6 Determinant

Definition 1 (Determinant). Let $A \in \mathbb{R}^{n \times n}$ be a matrix with entries $a_{i, j}$.

- If $n=1$, then $A=\left(a_{1,1}\right)$ and we define

$$
\operatorname{det}(A)=a_{1,1}
$$

- If $n \geq 2$, we define

$$
\begin{aligned}
\operatorname{det}(A) & =a_{1,1} \operatorname{det}\left(A_{1}\right)-a_{2,1} \operatorname{det}\left(A_{2}\right)+-\cdots+(-1)^{n-1} a_{n, 1} \operatorname{det}\left(A_{n}\right) \\
& =\sum_{i=1}^{n}(-1)^{i-1} a_{i, 1} \operatorname{det}\left(A_{i}\right)
\end{aligned}
$$

where A_{i} is obtained from A by deleting the first column and i-th row of A.
$n=2:$

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =a \operatorname{det}\left(A_{1}\right)-c \operatorname{det}\left(A_{2}\right) \\
& =a \operatorname{det}(d)-c \operatorname{det}(b) \\
& =a d-b c
\end{aligned}
$$

Theorem 2 (Determinant \& elementary row transformations). Let $A, B \in \mathbb{R}^{n \times n}$ such that B is obtained from A by an elementary row transformation.
(i) If B is obtained from A by swapping two rows (or two columns), then $\operatorname{det}(B)=$ $-\operatorname{det}(A)$.
(ii) If B is obtained from A by multiplication of a row (or column) with a real number c, then $\operatorname{det}(B)=c \operatorname{det}(A)$.
(iii) If B is obtained from A by adding a multiple of a row (or column) to another row (or column), then $\operatorname{det}(B)=\operatorname{det}(A)$.

Definition 3 (Transpose). The transpose A^{T} of an $(m \times n)$-matrix A with entries $a_{i, j}$ is the $(n \times m)$-matrix B with entries $b_{i, j}=a_{j, i}$.

Theorem 4 (Invertible matrices \& linear systems). Let $A \in \mathbb{R}^{n \times n}$. Then the following are equivalent.
(i) A is invertible.
(ii) For every $\mathbf{b} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{b}$ has a unique solution.
(iii) A has rank n.
(iv) $\operatorname{det} A \neq 0$.

Theorem 5 (Properties of the determinant). Let $A \in \mathbb{R}^{n \times n}$ with entries $a_{i, j}$ and let $B, C \in \mathbb{R}^{n \times n}$.
(i) If $A=B C$, then $\operatorname{det}(A)=\operatorname{det}(B) \operatorname{det}(C)$.
(ii) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
(iii) If

$$
A=\left(\begin{array}{cc}
A_{1} & B \\
0_{n-k, k} & A_{2}
\end{array}\right)
$$

with $A_{1} \in \mathbb{R}^{k \times k}, A_{2} \in \mathbb{R}^{(n-k) \times(n-k)}$ and $B \in \mathbb{R}^{k \times(n-k)}$, then

$$
\operatorname{det}(A)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right)
$$

(iv) If A is in simple form, then

$$
\operatorname{det}(A)=a_{1,1} a_{2,2} \cdot \ldots \cdot a_{n, n}
$$

(v) Sarrus' rule is a method and a memorization scheme to compute the determinant of a 3×3 matrix.

$$
\operatorname{det}\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} .
$$

Write out the first 2 columns of the matrix to the right of the 3rd column, so that you have 5 columns in a row. Then add the products of the diagonals going from top to bottom and subtract the products of the diagonals going from bottom to top.

Corollary 6 (Laplace's formula).

$$
\begin{aligned}
& \operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i j}\right), \\
& \operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i, j} \operatorname{det}\left(A_{i j}\right),
\end{aligned}
$$

where $A_{i j}$ is obtained from A by deleting the j-th column and i-th row of A.
Theorem 7 (Cramer's rule). Let $A \in \mathbb{R}^{n \times n}$ invertible with column vectors a_{i} for $i=$ $1, \cdots, n$ and $b \in \mathbb{R}^{n}$. Then the unique solution vector $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)^{T}$ of the system $A \mathbf{x}=\mathbf{b}$ can be calculated in the following way:

$$
x_{i}=\frac{1}{\operatorname{det}(A)} \operatorname{det}\left(a_{1}, \cdots, a_{i-1}, b, a_{i+1}, \cdots, a_{n}\right), \text { for } i=1, \cdots, n
$$

Corollary 8. The Inverse of a 2×2 matrix can be computed as follows:

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \Rightarrow \quad A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

