2
.

Thus by proof by induction the Gau"s Sum Formula is proven. �

We now note some other well known examples, that should be proven with induction
as an exercise.

Example 1.31.
• Bernoulli’s inequality: For all n ∈N and all a ∈ R with a ≥ −1 we have

(a + 1)n ≥ n · a + 1.
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• Geometric Sum Formula: For all n ∈N and all q ∈ R \ {1} we have

n

∑
i=0

qi =
qn+1 − 1

q− 1
.

As the next central important equation we want to show the Binomial Theorem. But
we need some basic notations first:

Definition 1.32. (binomial coefficient)
Let n ∈ N ∪ {0} and k ∈ {0, 1, ..., n}. Then the number of ways a k-element subset
may be chosen in an n-element set is denoted by the binomial coefficient (n

k).

Example 1.33.
Let A := {1, 2, 3} be as set. Then (3

2) = 3 holds because {1, 2}, {1, 3}, {2, 3} are all
subsets of cardinality 2 in the 3-element set A.

The binomial coefficient may also be written as a specific formula.

Theorem 1.34.
Let n ∈N∪ {0} and k ∈ {0, 1, ..., n}. Then(

n
k

)
=

n!
k!(n− k!)

where the factorials are defined as n! := 1 · 2 · 3 · ... · n.

The binomial coefficient suffices the following basic properties.

Theorem 1.35.
Let n ∈N∪ {0} and k ∈ {0, 1, ..., n}. Then the following holds:

i) (n
k) = ( n

n−k),

ii) (n
0) = (n

n) = 1,

iii) ( n
k−1) + (n

k) = (n+1
k ), if k ≥ 1.

The property iii) is actually the well known property to calculate the binomial coeffi-
cients recursivley in the Pascal’s triangle.

Now we can note the Binomial theorem:

Theorem 1.36.
For all n ∈N∪ {0} and all a, b ∈ R we have

(a + b)n =
n

∑
k=0

(
n
k

)
akbn−k.
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Proof:
Proof by induction.

S(n) (a + b)n =
n

∑
k=0

(
n
k

)
akbn−k.

base case:

S(0) (a + b)0 = 1 =
0

∑
k=0

(
0
k

)
akb0−k.

inductive step: We assume that S(n) is true for some n ∈N∪ {0}. Then we will show:

S(n + 1) (a + b)n+1 =
n+1

∑
k=0

(
n + 1

k

)
akbn+1−k.

So

(a + b)n+1 = (a + b)(a + b)n

I.H.
= (a + b)

n

∑
k=0

(
n
k

)
akbn−k

= a
n

∑
k=0

(
n
k

)
akbn−k + b

n

∑
k=0

(
n
k

)
akbn−k

=
n

∑
k=0

(
n
k

)
ak+1bn−k +

n

∑
k=0

(
n
k

)
akbn−k+1

We now use the concept of the index shift, where we move the start and end value of
the sum into one direction by an amount x and the index in the argument into the
other direction by the exactly same amount.

=
n+1

∑
k=1

(
n

k− 1

)
akbn−(k−1) +

n

∑
k=0

(
n
k

)
akbn−k+1

=

(
n

n + 1− 1

)
an+1 +

n

∑
k=1

(
n

k− 1

)
akbn−k+1 +

n

∑
k=1

(
n
k

)
akbn−k+1 +

(
n
0

)
bn+1

= an+1 +
n

∑
k=1

[(
n

k− 1

)
+

(
n
k

)]
akbn−k+1 + bn+1

= an+1 +
n

∑
k=1

(
n + 1

k

)
akbn−k+1 + bn+1

=
n+1

∑
k=0

(
n + 1

k

)
akbn−k+1

Thus by proof by induction the Binomial theorem is proven. �
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Remark 1.37.
The case n = 2 is well known as (a + b)2 = a2 + 2ab + b2.

Remark 1.38.
Besides the notation for a sum, we also have a short notation for products:

n

∏
i=1

ai = a1 · a2 · ... · an.

A short example is ∏5
i=1 i = 1 · 2 · 3 · 4 · 5 = 120.

1.4 Complex numbers

We have seen so far, that there is no real number that may solve the equation x2 = −1,
since we are not able to calculate the square root of a negative number. As before when
we added the irrational numbers to the rational numbers to receive the real numbers,
we will add the solution of the equation x2 = −1 the real numbers to get an even
bigger number system. We denote this solution with the imaginary unit.

Definition 1.39. (imaginary unit)
The solution to the equation x2 + 1 = 0 is called imaginary unit and will be denoted
by i.

Furthermore the imaginary unit gives us in combination with the real numbers the
complex numbers.

Definition 1.40. (complex numbers)
The number system of the complex numbers will be denoted by C := {x + y · i | x, y ∈
R}. For a complex number z := x + yi, x, y ∈ R we call x the real part of z denoted by
Re(z) = x and y the imaginary part of z denoted by Im(z) = y.
We define the addition and multiplication of two complex numbers z = x + iy and
w = u + iv as

z + w = x + u + (y + v)i and z · w = xu− yv + (xv + yu)i.

Remark 1.41.
By the definition of the complex numbers we have R ⊂ C. That is R = {x + y · i | x ∈
R, y = 0} ⊆ C. The imaginary unit is in C but not in R since x2 + 1 = 0 has no
solution in R.

We take a closer look at the addition of complex numbers. Let z := x + iy and
w := u + iv be two complex numbers. Then we have:

z + w = x + iy + u + iv = x + u + i(v + y).

Let z = 3 + i and w = 2− 2i. Then we can visualize z + w as:
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Re

Im

−1 1 2 3 4 5 6

−3

−2

−1

1

2

3

z

w
z + w

The multiplication of complex numbers is more complicated. Let z := x + iy and
w := u + iv be two complex numbers. Then we have:

z · w = (x + iy)(u + iv)

= xu + ixv + iyu + i2yv
= xu + (−1)yv + i(xv + uy)
= xu− vy + i(xv + uy).

Later on we will understand the multiplication geometrically by using the polar coor-
dinates of complex numbers.

We want to define two important objects for the complex numbers.

Definition 1.42. (complex conjugate, absolute value)
Let z := x + yi be a complex number. Then we define z := x − yi as the complex
conjugate of z. Furthermore we call |z| :=

√
x2 + y2 ∈ R the absolute value of z.

The absolute value may be seen as the distance of the complex number to the origin of
the complex plane. The complex plain may be deriven from the 2-dimensional space
if we interpretate the real part Re(z) and the imaginary part Im(z) of some complex
number z as coordinates in a 2 dimensional plain. The complex conjugate z may be
visualized as the reflection of z about the real axis.

Let z = 3 + i be a complex number. Then we can visualize |z| and z as:
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Re

Im

−1 1 2 3 4 5 6 7

−2

−1

1

2

3

z = 3 + i

|z| =
√

32 + 12 =
√

10

z = 3− i

|z|
Re(z) = 3

Im(z) = 1

Next we are going to establish some basic rules that hold for complex numbers.

Theorem 1.43.
Let z, w be two complex numbers. Then the follwing holds:

i) z + w = z + w, zw = z · w,
(

1
z

)
= 1

z if z 6= 0,

ii) z = z,

iii) z ∈ R ⇔ z = z,

iv) |z| ≥ 0, and furthermore |z| = 0 ⇔ z = 0,

v) |z| = |z|, z · z = |z|2,

vi)
∣∣ z

w

∣∣ = |z|
|w| , if w 6= 0,

vii) ||z| − |w|| ≤ |z + w| ≤ |z|+ |w|. (triangle inequality)

Now if we divide one complex number z by another complex number w and write this
as a fraction z

w , we do not know what that fraction is as an actual complex number.
We do not have a real part or an imaginary part of a complex number if we have some
complex number in the denominator of the fraction. But we may solve the fraction to
get a compley number with a distinct real and imaginary part. So let z = x + iy and
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w = u + iv be two complex numbers.

z
w

=
x + iy
u + iv

=
x + iy
u + iv

· u− iv
u− iv︸ ︷︷ ︸
=w

w

=
xu− ivx + iuy− i2vy

u2 − i2v2

=
xu + vy + i(uy− vx)

u2 + v2

=
xu + vy
u2 + v2 + i · uy− vx

u2 + v2

Example 1.44.
For two actual complex numbers z = 3 + 5i and w = 1 + 2i we have

z
w

=
3 + 5i
1 + 2i

=
3 + 5i
1 + 2i

· 1− 2i
1− 2i

=
3− 6i + 5i− 10i2

1− 4i2

=
3 + 10 + i(−6 + 5)

1 + 4

=
13
5
− 1

5
i

By the previous consideration we may deduce the following lemma.

Lemma 1.45. (Inversion Formula)
Let z = x + iy be a complex number with z 6= 0. Then

1
z
=

1
x + iy

=
x

x2 + y2 +
−y

x2 + y2 i

holds.

Now we may interpretate the real part and imaginary part of complex numbers as
coordinates in the complex plane. But there is another way to look at complex num-
bers. We can visualize them not only by its real and imaginary part but we can define
them with the help of the absolute value and an angle, called the argument.
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Definition 1.46. (polar coordinates)
The polar coordinates of any complex number z ∈ C \ {0} are the pair (r, ϕ) with
r > 0, ϕ ∈ [0, 2π), such that

z = r · (cos ϕ + i sin ϕ)

= r · eiϕ.

r = |z| is the absolute value of z and ϕ =: arg(z) is called the argument of z, that is the
angle between the real axis and the line through 0 and z.

So for z = x + iy = r · eiϕ ∈ C we have:

Re

Im

z = x + iy = r · eiϕ
r
ϕ

Re(z) = x

Im(z) = y

The usefulness of the polar coordinates can be shown by multiplication of complex
numbers. Let z := x + iy and w := u + iv be two complex numbers.

z · w = r · (cos ϕ + i sin ϕ) · s · (cos θ + i sin θ)

= r · s · (cos ϕ cos θ + i cos ϕ sin θ + i sin ϕ cos θ + i2︸︷︷︸
=−1

sin ϕ sin θ)

= r · s · ((cos ϕ cos θ − sin ϕ sin θ)︸ ︷︷ ︸
=cos(ϕ+θ)

+ i(cos ϕ sin θ + sin ϕ cos θ)︸ ︷︷ ︸
=sin(ϕ+θ)

)

= r · s · (cos(ϕ + θ) + i sin(ϕ + θ))

= r · s · ei(ϕ+θ).

The equalities for sin(ϕ+ θ) and cos(ϕ+ θ) used are called the trigonometric angle sum
identities. They hold for any two angles ϕ and θ. So the multiplication of complex
numbers is the multiplication of its absolute values along with the addition of its
arguments.

For z = 3 · e π
4 i and w = 3

2 · e
5π
8 i the complex number z · w = 9

2 · e
i 7π

8 may be visualized
as followed:
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Re

Im

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

z

π
4

3w

3
2

5π
8

z · w 7π
89

2

So we might add some basic rules for working with polar coordinates.

Theorem 1.47.
Let z, w ∈ C, z 6= 0, w 6= 0, z = reiϕ, w = seiθ. Then the following holds:

i) z · w = r · s · ei(ϕ+θ),

ii) 1
z = 1

r · e−iϕ,

iii) z = r · e−iϕ,

iv) zn = rn · einϕ.

Part iv) of the last theorem yields the formula of De Moivre. With its help we may
calculate any root of some complex number.

Theorem 1.48. (De Moivre Formula)
For all complex numbers w = s · eiθ there are exactly n numbers z0, z1, ..., zn−1, that
solve the equation zn

k = w for all k ∈ 0, 1, ..., n− 1. Those numbers are

zk =
n
√

s · ei
(

ϕ+2kπ
n

)
, 0 ≤ k ≤ n− 1 and ϕ :=

θ

n
.

Those roots are equidistantly distributed on a circle with center (0, 0) and radius n
√

s.

In the next chapter we will see some important facts about complex numbers in regard
to polynomials.
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1.5 Polynomials

In this chapter we will talk about polynomials. We will consider those functions, that
have real coefficients.

Definition 1.49. (polynomial)
Let n ∈ Z≥0, a0, a1, ..., an ∈ R, an 6= 0 and x be a variable. Then

p(x) := anxn + an−1xn−1 + ... + a2x2 + a1x + a0

is called a polynomial. n =: deg(p) is called the degree of p(x). It is the largest exponent
of x appearing in p(x). For deg(p) = 0 we call p the constant polynomial. The numbers
a0, a1, ..., an are called the coefficients of p(x).

Example 1.50.
Here is a polynomial written in a few different ways:

(x2 − 4) · (x + 1) = x3 + x2 − 4x− 4 = x3 + x2 − 4(x + 1).

The addition, substraction and multiplication of polynomials is again a polynomial. In
particular for the multiplication of two polynomials we have the following lemma.

Lemma 1.51.
Let p and q be two polynomials. Then

deg(p · q) = deg(p) + deg(q)

holds.

We do not have such a lemma for the addition or substraction of polynomials, because
the coefficient of the largest exponent of x may be or may not be reduced from the
polynomial with that operation.

If we divide one polynomial by another we usually do not get a polynomial as the
result. A part of the divisor may appear in the denominator. So in general there will
be a remainder. We call the act of dividing one polynomial by another the polynomial
division with remainder.

Theorem 1.52. (polynomial division with remainder)
For any two polynomials p(x), q(x), q(x) 6= 0, there are polynomials a(x) and r(x)
such that deg(r) < deg(q) and

p = q · a + r.

r is called the remainder.
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Example 1.53.
Let p(x) = x3 − x2 + 3x− 1 and q(x) = x2 − 1 be two polynomials. Then the polyno-

mial division with remainder of p(x)
q(x) is:

x3 − x2 + 3x− 1 =
(
x2 − 1

) (
x− 1

)
+ 4x− 2

− x3 + x
− x2 + 4x− 1

x2 − 1

4x− 2

So a(x) = x− 1 and the remainder is r = 4x− 2. Note that deg(r) = 1 < 2 = deg(q)
holds. There is also a second common way to visualize the polynomial division with
remainder:

(
x3 − x2 + 3x− 1

)
:
(
x2 − 1

)
= x− 1 +

4x− 2
x2 − 1− x3 + x

− x2 + 4x− 1
x2 − 1

4x− 2

Definition 1.54. (factor, linear factor, irreducible polynom)
If a polynomial p(x) can be divided by another polynomialn q(x) without a remain-
der, that is r = 0, and deg(b) ≥ 1 holds, then q is called a factor of p. A factor q with
deg(q) = 1 is called a linear factor of p. A polynomial with no proper factor is called
irreducible. All polynomials p with deg(p) = 1 are irreducible.

If our co-domain are the real numbers, polynomials may be factorized. But those
irreducible factors may be of some huge degree. But if we have the complex numbers
as our co-domain we the follwing strong theorem.

Theorem 1.55. (fundamental theorem of algebra)
Let p(z) = anzn + an−1zn−1 + ... + a2z2 + a1z + a0 be a polynomial with complex coef-
ficients and an 6= 0. Then there are exactly n numbers z1, z2, ..., zn in C, such that the
follwoing holds:

p(z) = an(z− z1) · (z− z2) · ... · (z− zn).

The numbers z1, z2, ..., zn do not need to be distinct.

So the fundamental theorem of algebra states, that any polynomialmay be factorized
into linear factors, if the co-domain is C.
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Corollary 1.56.
Let p be a polynomial. Then the only irreducible factors of p over C are linear.

Now we want to talk about zeroes and their important connection to factored polyno-
mials.

Definition 1.57. (zeroes)
Let p(x) be a polynomial. A number x ∈ R with p(x) = 0 is called a zero.

There is an important connection between linear factors of a polynomialand the zeroes
of that polynomial. We have:

Theorem 1.58.
Let p(x) be a polynomial and a ∈ R. Then the following equivalence holds:

p(a) = 0 ⇔ x− a is a linear factor of p(x).

Proof:
“⇒”: Assume that a is a zero of p, that is p(a) = 0. Now divide p(x) by x− a with
remainder r(x). This yields

p(x) = (x− a) · q(x) + r(x)

for some q(x) and deg(r) < deg(x− a). Since deg(x− a) = 1 holds, we have that r(x)
is a constant, that is r(x) = r0 ∈ R. Therefore we have

p(x) = (x− a) · q(x) + r0.

With p(a) = (a− a) · q(a) + r0 we get p(a) = r0. By the assumption that a is a zero of
p this holds only for r0 = 0. Therefore x− a is a linear factor of p(x).
“⇐”: Assume that x− a is a linear factor of p(x), that is there is some q(x) with

p(x) = (x− a) · q(x).

Then p(a) = (a− a) · q(x) = 0 yields, that a is a zero of p(x). �

This theorem implies the following.

Corollary 1.59.
A polynomial of degree n can have at most n zeroes.

Furthermore under certain conditions to the images of some numbers under that
polynomial, we may deduce the equality of polynomials.
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Corollary 1.60.
Let p, q be polynomials with deg(p) ≤ n and deg(q) ≤ n. If there are n + 1 different
numbers xi, i ∈ {0, 1, 2, ..., n} with p(xi) = q(xi) for all i ∈ {0, 1, 2, ..., n}, then p = q
holds.

The corollary states, that if we have enough numbers, whose images are the same
under p and under q, then those two polynomials p and q need to be equal. By this we
get to one very important application of polynomials, called the Lagrange interpolation.
For this we assume, that we have n + 1 different numbers and their images. Now
we want to find a polynomialof degree at most n that satisfies those ordered pairs of
numbers and their images.

