Lehrstuhl II für Mathematik Dipl.-Math. Michael Hoschek

15 Integration

Definition 1 (supremum, infimum). *Let* M *be a subset of* \mathbb{R} *. If* M *is bounded from above, the smallest upper bound of* M *is called* supremum *denoted by*

$$\sup M = \min\{a \in \mathbb{R} \colon x \le a \text{ for all } x \in M\}.$$

If M is bounded from below, the greatest lower bound of M is called infimum denoted by

inf
$$M = \max\{b \in \mathbb{R} : x \ge b \text{ for all } x \in M\}$$
.

Definition 2 (partition). A partition of an interval [a, b] is given by a finite subset $\mathcal{P} = \{x_0, x_1, \ldots, x_r\}$ of [a, b] satisfying $\{a, b\} \subset \mathcal{P}$. We write $a = x_0 < x_1 < \cdots < x_r = b$.

Definition 3. Let $f: [a,b] \to \mathbb{R}$ be a function and \mathcal{P} a partition of [a,b] such that $a = x_0 < x_1 < \cdots < x_r = b$. For $i = 0, 1, \ldots, r-1$ we define

$$M_i^{\mathcal{P}}(f) = \sup\{f(x) \colon x_i < x < x_{i+1}\},\\m_i^{\mathcal{P}}(f) = \inf\{f(x) \colon x_i < x < x_{i+1}\}.$$

Definition 4 (upper/lower sum). Let $f : [a, b] \to \mathbb{R}$ be a function and \mathcal{P} a partition of [a, b] such that $a = x_0 < x_1 < \cdots < x_r = b$. The upper sum of f over \mathcal{P} is

$$U_f(P) = \sum_{k=1}^r M_{k-1}^{\mathcal{P}}(f)(x_k - x_{k-1}),$$

and the lower sum *of* f *over* \mathcal{P}

$$L_f(P) = \sum_{k=1}^r m_{k-1}^{\mathcal{P}}(f)(x_k - x_{k-1}).$$

Definition 5 (RIEMANN integrable functions). *A function* $f : [a, b] \to \mathbb{R}$ *is called* (Riemann) integrable *if for every* $\varepsilon > 0$ *there is a partition* \mathcal{P} *of* [a, b] *such that*

$$U_f(\mathcal{P}) - L_f(\mathcal{P}) < \varepsilon.$$

Definition 6. Let f a RIEMANN integrable function and let \mathcal{P} a partition of [a, b]. The limit

$$I(f) = \lim_{r \to \infty} U_f(\mathcal{P}) = \lim_{r \to \infty} L_f(\mathcal{P})$$

is called the (RIEMANN) integral of f over [a, b] and we write

$$I(f) = \int_{a}^{b} f(x) \, \mathrm{d}x$$

Definition 7. *The function* f *is the* integrand. *For* a < b *we define*

$$\int_{b}^{a} f(x) \, \mathrm{d}x = -\int_{a}^{b} f(x) \, \mathrm{d}x$$

and for a = b we define

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^a f(x) \, \mathrm{d}x = 0.$$

Theorem 8. If f is continuous on [a, b], then f is integrable.

Theorem 9. If f, g are integrable over [a, b] and $r \in \mathbb{R}$, then

(i) *rf* is integrable over [a,b] with $\int_{a}^{b} (rf)(x) dx = r \int_{a}^{b} f(x) dx$.

(ii)
$$f + g$$
 is integrable over $[a, b]$ with $\int_{a}^{b} (f + g)(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$.

(iii) for
$$a < c < b$$
: $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$.

(iv)
$$|f|$$
 is integrable on $[a,b]$ with $|\int_a^b f(x) \, dx| \le \int_a^b |f(x)| \, dx$

Theorem 10. Let f be integrable over [a,b] and bounded with $m \leq f(x) \leq M$ for all $x \in [a,b]$. Then

$$m(b-a) \le \int_a^b f(x) \, \mathrm{d}x \le M(b-a)$$

and, in particular, if f is continuous, then

$$(b-a)\min_{x\in[a,b]}f(x) \le \int_{a}^{b}f(x)\,\mathrm{d}x \le (b-a)\max_{x\in[a,b]}f(x)$$

More generally, if f, g are integrable over [a, b] with $f(x) \le g(x)$ for all $x \in [a, b]$, then

$$\int_a^b f(x) \, \mathrm{d}x \le \int_a^b g(x) \, \mathrm{d}x.$$

Theorem 11 (Mean Value Theorem for Integration). Let f be continuous over [a, b]. Then there exists $a \ \xi \in [a, b]$ such that

$$\int_{a}^{b} f(x) \, dx = f(\xi)(b-a).$$

Theorem 12 (Fundamental Theorem of Calculus). Let $f: [a, b] \rightarrow \mathbb{R}$ be continuous. *Then*

$$F:[a,b] \to \mathbb{R}, \text{ with } F(x) = \int_a^x f(t)dt$$

is continuous on [a, b], and differentiable on (a, b) with

$$F'(x) = f(x)$$
 for all $x \in (a, b)$.

