8 Mappings

Definition 1 (intuitive definition of a mapping). Let M, N be two sets. A mapping $f: M \rightarrow N$ is a rule that assigns each $x \in M$ a unique element $y=f(x) \in N$. The set M is called domain, the set N is called codomain or target set. Two mappings f, g are equal if their domains and codomains are equal, and $f(x)=g(x)$ for every $x \in D(f)$.

Definition 2 (function). A real-valued mapping, i.e. a mapping $f: M \rightarrow \mathbb{R}$, is called a function.

Definition 3 (domain \& range). If $f: M \rightarrow N$ is a mapping, $A \subset M$ and $B \subset N$, then

$$
\begin{aligned}
f(A) & =\{f(x): x \in A\} \subset N \\
f^{-1}(B) & =\{x \in M: f(x) \in B\} \subset M
\end{aligned}
$$

are the image of A and the preimage of B. The set $f(M)$ is also called range of f.
Definition 4 (graph). Let $f: M \rightarrow N$ be a mapping. The set

$$
G_{f}=\{(x, f(x)): x \in M\} \subset M \times N
$$

is the graph of f.
Definition 5 (formal definition of a mapping). A mapping $f: M \rightarrow N$ is a subset $f \subset M \times N$ with the property that for each $x \in M$ there is precisely one $y \in N$ such that $(x, y) \in f$.

Definition 6 (maximal domain). Given an expression $y=f(x)$, the maximal domain of definition of (the function) f is the set

$$
D(f)=\{x \in \mathbb{R}: f(x) \text { is well-defined }\} .
$$

Definition 7 (operations on functions). Let $f, g: M \rightarrow \mathbb{R}$ be functions. We define

- $(f+g)(x)=f(x)+g(x)$,
- for $\lambda \in \mathbb{R}:(\lambda f)(x)=\lambda f(x)$,
- $(f \cdot g)(x)=f(x) g(x)$,
- for $g(x) \neq 0:\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$.

Definition 8 (composition of mappings). If $f: M \rightarrow N$ and $g: N \rightarrow U$ are mappings, then

$$
(g \circ f)(x)=g(f(x))
$$

Definition 9 (injectivity, surjectivity \& bijectivity). A mapping $f: M \rightarrow N$ is called

- injective if for all $x, y \in M: f(x)=f(y) \Rightarrow x=y$ (or, equivalently, $x \neq y \Rightarrow$ $f(x) \neq f(y)$).
- surjective if $f(M)=N$ (or, equivalently, if for every $y \in N$ there is an $x \in M$ such that $f(x)=y$).
- bijective if f is both injective and surjective.

Definition 10 (inverse mapping). If $f: M \rightarrow N$ is bijective, there exists a unique mapping $g: N \rightarrow M$ such that

$$
(f \circ g)(x)=x \text { and }(g \circ f)(y)=y
$$

for all $x \in M$ and $y \in N$. We write $g=f^{-1}$ and call g the inverse mapping of f.
Definition 11 (boundedness). Let $I \subset \mathbb{R}$ be an interval. A function $f: I \rightarrow \mathbb{R}$ is called bounded from above [below] if there exists $a b \in \mathbb{R}$ such that $f(x) \leq b[f(x) \geq b]$ for all $x \in I$.

Definition 12 (monotonicity). Let $I \subset \mathbb{R}$ be an interval. A function $f: I \rightarrow \mathbb{R}$ is called

- [strictly] monotonically increasing if for all $x, y \in I$:

$$
\begin{aligned}
& x \leq y \Rightarrow f(x) \leq f(y) \\
& {[x<y \Rightarrow f(x)<f(y)]}
\end{aligned}
$$

- [strictly] monotonically decreasing if for all $x, y \in I$:

$$
\left.\left.\begin{array}{rl}
x \leq y & \Rightarrow f(x) \\
{[x<y} & \geq f(y)
\end{array}\right)>f(y)\right] \text { }
$$