Theorem 1.61. (Lagrange Interpolation Theorem)
Let x0 < x1 <x 2 < ... < xn be real numbers and y0, y1, ..., yn ∈ R. Then there exists a
unique polynomial p(x) of degree n such that

p(xi) = yi, ∀i ∈ {0, 1, 2, ..., n}

holds. Furthermore that polynomial is given by

p(x) =
n

∑
i=0

yi pi(x)

with

pi(x) =
∏

j:j 6=i
(x− xj)

∏
j:j 6=i

(xi − xj)
.

For all pi holds pi(xi) = 1.

So with the Lagrange Interpolation Theorem we may find to a set of numbers x0 <

x1 < ... < xn and their respected images p(xi) a polynomial p that fits all points
( xi

p(xi)
) in the 2-dimensional plane. We conclude this chapter with an example about

constructing a polynomial from its ordered pairs.

Example 1.62.
The points (1

2), (3
0) and ( 5

−1) are given in the plane. So we have x0 = 1, x1 = 3 and
x2 = 5 with their images y0 = 2, y1 = 0 and y2 = −1. First we calculate the pi.

p0(x) :=
x− 3
1− 3

· x− 5
1− 5

=
1
8
(x− 3)(x− 5)

p1(x) :=
x− 1
3− 1

· x− 5
3− 5

=
−1
4
(x− 1)(x− 5)

p2(x) :=
x− 1
5− 1

· x− 3
5− 3

=
1
8
(x− 1)(x− 3)
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Notice that p0(x0) = p0(1) = 1 but p0(x1) = p0(x2) = 0. For p1 and p2 this works
repectively. So we deduce our polynom as

p(x) = 2 · p0(x) + 0 · p1(x) + (−1) · p2(x)

=
1
8

x2 − 3
2

x +
27
8

.

x-axis

y-axis

−3 −2 −1 1 2 3 4 5 6 7
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(x0
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(x2
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)
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2 Linear Algebra

2.1 Vector spaces

As we have already seen, we can display the numbers of some ordered number system
on number line. Furthermore we displayed points into the complex plane. For us, the
complex plane was a two dimensional, that might be interpretated with cartesian
coordiantes as the cartesian product of the two sets R and R. So it yielded a right-
angled coordinate system. Yet not all coordinate systems for two dimensional planes
need to right-angled.

(x
y)

x

y

Now we know that we can also display points into the 3-dimensional space. Ana-
loguesly we can have 3 axis for our coordinates and create the coordinate system for
a 3-dimensional space.

x
y
z
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This may be generalized up to n dimensions. So a point in an n-dimensional space is
a n-tuple of real numbers and the n-dimensional space may be described by

Rn =




x1
x2
...

xn


∣∣∣∣∣∣∣∣∣ xi ∈ R, 1 ≤ i ≤ n


Thus far we talked about points in some n-dimensional space. But now we want to
describe and define vectors and vector spaces. In Rn with n ≤ 3 we may interpretate
vectors as directed lines between points in the space. for two points u and v the vector
−→uv might be the line from u to v.

u

v

u′

v′

We do not differentiate between one directed line and another, that was derived by

the first line through translation. Therefore in our picture the two lines −→uv and
−→
u′v′

are the same vectors, that is −→uv =
−→
u′v′.

So vectors itself might be understood as translation. For example if you have a mov-
ing point at a given time in space, the vector of that point might be the velocity vector.
It tells us, where the moving point will be for a specific point in time later on.
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We will define the vector space in an axiomatic way, that is we define a structure by
demanding conditions.

Definition 2.1. (vector space)
A vector space is a set V with specific defined operations: an addition of elements in V
and multiplication with elements of a field F (i.e. F = C or F = R), called the scalar
multiplication. For all u, v, w ∈ V and all α, β ∈ F the rules for those operations are
defined as:

i) u + v = v + u (commutative property)

ii) (u + v) + w = u + (v + w) (associative property)

iii) ∃ 0 = 0V ∈ V (called zero vector) with u + 0V = u

iv) ∀ u ∈ V ∃ (−u) ∈ V (called inverse element) with u + (−u) = 0V

v) α · (β · u) = (αβ) · u

vi) α · (u + v) = α · u + α · v

vii) (α + β) · u = α · u + β · u

viii) 1 · u = u

The elements of the vector space V are called vectors.

Example 2.2.
i) Let

V = Fn =




z1
z2
...

zn


∣∣∣∣∣∣∣∣∣ zi ∈ R or C, 1 ≤ i ≤ n


be a vector space over a field F. The addition and scalar multiplication in a
vector space is defined componentwise:

x1
x2
...

xn

+


y1
y2
...

yn

 =


x1 + y1
x2 + y2

...
xn + yn

 , α ·


x1
x2
...

xn

 =


α · x1
α · x2

...
α · xn


The zero vector is defined as

0V =


0
0
...
0


 n rows.
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With those definitions of an addition and a scalar multiplication it can be verified
that V is indeed a vector space.

ii) For all n

V = Poly(n) = {p(x) = anxn + an−1xn−1 + ... + a1x + a0| ai ∈ F, 0 ≤ i ≤ n}

is the vector space of all polynomials up to degree n over the field F. For F we
used in the chapter polynomials R. The zero vektor is the polynomial p(x) =

0, that is all coefficients ai are zero. The addition and multiplication for two
polynomials p(x) = ∑n

i=0 αixi and q(x) = ∑n
i=0 βixi are defined as:

p(x) + q(x) =
n

∑
i=0

(αi + βi)xi, α · p(x) =
n

∑
i=0

(α · αi)xi.

With a given vector space and its vectors, we may want to combine the vectors. Fur-
thermore we might want to create subsets of a vector space V that are vector spaces
itself, too. We will call those structures subspaces of V.

Definition 2.3. (linear combination, subspace, span)
Let V be a vector space with v1, v2, ..., vn ∈ V and α1, α2, ..., αn ∈ F. Then the sum

n

∑
i=1

αivi

is called the linear combination of v1, v2, ..., vn.
Now let U ⊂ V be a subset. U is called a subspace of V, if U including the operations
inherited by V is a vector space itself, that is if

0V ∈ U,

u, v ∈ U ⇒ u + v ∈ U,

u ∈ U, α ∈ F ⇒ α · u ∈ U

holds.
Furthermore Span(v1, ..., vn) := {∑n

i=1 αivi| αi ∈ F, 1 ≤ i ≤ n} is called the span of
v1, v2, ..., vn.

Remark 2.4.
The span of some vectors is a vector space itself.

With linear combination, we can create vectors from combining other vectors. But
when is one vector not generatable out of a set of other vectors? If it is not generatable,
then it is called linearly independent.
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Definition 2.5. (linearly independent)
Let V be a vector space with v1, v2, ..., vn ∈ V. The vectors v1, ..., vn are called linearly
independent if ∑n

i=1 αivi = 0 always implies α1 = α2 = ... = αn = 0. Otherwise they are
called linearly dependent.

In other words it is not possible to generate the zero vector with a set of linearly
independent vectors, except if all coefficients are already zero. Or a set of vectors is
linearly independent if there is no vector or a combination of vectors of that set that
is reproducable by the remaining vectors.

Definition 2.6. (finitely generated, generating set)
A vector space V is called finitely generated, if V = Span(v1, ..., vn) for a finite set
v1, v2, ..., vn ∈ V. Then v1, ..., vn is called a generating set.

Now a set of vectors can generate a vector space. But the mathematical interesting
question is, how many vectors are actually needed to generate that vector space. The
next theorem will give us the equivalence to a minimal set of vectors, that generates
the vector space.

Theorem 2.7.
Let V be a finitely generated vector space. Then the following are equivalent:

i) v1, v2, ..., vn is a minimal generating set,

ii) v1, v2, ..., vn is a maximal linearly independent set,

iii) Each vector v ∈ V is generated by a unique linear combination of v1, v2, ..., vn.

Instead of showing the equivalence of each statement to each other statementment,
one would use the method cycle of implications to show the equivalence of this three
implications. That means, it needs to be shown that i)⇒ ii), ii)⇒ iii) and iii)⇒ i).

The concept of the last theorem also has a specific name and is a very important
structure in mathematics.

Definition 2.8. (basis)
A set of vectors, that meets any of the three conditions in the previous theorem is
called a basis of V.
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Example 2.9.
The canonical basis for Rn would be the vectors

1
0
0
...
0

 ,


0
1
0
...
0

 , ...,


0
0
...
0
1

 .

Those are also called the unit vectors of Rn.

Definition 2.10. (dimension)
Let V be a finitely generated vector space. Then the number of elements in a basis of
V is called the dimension of V.

Remark 2.11.
All bases of a certain vector space have the same dimension.

2.2 Systems of linear equations and matrices

Now we want solve systems of linear equations. As we have seen earlier, we can solve
two linear equations with two unknown variables by adding and subtracting them
from each other. We were also able to solve one equation for one variable and then
use that solution in the second equation to calculate the variables. The question is
now, what are we going to do if we have huge systems of linear equation, that is we
have lots of equations and lots of unknown variables? In this chapter we learn how
to solve this with the Gaussian elimination. But first we look at an example for systems
of linear equations.

Example 2.12.
There are 3 persons of unknown age. The persons are Lina, Arne and Oliver. 4 years
ago Lina was twice as old as Arnes’ and Olivers’ age combined. Next year Oliver will
be one fifth as old as Linas’ and Arnes’ age combined. In ten years Arne will be half
as old as Linas’ and Oliver’ ages combined. The question is: How old are Lina, Arne
and Oliver today?
This actually yields us the follwing system of linear equations with A, O and L as
their ages today:

2A + 2O− L = 12

−A + 5O− L = −3

2A−O− L = 0.

At the end of the chapter we will be able to show, that Lina is 14, Arne is 9 and Oliver
is 4 years old.
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Definition 2.13. (matrix)
A rectangular table

A =

 a11 · · · a1n
...

...
am1 · · · amn


with numbers aij ∈ F, 1 ≤ i ≤ m, 1 ≤ j ≤ n is called a m × n-matrix over F. i
represents the row index and j represents column index of some entry aij. The set of all
m× n-matrices over F is denoted by Fm×n. The elements of F1×n are called row vectors
and the elements of Fm×n are called column vectors.

We can now define the addition and multiplication of matrices. Let A, B ∈ Rm×n,
C ∈ Rn×o and b ∈ Rn×1 be some matrices. Then we have

A + B =

 a11 · · · a1n
...

...
am1 · · · amn

+

b11 · · · b1n
...

...
bm1 · · · bmn

 =

 a11 + b11 · · · a1n + b1n
...

...
am1 + bm1 · · · amn + bmn

 ∈ Rm×n

A · b =

 a11 · · · a1n
...

...
am1 · · · amn

 ·
 b1

...
bm1

 =

 a11 · b1 + ... + a1n · bn
...

am1 · b1 + ... + amn · bn

 ∈ Rn×1

A · C = A · (C1|C2|...|Cn) = (A · C1|A · C2|...|A · Cn) ∈ Rn×o

with C1, C2, ..., Cn are the columns of C.

Remark 2.14.
If we multiply two matrices with each other, the number of columns of the first matrix
needs to match the number of rows of the second matrix. That is, we can only multiply
two matrices A, B with A ∈ Rm×n and B ∈ Rs×t if n = s holds. Then we have
A · B ∈ Rm×t.

The matrix multiplication follows the laws of associativity.

Lemma 2.15.
Let A, B, C ∈ Rn×n be some matrices. Then we have

(A · B) · C = A · (B · C).

The previous lemma works for any matrices that can be multiplied with each other.
They do not need to be of quadratic shape. While the associativity works for matrix
multiplication, the commutativity does not.



33

Remark 2.16.
In general the matrix multiplication is not commutative. That is for two matrices
A, B ∈ Rn×n, we have in general

A · B 6= B · A.

Example 2.17.
Let

A =

1 3 3
2 0 0
1 3 1

 ∈ R3×3 and B =

3 2
1
2

1
2

4 2

 ∈ R3×2

be some real matrices. Then we have

A2 = A · A =

10 12 6
2 6 6
8 6 4

 ∈ R3×3 and A · B =

 33
2

19
2

6 4
17
2

11
2

 ∈ R3×2.

The matrix products of B · B = B2 or B · A do not exist.

We add one quick notation, that will simplify the notations of matrices and vectors in
certain scenarios.

Definition 2.18. (transpose)
Let A ∈ Rm×n be a matrix with

A =


a11 a12 ... a1n
a21 a22 ... a2n
...

...
...

am1 am2 ... amn

 .

Then we call AT the transpose of matrix A, that is defined as

AT :=


a11 a21 ... am1
a12 a22 ... am2
...

...
...

a1n a2n ... amn

 .

The transpose AT of a matrix A is actually the reflection of the entries of A at the axis
that is represented by the diagonal elements of A.
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Example 2.19.
So for some matrices we actually have

A =

(
1 2
3 4

)
with AT =

(
1 3
2 4

)
or

b =


b1
b2
...

bn

 with bT =
(
b1 b2 ... bn

)
.

Now we have the structure of a matrix and we know how to multiply matrices and
vectors. With that we can actually define our systems of linear equations and simplify
a possible solving algorithm to the Gaussian Algorithm over the extended matrix
form.

Definition 2.20. (system of linear equations, extended matrix)
A system of m equations with n variables x1, x2, ..., xn of the form

a11x1 +a12x2 +... +a1nxn = b1
a21x1 +a22x2 +... +a2nxn = b2

...
...

...
...

am1x1 +am2x2 +... +amnxn = bm

with a11, ...amn, b1, ..., bn ∈ R is called a system of liner equations. For

A :=

 a11 ... a1n
...

...
am1 ... amn

 and b :=

b1
...

bn


we have that Ax = b is equivalent to the system of linear equations, where x =(

x1 ... xn
)T is the vector of the variables of the system. We call

(
A
∣∣b) =

 a11 ... a1n
∣∣ b1

...
...

∣∣ ...
am1 ... amn

∣∣ bn


the extended matrix. Furthermore b is called the right-hand side of the system.

In general we distinguish between two types of systems of linear equations.
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Definition 2.21. (homogeneous, inhomogeneous)
Let (A|b) be an extended matrix. The system is called homogeneous, if b = (0, ..., 0)T.
Otherwise we call the system inhomogeneous.

Solving systems of linear equations is to find the set

S =


x1

...
xn

 ∈ Rn×1

∣∣∣∣∣∣∣ Ax = b

 .

For that we use the Gaussian algorithm. The algorithm itself is based on three ele-
mentary row operations. Those are

i) Swapping two equations,

ii) Multiplying an equation with some number λ ∈ R \ {0},

iii) Adding a multiple of some equation to another.

These operations translate for an extended matrix (A|b) into

i) Swapping two rows,

ii) Multiplying a row with some number λ ∈ R \ {0},

iii) Adding a multiple of some row to another.

Theorem 2.22.
Elementary row operations do not change the solution of a system of linear equations.

We do not change the solution of a system of linear equations because we actually
manipulate the extended matrix with a bijective map.

Definition 2.23. (simple form)
A matrix A ∈ Rm×n is called in simple form, if there is a number r ∈ {0, 1, ..., m} with

i) The first r rows contain at least one non-zero entry each, the rows r + 1 to m
contain zeroes only.

ii) If si := min{j| aij 6= 0} for all i ≤ r then s1 < s2 < ... < sr.

iii) aisi = 1 for all i ∈ {1, 2, ..., m}.

iv) aij = 0 for all j 6= si.

A matrix in simple form is basicly a triangular or stair-like shaped matrix, that ensures
that each step has a 1 as an entry and below und above that entry are only zeroes.
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Example 2.24.
The following matrix is in simple form:

1 ∗ 0 0 ∗ ∗ 0 ∗
0 0 1 0 ∗ ∗ 0 ∗
0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 0


The ∗ represents any random real number.

We are able to get the solution of any system of linear equations right from the simple
form. So we need the following theorem:

Theorem 2.25.
Each matrix can be reduced to a simple form with elementary row transformations.

The Gaussian algorithm gives us a step by step algorithm about how we are able
to get out of any extended matrix a simple form. Basicly we use elementary row
transformations to achieve the simple form.

Algorithm 2.26. (Gaussian Algorithm)

Input: A linear system Ax = b
Output: The set S of all solutions
1. Use elementary row transformations on (A|b) to bring A into

simple form A′.
2. If A′ is in diagonal form, read off the unique solution S.
3. Erase all zero rows in (A′|b′), if there are any.
4. Add for each variable xi whose column does not have a step in

A′ an equation 1 · xi = αi with αi ∈ R. By that the extended
matrix (A′|b′) without zero rows will be transformed into an
uniquely defined system (A′′|b′′) with variables α1, ..., αk ∈ R.
In particular A′′ has a quadratic shape.

5. Use elementary row transformations on (A′′|b′′) to bring A′′ into
simple form.

6. Read off the set S of solutions with variables α1, ..., αk ∈ R.

Remark 2.27.
If Ax = b has one unique solution then it can be read off directly from the simple
form without any additional conditions, since it is a diagonal matrix.
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Remark 2.28.
If at any point in the Gaussian algorithm one zero row on the then transformed
matrix A equals a non negative number on the right-hand side, then this system has
no solution.

Example 2.29.
We use the problem at the beginning of this chapter. So we have the system of linear
equations

2A + 2O− L = 12

−A + 5O− L = −3

2A−O− L = 0.