Conversely, if $F: [a, b] \to \mathbb{R}$ *is continuous and differentiable on* (a, b) *with* F' = f*, then*

$$\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a) = F(x)|_a^b.$$

Definition 13 (primitive). If $f: [a, b] \to \mathbb{R}$ is continuous, then a differentiable function F with F' = f is called primitive of f. (One primitive of f is given by $F(x) = \int_a^x f(x) dx$. The difference of two primitives of the same function is constant.)

Theorem 14 (Partial integration). Let $f, g: [a, b] \to \mathbb{R}$ such that f is continuous, g is differentiable, and g' is continuous. If F is a primitive of f, then

$$\int_{a}^{b} f(x)g(x) \, \mathrm{d}x = F(x)g(x)|_{a}^{b} - \int_{a}^{b} F(x)g'(x) \, \mathrm{d}x$$

Theorem 15 (Substitution rule). Let $f : [c,d] \to \mathbb{R}$ be continuous, and $g : [a,b] \to \mathbb{R}$ be differentiable such that g' is continuous. If $g([a,b]) \subset [c,d]$, then

$$\int_a^b f(g(x))g'(x)\,\mathrm{d}x = \int_{g(a)}^{g(b)} f(t)dt.$$

Theorem 16 (Partial Fraction Decomposition). *Given two polynomials* $p_m(x)$ *and* $q_n(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$ *and degree* m < n, *partial fraction are generally obtained by supposing that*

$$\frac{p_m(x)}{q_n(x)} = \frac{A_1}{(x-\alpha_1)} + \frac{A_2}{(x-\alpha_1)} + \dots + \frac{A_n}{(x-\alpha_n)}$$

and solving the constants $A_i \in \mathbb{R}$ by equating the coefficients. We get

$$\int \frac{p_m(x)}{q_n(x)} dx = \int \frac{A_1}{(x-\alpha_1)} + \frac{A_2}{(x-\alpha_1)} + \dots + \frac{A_n}{(x-\alpha_n)} dx$$

= $A_1 \ln(x-\alpha_1) + A_2 \ln(x-\alpha_2) + \dots + A_n \ln(x-\alpha_n).$

Primitives of elementary functions		
$\int x^n dx = \frac{1}{n+1} x^{n+1} \ (n \neq -1),$	$\int \frac{1}{x} dx = \ln x ,$	$\int \sqrt[n]{x} dx = \frac{n}{n+1} (\sqrt[n]{x})^{n+1}$
$\int \sin x dx = -\cos x,$	$\int \cos x dx = \sin x,$	$\int \tan x dx = -\ln \cos x $
$\int \cot x dx = \ln \sin x ,$	$\int \frac{1}{\cos^2 x} dx = \tan x,$	$\int \frac{1}{\sin^2 x} dx = -\cot x$
$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x,$	$\int \frac{-1}{\sqrt{1-x^2}} dx = \arccos x,$	$\int \frac{1}{1+x^2} dx = \arctan x$
$\int \sinh x dx = \cosh x,$	$\int \cosh x dx = \sinh x,$	$\int \tanh x dx = \ln(\cosh x)$
$\int \frac{1}{\sqrt{1+x^2}} dx = \operatorname{arsinh} x,$	$\int \frac{1}{\sqrt{x^2 - 1}} dx = \operatorname{arcosh} x,$	$\int \frac{1}{1-x^2} dx = \operatorname{artanh} x \ (x < 1)$
$\int e^x dx = e^x,$	$\int a^x dx = \frac{1}{\ln a} a^x (a > 0),$	$\int \ln x dx = x \ln x - x$
$\int \frac{f'(x)}{f(x)} dx = \ln f(x) ,$	$\int f'(x) \cdot f(x) dx = \frac{1}{2} (f(x))^2$	