15 Integration

Definition 1 (supremum, infimum). Let M be a subset of \mathbb{R}. If M is bounded from above, the smallest upper bound of M is called supremum denoted by

$$
\sup M=\min \{a \in \mathbb{R}: x \leq a \text { for all } x \in M\}
$$

If M is bounded from below, the greatest lower bound of M is called infimum denoted by

$$
\inf M=\max \{b \in \mathbb{R}: x \geq b \text { for all } x \in M\}
$$

Definition 2 (partition). A partition of an interval $[a, b]$ is given by a finite subset $\mathcal{P}=$ $\left\{x_{0}, x_{1}, \ldots, x_{r}\right\}$ of $[a, b]$ satisfying $\{a, b\} \subset \mathcal{P}$. We write $a=x_{0}<x_{1}<\cdots<x_{r}=b$.

Definition 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function and \mathcal{P} a partition of $[a, b]$ such that $a=$ $x_{0}<x_{1}<\cdots<x_{r}=b$. For $i=0,1, \ldots, r-1$ we define

$$
\begin{aligned}
M_{i}^{\mathcal{P}}(f) & =\sup \left\{f(x): x_{i}<x<x_{i+1}\right\} \\
m_{i}^{\mathcal{P}}(f) & =\inf \left\{f(x): x_{i}<x<x_{i+1}\right\} .
\end{aligned}
$$

Definition 4 (upper/lower sum). Let $f:[a, b] \rightarrow \mathbb{R}$ be a function and \mathcal{P} a partition of $[a, b]$ such that $a=x_{0}<x_{1}<\cdots<x_{r}=b$. The upper sum of f over \mathcal{P} is

$$
U_{f}(P)=\sum_{k=1}^{r} M_{k-1}^{\mathcal{P}}(f)\left(x_{k}-x_{k-1}\right)
$$

and the lower sum of f over \mathcal{P}

$$
L_{f}(P)=\sum_{k=1}^{r} m_{k-1}^{\mathcal{P}}(f)\left(x_{k}-x_{k-1}\right) .
$$

Definition 5 (Riemann integrable functions). A function $f:[a, b] \rightarrow \mathbb{R}$ is called (Riemann) integrable if for every $\varepsilon>0$ there is a partition \mathcal{P} of $[a, b]$ such that

$$
U_{f}(\mathcal{P})-L_{f}(\mathcal{P})<\varepsilon
$$

Definition 6. Let f a RIEMANN integrable function and let \mathcal{P} a partition of $[a, b]$. The limit

$$
I(f)=\lim _{r \rightarrow \infty} U_{f}(\mathcal{P})=\lim _{r \rightarrow \infty} L_{f}(\mathcal{P})
$$

is called the (RIEMANN) integral of f over $[a, b]$ and we write

$$
I(f)=\int_{a}^{b} f(x) \mathrm{d} x
$$

Definition 7. The function f is the integrand. For $a<b$ we define

$$
\int_{b}^{a} f(x) \mathrm{d} x=-\int_{a}^{b} f(x) \mathrm{d} x
$$

and for $a=b$ we define

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{a} f(x) \mathrm{d} x=0
$$

Theorem 8. If f is continuous on $[a, b]$, then f is integrable.
Theorem 9. If f, g are integrable over $[a, b]$ and $r \in \mathbb{R}$, then
(i) rf is integrable over $[a, b]$ with $\int_{a}^{b}(r f)(x) \mathrm{d} x=r \int_{a}^{b} f(x) \mathrm{d} x$.
(ii) $f+g$ is integrable over $[a, b]$ with $\int_{a}^{b}(f+g)(x) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x+\int_{a}^{b} g(x) \mathrm{d} x$.
(iii) for $a<c<b$: $\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x$.
(iv) $|f|$ is integrable on $[a, b]$ with $\left|\int_{a}^{b} f(x) \mathrm{d} x\right| \leq \int_{a}^{b}|f(x)| \mathrm{d} x$.