We can transform this into the extended matrix with A = x1, O = x2 and L = x3. 2 2 −1
∣∣ 12

−1 5 −1
∣∣ −3

2 −1 −1
∣∣ 0


Now we try to create as many zeroes as possible and shape the matrix in a stair-like
form, that is the simple form. 2 2 −1

∣∣ 12
−1 5 −1

∣∣ −3
2 −1 −1

∣∣ 0

 I· 12 

 1 1 −1
2

∣∣ 6
−1 5 −1

∣∣ −1
2 −1 −1

∣∣ 0

 I I+I
 

I I I−2·I

1 1 −1
2

∣∣ 6
0 6 −3

2

∣∣ 3
0 −3 0

∣∣ −12


I IlI I I
 

1 1 −1
2

∣∣ 6
0 −3 0

∣∣ −12
0 6 −3

2

∣∣ 3

 I I·(− 1
3 ) 

1 1 −1
2

∣∣ 6
0 1 0

∣∣ 4
0 6 −3

2

∣∣ 3

 I−I I
 

I I I−6·I I

1 0 −1
2

∣∣ 2
0 1 0

∣∣ 4
0 0 −3

2

∣∣ 21


I I I·(− 2

3 ) 

1 0 −1
2

∣∣ 2
0 1 0

∣∣ 4
0 0 1

∣∣ 14

 I+ 1
2 I I I
 

1 0 0
∣∣ 9

0 1 0
∣∣ 4

0 0 1
∣∣ 14


Hence we can read off the solution as A = 9, O = 4 and L = 14.

Next we have system of linear equations in an extended matrix that is already in
simple form. We differentiate two cases:

Example 2.30.
i) The extended matrix is of an homogeneous system: We have1 0 4 5 0 7

∣∣ 0
0 1 2 8 0 3

∣∣ 0
0 0 0 0 1 1

∣∣ 0

 .
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Now we add one equation for all missing variables:

1 0 4 5 0 7
∣∣ 0

0 1 2 8 0 3
∣∣ 0

0 0 1 0 0 0
∣∣ α1

0 0 0 1 0 0
∣∣ α2

0 0 0 0 1 1
∣∣ 0

0 0 0 0 0 1
∣∣ α3


with α1, α2, α3 ∈ R \ {0}.

We derive the simple form again, which is now a diagonal matrix without the
right-hand side.

1 0 0 0 0 0
∣∣ −4α1 − 5α2 − 7α3

0 1 0 0 0 0
∣∣ −2α1 − 8α2 − 3α3

0 0 1 0 0 0
∣∣ α1

0 0 0 1 0 0
∣∣ α2

0 0 0 0 1 0
∣∣ −α3

0 0 0 0 0 1
∣∣ α3


with α1, α2, α3 ∈ R \ {0}.

The solution is 3-dimensional. So derive 3 linearly independent vectors from
that system. The easiest way is with α1 = 1, α2 = α3 = 0 for the first vector,
α2 = 1, α1 = α3 = 0 for the second vector and α3 = 1, α1 = α2 = 0 for the last
vector. So we get for our solution:

S = Span(v1, v2.v3) = Span





−4
−2
1
0
0
0


,



−5
−8
0
1
0
0


,



−7
−3
0
0
−1
1




ii) The extended matrix is of an inhomogeneous system:1 0 4 5 0 7

∣∣ 3
0 1 2 8 0 3

∣∣ 2
0 0 0 0 1 1

∣∣ 4

 .

First we derive a single special solution. Since we have an equation for x1, x2
and x5 we set x3 = x4 = x6 = 0. Then we get

vs =



3
2
0
0
4
0
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as one solution for our system. We still need to get all solutions. So as a second
part we need to get the solution of the homogeneous system. Since we have the
same matrix as in i) we get the three vectors:

v1 =



−4
−2
1
0
0
0


, v2 =



−5
−8
0
1
0
0


, v3 =



−7
−3
0
0
−1
1


So the solution to our inhomogeneous system is:

S = vs + Span(v1, v2, v3) = {vs + v| v ∈ Span(v1, v2, v3)}

=





3
2
0
0
4
0


+ v

∣∣∣∣∣∣∣∣∣∣∣∣∣
v ∈ Span





−4
−2
1
0
0
0


,



−5
−8
0
1
0
0


,



−7
−3
0
0
−1
1






There is a quick way to get the set of all solutions, if the solution does not consist of
just one element.

Theorem 2.31.
Let Ax = b be a system of linear equations and vs ∈ Rn is one solution, that is
Avs = b. If A is in simple form, then

vj := ej −
n

∑
k=1

akjejk,

for all j, that do not have a step in their column, form a basis for the set of solutions
Sh of the homogeneous system Ax = 0. The ej are the unit vectors of Rn. Furthermore
the set of solutions for Ax = b is

S = {vs + v| v ∈ Sh}.

n− r, with r is the number of steps in the simple form of A, is called the defect of the
linear system Ax = b.

The set of all solutions might be a single vector or in other cases it might be some
subset of vectors of the vector space V. In general this subset is not a subspace of V.
It is rather a so called affine subspace of V.
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Definition 2.32. (affine subspace)
Let A ⊆ V be a subset of the vector space V. Then A is called an affine subspace of V
if A is a translated subspace of V, that is if there is a subspace UA ⊆ V and a vector
v ∈ V such that

A =v + UA

:={v + u| u ∈ UA}.

UA is called the subspace associated to A.

In general an affine subspace is just a subspace that is translated into some direction
by some vector v ∈ V.

Example 2.33.

i) In R2 all lines and all points are affine subspaces of R2.

ii) In R3 all points, lines and planes are affine subspaces of R3.

The affine subspace is always parallel to its associated subspace, since the affine sub-
space is only a translated subspace. It is not rotated, reflected at some point or axis,
etc..
Lemma 2.34.
All subspaces A ⊆ V are also affine subspaces of V.

This is because any subspace of V may be written as 0V + A = {0V + u| u ∈ A}.
Definition 2.35. (dimension of an affine subspace)
The dimension of an affine subspace A ⊆ V is just the dimension of its associated sub-
space UA.

2.3 The scalar product

We already introduced the vector space Rn. That is the so called Euclidean Space. In
this chapter we will define some maps and structures for the Euclidean Space.

Definition 2.36. (n-dimensional Euclidean space)
Rn is called the n-dimensional Euclidean space.

The 2- and 3-dimensional space can be visualized with our cartesian coordinates.
The 2-dimensional space is just a plain, whereas the 3-dimensional space may be
visualized as our 3-dimensional world as we see and feel it. Then the vectors of the
2-dimensional and 3-dimensional Euclidean space are points on the plane or in the
space. We want to define some basic functions in an Euclidean space.
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Definition 2.37. (scalar product)
The function

· : Rn ×Rn → R : (u, v) 7→ u · v := u1 · v1 + u2 · v2 + ... + un · vn

is called the (canonical) scalar product on Rn.

The scalar product is often referred to as < , >. That is for two vectors u, v ∈ Rn we
have < u, v >:= u · v. The scalar product itself allows us to calculate the length of
vectors and even angles between two vectors.

Definition 2.38. (lenght, distance, angles betweens vectors, orthogonal)
The length of a vector v ∈ Rn is

|v| :=
√

v · v =
√

v2
1 + v2

2 + ... + v2
n.

The distance between two points u, v ∈ Rn is

|u− v| =
√
(u1 − v1)2 + (u2 − v2)2 + ... + (un − vn)2.

Let u, v ∈ Rn be two vectors. If the angle α := ](u, v) between u and v is between 0
and π, then we have

cos α =
u · v
|u| · |v| .

Two vectors u, v ∈ V are called orthogonal if u · v = 0 holds.

Example 2.39.
For two vectors

(
1
2

)
,
(

3
1
2

)
, the angle between them is given as α = arccos 1·3+2· 12√

12+22+

√
32+ 1

2
2
=

arccos 4√
5+
√

37
4
≈ 40, 7◦.

(
1
2

)

(
3
1
2

)
α
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2.4 Linear functions

In linear algebra we work with linear functions and linear maps. Every map we have
seen so far in this chapter, except the section with the scalar product, was a linear
map. We define such a map as follows:

Definition 2.40. (linear map)
Let V, W be vector spaces. A map f : V → W is called linear if and only if the two
following conditions hold:

i) For all λ ∈ K, v ∈ V we have

f (λ · v) = λ · f (v).

ii) For all v, w ∈ V we have

f (v + w) = f (v) + f (w).

A linear map is a map that satisfies some special properties. In particular the zero
vector needs to map to zero. Therefore it is always an easy counterexample to show
that the zero vector does not map to zero.

Example 2.41.
i)

f : R3 → R3 : (x, y, z)T 7→

2x + y
2y + z

2z


f is a linear function since the conditions hold:

f (λx, λy, λz) =

2λx + λy
2λy + λz

2λz

 = λ ·

2x + y
2y + z

2z

 = λ f (x, y, z)

and

f (x + r, y + s, z + t) =

2(x + r) + y + s
2(y + s) + z + t

2(z + t)

 =

2x + y
2y + z

2z

+

2r + s
2s + t

2t


= f (x, y, z) + f (r, s, t).
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ii)

g : R2 → R2 : (x, y)T 7→
(

y− x
x + 2

)
g is not a linear function because the first condition is not satisfied. In particular
the zero vector does not map to the zero.

f (0 · x, 0 · y) = f (0, 0) =
(

0− 0
0 + 2

)
6=
(

0
0

)
= 0 · f (x, y).

Theorem 2.42.
Let V, W be vector spaces. A map f : V → W is linear if and only if there exists a
matrix A with f (v) = A · v for all v ∈ V.

Basicly we can rewrite each linear function into a matrix vector product and vice
versa.

Example 2.43.
The matrix A for f in the previous example is

A =

2 1 0
0 2 1
0 0 2


Definition 2.44. (identity matrix)
The matrix

In :=

1 0
. . .

0 1

 = (δij)1≤i,j≤n ∈ Fn×n

with δij =

{
1 , i = j,

0 , i 6= j
is called the identity matrix.

The identity matrix is the neutral element of the matrix multiplication. Hence we have
A · In = In · A = A for all matrices A ∈ Fn×n.

Definition 2.45. (inverse matrix)
If for A ∈ Fn×n exists a B ∈ Fn×n with A · B = In, then A is called invertible. Further-
more B · A = In holds and B is invertible, too. B is called the inverse of A denoted by
A−1.

An invertible matrix is often referred to as a regular matrix. A matrix, that is not
regular is referred to as a singular.
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Example 2.46.

Let A =

1 2 1
2 1 3
1 1 1

 be a matrix. To get the inverse we need to get a matrix A−1 that

holds

A · A−1 = I3 =

1 0 0
0 1 0
0 0 1

 .

This actually means, that we have 3 vectors in A−1 that yield their respected unit
vectors of R3 if multiplied with A. So we use the Gaussian algorithm to solve a
system of linear equations for the unit vectors.1 2 1

∣∣ 1 0 0
2 1 3

∣∣ 0 1 0
1 1 1

∣∣ 0 0 1

 ... 

1 0 0
∣∣ −2 −1 5

0 1 0
∣∣ 1 0 −1

0 0 1
∣∣ 1 1 −3


If the Gaussian algorithm yields a unique solution, then we have an inverse for A. In
this case the inverse is

A−1 =

−2 −1 5
1 0 −1
1 1 −3


and we have−2 −1 5

1 0 −1
1 1 −3

 ·
1 2 1

2 1 3
1 1 1

 =

1 2 1
2 1 3
1 1 1

 ·
−2 −1 5

1 0 −1
1 1 −3

 =

1 0 0
0 1 0
0 0 1

 .

The following lemma is already known for bijective functions.

Lemma 2.47.
Let A, B ∈ Fn×n be two invertible matrices. Then A · B is invertible and we have

(A · B)−1 = B−1 · A−1.

Proof:
The result follows directly from the associativity of matrix multiplication. We have

(A · B) · (B−1 · A−1) = A · B · B−1 · A−1 = A · In · A−1

= A · A−1 = In.

Hence (A · B)−1 = B−1 · A−1 follows. �
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We want to continue with some linear functions, that reflect or rotate points in the
plane. Therefore we will observe the following functions in the 2-dimensional Eu-
clidean space.

Definition 2.48. (rotation, reflection, scaling)
Let v ∈ R2 be a vector.
Then for α ∈ [0, 2π) we have the rotation of v by an angle α about the origin defined as

Rα · v :=
(

cos α − sin α

sin α cos α

)
· v.

The reflection of v at the vertical axis is defined as

S · v :=
(
−1 0
0 1

)
· v.

The scaling of v by a scalar λ ∈ R is defined as

Dλ · v :=
(

λ 0
0 λ

)
· v.

The three basic functions may also be combined to for example first rotate and then
scale etc.. In higher dimension we can also have rotations and scalings. Furthermore
we have rotations about some axis that may be somewhere in the space, but that do
not need to be some axis of the coordinate system. We will not cover this in this
lecture.

2.5 Determinants and characteristic space

We start this chapter with a function, that defined by some conditions, is fundamental
for various concepts in linear algebra.

Definition 2.49. (determinant)
The function

det : Fn×n → F

is called a determinant if it satisfies the following conditions:

i) det(In) = 1.

ii) The determinant is alternating in the columns of the matrix, that is for A =

(a1|a2|...|an) with columns a1, a2, ..., an ∈ Fn we have: det(A) = 0 holds, if there
are two indicies i, j with 1 ≤ i < j ≤ n such that ai = aj holds.
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iii) The determinant is multilinear, that is it is linear in each column of A: With
A = (a1|...|ai|...|an) and ai = αai + βãj we have

det(A) = α · det(a1|...|ai|...|an) + β · det(a1|...|ãi|...|an).

The determinant function is uniquely defined by those three conditions.

The concept of the determinant has its usefulness. With the determinant we are able
to determine if a system of linear equations does have a unique solution or rather if a
quadratic matrix is invertible.

Lemma 2.50.
Let A ∈ Rn×n be a matrix. A is invertible if det(A) 6= 0.

Furthermore the determinant can be used to solve a system of linear equations. This
algorithm is called Cramer’s rule. Sadly we are not able to show Cramer’s rule since
our time in this lecture is limited. By that reason we will only show how to get the
determinant of a matrix A ∈ Rn×n with n ≤ 3. So the case for n = 1 is the entry itself.
For the case n = 2 we have
Lemma 2.51.
Let A ∈ R2×2 be a matrix. Then the determinant of A is given by

det(A) =

(
a11 a12
a21 a22

)
= a11 · a22 − a12 · a21.

Finally for n = 3 we have

Lemma 2.52. (Sarrus)
Let A ∈ R3×3 be a matrix. Then the determinant of A is given by

det(A) =

a11 a12 a13
a21 a22 a23
a31 a32 a33


=a11 · a22 · a33 + a12 · a23 · a31 + a13 · a21 · a32

− a13 · a22 · a31 − a11 · a23 · a32 − a12 · a21 · a33.

For n = 3 the determinant is the result of the sum of the multiplied entries of each
main diagonal and subtract the multiplied entries of all other diagonals. An example
of calculating a determinant is on the next page.

For bigger matrices we could use the Gaussian algorithm or Laplace’s formula to deter-
mine the determinant of a matrix A. But due to limited time we are not able to show
it here.

We have seen, how to determine the determinant for small systems. For the case n = 2
we get a simple formula, to calculate the inverse of a function via the determinant.
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Lemma 2.53.

Let A =

(
a b
c d

)
∈ R2×2 be an invertible matrix. Then the inverse of A is given as

(
a b
c d

)−1

=
1

det(A)
·
(

d −b
−c a

)
.

Now we are interested in a set of vectors, that are not generally transformed by any
matrix but that are only scaled. We will call those vectors eigenvectors. They have an
important role in mathematics. For example, if there is a given linear function, does
this function have a set of vectors in their domain such that for each vector we get the
same vector again? That is

A · v = v.

More generally we can rephrase the question into: Is there a set of vectors that only
map to a scalar multiple of the original vector? For some scalar λ ∈ R this might be
noted as

A · v = λ · v.

So we define the characters of the previous equation.

Definition 2.54. (eigenvector, eigenvalue, characteristic space)
Let A ∈ Rn×n be a matrix, v ∈ Rn \ {0} and λ ∈ R. Then v is called an eigenvector of
A with eigenvalue λ, if A · v = λ · v holds. The characteristic space or eigenspace of some
eigenvalue λ is the set of all eigenvectors of the eigenvalue λ.

An important function in the context of the characteristic space is the characteristic
polynomial.

Definition 2.55. (characteristic polynomial)
The characteristic polynomial of a matrix A ∈ Rn×n is a function R→ R : λ 7→ det(A−
λ · In) denoted by

χA(λ) := det(A− λ · In).

The characteristic polynomial yields the eigenvalues of the corresponding matrix.

Lemma 2.56.
The zeroes of the characteristic polynomial of A are the eigenvalues of A.
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Example 2.57.

Let A =

1 2 3
4 5 6
7 8 9

 be a matrix. Then the characteristic polynomial is

χA(λ) =det(A− λ · I3) = det(

1 2 3
4 5 6
7 8 9

−
λ 0 0

0 λ 0
0 0 λ

)

=det(

1− λ 2 3
4 5− λ 6
7 8 9− λ

)

=(1− λ) · (5− λ) · (9− λ) + 2 · 6 · 7 + 3 · 4 · 8
− 3 · (5− λ) · 7− (1− λ) · 6 · 8− 2 · 4 · (9− λ)

= −λ3 + 15λ2 + 18λ

= −λ · (λ2 − 15λ− 18)

= −λ · (λ− 15 + 3
√

33
2

) · (λ− 15− 3
√

33
2

).

Hence the eigenvalues of A are λ1 = 0, λ2 = 15+3
√

33
2 , λ3 = 15−3

√
33

2 .

With the help of the characteristic polynomial we are able to determine the eigenval-
ues and eigenvectors of A. So to get the eigenvalues and eigenvectors of some matrix
A, we proceed with the following steps:

1. Determine the characteristic polynomial χA(λ) of A

2. Find the zeroes of χA(λ), which are the eigenvalues λ1, ..., λs of A

3. For each eigenvalue λi, i ∈ {1, ..., s} the characteristic space of the eigenvalue λi
is the set of solutions to the homogeneous system

(A− λi · In) · vi = 0.

Example 2.58.

