Lehrstuhl II für Mathematik Dipl.-Math. Michael Hoschek

8 Mappings

Definition 1 (intuitive definition of a mapping). Let M, N be two sets. A mapping $f: M \to N$ is a rule that assigns each $x \in M$ a unique element $y = f(x) \in N$. The set M is called domain, the set N is called codomain or target set. Two mappings f, g are equal if their domains and codomains are equal, and f(x) = g(x) for every $x \in D(f)$.

Definition 2 (function). A real-valued mapping, i.e. a mapping $f: M \to \mathbb{R}$, is called a function.

Definition 3 (domain & range). *If* $f : M \to N$ *is a mapping,* $A \subset M$ *and* $B \subset N$ *, then*

$$f(A) = \{f(x) \colon x \in A\} \subset N,$$

$$f^{-1}(B) = \{x \in M \colon f(x) \in B\} \subset M$$

are the image of A and the preimage of B. The set f(M) is also called range of f.

Definition 4 (graph). Let $f: M \to N$ be a mapping. The set

$$G_f = \{(x, f(x)) \colon x \in M\} \subset M \times N$$

is the graph *of f*.

Definition 5 (formal definition of a mapping). A mapping $f: M \to N$ is a subset $f \subset M \times N$ with the property that for each $x \in M$ there is precisely one $y \in N$ such that $(x, y) \in f$.

Definition 6 (maximal domain). *Given an expression* y = f(x), the maximal domain of definition of (the function) f is the set

$$D(f) = \{x \in \mathbb{R} : f(x) \text{ is well-defined}\}.$$

Definition 7 (operations on functions). *Let* $f, g: M \to \mathbb{R}$ *be functions. We define*

•
$$(f+g)(x) = f(x) + g(x)$$
,

- for $\lambda \in \mathbb{R}$: $(\lambda f)(x) = \lambda f(x)$,
- $(f \cdot g)(x) = f(x)g(x)$,

• for
$$g(x) \neq 0$$
: $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$.

Definition 8 (composition of mappings). *If* $f: M \to N$ *and* $g: N \to U$ *are mappings, then*

$$(g \circ f)(x) = g(f(x)).$$

Definition 9 (injectivity, surjectivity & bijectivity). A mapping $f: M \to N$ is called

- injective if for all $x, y \in M$: $f(x) = f(y) \Rightarrow x = y$ (or, equivalently, $x \neq y \Rightarrow f(x) \neq f(y)$).
- surjective if f(M) = N (or, equivalently, if for every $y \in N$ there is an $x \in M$ such that f(x) = y).
- bijective *if f is both injective and surjective*.

Definition 10 (inverse mapping). *If* $f: M \to N$ *is bijective, there exists a unique mapping* $g: N \to M$ such that

$$(f \circ g)(x) = x$$
 and $(g \circ f)(y) = y$

for all $x \in M$ and $y \in N$. We write $g = f^{-1}$ and call g the inverse mapping of f.

Definition 11 (boundedness). Let $I \subset \mathbb{R}$ be an interval. A function $f: I \to \mathbb{R}$ is called bounded from above [below] if there exists a $b \in \mathbb{R}$ such that $f(x) \leq b [f(x) \geq b]$ for all $x \in I$.

Definition 12 (monotonicity). Let $I \subset \mathbb{R}$ be an interval. A function $f: I \to \mathbb{R}$ is called

• [strictly] monotonically increasing *if for all* $x, y \in I$:

$$x \le y \Rightarrow f(x) \le f(y)$$
$$[x < y \Rightarrow f(x) < f(y)]$$

• [strictly] monotonically decreasing *if for all* $x, y \in I$:

$$x \le y \Rightarrow f(x) \ge f(y)$$
$$[x < y \Rightarrow f(x) > f(y)]$$