Theorem 10. Let f be integrable over $[a, b]$ and bounded with $m \leq f(x) \leq M$ for all $x \in[a, b]$. Then

$$
m(b-a) \leq \int_{a}^{b} f(x) \mathrm{d} x \leq M(b-a)
$$

and, in particular, if f is continuous, then

$$
(b-a) \min _{x \in[a, b]} f(x) \leq \int_{a}^{b} f(x) \mathrm{d} x \leq(b-a) \max _{x \in[a, b]} f(x) .
$$

More generally, if f, g are integrable over $[a, b]$ with $f(x) \leq g(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x \leq \int_{a}^{b} g(x) \mathrm{d} x
$$

Theorem 11 (Mean Value Theorem for Integration). Let f be continuous over $[a, b]$. Then there exists a $\xi \in[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=f(\xi)(b-a)
$$

Theorem 12 (Fundamental Theorem of Calculus). Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then

$$
F:[a, b] \rightarrow \mathbb{R}, \text { with } F(x)=\int_{a}^{x} f(t) d t
$$

is continuous on $[a, b]$, and differentiable on (a, b) with

$$
F^{\prime}(x)=f(x) \text { for all } x \in(a, b)
$$

Conversely, if $F:[a, b] \rightarrow \mathbb{R}$ is continuous and differentiable on (a, b) with $F^{\prime}=f$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a)=\left.F(x)\right|_{a} ^{b} .
$$

Definition 13 (primitive). If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then a differentiable function F with $F^{\prime}=f$ is called primitive of f. (One primitive of f is given by $F(x)=\int_{a}^{x} f(x) \mathrm{d} x$. The difference of two primitives of the same function is constant.)

Theorem 14 (Partial integration). Let $f, g:[a, b] \rightarrow \mathbb{R}$ such that f is continuous, g is differentiable, and g^{\prime} is continuous. If F is a primitive of f, then

$$
\int_{a}^{b} f(x) g(x) \mathrm{d} x=\left.F(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} F(x) g^{\prime}(x) \mathrm{d} x
$$

Theorem 15 (Substitution rule). Let $f:[c, d] \rightarrow \mathbb{R}$ be continuous, and $g:[a, b] \rightarrow \mathbb{R}$ be differentiable such that g^{\prime} is continuous. If $g([a, b]) \subset[c, d]$, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) \mathrm{d} x=\int_{g(a)}^{g(b)} f(t) d t
$$

Theorem 16 (Partial Fraction Decomposition). Given two polynomials $p_{m}(x)$ and $q_{n}(x)=$ $\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)$ and degree $m<n$, partial fraction are generally obtained by supposing that

$$
\frac{p_{m}(x)}{q_{n}(x)}=\frac{A_{1}}{\left(x-\alpha_{1}\right)}+\frac{A_{2}}{\left(x-\alpha_{1}\right)}+\cdots+\frac{A_{n}}{\left(x-\alpha_{n}\right)}
$$

and solving the constants $A_{i} \in \mathbb{R}$ by equating the coefficients. We get

$$
\begin{aligned}
\int \frac{p_{m}(x)}{q_{n}(x)} d x & =\int \frac{A_{1}}{\left(x-\alpha_{1}\right)}+\frac{A_{2}}{\left(x-\alpha_{1}\right)}+\cdots+\frac{A_{n}}{\left(x-\alpha_{n}\right)} d x \\
& =A_{1} \ln \left(x-\alpha_{1}\right)+A_{2} \ln \left(x-\alpha_{2}\right)+\cdots+A_{n} \ln \left(x-\alpha_{n}\right)
\end{aligned}
$$

Primitives of elementary functions		
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}(n \neq-1)$,	$\int \frac{1}{x} d x=\ln \|x\|$,	$\int \sqrt[n]{x} d x=\frac{n}{n+1}(\sqrt[n]{x})^{n+1}$
$\int \sin x d x=-\cos x$,	$\int \cos x d x=\sin x$,	$\int \tan x d x=-\ln \|\cos x\|$
$\int \cot x d x=\ln \|\sin x\|$,	$\int \frac{1}{\cos ^{2} x} d x=\tan x$,	$\int \frac{1}{\sin ^{2} x} d x=-\cot x$
$\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x$,	$\int \frac{-1}{\sqrt{1-x^{2}} d x=\arccos x,}$	$\int \frac{1}{1+x^{2}} d x=\arctan x$
$\int \sinh x d x=\cosh x$,	$\int \cosh x d x=\sinh x$,	$\int \tanh x d x=\ln (\cosh x)$
$\int \frac{1}{\sqrt{1+x^{2}}} d x=\operatorname{arsinh} x$,	$\int \frac{1}{\sqrt{x^{2}-1}} d x=\operatorname{arcosh} x$,	$\int \frac{1}{1-x^{2}} d x=\operatorname{artanh} x(\|x\|<1)$
$\int e^{x} d x=e^{x}$,	$\int a^{x} d x=\frac{1}{\ln a} a^{x}(a>0)$,	$\int \ln x d x=x \ln x-x$
$\int \frac{f^{\prime}(x)}{f(x)} d x=\ln \|f(x)\|$,	$\int f^{\prime}(x) \cdot f(x) d x=\frac{1}{2}(f(x))^{2}$	