Let A =

1 3 0
0 0 −2
0 −2 0

 be a matrix. Determine the eigenvalues and their respected
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characteristic spaces. So first we need to calculate the characteristic polynomial:

χA(λ) = det(

1− λ 3 0
0 −λ −2
0 −2 −λ

)

= (1− λ) · (−λ)2 − (−2)2 · (1− λ)

= (1− λ) · (λ2 − 4)

= (1− λ) · (λ− 2) · (λ + 2)

So the eigenvalues of A are λ1 = 1, λ2 = 2 and λ3 = −2. Now we can determine the
characteristic spaces. For λ1 = 1 we have0 3 0

∣∣ 0
0 −1 −2

∣∣ 0
0 −2 −1

∣∣ 0

 
0 1 0

∣∣ 0
0 0 1

∣∣ 0
0 0 0

∣∣ 0

⇒ v1 =

1
0
0


For λ2 = 2 we get−1 3 0

∣∣ 0
0 −2 −2

∣∣ 0
0 −2 −2

∣∣ 0

 
1 −3 0

∣∣ 0
0 1 1

∣∣ 0
0 0 0

∣∣ 0

 
1 0 3

∣∣ 0
0 1 1

∣∣ 0
0 0 0

∣∣ 0

⇒ v2 =

−3
−1
1


For λ3 = −2 we have3 3 0

∣∣ 0
0 2 −2

∣∣ 0
0 −2 2

∣∣ 0

 
1 1 0

∣∣ 0
0 1 −1

∣∣ 0
0 0 0

∣∣ 0

 
1 0 1

∣∣ 0
0 1 −1

∣∣ 0
0 0 0

∣∣ 0

⇒ v3 =

−1
1
1



So λ1 = 1 has an eigenvector v1 =

1
0
0

, λ2 = 2 has an eigenvector v2 =

−3
−1
1

 and

λ3 = −2 has an eigenvector v3 =

−1
1
1

. The characteristic spaces are generated by

the span of their respected eigenvectors.

Definition 2.59. (algebraic and geometric multiplicity)
The (algebraic) multiplicity of some eigenvalue λi is the multiplicity of the eigenvalue,
that is the number of linear factors (λ − λi) in the characteristic polynomial. The
geometric multiplicity of an eigenvalue λ is the dimension of the characteristic space of
λ.

A characteristic space may have a geometric multiplicity greater than 1 but it is always
at most the algebraic multiplicity.
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Example 2.60.

Let A =

0 0 0
0 0 0
0 0 0

 be the zero matrix. Then A has only the eigenvalue λ1 = λ2 =

λ3 = 0 with a multiplicity of 3. The eigenspace of λ1 = 0 is R3. Therefore the
geometric multiplicity of λ1 = 0 is 3.
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3 Limits

3.1 Sequences

Definition 3.1. (sequence)
A function f : N→ R is called a sequence. We denote the n-th element with an rather
than with f (n), thus the sequence is

(a1, a2, a3, ...) or (an)n∈N.

Also the Domain of a sequence might be N∪ {0}.

Remark 3.2.
A sequence can be defined explicitly for each element or recursively, that is each ele-
ment an is defined by some previous elements.

Example 3.3.
Some examples of a sequence, that is given explicitly are:

i) (2)n∈N a constant sequence

ii) (a0 + n · d)n∈N an arithmetic sequence with commomn difference d

iii) (a0 · qn)n∈N an geometric sequence with common ratio q

iv) ((1 + 1
n )

n)n∈N

v) ((−1)n)n∈N

vi) ( 1
n )n∈N

Examples of sequences, that are stated recursively are

i) a0 = 1, an+1 =
√

1 + an

ii) a0 = 0, a1 = 1, an+2 = an+1 + an the Fibonacci-sequence

As seen in the last example, a recursively defined sequence may be dependet on more
than one previous element.

Definition 3.4. (monotonicially increasing/decreasing, bounded)
A sequence (an)n is called monotonicially increasing (monotonicially decreasing) if an ≤
an+1 (an ≥ an+1) holds for all n. A sequence (an)n is called bounded, if there exists
some M ∈ R such that |an| ≤ M for all n holds.
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Definition 3.5. (convergent with limit, divergent)
A sequence (an)n is called convergent with limit a, if for each ε > 0 there is some
n0 = n0(ε) ∈N such that

|an − a| < ε, ∀n ≥ n0

holds. Then the limit of the sequence is denoted by

lim
n→∞

an = a or an
n→∞−→ a.

If no such limit a exists, then (an)n is called divergent.

Remark 3.6.
If a sequence (an)n is divergent, we denote its limit by lim

n→∞
= +∞ ( lim

n→∞
= +∞) if for

any M ∈ R there is some n0 = n0(M) ∈ N such that an ≥ M (an ≤ M) holds for all
n ≥ n0.

1 2 3 4 5 6 7
−1

1

2

3

a + ε

a− ε

a

n0(ε)

Remark 3.7.
If a sequence is convergent with limit a, then this limit is unique.

Remark 3.8.
A sequence that converges is bounded.

Example 3.9.
We want to show, that (an)n∈N = ( 1

n )n∈N converges with limit 0. By the definiton we
need to show that for all ε > 0 exists some n0 = n0(ε) ∈N such that∣∣∣∣ 1n − 0

∣∣∣∣ = 1
n
< ε

⇔ 1
ε
< n
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for all n ≥ n0. So for small ε we get big 1
ε and therefore big a n0. Since N is not

bounded by any number we may choose any n0 > 1
ε . So we get for all ε > 0, that

there exists an n0 := n0(ε) >
1
ε such that∣∣∣∣ 1n − 0

∣∣∣∣ < ε

holds for all n ≥ n0. Thus

lim
n→∞

1
n
= 0.

1 2 3 4 5 6 7

−2

−1

1

2

a + ε = 0 + 0, 5

a− ε = 0− 0, 5

n0(0.5) = 3
a = 0

Theorem 3.10.
Any sequence that is both bounded and monotonic is convergent.

Example 3.11.
With the last theorem we want to show that (an)n∈N := ( 1

n )n∈N converges. So we
need to show that it is both bounded and monotonic. Furthermore we guess, that
lim

n→∞
1
n = 0. First we show that ( 1

n )n∈N is monotonicially decreasing. We have for any
n ∈N

an =
1
n
>

1
n + 1

= an+1.

So (an)n∈N is monotonicially decreasing. Second, the sequence (an)n∈N is bounded by
M = 1, since 1

n ≥ 0 holds for all n ∈ N. Furthermore a1 = 1 and an is monotonicially
decreasing, so we have an ≤ 1. Then we deduce

−M = −1 ≤ 0 ≤ 1
n
≤ 1 = M.

We have shown, that ( 1
n )n∈N is both bounded and monotonic. So it converges.

In the previous example it was sufficent to show, that ( 1
n )n∈N has a lower bound and

is monotonicially decreasing.
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Theorem 3.12.
Let (an)n and (bn)n be convergent sequences with limits a and b respectively. Let α

and β be real or complex numbers. Then we have

i) lim
n→∞

(α · an + β · bn) = α · a + β · b,

ii) lim
n→∞

an · bn = a · b,

iii) lim
n→∞

an
bn

= a
b , if bn 6= 0 for all n and b 6= 0.

Theorem 3.13. (Sandwich’s lemma)
Let (an)n, (bn)n, (cn)n be sequences with

an ≤ bn ≤ cn, ∀n ∈N

and

lim
n→∞

a= lim
n→∞

cn.

Then we have

lim
n→∞

an = lim
n→∞

bn = lim
n→∞

cn.

We add a list of some convergent sequences including their respective limits:

i) lim
n→∞

1
n = 0

ii) lim
n→∞

1√
n = 0

iii) lim
n→∞

1
nk = 0 for all k ∈N

iv) lim
n→∞

q
1
n = 1 for all q > 0

v) lim
n→∞

n
√

n = 1

vi) lim
n→∞

qn =


0 , −1 < q < 1

1 , q = 1

∞ , q > 1
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Theorem 3.14. (Euler’s number)
The sequence

((1 +
1
n
)n)n∈N

is monotonicially increasing and satisfies

2 ≤ (1 +
1
n
)n ≤ 3

for all n ∈N. Thus it converges with

lim
n→∞

(1 +
1
n
)n =: e.

e is called Euler’s number. (e ≈ 2.71828)

Proof:
Let an := (1 + 1

n )
n. Then

an+1

an
=

(1 + 1
n+1)

n+1

(1 + 1
n )

n
=

(
n + 2
n + 1

)n+1( n
n + 1

)n
=

n + 1
n

(
n + 2
n + 1

)n+1 ( n
n + 1

)n+1

=
n + 1

n

(
n2 + 2n
(n + 1)2

)n+1

=
n + 1

n

(
n2 + 2n + 1− 1

(n + 1)2

)n+1

=
n + 1

n

(
1− 1

(n + 1)2

)n+1

.

We have

(n + 1)2 ≥ 1

⇔ 1 ≥ 1
(n + 1)2

⇔ a := − 1
(n + 1)2 ≥ −1.

Hence we may employ Bernoulli’s inequality with (a + 1)n+1 ≥ (n + 1) · a + 1:

an+1

an
≥ n + 1

n

(
(n + 1)

−1
(n + 1)2 + 1

)
=

n + 1
n

(1− 1
n + 1

)

=
n + 1

n
· n

n + 1
= 1

⇔ an+1 ≥ an.

Thus (an)n is monotonicially increasing. Since a1 = 2 holds, we have 2 ≤ an for all n.
Now we will prove an ≤ 3 for all n:
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The Binomial Theorem yields:

an =

(
1 +

1
n

)n
=

n

∑
k=0

(
n
k

)
1
nk = 1 + 1 +

n

∑
k=2

(
n
k

)
1
nk

≤ 2 +
n

∑
k=2

1
2k−1

with (
n
k

)
1
nk =

n · (n + 1) · ... · (n− k + 1)
k! · nk ≤ 1

k!
≤ 1

2k−1 .

The Geometric Sum Formula ∑n
i=0 qi = qn+1−1

q−1 yields then:

an ≤ 2 +
n

∑
k=2

1
2k−1 = 2 +

n−1

∑
k=1

1
2k = 1 +

n−1

∑
k=0

1
2k

= 1 +
1

2n − 1
1
2 − 1

= 1 +
1− (1

2)
2

1− 1
2

= 1 + 2
(

1−
(

1
2

)n)
≤ 1 + 2 = 3. �

Example 3.15.
We will show an example of a rekursive defined sequence. Let a1 := 1 and an+1 :=
1
4 a2

n + 1. We will use the theorem about bounded and monotonic squences. Besides
those two conditions we need to calculate the limit.

i) If there exists a limit, that is a = lim
n→∞

, then we have:

an+1 =
1
4

a2
n + 1

n→∞−→ a =
1
4

a2 + 1

⇔ 0 =
1
4

a2 − a + 1 =

(
1
2

a− 1
)2

⇔ a = 2.

ii) Now we show that (an)n is monotonic.

an+1 − an =
1
4

a2
n + 1− an =

(
1
2

an − 1
)2

≥ 0, ∀n ∈N.

Therefore (an)n is monotonic.
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iii) It remains to be shown, that (an)n (S(n)) is bounded. We will show by induction,
that there is an upper bound with an ≤ 2 for all n ∈N. base case:

S(1) a1 = 1 ≤ 2.

inductive step: We assume that S(n) is true for some n ∈N.

an+1 =
1
4

a2
n + 1

I.H.
≤ 1

4
22 + 1 = 2.

Thus by proof by induction, (an)n has an upper bound.

By the theorem for monotonic and bounded sequences, we have that (an)n is conver-
gent with

lim
n→∞

an = 2.

Remark 3.16.
The considerations done about sequences of single numbers can be extended to points
x ∈ Rn. The limit, convergence and divergence will be defined identically. The
theorem about adding and scalar multiplication of limits still holds then.

3.2 Series

In this chapter we will consider infinite sums, like 0+ 1+ 2+ 3+ ... and others. Those
will be called series.

Definition 3.17. (series)
Let (ak)k∈N be a sequence. Then for all n ∈N

sn :=
n

∑
k=1

ak

is called the n-th partial sum. The sequence (sn)n∈N is called a series. It is denoted by

∞

∑
k=1

ak.

A series converges if the sequence of its partial sums, that is (sn)n∈N converges. In this
case we write

∞

∑
k=1

ak = lim
n→∞

sn

for the limit. If a series does not converge, then it is called divergent. A series converges
absolutely, if ∑∞

k=1 |ak| converges.
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Lemma 3.18.
If ∑∞

k=1 ak converges absolutely, then it also converges.

Theorem 3.19. (necessary condition)
If ∑∞

k=1 ak converges, then lim
k→∞

ak = 0 holds.

Example 3.20.
• Geometric Series

∞

∑
k=0

qk =
1

1− q
, for |q| < 1.

We have with the Geometric Sum Formula
∞

∑
k=0

qk = lim
n→∞

n

∑
k=0

qk q 6=1
= lim

n→∞

qn+1 − 1
q− 1

= lim
n→∞

1− qn+1

1− q
|q|<1
=

1
1− q

.

•
∞

∑
k=1

1
k(k + 1)

= 1.

We have
∞

∑
k=1

1
k(k + 1)

= lim
n→∞

n

∑
k=1

1
k(k + 1)

= lim
n→∞

n

∑
k=1

(
1
k
− 1

k + 1

)
= lim

n→∞

n

∑
k=1

1
k
−

n

∑
k=1

1
k + 1

= lim
n→∞

(
1
1
− 1

n + 1

)
= 1.

The sum is a so called telescoping series. The proof is a method of differences.
In the series only the very first and the very last term will remain. All other
summands are erased after cancellation.

• Harmonic Series
∞

∑
k=1

1
k
= +∞

The Harmonic Series diverges because

∞

∑
k=1

1
k
= lim

n→∞

n

∑
k=1

1
k

= lim
n→∞

1
1
+

1
2
+

1
3
+

1
4︸ ︷︷ ︸

≥2· 14=
1
2

+
1
5
+

1
6
+

1
7
+

1
8︸ ︷︷ ︸

≥4· 18=
1
2

+ ... +
1
n

= ∞
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The Harmonic Series is an example, that the necessary condition is not sufficient
for a series to converge. The necessary condition is satisfied with lim

k→∞
ak =

lim
k→∞

1
k = 0, yet the series diverges.

Next we state the linearity of series.

Theorem 3.21.
Let ∑∞

k=1 ak = a and ∑∞
k=1 bk = b be two convergent series and α, β ∈ R. Then

∞

∑
k=1

(αak + βbk) = αa + βb

holds.

Example 3.22.
Consider the series ∑∞

k=1
7

10k . Then we have

∞

∑
k=1

7
10k = 7 ·

∞

∑
k=1

1
10k = 7 ·

(
−1 +

∞

∑
k=0

1
10k

)
geom.series

= 7

(
−1 +

1
1− 1

10

)
= ... =

1
7

.

Theorem 3.23. (Cauchy Product of Series)
Let ∑∞

k=0 ak = a and ∑∞
k=0 bk = b be two absolutely convergent series. Then the Cauchy

product converges with(
∞

∑
k=0

ak

)
·
(

∞

∑
k=0

bk

)
:=

∞

∑
k=0

(
k

∑
j=0

ajbk−j

)
= a · b.

Now we state a couple of sufficient conditions for series to be convergent:

Theorem 3.24. (comparison test)
Let ∑∞

k=1 ak and ∑∞
k=1 bk be two series with bk ≥ 0 for all k.

i) If there is some k0 ∈ N such that |ak| ≤ bk for all k ≥ k0 and ∑∞
k=1 bk converges,

then ∑∞
k=1 ak converges absolutely.

ii) If there is some k0 ∈ N such that |ak| ≥ bk for all k ≥ k0 and ∑∞
k=1 bk diverges,

then ∑∞
k=1 ak diverges as well.

Example 3.25.
Show that ∑∞

k=1
1
k2 converges. We have

1
k2 ≤

2
k(k + 1)
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and

∞

∑
k=1

2
k(k + 1)

= 2
∞

∑
k=1

1
k(k + 1)︸ ︷︷ ︸
=1

= 2

converges. Hence by the comparison test ∑∞
k=0

1
k2 converges as well.

Since we have shown that the harmonic series diverges but ∑∞
k=1

1
k2 converges, we

want to state the following lemma

Lemma 3.26.
The series

∞

∑
k=1

1
kα

converges for α > 1, but diverges for 0 < α ≤ 1.

Theorem 3.27. (ratio test)
Let ∑∞

k=1 ak be a series with ak 6= 0 for all k. Furthermore assume that the limit

a := lim
k→∞

∣∣∣∣ ak+1

ak

∣∣∣∣
exists. Then ∑∞

k=1 ak converges absolutely for a < 1, but diverges for a > 1. There is
no statement for a = 1.

Example 3.28.
Show that ∑∞

k=1
k2

2k converges. We have

∣∣∣∣ ak+1

ak

∣∣∣∣ =
∣∣∣∣∣∣
(k+1)2

2k+1

k2

2k

∣∣∣∣∣∣ =
∣∣∣∣∣ (k + 1)2

k2 · 2k

2k+1

∣∣∣∣∣ =
(

k + 1
k

)2

· 1
2
=

1
2

(
1 +

1
k

)2
k→∞−→ 1

2
< 1.

Therefore by the ratio test, the series ∑∞
k=1

k2

2k converges.

Theorem 3.29. (root test)
Let ∑∞

k=1 ak be a series. If the limit

a := lim
k→∞

k
√
|ak|

exists, then ∑∞
k=1 ak converges for a < 1, but diverges for a > 1. There is no statement

for a = 1.
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Example 3.30.
Show that ∑∞

k=1
k2+1

3k converges. We have

lim
k→∞

k
√
|ak| = lim

k→∞

k

√
k2 + 1

3k = lim
k→∞

k
√

k2 + 1
3

=
1
3
< 1.

