12 Differentiability

Definition 1 (secant, slope & difference quotient). *Let* (a,b) *be an open interval and* $x_0 \in (a,b)$. *Let* $f:(a,b) \to \mathbb{R}$ *be a function.*

- (i) The secant to f through x_0 and x is the straight line connecting $(x_0, f(x_0))$ and (x, f(x)).
- (ii) The slope of the secant through x_0 and x given as

$$\triangle f(x_0; x) = \frac{f(x) - f(x_0)}{x - x_0}$$

is called the difference quotient.

Definition 2 (differentiability & derivative). Let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ be a function. Then f is called differentiable at $x_0 \in D$ if for some $\delta > 0$: $(x_0 - \delta, x_0 + \delta) \subset D$ and

$$f'(x_0) = \lim_{x \to x_0} \triangle f(x_0; x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists in \mathbb{R} . The limit $f'(x_0)$ is called derivative of f at x_0 . If f is differentiable at every point $x_0 \in D$, the function $f' \colon D \to \mathbb{R}$ is called derivative (function) of f.

There is another form of the difference quotient. We replace $x - x_0$ by h and consider

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0).$$

Theorem 3 (differentiability & continuity). *If f is differentiable, it is continuous.*

Theorem 4 (differentiability & operations on functions). *Let* f, g: $D \to \mathbb{R}$ *be differentiable functions, where* $D \subset \mathbb{R}$. *Then*

(i)
$$(f+g)' = f'+g'$$
,

(ii)
$$(fg)' = f'g + fg'$$
,

(iii)
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$
 whenever $g \neq 0$.

Theorem 5 (chain rule). Let $f: D_1 \to D_2$ and $g: D_2 \to \mathbb{R}$, where $D_1, D_2 \subset \mathbb{R}$, be continuous functions. If f is differentiable in x_0 and g is differentiable in $f(x_0)$, then $g \circ f: D_1 \to \mathbb{R}$ is differentiable in x_0 and

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Theorem 6 (differentiability of f^{-1}). Let $f: I \to \mathbb{R}$ be a differentiable and strictly monotonic function, where $I \subset \mathbb{R}$ is an interval. Then $f^{-1}: f(I) \to I$ is differentiable and

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}.$$

Definition 7 (higher order derivatives). *Let* $f: D \to \mathbb{R}$, where $D \subset \mathbb{R}$, be a differentiable function. If f' is differentiable on D, the derivative of f' is called second derivative of f:

$$f^{(2)} = f''$$
.

In this case f is called twice differentiable. More generally, if f is n-times differentiable, $n \in \mathbb{N}$, and its n-th derivative $f^{(n)}$ is differentiable, the (n+1)-st derivative of f is the derivative of $f^{(n)}$:

$$f^{(n+1)} = (f^{(n)})'.$$

In this case f is called (n + 1)-times differentiable. If $f^{(n)}$ exists for all $n \in \mathbb{N}$, then f is indefinitely differentiable.

An arbitrary function with domain \mathbb{R}^n and target \mathbb{R}^m has the form $f(x_1, ..., x_n) = (f_1, ..., f_m)$ where each of the component functions, f_i , is a real-valued function with domain \mathbb{R}^n . To make the dependence on n variables explicit, we can write $f_i(x_1, ..., x_n)$.

Definition 8 (partial derivative). A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is called partially differentiable at \mathbf{x}_0 in direction x_i if the limit

$$\frac{\partial f}{\partial x_i}(\mathbf{x}_0) = \partial_j f(\mathbf{x}_0) = \lim_{t \to 0} \frac{f(\mathbf{x}_0 + t\mathbf{e}_i) - f(\mathbf{x}_0)}{t} \in \mathbb{R}^m$$

exists. Here \mathbf{e}_i is the *i*-th unit vector. The limit $\partial_j f(\mathbf{x}_0)$ is called *i*-th partial derivative of f at x_0 . If f is partially differentiable at every point $x_0 \in D$ in every direction x_i , then f is called partially differentiable on D.

Definition 9 (directional derivative). A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is called directionally differentiable at \mathbf{x}_0 along $\mathbf{v} \neq \mathbf{0}$ if the limit

$$\partial_{\mathbf{v}} f(\mathbf{x}_0) = \lim_{t \to 0} \frac{f(\mathbf{x}_0 + t\mathbf{v}) - f(\mathbf{x}_0)}{t} \in \mathbb{R}^m$$

exists. The limit $\partial_{\mathbf{v}} f(\mathbf{x}_0)$ is called directional derivative of f at \mathbf{x}_0 along \mathbf{v} .

Definition 10 (Jacobian Matrix). The Jacobian matrix for $f = f(x_1, ..., x_n) = (f_1, ..., f_m)$ is a matrix filled with partial derivatives. The entry in the i-th row and j-th column is $\frac{\partial f_i}{\partial x_i}$:

$$J_{f} := \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{pmatrix}$$

Theorem 11. *If* $f: D \to \mathbb{R}$ *is twice continuously differentiable at* $\mathbf{x}_0 \in D$ *, then*

$$\partial_i \partial_j f(\mathbf{x}_0) = \partial_j \partial_i f(\mathbf{x}_0).$$

Definition 12. *If* $f: D \to \mathbb{R}$ *is twice continuously differentiable at* $\mathbf{x}_0 \in D$ *, then the matrix* $Hf(\mathbf{x}_0)$ *defined by*

$$(Hf(\mathbf{x}_0))_{i,j} = \partial_i \partial_j f(\mathbf{x}_0)$$

for i, j = 1, 2, ..., n is called the Hessian matrix of f at \mathbf{x}_0 , or simply Hessian. (With regard to Theorem 11, the Hessian is symmetrical.)

Derivatives of elementary functions

f(x)	f'(x)
c = const	0
x^n	nx^{n-1}
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$\frac{1}{\cos^2(x)}$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
arccos(x)	$\frac{-1}{\sqrt{1-x^2}}$
arctan(x)	$\frac{1}{1+x^2}$
e^{x}	e^x
a^x	$\ln(a)a^x$
ln(x)	$\frac{1}{x}$