Therefore the series ∑∞
k=1

k2+1
3k converges by the root test.

The last example could been shown with the ratio test, too.

Theorem 3.31. (alternating series test, Leibniz’s test)
Let ∑∞

k=1(−1)kak be a series with ak ≥ 0 for all k. Furthermore (ak)k is monotonicially
decreasing with lim

k→∞
ak = 0. Then ∑∞

k=1(−1)kak converges.

We have seen that the harmonic series diverges. But alternating the summands of the
harmonic series creates a convergent series.

Example 3.32.
Show that ∑∞

k=1(−1)k 1
k converges. We have that 1

k ≥ 0 holds for all k. Furthermore(
1
k

)
k

is monotonicially decreasing with limit lim
k→∞

ak = 0, as we have shown before.

Therefore by the alternating series test the series ∑∞
k=1(−1)k 1

k converges.

3.3 Continuous Functions

We can derive the limit of functions from our previous chapters about limits of se-
quences.

Definition 3.33. (limit)
Let D ⊆ Rn be a subset, f : D → R a function and x0 ∈ Rn such that there is
a sequence (ym)m with ym ∈ D \ {x0} for all m and lim

m→∞
ym = x0. If for all such

sequences (ym)m the limit

lim
m→∞

f (ym)

exists and is the same, then we write

lim
x→x0

f (x) = a or f (x)
x→x0−→ a.

We call a the limit of f in x0.
If D contains an interval (−∞, s) ((s, ∞)) for some s ∈ R, then the limit

lim
x→−∞

f (x)
(

lim
x→∞

f (x)
)

is defined analoguesly.
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Yet there is another defintion of the limit, that works without the sturcture of se-
quences. The two definitions are the same.

Definition 3.34. (limit)
Let f : I → R be a function on the interval I ⊆ R and x0 ∈ I or x0 is a boundary point
of I. Then there exists the limit

lim
x→x0

f (x) = a

if the following holds:
For all ε > 0 exists a δ = δ(ε) > 0, such that

| f (x)− a| < ε

for all x ∈ I with |x− x0| < δ, x 6= x0.

a + ε

a− ε
a

x0︸︷︷︸
δ

From the limits of sequences we can derive the following rules for the limits of func-
tions.

Theorem 3.35.
Let D ⊆ Rn be a subset, f , g : D → R functions and x0 ∈ Rn a point such that limits
lim

x→x0
f (x) = a and lim

x→x0
g(x) = b exist. Then we have

i) lim
x→x0

( f (x) + g(x)) = a + b

ii) lim
x→x0

( f (x) · g(x)) = a · b

iii) lim
x→x0

f (x)
g(x) =

a
b , if b 6= 0.

Now we want to use the limit about functions to define continuity:
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Definition 3.36. (continuous)
Let D ⊆ Rn be a subset, f : D → R a function and x0 ∈ D such there is a sequence
(ym)m with ym ∈ D \ {x0} for all m and lim

m→∞
ym = x0. If

lim
x→x0

f (x) = f (x0),

that is, the limit exists and equals the value of x0, then f is called continuous at x0. If
f is continuous at all x0 ∈ D, then f is called continuous.

We may define analoguesly the continuous functions without the sequences but just
with the limits of functions via the ε-δ-Definition.
Definition 3.37. (continuous)
Let f : I → R a function with an interval I and x0 ∈ I.

i) f is called continuous in x0, if

lim
x→x0

f (x) = f (x0)

holds, that is for all ε > 0 exists a δ > 0 with: | f (x)− f (x0)| < ε, if |x− x0| < δ.

ii) f is called continuous on I, if f is continuous in all points x0 ∈ I.

Example 3.38.
Here we give some functions, that are continuous or not.

i) Polynomials are continuous.

ii) The function

f : R→ R : x 7→
{

0 , x < 0

1 , x ≥ 0

is not continuous in 0 because the limit lim
x→0

does not exist. The one sided limits

exists, with lim
x↘0

f (x) = 1 and lim
x↗0

f (x) = 0, but they do not match.

iii) The vector length

| · | : Rn → R : v 7→ |v|

is a continuous function.

iv) The Dirichlet function

f : R→ R : x 7→
{

0 , x irrational

1 , x rational

is not continuous in any point, since each interval of positive length contains
both irrational and rational numbers.
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Definition 3.39. (continuously extended)
Let f : I → R be a function over an interval I. If f is continuous on I \ {x0} and
lim

x→x0
f (x) = y exists, then f may be continuously extended in x0 with f (x0) = y.

Example 3.40.
Let f : R \ {−2} → R : x 7→ x2−4

x+2 be a function. Then f is continuous as a compo-
sition of continuous functions (polynomials are continuous). Furthermore f can be
continuously extended in −2 with

lim
x→−2

x2 − 4
x + 2

= lim
x→−2

x− 2 = −4.

Then we have

f̂ : R→ R : x 7→
{

x2−4
x+2 , , x ∈ R \ {−2}
−4 , x = −2

as the continuous extension of f .

There are some basic rules for continuous functions.
Theorem 3.41.
Let I ⊆ Rn, x0 ∈ I, I1, I2 ⊆ R and x̃0 ∈ I1.

i) If f , g : I → R are continuous at x0, then so are

f ± g, f · g and
f
g

with 0 /∈ g(I) for the last.

ii) If f : I1 → I2 is continuous in x̃0 and g : I2 → R is continuous in f (x̃0) then
g ◦ f : I1 → R is also continuous in x̃0.

The following theorem gives for each continuous function f defined on an interval,
that f will map to all points between the image of two different points.

Theorem 3.42. (Intermediate Value Theorem)
Let a < b be real numbers and f : [a, b] → R a continuous function. Then f takes all
values in [ f (a), f (b)].

The intermediate value theorem yields the existence of zeroes for continuous func-
tions if f (a) ≤ 0 ≤ f (b).

Corollary 3.43.
Let a < b be real numbers and f : [a, b] → R a continuous function with f (a) ≤ 0 ≤
f (b). Then f has at least one zero in [a, b], that is there exists a x ∈ [a, b] such that
f (x) = 0.
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Theorem 3.44. (Theorem about Maximum and Minimum)
Let I = [a, b] ⊂ R be an interval with a < b and f : I → R continuous. Then

f (I) = f ([a, b]) =: [c, d]

is an interval for some c, d ∈ R. c is the minimum value and d is the maximum value
that f assumes on I = [a, b].

We may rephrase the previous theorem in the well known theorem of Weierstraß.

Corollary 3.45. (Theorem of Weierstraß)
Each continuous function on a compact space has a maximum and minimum value.

A compact space is a space, that is both closed (bounds are part of the space) and
bounded.
Remark 3.46.
It is crucial, that in the previous theorem both bounds are contained in the interval. If
they are not, the maximum and minimum value does not need to exists. For example
f : (0, 1)→ R : x 7→ x has neither a maximum nor a minimum.

3.4 Power Series

In this chapter we want to talk about power series. A lot of functions, like sin, cos
or exp may be defined as a power series. They serve as a to compute the value of a
function in a numerical way (e.g. the sin may not be easily evaluated by geometric
means).

Definition 3.47. (power series)
Let ak ∈ R for all k, x0 ∈ R be a point and x be a variable. The the series

∞

∑
k=0

ak(x− x0)
k

is called a power series (centered at x0) with coefficients a0, a1, a2, ... .

So one may describe the power series as generalization of polynomials, like a polyno-
mial of infinite degree.

Example 3.48.
Some of the more useful functions in mathematics may be defined by power series:

i)

sin x =
∞

∑
k=0

(−1)k x2k+1

(2k + 1)!
.
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ii)

cos x =
∞

∑
k=0

(−1)k x2k

(2k)!
.

iii)

exp x =
∞

∑
k=0

xk

k!
.

Now the question arises, if a power series converges as a series or not.

Theorem 3.49.
For any power series

∞

∑
k=0

ak(x− x0)
k

there is a unique number R ≥ 0 (or R = ∞) such that the sollowing holds:

The power series

{
converges (absolutely) for all x ∈ (x0 − R, x0 + R),

diverges for all x ∈ (−∞, x0 − R) ∪ (x0 + R, ∞).

Definition 3.50. (radius of convergence)
The number R is called the radius of convergence.

R

x0 x0 + Rx0 − R

︷ ︸︸ ︷R ︷ ︸︸ ︷R

convergencedivergence divergence

Remark 3.51.
The definition of the radius of convergence does not tell us if the power series con-
verges or diverges for R.

Theorem 3.52.
Let ∑∞

k=0 ak(x− x0)
k be a power series and lim

k→∞
(sup{ m

√
|am| | m ≥ k}) = r. Then the

radius of convergence is

R =


∞ , r = 0,
1
r , r > 0,

0 , r = ∞.

In particular r = lim
k→∞

k
√
|ak| holds, if the limit exists.
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Remark 3.53.
For numerous power series the radius of convergence may also be determined with
the ratio test, that is

R = lim
k→∞

∣∣∣∣ ak
ak+1

∣∣∣∣ .

Example 3.54.
Consider the power series

∞

∑
k=0

2k2

3
xk.

Using the ratio test yields∣∣∣∣ ak
ak+1

∣∣∣∣ =
∣∣∣∣∣ 2k2

3
2(k+1)2

3

∣∣∣∣∣ = 2k2

3
· 3

2(k + 1)2 =
k2

k2 + 2k + 1
k→∞−→ 1

So the radius of convergence is R = 1.

By the radius of convergence we can define an interval on which the power series is
an actual function.
Definition 3.55. (convergence interval)
Let

f : (x0 − R, x0 + R)→ R : x 7→
∞

∑
k=0

ak(x− x0)
k

and R the radius of convergence of the power series. Then f is a function and the
domain (x0 − R, x0 + R) is called the convergence interval.

Example 3.56.
The following series are power series that can be defined as a function on their re-
spected convergence intervals:

i) Polynomials: A polynomial p is a power series with ak = 0 for all k > deg(p).
The the radius of convergence is R = ∞.

ii) Exponential function:

exp : R→ R : x 7→
∞

∑
k=0

xk

k!
.

The radius of convergence of the exponential function is R = ∞, that is the ex-
ponential function converges for all x ∈ R and the center is x0 = 0. Furthermore
the following holds:

exp(x + y) = exp(x) + exp(y), ∀x, y ∈ C.
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iii) Sine and Cosine:

sin : R→ R : x =
∞

∑
k=0

(−1)k x2k+1

(2k + 1)!
.

cos : R→ R : x =
∞

∑
k=0

(−1)k x2k

(2k)!
.

The sine and cosine are centered at x0 = 0 and have a radius of convergence of
R = ∞.

iv) Geometric series:

f : (−1, 1)→ R : x 7→
∞

∑
k=0

xk

The convergence interval is (−1, 1) since the power series is centered at x0 = 0
with a radius of convergence of R = 1. So as we have seen before, the function
converges to f (x) = 1

1−x .

v) Logarithm:

f : (0, 2)→ R : x 7→
∞

∑
k=1

(−1)k+1 (x− 1)k

k

The power series is centered at x0 = 1 with a radius of convergence of R = 1,
which yield the convergence interval of (0, 2).

Remark 3.57.
We can also consider x as a complex variable. Then there is still a radius of conver-
gence in the complex plane to the complex power series

∞

∑
k=0

ak(x− x0)
k, ak ∈ C.

The measure of distance in regards to the radius of convergence is the absolut value,
that is:

The power series

{
converges for all x ∈ C with |x− x0| < R,

diverges for all x ∈ C with |x− x0| > R.
The radius of conver-

gence is then the radius R of a circle around the center x0 of the complex power series.
Extending the power series to complex numbers will also yield

exp(ix) = cos x + i sin x.
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4 Calculus

4.1 Differentiation

In this chapter we are interested in continuous functions and their rate of change in a
specific point. Therefore we will define the derivative of a function.

Definition 4.1. (differentiable, derivative)
Let I = (a, b) ⊆ R be an open interval and x0 ∈ I. Let f : I → R be a function. The
limit

lim
h→0

f (x0 + h)− f (x0)

h
=: f ′(x0) =:

d f
dx

(x0)

is called the derivative of f at x0, if it exists. In case of its existence f is called differ-
entiable at x0. If f is differentiable at all x0 ∈ I, then f is called differentiable. In this
case the function

f ′ : I → R : x 7→ f ′(x)

may be defined, which is called the derivative of f .

The idea behind the derivative is to approximate any function f in a certain point by
a linear function, passing through the same point and having the exact same rate of
change as the original function.

f (x)

x0

f (x0)

tangent with slope
equal to f ′(x0)

The limit given in the definition is actually a short version for the definition of the
coefficient of the linear factor of the tangent. The coefficient is created by taking two
points on the function f , one in the point we want to estiamte and the other close
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by, and moving the second point close to the first. If we move the two points close
enough to each other, we will have the limit:

lim
h→0

f (x0 + h)− f (x0)

x + h− x
= lim

h→0

f (x0 + h)− f (x0)

h

f (x)

x0

f (x0)

x0 + h

f (x0 + h)

︸ ︷︷ ︸
h

So we approximate the tangent slope with the slope of secants. When in the limit
h→ 0 holds, then the secants approach the tangent.

We said earlier, that we want to look at continuous functions. The following theorem
states, why we only try to approximate the tangent for a function that is continuous
in x0.

Theorem 4.2.
If a function f : I → R is differentiable in x0 ∈ I, then it is continuous in x0.

So for differential functions there are two shapes that are not allowed to occur. By
continuity at some point x0 there is no “leap” allowed in x0.

a “leap”

And by differentiability at some point x0 it is forbidden to have a “knee”.
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a “knee”

We will add the rules for working with derivatives. This will allow us to derive more
difficult functions.

Theorem 4.3. (rules for derivatives, product rule, quotient rule)
Let f , g : I → R be two functions, both differentiable in x0 ∈ I. Let λ ∈ R be a real
number. Then we have

i) λ · f is differentiable in x0 with

(λ · f )′(x0) = λ · f ′(x0).

ii) f + g is differentiable in x0 with

( f + g)′(x0) = f ′(x0) + g′(x0).

iii) f · g is differentiable in x0 with

( f · g)′(x0) = f ′(x0) · g(x0) + f (x0) · g′(x0),

which is called the product rule.

iv) If g(x0) 6= 0 then f
g is differentiable in x0 with(

f
g

)′
(x0) =

f ′(x0) · g(x0)− f (x0) · g′(x0)

g(x0)2

which is called the quotient rule.

Proof:
We will prove the cases ii) and iii):

ii)

( f + g)′(x0) = lim
h→0

( f + g)(x0 + h)− ( f + g)(x0)

h

= lim
h→0

f (x0 + h) + g(x0 + h)− f (x0)− g(x0)

h

= lim
h→0

f (x0 + h)− f (x0)

h
+ lim

h→0

g(x0 + h)− g(x0)

h
= f ′(x0) + g′(x0)
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iii)

( f · g)′(x0) = lim
h→0

( f · g)(x0 + h)− ( f · g)(x0)

h

= lim
h→0

f (x0 + h) · g(x0 + h)− f (x0) · g(x0)

h

= lim
h→0

f (x0 + h) · g(x0 + h)− f (x0) · g(x0)

=0︷ ︸︸ ︷
− f (x0) · g(x0 + h) + f (x0) · g(x0 + h)
h

= lim
h→0

f (x0 + h)− f (x0)

h
· g(x0 + h) + f (x0) · lim

h→0

g(x0 + h)− g(x0)

h

= lim
h→0

f (x0 + h)− f (x0)

h
· lim

h→0
g(x0 + h)︸ ︷︷ ︸
=g(x0)

+ f (x0) · lim
h→0

g(x0 + h)− g(x0)

h

= f ′(x0) · g(x0) + f (x0) · g′(x0).

We have lim
h→0

g(x0 + h) = g(x0) since g is continuous. �

Example 4.4.
i) Let f : R→ R : x 7→ c with c ∈ R be a constant function. Then f is differentiable

with derivative

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h
= lim

h→0

c− c
h

= lim
h→0

0
h
= 0

for all x0 ∈ R.

ii) Let f : R → R : x 7→ x be the identity function. Then f is differentiable with
derivative

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h
= lim

h→0

x0 + h− x0

h
= lim

h→0

h
h
= lim

h→0
1 = 1

for all x0 ∈ R.

iii) Let n ∈N and f : R→ R : x → xn be a power function. Then f is differentiable
and with derivative

f ′(x0) = n · xn−1
0

for all x0 ∈ R.

Proof:
We proof this by induction.
base case:

(x)′ = 1 = x1−1
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which was treated in the previous example.
inductive step: Assume that the claim is true for some n ∈N. Then we have

(xn+1)′ = (xn · x)′ power
=

rule
(xn)′ · x + xn · (x)′

I.H.
= n · xn−1 · x + xn · 1 = n · xn + xn = (n + 1) · xn.

Thus by induction the claim is ture for all n ∈N. �

iv) The absolute value function | · | : R→ R : x 7→ |x| is not differentiable at x0 = 0
because the derivative limit does not exist. We have

lim
h↘0

|0 + h| − |0|
h

= lim
h↘0

h
h
= lim

h↘0
1 = 1

and

lim
h↗0

|0 + h| − |0|
h

= lim
h↗0

−h
h

= lim
h↗0
− 1 = −1.

For the limit to exist, we need to have the same limit for both the right side and
the left side. The absolute value is an example for having a “knee” in a function.

In the last chapter we have seen, that there are a lot of functions, which can be defined
as power series. We can use the power series to determine the derivative of functions
like the exponential function, the sine or the cosine.

Theorem 4.5.
Let f : (x0 − R, x0 + R) → R : x 7→ ∑∞

k=0 ak(x− x0)
k be a power series function with

radius of convergence R. Then f is differentiable with derivative

f ′ : (x0 − R, x0 + R)→ R : x 7→
∞

∑
k=1

k · ak(x− x0)
k−1.

With the help of the last theorem we can prove the derivative of the exponential and
other functions.

Example 4.6.
i) We have exp′(x) = exp(x) since

exp′(x) =

(
∞

∑
k=0

xk

k!

)′
=

∞

∑
k=1

k
k!

xk−1 =
∞

∑
k=1

1
(k− 1)!

xk−1 index
=

shi f t

∞

∑
k=0

1
k!

xk = exp(x)

holds.
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ii)

sin′(x) = cos(x)

and

cos′(x) = − sin(x)

may be shown via the last theorem, too.

iii) With the help of the quotient rule and the last theorem, we are able to determine
the derivative of the tangent function:

tan′(x) =
(

sin
cos

)
(x)

=
sin′(x) · cos(x)− sin(x) · cos′(x)

cos(x)2

=
cos(x) · cos(x)− sin(x) · (− sin(x))

cos(x)2

=
cos(x)2 + sin(x)2

cos(x)2(
=

1
cos(x)2

)
= 1 +

sin(x)2

cos(x)2

= 1 + tan(x)2

for all x ∈ R \ (π
2 + π ·Z).

Besides the product and quotient rule there is another important rule for deriva-
tives.

Theorem 4.7. (chain rule)
Let f : I → R be differentiable at x0 ∈ I and g : Ĩ → R with f (I) ⊆ Ĩ be differentiable
at f (x0) ∈ Ĩ. Then the composition g ◦ f : I → R is differentiable at x0 with the
derivative

(g ◦ f )′(x0) = g′( f (x0)) · f ′(x0).

We have seen already, that we can derive xa with a ∈ R. With the chain rule we are
able to determine the derivative if the base and exponent are switched, that is ax with
a ∈ R+.
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Example 4.8.
For a > 0 we have

(ax)′ = exp(log(ax))′ = exp(x · log(a))′ = exp(x · log(a))︸ ︷︷ ︸
ax

· (x · log(a))′︸ ︷︷ ︸
log(a)

= ax · log(a).

Another application of the chain rule is the following theorem:
Theorem 4.9.
Let f , g : I → R be differentiable at x0 ∈ I and f (x) > 0 for all x ∈ I. Then
f g : I → R : x 7→ f (x)g(x) is differentiable at x0 with derivative

( f g)′(x0) = f (x0)
g(x0)−1 · [ f (x0) · g′(x0) · log( f (x0)) + f ′(x0) · g(x0)].

After we have seen, what the derivative of the exponential function is, we state the
derivative of its inverse:
Example 4.10.
The following holds for x > 0:

(log(x))′ =
1
x

.

Another important theorem for differentiable functions is the so called mean value
theorem:
Theorem 4.11. (Mean Value Theorem)
Let a < b be real numbers and f : [a, b] → R continuous. Furthermore f is differen-
tiable on (a, b). Then there exists some ξ ∈ (a, b) such that

f (b)− f (a)
b− a

= f ′(ξ)

holds.

It states, that for each differentiable function on (a, b) and continuous function on
[a, b] there is a derivative in some point ξ ∈ (a, b) such that the derivative has the
same value as the slope of the line through a and b.

x

f (x)

a ξ b
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From the mean value theorem we can deduce the following corollary:

Corollary 4.12. (Rolle’s theorem)
Let a < b be real numbers and f : [a, b] → R continuous with f (a) = f (b) = 0.
Furthermore f is differentiable on (a, b). Then the derivative f ′ has a zero in (a, b),
that is there exists some ξ ∈ (a, b) such that f ′(ξ) = 0 holds.

x

f (x)

a ξ b

So somehow Rolle’s theorem states, that the derivative will vanish for our differen-
tiable function f (x). In the last image we also get some kind of a low point for f in ξ.
We will call those points local minimum.

Definition 4.13. (local maximum, local minimum)
Let I ⊆ R be a subset, x0 ∈ I and f : I → R a function. Then f has a local maximum
(local minimum) at x0 if there is some δ > 0 such that f (x) ≤ f (x0) ( f (x) ≥ f (x0)) for
all x ∈ I with |x− x0| < δ.

If we look at the relationship between derivatives and maxima and minima, then we
can deduce the following necessary condition.

Theorem 4.14.
Let f : I → R be differentiable with derivative f ′ : I → R. Let f have a local maximum
or a local minimum at x0 ∈ I. Then f ′(x0) = 0 holds.

So local maxima or local minima will yield a derivative of zero, as we have seen
already in the last image. But we can not deduce that a vanishing derivative will
yield a local maximum or a local minimum. This implication is false.

Example 4.15.
Let f : (−1, 1) → R : x 7→ x3 be a function. As a polynomial we can derive f with
derivative f ′(x) = 3x2. So the polynomial f ′ has a zero in x0 = 0 ∈ (−1, 1). But f
does not have a local minimum or local maximum in x0 = 0 because f (x) < 0 for all
x < 0 and f (x) > 0 for all x > 0 holds.
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x

1
−1

−1

1

f (x) = x3

Definition 4.16. (n-th derivative)
f ′ is called the first derivative of f , while f ′′ is called the second derivative of f . In
general

f (n) :=
(

f (n−1)
)′

is called the n-th derivative of f if it exists.

Example 4.17.
i) The sine can be differentiated infinitely often. So with

sin′ x = cos x, sin′′ x = − sin x, sin′′′ x = − cos x, sin(4) x = sin x, ...

we get

sin(4n+k) =


sin x , k = 0

cos x , k = 1

−sin x , k = 2

−cos x , k = 3.

ii) The function

f : R→ R : x 7→ |x| · x

can be differentiated only once with

f ′ : R→ R : x 7→ 2|x|.

The second derivative does not exist at x0 = 0.

We have seen a couple of ways to determine the limit of functions in specific points.
Yet there are many cases in which we are not able to calculate the limit. L’Hospital’s
Rule will extend the cases, for which we are able to derive the limits for functions. It
is based upon differentiation.
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Theorem 4.18. (L’Hospital’s Rule)
Let f , g : I → R be two differentiable functions with 0 /∈ g′(I). Let x0 be one of the
two boundary points of I (including ±∞). If either

lim
x→x0

f (x) = 0 = lim
x→x0

g(x)

or

lim
x→x0

f (x) = ±∞ = lim
x→x0

g(x)

holds and the limit

lim
x→x0

f ′(x)
g′(x)

= a.

exists, then so does the limit

lim
x→x0

f (x)
g(x)

= a.

So in the cases, that we have a fraction and the nominator and denominator converge
to zero or both diverge to infinity, we can calculate the limit by differentiating the
nominator and denominator, if it exists.

Example 4.19.
Determine the limit

lim
x→0

exp(x)− 1
sin(x)

.

Now we have, that lim
x→0

exp(x)− 1 = 0 and lim
x→0

sin(x) = 0 holds. So we have a case of

[0
0 ]. Define f (x) := exp(x)− 1 and g(x) := sin(x). Now we try to determine the limit

of lim
x→0

f ′(x)
g′(x) and get

lim
x→0

f ′(x)
g′(x)

= lim
x→0

exp(x)
cos(x)

=
exp(0)
cos(0)

=
1
1
= 1.

Since the limit exists, we get by L’Hospital’s Rule

lim
x→0

f (x)
g(x)

= lim
x→0

f ′(x)
g′(x)

= 1.

We want to conclude the chapter with the Taylor polynomial and some of its applica-
tions. When we talked about derivatives f ′(x) to some function f (x), we constructed
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the tangent as a linear approximation to our function f in a specific point. The tangent

for a function f (x) can be expressed in
(

x0

f (x0)

)
as

y = f ′(x0) · x + f (x0).

The Taylor polynomials are approximations of higher degrees of a function f (x) in
a specific point. In Particular, the tangent, stated a few sentences ago, is the Taylor
polynomial of f of first degree at x0.

Definition 4.20. (Taylor polynomial)
Let f : I → R be a function whose n derivatives f ′, ..., f (n) : I → R exist. Let x0 ∈ I.
Then

Tn,x0(x) :=
n

∑
k=0

f (k)(x0)

k!
(x− x0)

k

is called the Taylor polynomial of f of degree n at x0, where f (0) = f is.

Example 4.21.
Let f (x) = sin x be the sine function. Determine the Taylor polynomial of f of degree
3 at x0 = 0. We have

f (x) = sin x, f ′(x) = cos x, f ′′(x) = − sin x, f ′′′(x) = − cos x

and for the point x0 = 0 we calculate

f (0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1.

So the Taylor polynomial is

T3,0(x) = f (0) +
f ′(0)

1!
x +

f ′′(0)
2!

x2 +
f ′′′(x)

3!
x3

= 0 + 1x +
0
2

x2 +
−1
6

x3

= −1
6

x3 + x.



80 4 Calculus

−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

sin x

T3,0(x) = −1
6 x3 + x

The approximation of a function f (x) gets better, if the degree of the Taylor polyno-
mial increases. The gap between the original function f (x) and the Taylor polynomial
Tn,x0(x) in some point x̃ can be approximated by the Taylor formula. Yet still the Taylor
polynomial might only approximate the original function in a specific area around its
origin x0.

Theorem 4.22. (Taylor formula)
Let f : I → R be a function whose n + 1 derivatives f ′, ..., f (n+1) : I → R exist and
are continuous, that is f is n + 1 times continuously differentiable. Furthermore Rn,x0 is
defined by the equation

f (x) = f (x0) + f ′(x0)(x− x0) + ... +
f (n)(x0)

n!
(x− x0)

n + Rn,x0 .

Then the following holds:

i) Rn,x0 =
f (n+1)(t)

n! (x− t)n(x− x0) with t between x and x0,

ii) Rn,x0 =
f (n+1)(t)
(n+1)! (x− x0)

n+1 with t between x and x0.

Rn,x0 is called the remainder of the Taylor formula. i) is called the Cauchy form and ii)
is called the Lagrange form of the remainder.

Example 4.23.
Let f (x) = sin x. As we have seen, the Taylor polynomial of f (x) of third degree at
x0 = 0 is

T3,0(x) = −1
6

x3 + x.
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The remainder in Lagrange form is

R3,0 =
f (4)(t)

4!
(x− 0)4 =

sin(t)
24

x4

with t between x and x0 = 0. Let’s say we want to know how good the approximation
is for the domain [−1, 1]. By | sin x̃| ≤ 1 for all x̃ ∈ R we have

|R3,0| =
∣∣∣∣sin(t)

24
x4
∣∣∣∣ ≤ 1

24
,

since t ∈ [−x, x] and x ∈ [−1, 1] holds. So the error is at most 1
24 ≈ 0.0416. On

the other hand if we get farther away from the origin of the Taylor polynomial, the
error may increase proportionally. In fact we know that | sin x| ≤ 1 for all x ∈ R, but
T3,0(x) x→∞−→ ∞ holds. So in this case the Taylor polynomial is only a good approxima-
tion for x close to x0 = 0.

From the Taylor formula we are able to deduce the next theorem. It states for any
point x0 for a function f (x) with enough derivatives, wether that function f (x) has a
local minimum or local maximum or neither at x0 by using the higher derivatives of
the function f (x).

Theorem 4.24.
Let n ∈N, n ≥ 2, x0 ∈ I and f : I → R be a function for which the first n derivatives
exist. Further more

f ′(x0) = ... = f (n−1)(x0) = 0 and f (n)(x0) 6= 0

holds. Then we have:

i) If n is even and f (n)(x0) > 0, then f has a local minimum at x0.

ii) If n is even and f (n)(x0) < 0, then f has a local maximum at x0.

iii) If n is odd, then f has neither a local maximum nor a local minimum at x0.

Example 4.25.
We have already seen, that the function f (x) : R→ R : x 7→ x3 has no local maximum
or local minimum in x0 = 0, even though f ′(x0) = f ′(0) = 3 · 02 = 0 holds. With the
last theorem we are able to prove it:

f ′(x) = 3x2 ⇒ f ′(0) = 3 · 02 = 0

f ′′(x) = 6x ⇒ f ′′(0) = 6 · 0 = 0

f ′′′(x) = 6 ⇒ f ′′′(0) = 6 6= 0

Since the third derivative is the first of our derivatives, that is not equal to zero at x0,
we have n = 3. Since n is odd, there is no local maximum or minimum at x0.
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4.2 Integration

We start with a little example:
Example 4.26.
Let a car and its velocity be given over a specific time interval. Let us say, we start
at time t0 and stop at t1. The velocity can be modelled with a function f (t) with
t ∈ [t0, t1]. We are interested in the distance, that the car travels between the two
points t0 and t1. This is actually the area A, that is enclosed by the function and its
t-axis, since the distance travelled in a certain time interval is the velocity.

A

t

f (t)

t0 t1

So we need to find a way, to calculate the area below a function. Later on we will call
this area with a given start and end point an integral.

The basic idea to solve the problem in the example is to divide the given interval into
small rectangles.
Definition 4.27. (lower/upper sum)
Let [a, b] = [x0, x1] ∪ [x1, x2] ∪ ... ∪ [xn−1, xn], with a = x0 < x1 < ... < xn = b be a
partition P of the interval [a, b]. Let

mi := inf{ f (x)|x ∈ [xi−1, xi]}

and

Mi := sup{ f (x)|x ∈ [xi−1, xi]}

for all i = 1, ..., n.. Then

L( f , P) :=
n

∑
i=1

mi · (xi − xi−1)

is called the lower sum of f with respect to the partition P and

U( f , P) :=
n

∑
i=1

Mi · (xi − xi−1)

is called the upper sum of f with respect to the partition P.
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x

f (x)

a = x0
x1 x2 x3 x4

b = x5b = x5
lower sum of f

x
f (x)

a = x0
x1 x2 x3 x4

b = x5
upper sum of f

Remark 4.28.
Observe that for the precise area A below a function f we have

L( f , P) ≤ A ≤ U( f , P).

Now we want to refine our view on those sums, so we define the lower and upper
integral for a bounded function. This means, that we use the best partition of the
interval possible for our purposes. So for a continiuous function, which derivative is
not constant, this means we refine the partition into an infinite set rectangles.

Definition 4.29. (lower/upper integral)
Let f : I → R be a bounded function. Then

∗

b∫
a

f (x)dx := sup{L( f , P)|P is a partition of [a, b]} (1)

is called the lower integral of f on [a, b].

∗
b∫

a

f (x)dx := inf{U( f , P)|P is a partition of [a, b]} (2)

is called the upper integral of f on [a, b].



84 4 Calculus

Since we work with the infimum and the supremum of a summed up function, we
get the following remark.

Remark 4.30.
It always holds

∗

b∫
a

f (x)dx ≤
∗

b∫
a

f (x)dx.

By the last remark we want to know, what happens if the lower integral equals the
upper integral, which should yield the precise area below a function.

Definition 4.31. (integrable, integral)
Let f : I → R be a bounded function. If

∗

b∫
a

f (x)dx =
∗

b∫
a

f (x)dx.

holds, then f is called integrable on [a, b] with integral

b∫
a

f (x)dx :=
∗

b∫
a

f (x)dx

=
∗

b∫
a

f (x)dx

 .

We now have the definition of the precise area under a function. So first we state two
huge classes of functions that are integrable.

Theorem 4.32.
Let f : I → R be a monotonically decreasing or increasing funtion. Then f is inte-
grable I.

Theorem 4.33.
Let f : I → R be a continuous function. Then f is integrable on I.

After we defined some classes that are integrable, we want to give some rules about
how we work with integrals.

Theorem 4.34. (rules for integrals)
Let f , g : [a, b]→ R be integrable functions and α, β ∈ R. Then:

i) α · f + β · g is integrable with

b∫
a

α · f (x) + β · g(x)dx = α ·
b∫

a

f (x)dx + β ·
b∫

a

g(x)dx.
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ii) If f (x) ≤ g(x) for all x ∈ [a, b], then

b∫
a

f (x)dx ≤
b∫

a

g(x)dx

holds. Multiplying both sides of the equation with (−1) will yield the analogous
theorem for f (x) ≥ g(x).

iii) | f | is integrable with ∣∣∣∣∣∣
b∫

a

f (x)dx

∣∣∣∣∣∣ ≤
b∫

a

| f (x)|dx.

iv) If c ∈ [a, b] holds, then f : [a, c]→ R and f : [c, b]→ R are integrable with

c∫
a

f (x)dx +

b∫
c

f (x)dx =

b∫
a

f (x)dx.

Now we have stated some rules about how integrals may be transformed or calculated
with. But we do not know how we actually are able to compute such an integral. The
solution to this problem was the discovery, that integration is somehow the inverse
operation of differentiation. So we state the anti-derivative.

Definition 4.35. (anti-derivative)
Let F, f : I → R be functions and F be differentiable. If F′ = f holds, then F is called
an anti-derivative of f .

Remark 4.36.
If F is an anti-derivative for f , then so is F + c with c ∈ R. Hence anti-derivatives are
not unique with F′ = (F + c)′ = f . Conversely, if F and G are both anti-derivatives of
f , then there exists a constant c ∈ R with F = G + c.

Example 4.37.
Since we already know the derivatives of some functions, we can also easily guess an
anti-derivative of them.

i) Let f (x) = xn with n ∈ Z \ {−1}. Then F(x) = 1
n+1 · xn+1 is an anti-derivative

of f .

Proof:

F′(x) =
(

1
n + 1

· xn+1
)′

=
n + 1
n + 1

· xn+1−1 = xn = f (x). �
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ii) Let f (x) = sin x. Then F(x) = − cos x is an anti-derivative of f .

Proof:

F′(x) = (− cos x)′ = sin x = f (x). �

iii) Let f (x) = exp x. Then F(x) = exp x is an anti-derivative of f .

Proof:

F′(x) = (exp x)′ = exp x = f (x). �

Now we can state the Fundamental Theorem of Calculus, which connects the anti-
derivative with integrals.

Theorem 4.38. (Fundamental Theorem of Calculus)
Let f : [a, b]→ R be continuous.

i) The function

F : [a, b]→ R : x 7→
x∫

a

f (t)dt

is continuous and also differentiable on (a, b) with

F′(x) = f (x).

ii) Let F : [a, b]→ R be an anti-derivative of f , that is F′ = f , then

b∫
a

f (x)dx = F(b)− F(a)
(
=: [F(x)]ba

)
.

holds.

Proof:
i) Let h ≥ 0. By the definition of the derivative we have for x ∈ [a, b]

F′(x) = lim
h→0

F(x + h)− F(x)
h

= lim
h→0

1
h

 x+h∫
a

f (t)dt−
x∫

a

f (t)dt


= lim

h→0

1
h

 x+h∫
x

f (t)dt

 .
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Furthermore

mh · h ≤
x+h∫
x

f (t)dt ≤ Mh · h

holds with

mh := inf{ f (x0)|x ≤ x0 ≤ x + h}

and

Mh := sup{ f (x0)|x ≤ x0 ≤ x + h}.

Since f is continuous, we deduce

lim
h→0

mh = lim
h→0

Mh = f (x)

and hence we get

lim
h→0

F(x + h)− F(x)
h

= f (x).

So F(x) is differentiable and continuous. The case h < 0 is anlaogous.

ii) Let F be an anti-derivative of f . According to i) the function

F̃ : [a, b]→ R : x 7→
x∫

a

f (t)dt

is also an anti-derivative of f . Hence there exists a constant c ∈ R with

F(x) = F̃(x) + c.

With x = a, we can deduce

F(a) = F̃(a)︸︷︷︸
=0

+ c

⇒ F(a) = c.

Therefore we get

b∫
a

f (x)dx = F̃(b) = F(b)− c = F(b)− F(a). �
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Example 4.39.

i) Let

f : [a, b]→ R : x 7→
x∫

a

et sin tdt

be a function. Determine f ′. By the fundamental theorem of calculus we get

f ′(x) = ex sin x.

ii) Let

f : R→ R : x 7→ sin x

be a function. Determine
5π
2∫

0

f (x)dx.

By the fundamental theorem of calculus we get

5π
2∫

0

f (x)dx =

5π
2∫

0

sin xdx

= − cos x
∣∣ 5π

2
0

= −
(

cos
5π

2
− cos 0

)
= −(0− 1)

= 1

Definition 4.40. (indefinite integral)
Let f be a integrable function. We denote by∫

f (x)dx

the indefinite integral.

As with the anti-derivatives, the indefinite integral is unique up to a constant c ∈ R.

Example 4.41.
With the indefinite integral and our knowledge about derivatives we give the follow-
ing often used anti-derivatives:
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•
∫

xn dx = 1
n+1 xn+1 with n ∈ Z \ {−1}

•
∫ 1

x dx = log |x|

•
∫

sin x dx = − cos x

•
∫

cos x dx = sin x

•
∫

tan x dx = − log | cos(x)|

•
∫ 1

cos2 x dx = tan x

•
∫

exp x dx = exp x

•
∫

ax dx = 1
log a ax

•
∫

log x dx = x · log x− x

Not all of these indefinite integrals are defined on R. So be careful by using them.

While the indefinite integrals of the last example can more or less be easily guessed,
we want to state, that integration is by far more difficult than its ”inverse“ operation
differentiation. There are lots of functions where the anti-derivatives are not known.
Furthermore there are functions where we do not even know, if there exists an anti-
derivative.

So we need some additional tools to tackle the problem of integration and to extend
the amount of functions, that we are able to find indefinite integrals for. The first tool
is called integration by parts.

Theorem 4.42. (integration by parts)
Let f , g : [a, b]→ R be differentiable with continiuous derivatives. Then

b∫
a

f (x) · g′(x)dx = [ f (x) · g(x)]ba −
b∫

a

f ′(x) · g(x)dx

holds.

Proof:
With the product rule of differentiation we get

( f (x) · g(x))′ = f ′(x) · g(x) + f (x) · g′(x).

Integrating both sides yields

b∫
a

f ′(x) · g(x) + f (x) · g′(x)dx =

b∫
a

( f (x) · g(x))′dx = [ f (x) · g(x)]ba.
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Using the linearity of the integration o rearrange the parts, we deduce

b∫
a

f (x) · g′(x)dx = [ f (x) · g(x)]ba −
b∫

a

f ′(x) · g(x)dx �

Example 4.43.
Determine ∫

x · cos x dx.

We put

f (x) := x ⇒ f ′(x) = 1

and

g(x) := sin x ⇒ g′(x) = cos x.

Integration by parts yields∫
x · cos x dx = [x · sin x]−

∫
1 · sin x dx

= x · sin x + cos x

Integration by parts is often used by functions, where f (n)(x) is constant for some
n ∈ N and the integration of g(x) will yield the same indefinite integral every few
integration steps.

Another tool for integration is integration by substitution. Where integration by parts
was a variation of the product rule, integration by substitution is a variation of the
chain rule.

Theorem 4.44. (integration by substitution)
Let f : I → R be continiuous and g : [a, b] → R be differentiable with continiuous
derivative and g([a, b]) ⊆ I. Then

b∫
a

f (g(x)) · g′(x) dx =

g(b)∫
g(a)

f (x̃) dx̃

holds.
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Proof:
Let F be an anti-derivative of f on g([a, b]). So we have

g(b)∫
g(a)

f (y) dy = F(g(b))− F(g(a)).

Furthermore ( f ◦ g) · g′ is continiuous as a composition of continiuous functions. With
the chain rule of differentiation we also get

(F ◦ g)′ = (F′ ◦ g) · g′ = ( f ◦ g) · g′.

Hence F ◦ g is an anti-derivative of ( f ◦ g) · g′ and so

b∫
a

f (g(x)) · g(x)′ dx = F(g(b))− F(g(a)).

So

b∫
a

f (g(x)) · g′(x) dx =

g(b)∫
g(a)

f (y) dy �

Example 4.45.
i) Determine

1∫
0

(2x + 1) · sin(x2 + x) dx.

Define f (x) := sin x and g(x) := x2 + x. Then we have

1∫
0

2x + 1︸ ︷︷ ︸
g′(x)

·

f (g(x))︷ ︸︸ ︷
sin (x2 + x)︸ ︷︷ ︸

g(x)

dx =

g(1)∫
g(0)

sin y dy

=

2∫
0

sin y dy

= − cos y
∣∣2
0

= − cos(2) + 1
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ii) Determine ∫
tan x dx.

For any some intervall [a, b] with tan x continiuous on [a, b], we get

b∫
a

tan x dx = −
b∫

a

− sin x
cos x

dx

= −
b∫

a

1
cos x

· (− sin x) dx

= −
b∫

a

1
cos x

· cos′ x dx

Now integration by substitution yields with f (x) := 1
y and g(x) := cos x

−
b∫

a

1
cos x

· cos′ x dx = −
cos b∫

cos a

1
u

du

= − log(u)
∣∣cos b
cos a

res.
= − log(cos x)

∣∣b
a

= −(log(cos b)− log(cos a)).

The second last operation is called resubstitution. Hence we get as an indefinite
integral ∫

tan x dx = − log | cos x|.

Definition 4.46. (improper integral)
Let b̃ ∈ R ∪ {+∞} and f : [a, b] → R be integrable for all real numbers b with
a < b < b̃. Then

b̃∫
a

f (x)dx := lim
b↗b̃

b∫
a

f (x)dx

is called an improper integral. The improper integral converges, if the corresponding
limit exists. Otherwise it diverges.

Remark 4.47.
There is an analogous definition for the improper integral for the lower bound with
ã ∈ R ∪ {−∞}and ã < a < b. Also both the upper and lower point may be chosen
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for limitting at the same time. In this case the integration interval is split by means of
some c ∈ R with ã < c < b̃ and

b̃∫
ã

f (x)dx :=
c∫

ã

f (x)dx +

b̃∫
c

f (x)dx

=lim
a↘ã

c∫
a

f (x)dx + lim
b↗b̃

b∫
c

f (x)dx.

Then this improper integral converges if both integrals

lim
a↘ã

c∫
a

f (x)dx and lim
b↗b̃

b∫
c

f (x)dx

converge.

Example 4.48.
i) Determine

1∫
0

1√
x

dx.

We have

1∫
0

1√
x

dx = lim
t↘0

0∫
t

1√
x

dx = lim
t↘0

[2
√

x]1t = lim
t↘0

(2− 2
√

t) = 2.

So the improper integral converges.

ii) Determine

∞∫
1

1√
x

dx.

We have

∞∫
1

1√
x

dx = lim
t→∞

t∫
1

1√
x

dx = lim
t→∞

[2
√

x]t1 = lim
t→∞

(2
√

t− 2) = ∞.

So the improper integral diverges.
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iii) Determine
1∫

0

1
x2 dx.

We have
1∫

0

1
x2 dx = lim

t↘0

1∫
t

1
x2 dx = lim

t↘0

[
−1

x

]1

t
= lim

t↘0

(
−1 +

1
t

)
= ∞.

So the improper integral diverges.

iv) Determine
∞∫

1

1
x2 dx.

We have
∞∫

1

1
x2 dx = lim

t→∞

t∫
1

1
x2 dx = lim

t→∞

[
−1

x

]t

1
= lim

t→∞

(
−1

t
+ 1
)
= 1.

So the improper integral converges.

v) Determine
∞∫
−∞

2x
x2 + 1

dx.

We have
∞∫
−∞

2x
x2 + 1

dx = lim
t→−∞

0∫
t

2x
x2 + 1

dx + lim
t→∞

t∫
0

2x
x2 + 1

dx

= lim
t→−∞

[
log(x2 + 1)

]0

t
+ lim

t→∞

[
log(x2 + 1)

]t

0

= lim
t→−∞

− log(t2 + 1)︸ ︷︷ ︸
=−∞

+ lim
t→∞

log(t2 + 1)︸ ︷︷ ︸
=∞

.

So the improper integral diverges.

vi) The Gaussian Integral
∞∫
−∞

e−x2
dx =

√
π

converges.



95

5 Ordinary differential equations

5.1 Ordinary differential equations of first order

So far we have encountered equations where the solution was some interval, a set of
some numbers or a single number. Now a differential equation is a function linked to
its own derivatives. So solving a differential equation yields a function, that satisfies
the given link to it’s own derivatives. For example

y′(x) = x · y(x)

is a differential equation, where the solution is some function y(x). In this case the
trivial function y(x) = 0 solves the equation as well as y(x) = exp

(
x2

2

)
.

Definition 5.1.
An equation relating a function

y : I → R : x 7→ y(x)

to one or several of its derivatives y′, y′′, ... as well as to its independent variable x is
called an ordinary differential equation.

Remark 5.2.
Since we will only work with ordinary differential equations (ODEs) and not with
partial differential equations (PDEs), we will skip the word ordinary.

If the solution of a differential equation is known, then it is easy to verify, that it is re-
ally a solution. The problem of finding that unknown solution is far more difficult. We
will present some methods, that will help us to solve some differential equations.

The first method is called seperation of variables.

Theorem 5.3. (seperation of variables)
Differential equations of the form

y′ = f (x) · g(y)

with f and g are continuous functions and g has no zeroes may sometimes be solved
by solving the integral equation∫ 1

g(y)
dy−

∫
f (x) dx = c

for y, where c ∈ R is a constant.
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Example 5.4.
Solve the differential equation

y′ = e2y cos(3x).

By seperation of variables we define f (x) := cos(3x) and g(y) := e2y and we get∫ 1
g(y)

dy =
∫

f (x) dx

⇔
∫

e−2y dy =
∫

cos(3x) dx

⇔ −1
2

e−2y + c1 =
1
3

sin(3x) + c2

⇔ e−2y = −2
3

sin(3x) + 2(c1 − c2)

⇔ −2y = log
(
−2

3
sin(3x) + 2(c1 − c2)

)
⇔ y = −1

2
log
(
−2

3
sin(3x) + 2(c1 − c2)

)
Now there are some restrictions for this solution. For example, the logarithm may
not be negative. Furthermore if a single point is known, like a initial value, then
the constant of c3 := c1 − c2 ∈ R can be determined. Now we have only a general
solution.

The second method is called variation of parameters. It works on the special form of a
differential equation called linear differential equation of first order.

Definition 5.5. (linear differential equation of first order)
A differential equation of form

y′ + a(x)y = f (x)

with functions f , a defined on an interval I is called a linear differential equation of first
order. The right side f is called source term. If f = 0 holds, then the differential
equation

y′ + a(x)y = 0

is called homogeneous linear differential equation of first order.

First we give the method to solve the homogeneous linear differential equation of first
order.
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Theorem 5.6.
Let y′ + a(x)y = 0 be a homogeneous linear differential equation of first order and a
be continuous on the interval I. Then the solution to the differential equation is given
by

y(x) = Ce−A(x), C ∈ R

with an anti-derivative A(x) =
∫

a(x)dx.

The solution to solve homogeneous linear differential equations of first order can be
generalized by variation of its constants to general linear differential equations of first
order.

Theorem 5.7. (variation of parameters)
Let y′ + a(x)y = f (x) be a linear differential equation of first order and a be contin-
uous on the interval I and the initial value y(x0) = y0 is given. Then the solution to
the initial value problem is given by

y(x) = e−A(x)

y0 +

x∫
x0

f (ξ)eA(ξ) dξ


with the anti-derivaitve A(x) =

∫ x
x0

a(ξ) dξ.

Example 5.8.
Solve the linear differential equation

y′ + 2xy = xe−x2

with initial value (0, 1). Hence we have a(x) = 2x and f (x) = xe−x2
. Integrating a(x)

yields

A(x) =
x∫

x0

a(ξ) dξ

=

x∫
0

2ξ dξ

= [ξ2]x0

= x2.
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So the solution for the differential equation is

y(x) = e−A(x)

y0 +

x∫
x0

f (ξ)eA(ξ) dξ


= e−x2 ·

1 +
x∫

0

ξe−ξ2 · eξ2
dξ


= e−x2 ·

1 +
x∫

0

ξ dξ


= e−x2 ·

(
1 +

[
ξ2

2

]x

0

)

= e−x2 ·
(

1 +
x2

2

)
.

5.2 Non-linear ordinary differential equations of first order

We will continue with two special types of nonlinear differential equations. The next
type is called a Bernoulli differential equation.

Definition 5.9. (Bernoulli differential equation)
Let I ⊆ R be an interval and a, f : I → R be continuous functions. The differential
equation

y′ + a(x)y = f (x)yα, α ∈ R

is called Bernoulli differential equation.

Remark 5.10.
Observe that in the cases that α = 0 or α = 1 holds, that the differential equation is a
linear differential equation.

Since we know how to solve Bernoulli differential equations if α = 0 or α = 1, we will
only give a solution scheme for 0 6= α 6= 1. The scheme is based on substituting the
function y with another function z and to solve the differential equation in z before
resubstituting z with y again.

Theorem 5.11.
Let a Bernoulli differential equation

y′ + a(x)y = f (x)yα, α ∈ R \ {0, 1}
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be given. Substitution of z = y1−α yields the linear differential equation

z′ + (1− α)a(x)z = (1− α) f (x)

in z. Then the solution to Bernoulli’s differential equation is given by

y = z
1

1−α .

Example 5.12.
Solve the Bernoulli differential equation

y′ + 2xy = 2xy2.

So we have a(x) = 2x, f (x) = 2x and α = 2. Hence we substitute z = y1−α = 1
y and

we get the linear differential equation

z′ + (1− 2)2xz = (1− 2)2x
⇔ z′ − 2xz = −2x.

Solving the linear differential equation yields

z = 1 + Cex2

which resubstitutes with

y =
1
z

into

y =
1

1 + Cex2 .

Before we move on to systems of linear differential equations, we want to add one
last method. This method is based upon substitution, too, but one special solution is
needed for the substitution.

Definition 5.13. (Riccati equation)
Let I ⊆ R be an interval and a, b, f : I → R be continuous functions. The differential
equation

y′ + a(x)y + b(x)y2 = f (x)

is called a Riccati equation.

Remark 5.14.
If b(x) = 0 the differential equation is a linear differential equation of first order. If
f (x) = 0 holds, then the differential equation is a Bernoulli differential equation.
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Theorem 5.15.
Let a Riccati equation

y′ + a(x)y + b(x)y2 = f (x)

be given. Let ys be a special solution for the Riccati equation. Substitution by z = 1
y−ys

yields the linear differential equation

z′ − [a(x) + 2b(x)ys]z = b(x).

Then the solution to the Riccati equation is given by

y = ys +
1
z

.

Example 5.16.
Solve the Riccati equation

y′ − 3xy + xy2 = −2x.

So we have a(x) = −3x, b(x) = x and f (x) = −2x. First we guess a special solution
ys.

ys(x) = 1

solves the Ricatti equation. So we substitute z = 1
y−ys

= 1
y−1 and we get the linear

differential equation

z′ − [−3x + 2x · 1]z = x
⇔ z′ + xz = x.

Solving that linear differential equation yields

z = 1 + Ce−
x2
2

which resubstitutes with

y = ys +
1
z

into

y = 1 +
1

1 + Ce−
x2
2

.
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5.3 Systems of linear differential equations

Definition 5.17. (system of linear differential equations of first order)
Let

A(x) :=

a11(x) ... a1n(x)
... . . . ...

an1(x) ... ann(x)

 , b(x) :=

b1(x)
...

bn(x)


be a matrix and a vector with functions aij(x) and bi(x), i, j ∈ {1, ..., n}. Then

y′ = A(x)y + b(x), y = (y1, ..., yn)

is called a system of linear differential equations of first order. If b(x) = 0 holds, then it is
called homogeneous.

We will only look at the homogeneous systems of linear differential equations of first
order, since the inhomogeneous system is too difficult for our means. If we have
a homogeneous system, then the fundamental system forms some kind basis of the
solutions for our differential equation.

Definition 5.18. (fundamental system)
A system of functions

y1, y2, ..., yn, with y ∈ Rn

of n linearly independent solutions of the homogeneous system y′ = A(x)y is called
a fundamental system or a basis of solutions.

Theorem 5.19.
If y1, y2, ..., yn is a fundamental system of y′ = A(x)y, then any solution y may be
constructed in the form

y = c1y1 + c2y2 + ... + cny2, with c1, c2, ..., cn ∈ R.

Since the general problem to solve this system is out of our league, we will solve
an easier and much smaller problem. We will have, that the vector b(x) = 0 and
therefore we have a homogeneous system. Furthermore the matrix A will satisfy, that
all functions aij(x) are constant, that is A(x) ∈ Rn×n holds.

Theorem 5.20.
let A ∈ Rn×n be a symmetric matrix, that is A = AT. Let v1, v2, ..., vn be a basis of the
eigenvectors and λ1, ..., λn the eigenvalues of A. Then

(v1eλ1x, ..., vneλnx)
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is a fundamental system of y′ = Ay and the solution to the differential equation is
given by the linear combination

y = c1v1eλ1x + ... + cnvneλnx, with c1, ..., cn ∈ R.

Example 5.21.
Solve the system

y′1 = −2y1 + y2

y′2 = y1

y′3 = −y3.

We deduce the system

y′ = Ay

with

A =

−2 1 0
1 0 0
0 0 −1

 , y =

y1
y2
y3

 and y′ =

y′1
y′2
y′3

 .

Hence the eigenvalues are λ1 = −1, λ2 =
√

2 − 1 and λ3 = −1 −
√

2 with their
eigenvectors

v1 =

0
0
1

 , v2 =


1

1+
√

2
1
0

 , and v3 =


1

1−
√

2
1
0

 .

So

(v1eλ1x, v2eλ2x, v3eλ3x)

is a fundamental system and the solution to the differential equation is given by

y(x) = c1 ·

0
0
1

 e−x + c2 ·


1

1+
√

2
1
0

 e(
√

2−1)x + c3 ·


1

1−
√

2
1
0

 e(−1−
√

2)x, c1, c2, c3 ∈ R.

Remark 5.22.
In the last theorem the condition was, that A ∈ Rn×n is symmetric. That yields, that
the multiplicity of any eigenvalue of A equals the geometric multiplicity of that eigen-
value. Furthermore all eigenvalues are real numbers. Hence we used a theorem that
is only able to solve a few systems. But the last theorem may be extended to matrices
where there are complex eigenvalues as well as to systems where the multiplicity of
an eigenvalue does not match its geometric multiplicity. In that case, the way to solve
those systems and the formula of the fundamental system itself will change slightly.
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6 Appendix

6.1 Determinants for bigger sized matrices

6.2 Gram-Schmidt

6.3 Spectral Theorem

6.4 Cramer’s Rule

6.5 Taylor Series

Definition 6.1. (smooth function)
A function is called smooth, if it has derivatives of all orders everywhere in its domain.

Definition 6.2. (Taylor series)
Let f : I → R with I ⊂ R be a smooth function. Then the power series

∞

∑
k=0

f (k)(x0)

k!
(x− x0)

k

is called a Taylor series centered at x0. f (k) denotes the k-th derivative of f .

Example 6.3.
We show that

sin x =
∞

∑
k=0

(−1)k x2k+1

(2k + 1)!

holds. For that we center the Taylor series at x0 = 0. By the Taylor formula we have

sin(x) = sin(0) + sin′(0)x + ... +
sin(n)(0)

n!
xn + Rn,0(x)

with

Rn,0(x) =
sin(n+1)(t)
(n + 1)!

xn+1.

The higher derivatives of sin(x) are ± cos(x) and ± sin(x). Since the Taylor series
is centered at 0, the sin(x) and its derivatives in 0 will yield 0, 1, 0,−1, 0, 1, 0,−1. So
| sin(n+1)(t)| ≤ 1 and by that∣∣∣∣∣sin(n+1)(t)

(n + 1)!
xn+1

∣∣∣∣∣ ≤
∣∣∣∣ xn+1

(n + 1)!

∣∣∣∣
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holds. Hence for all fixed x the term Rn,0 converges to 0. Furthermore the series
converges with the comparison test, since ∑∞

k=0
xk

k! converges. So we have

sin x =
∞

∑
n=0

sin(n)(0)
n!

xn = x− x3

3!
+

x5

5!
− x7

7!
+ ....

=
∞

∑
k=0

(−1)k x2k+1

(2k + 1)!

Example 6.4.
Analoguesly one can determine, that

cos x =
∞

∑
k=0

(−1)k x2k

(2k)!

or that

ex =
∞

∑
k=0

xk

k!

holds.

6.6 Fourier Series

6.7 Multivariable Calculus

Definition 6.5. (distance, absolute value)
Let x, y ∈ Rn be two points in the n-dimensional Euclidean space. Then

‖x− y‖ =
(

n

∑
i=1

(xi − yi)
2

) 1
2

is the distance between the points x and y.

Example 6.6.

Let x =

1
2
3

 and y =

−2
5
−3

 be two points in R3. Then the distance between x and

y is

‖x− y‖ =
(

3

∑
i=1

(xi − yi)
2

) 1
2

=
√
(1− (−2))2 + (2− 5)2 + (3− (−3))2

=
√

32 + (−3)2 + 62 =
√

9 + 9 + 36 =
√

54.
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In the next definitions it is important to know that for xm the value m states an index
and not an exponent or power. It is used to differentiate xm from xm, where xm
denotes the m-th entry of the vector x. xm on the other hand denotes the m-th element
of the sequence (xm)m.

Definition 6.7. (convergent, limit)
Let (xm)m be a sequence with points xm ∈ Rn. Then the sequence (xm)m converges to
a, if for all ε > 0 there exists an n0 := n0(ε) ∈ N, such that ‖xn − a‖ < ε holds for all
n > n0. If the sequence converges, then a is called the limit denoted by

lim
m→∞

xm = a.

Definition 6.8. (set closure)
Let A ⊆ Rn be subset of the real numbers. Then we denote by A the closure of A. The
closure of A consists of all points of A and all boundary points of A. The set of all
boundary points is denoted by ∂A.

Remark 6.9.
So A = A ∪ ∂A.

Example 6.10.
i) The closure of A = (1, 2) is A = [1, 2].

ii) The closure of A = (1, 2] is A = [1, 2].

iii) The closure of A = (1, 2]× [1, 2)× (1, 2) is A = [1, 2]× [1, 2]× [1, 2].

Definition 6.11. (convergent, limit)
Let f : I → Rm, I ⊆ Rn be a function, x0 ∈ I and a ∈ Rm. Then f (x) converges to a for
x approaches x0, that is lim

x→x0
f (x) = a, if and only if for all ε > 0 there exists a δ > 0

such that

‖ f (x)− a‖ < ε

for all x ∈ I with ‖x− x0‖ < δ. Then

lim
x→x0

f (x) = a

is called the limit of f at x0.

Definition 6.12. (continuous)
Let f : I → R be a function with I ⊆ Rn.

i) The function f is called continuous at x0 ∈ I, if

lim
x→x0

f (x) = f (x0)

holds.
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ii) The function f is called continuous on I, if f is continuous in each point x0 ∈ I.

Example 6.13.
i) Let f : R2 \ {(0, 0)} → R be a function with

f (x, y) =
x2y

x2 + y2

Show that f is continuously extendable in x0 = (0, 0) with f (0, 0) = 0.
An often used way to show such a condition is to use polar coordinates. The
argument is free to take any angle but we try to decrease the radius to zero to
shrink the cricle spanned by the argument to a point. So we substitute (x, y) by
(r cos ϕ, r sin ϕ) and approach the origin, that is

(x, y) = (r cos ϕ, r sin ϕ)→ (0, 0).

So for f we have

f (r cos ϕ, r sin ϕ) =
r2 cos2 ϕ · r sin ϕ

r2 cos2 ϕ + r2 sin2 ϕ

=
r3

r2 cos2 ϕ · sin ϕ

= r cos2 ϕ · sin ϕ

r→0−→ 0,

since | cos2 ϕ · sin ϕ| is bounded. So lim
(x,y)→(0,0)

f (x, y) = f (0, 0) = 0 holds. Hence

f is continuously extendable at (0, 0) with f (0, 0) = 0.

ii) Let f : R2 \ {(0, 0)} → R be a function with

f (x, y) =
x2

x2 + y

Show that f is not continuously extendable in x0 = (0, 0). We show this by using
two different sequences, that approach (0, 0) but have a different limit.
We choose ( 1

n , 1
n )n as our first sequence with ( 1

n , 1
n )

n→∞−→ (0, 0) and

f
(

1
n

,
1
n

)
=

1
n2

1
n2 +

1
n

=
1

n2

n+1
n2

=
n2

n2(n + 1)
n→∞−→ 0.
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We choose ( 1
n , 0)n as our second sequence with ( 1

n , 0) n→∞−→ (0, 0) and

f
(

1
n

, 0
)
=

1
n2

1
n2 + 0

=
1

n2

1
n2

= 1
n→∞−→ 1.

Hence the function is not continuously extendable in (0, 0), since two different
sequences, that approach the origin, yield different limits in the function.

Definition 6.14. ((total) differentiable, (total) derivative)
Let f : I → Rm be a function with I ⊆ Rn and x0 ∈ I is an inner point of I. Then f is
(total) differentiable at x0, if there exists a linear map h : Rn → Rm, such that

lim
x→x0

R(x)
‖x− x0‖

= 0

holds with R(x) := f (x)− f (x0)− h(x − x0). In this case the linear function will be
denoted by D f (a) and is called the (total) derivative or (total) differential of f at x0.

Remark 6.15.
The (total) derivative is uniquely determined.

Example 6.16.
Let

f : R2 → R : x 7→

xy x2−y2

x2+y2 , (x, y) 6= (0, 0)

0 , (x, y) = (0, 0).

be a function. f is continuous in (0, 0). We want to show, that f is (total) differentiable
in (0, 0). So it holds:

lim
(x,y)→(0,0)

| f (x, y)− f (0, 0)| − 0
‖(x, y)− (0, 0)‖ = lim

(x,y)→(0,0)

|xy| · |x
2−y2|

x2+y2√
x2 + y2

= lim
(x,y)→(0,0)

|xy| · |x2 − y2|
(x2 + y2)

3
2

= lim
r→0

r2| cos ϕ sin ϕ| · |r2 cos2 ϕ− r2 sin2 ϕ|
r3

= lim
r→0

r4| cos ϕ sin ϕ| · | cos2 ϕ− sin2 ϕ|
r3

= lim
r→0

r| cos ϕ sin ϕ| · | cos2 ϕ− sin2 ϕ|

= 0.
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Hence f is (total) differentiable in (0, 0).

Definition 6.17. (i-th partial derivative)
Let f : I → R be a function with I ⊂ Rn and x0 is an inner point of I. Then the i-th
partial derivative of f at x0 is defined as

Di f (x0) = lim
t→0

f (x0 + t · ei)− f (x0)

t
,

if it exists.
Remark 6.18.
For derivatives in one variable the differentiablility implied that the function is con-
tinuous. Now the partial derivatives do not imply that the original function is contin-
uous.
Remark 6.19.
Di f is also often refered to as ∂ f

∂xi
or for a function f (x, y, z) we could have ∂ f (x,y,z)

∂y .

Remark 6.20.
The last definition can be extended for directions, that are not along the unit vectors.

Example 6.21.
Let

f : R3 → R : (x, y, z) 7→ xyz + x2yz + z3

be a function. then the partial derivatives are

∂ f
∂x

(x, y, z) = yz + 2xyz,

∂ f
∂y

(x, y, z) = xz + x2z,

∂ f
∂z

(x, y, z) = xy + x2y + 3z2.

Only because the partial derivatives exist, we do not necessarily have a total differen-
tiable function. The next theorem connects partial derivatives to the total derivative.

Theorem 6.22.
Let f : I → Rm be a function with I ⊂ Rn and x0 is an inner point of I. If all partial
derivatives Dj fi(a) exists in an area around x0 and are also continuous at x0, then f is
(total) differentiable in x0.

Theorem 6.23. (Mean value theorem in Rn)
Let f : I → R with I ⊆ Rn be a function that is continuously differentiable. Further-
more let a, b ∈ I be points which link is a subset of I. Then there exists an ξ ∈ (0, 1)
with

f (b)− f (a) = D f [a + ξ(b− a)](b− a).
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Definition 6.24. (Jacobian matrix)
Let f : I → Rm with I ⊆ Rn be a function which is differentiable in an inner point x
of I. Then the m× n matrix

D f (x) :=


∂ f1
∂x1

(x) ∂ f1
∂x2

(x) ... ∂ f1
∂xn

(x)
∂ f2
∂x1

(x) ∂ f2
∂x2

(x) ∂ f2
∂xn

(x)
... . . . ...

∂ fm
∂x1

(x) ∂ fm
∂x2

(x) ... ∂ fm
∂xn

(x)


is called Jacobian matrix of f at x.

Example 6.25.
Let

f : R2 → R3 : (x, y) 7→ (x2y, 3xy4 + x2y2, 3 + xy2)

be a function. Then the Jacobian matrix of f is

D f (x) =

 2xy x2

3y4 + 2xy2 12xy3 + 2x2y
y2 2xy

 .

Theorem 6.26. (Schwarz)
Let f : I → R be a function on the open interval I. If f is two times continuously
differentiable, then

∂2 f
∂xj∂xi

=
∂2 f

∂xi∂xj

holds for all i, j.

Example 6.27.
Let

f : R2
+ → R : (x, y) 7→ xy2 exp y

log x

be a function. Then we have

Dx f (x, y) =
∂ f
∂x

(x, y) =
log x− 1

log2 x
y2 exp y

and

Dy f (x, y) =
∂ f
∂y

(x, y) =
x

log x
(2y exp y + y2 exp y)

=
x

log x
(2 + y)y exp y.
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Both will now yield

∂2 f
∂x∂y

(x, y) =
log x− 1

log2 x
(2 + y)y exp y =

∂2 f
∂y∂x

(x, y).

Definition 6.28. (Hessian matrix)
Let f : I → R with I ⊆ Rn be a function which is two times differentiable in an inner
point x of I. Then the n× n matrix

H f (x) :=


∂2 f

∂x1∂x1
(x) ∂2 f

∂x1∂x2
(x) ... ∂2 f

∂x1∂xn
(x)

∂2 f
∂x2∂x1

(x) ∂2 f
∂x2∂x2

(x) ∂2 f
∂x2∂xn

(x)
... . . . ...

∂2 f
∂xn∂x1

(x) ∂2 f
∂xn∂x2

(x) ... ∂2 f
∂xn∂xn

(x)


is called Hessian matrix of f at x.

Remark 6.29.
The Hessian matrix is symmetric by the theorem of Schwarz, if it is not only two
times differentiable but two times continuously differentiable. In general the Hessian
matrix does not need to be symmetric.

Example 6.30.
Let

f : R2 → R : (x, y) 7→ 3x + x2y2 + exp y

be a function. Determine the Hessian matrix at (1, 0).
The partial derivatives are

∂ f
∂x

(x, y) = 3 + 2xy2

∂ f
∂y

(x, y) = 2x2y + exp y

and we get

∂2 f
∂x∂y

(x, y) = 4xy =
∂2 f

∂x∂y
(x, y).

Then the Hessian matrix at (1, 0) is

H f (1, 0) =
(

3 0
0 1

)
.
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Definition 6.31. (Taylor polynomial of second degree in Rn)
Let f : I → R be a two times continuously differentiable function with an open subset
I ⊆ Rn. Then the Taylor polynomial of second degree of f at x0 ∈ I is

T2,x0 = f (x0) + D f (x0)(x− x0) +
1
2
(x− x0)

T H f (x0)(x− x0).

Example 6.32.
Let

f (x, y) = x sin y + y sin x

be a function. Determine T2,(π
2 ,0). We have

f (x0) = f
(π

2
, 0
)
= 0

and

D f (x, y) =
(
sin y + y cos x x cos y + sin x

)
⇒ D f

(π

2
, 0
)
=
(
0 π

2 + 1
)

.

Hence the Hessian matrix is

H f (x) =
(
−y sin x cos y + cos x

cos y + cos x −x sin y

)
⇒ H f

(π

2
, 0
)
=

(
0 1
1 0

)
.

So for the Taylor polynomial of second degree we get

T2,(π
2 ,0) = 0 +

(
0 π

2 + 1
)
·
(

x− π
2

y

)
+

1
2
(
x− π

2 y
)
·
(

0 1
1 0

)
·
(

x− π
2

y

)
= y + xy.

Theorem 6.33. (Weierstraß)
Let f : I → R be a continuous function with I ⊆ Rn is a compact space. Then there
are a, b ∈ I such that f (a) ≤ f (x) ≤ f (b) holds for all x ∈ I.

In other words the theorem of Weierstraß states, that a continuous function on a
compact space has a maximum and minimum value.

Definition 6.34. (minimum, maximum)
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Theorem 6.35. (necessary condition)

Theorem 6.36. (sufficient condition)

Theorem 6.37. (Lagrange)


