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Abstract This chapter gives a general overview of two emerging techniques for discrete optimiza-
tion that have footholds in mathematics, computer science, and operations research:
branch decompositions and tree decompositions. Branch decompositions and tree
decompositions, along with their respective connectivity invariants, branchwidth and
treewidth, were first introduced to aid in proving the graph minors theorem, a
well-known conjecture (Wagner’s conjecture [103]) in graph theory. The algorithmic
importance of branch decompositions and tree decompositions for solving NP-hard
problems modeled on graphs was first realized by computer scientists in relation to for-
mulating graph problems in monadic second-order logic. The dynamic programming
techniques utilizing branch decompositions and tree decompositions, called branch
decomposition- and tree decomposition-based algorithms, fall into a class of algorithms
known as fixed-parameter tractable algorithms and have been shown to be effective in
a practical setting for NP-hard problems such as minimum domination, the traveling
salesman problem, general minor containment, and frequency assignment problems.

Keywords branchwidth; treewidth; graph algorithms; combinatorial optimization

1. Introduction
The notions of branch decompositions and tree decompositions and their respective con-
nectivity invariants, branchwidth and treewidth, are two emerging techniques for dis-
crete optimization that also encompass the fields of graph theory, computer science, and
operations research. The origins of branchwidth and treewidth are deeply rooted in the
proof of the graph minors theorem, formally known as Wagner’s conjecture [103]. Briefly,
the graph minors theorem states that in an infinite list of graphs there would exist two
graphs H and G such that H is a minor of G. The algorithmic importance of the branch
decomposition and tree decomposition was not realized until Courcelle [50] and Arnborg
et al. [14] showed that several NP-hard problems posed in monadic second-order logic
can be solved in polynomial time using dynamic programming techniques on input graphs
with bounded treewidth or branchwidth. A problem that is NP-hard implies that as long
as it is not proven that P =NP, we cannot expect to have a polynomial-time algorithm
for the problem. These techniques are referred to as tree decomposition-based algorithms
and branch decomposition-based algorithms, respectively. Branch decomposition- and tree
decomposition-based algorithms are important in discrete optimization because they have

1
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been shown to be effective for combinatorial optimization problems like the ring-routing
problem (Cook and Seymour [47]), the traveling salesman problem (Cook and Seymour
[48]), frequency assignment (Koster et al. [87]), general minor containment (Hicks [72]), and
the optimal branch decomposition problem (Hicks [73]).

The procedure to solve an optimization problem with bounded branchwidth or treewidth
involves two steps: (i) computation of a (good) branch/tree decomposition, and (ii) applica-
tion of an algorithm that solves instances of bounded branchwidth/treewidth in polynomial
time. Because the branchwidth or treewidth is considered to be a constant, not part of the
input, this value may occur in the exponent of the complexity of both running time and
space requirements. Hence, it is important to have a decomposition of width as small as
possible. The problem of minimizing this quantity is, however, NP-hard in itself.

Note that not every combinatorial problem defined on a graph of bounded branchwidth
or treewidth can be solved in polynomial time. An example is the bandwidth minimization
problem, which is NP-hard even on ternary trees (every vertex has degree one or three)
(Garey et al. [58] and Monien [95]). Even if the problem is polynomial on trees, the problem
need not be polynomial on graphs of bounded treewidth: L(2,1)-coloring is NP-complete
for graphs with treewidth 2 (Fiala et al. [53]). For more information on L(2,1)-colorings, one
is referred to the work of Chang and Kuo [42] and the work of Bodlaender and Fomin [30].

Besides using the theory of monadic second-order logic, whether or not the problem can be
solved in polynomial time on graphs of bounded branchwidth or treewidth can be discovered
by investigating characteristics of the solution. Given a vertex cut set, one has to answer
the question of what impact the solution on one side of the cut set has on the solution on
the other side. If the solutions only depend on the solution in the vertex cut, the problem
likely can be solved with a dynamic programming algorithm specialized for the problem.

This chapter gives a general overview of branchwidth and treewidth along with their con-
nections to structural graph theory, computer science, and operations research. Section 2
offers preliminary and relevant definitions in the subject area. Section 3 offers some interest-
ing background on the graph minors theorem and its relation to branchwidth and treewidth.
Section 4 describes algorithms to construct branch decompositions as well as a blueprint
for branch decomposition-based algorithms. Section 5 offers similar results for treewidth
with the addition of algorithms for computing relevant lower bounds to treewidth. Section 6
describes the extension of branchwidth and treewidth to matroids, and Section 7 describes
relevant open problems in the area. It is our hope that this chapter will spark interest in
this fascinating area of research.

2. Definitions
2.1. Graph Definitions
In this section we give basic definitions. The reader may skip this section and refer to it
when necessary.

A graph is an ordered pair (V,E) where V is a nonempty set, called the set of vertices or
nodes; E, the set of edges, is an unordered binary relation on V . A graph is called complete
if all possible edges between the nodes of the graph are present in the graph. A hypergraph
is an ordered pair (V,E) of nodes and edges, and an incidence relationship between them
that is not restricted to two ends for each edge. Thus, edges of hypergraphs, also called
hyperedges, can have any number of ends.

A graph Ḡ = (V̄ , Ē) is a subgraph of the graph G = (V,E) if V̄ ⊆ V and Ē ⊆ E. For a
subset V ′ ⊆ V , G[V ′] denotes the graph induced by V ′, i.e., G[V ′] = (V ′,E ∩ (V ′ × V ′)).
For a subset E′ ⊆ E, the graph induced by these edges is denoted by G[E′]. Contraction
of an edge e means deleting that edge and identifying the ends of e into one node. Parallel
edges are identified as well. A graph H is a minor of a graph G if H can be obtained from
a subgraph of G by a series of contractions. A subdivision of a graph G is a graph obtained
from G by replacing its edges by internally vertex disjoint paths.
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The degree of a vertex is the number of edges incident with that vertex. A graph is
connected if every pair of vertices can be joined by a path. The connectivity of a graph is
the smallest number of vertices that can be removed to disconnect the graph. A graph that
does not contain any cycles (acyclic) is called a forest. A connected forest is called a tree.
The leaves of a tree are the vertices of degree 1.

A graph G= (V,E) is bipartite if V admits a partition into two classes such that every edge
has its ends in different classes: Vertices in the same partition class must not be adjacent.
A bipartite graph is complete if all possible edges between the nodes of the graph, while
maintaining the restriction of the bipartition, are present in the graph. A graph is planar
if it can be embedded in a plane such that no two edges cross. The incidence graph I(G)
of a hypergraph G is the simple bipartite graph with vertex set V (G) ∪ E(G) such that
v ∈ V (G) is adjacent to e∈E(G) if and only if v is an end of e in G. Seymour and Thomas
[116] define a hypergraph H as planar if and only if I(H) is planar. Also, a hypergraph G
is called connected if I(G) is connected. For an edge e, η(e) is the number of nodes incident
with e. The largest value η(e) over all e∈E is denoted by η(G).

2.2. Branch Decompositions
Let G= (V,E) be a hypergraph and T be a ternary tree (a tree where every nonleaf node
has degree 3) with |E(G)| leaves. Let ν be a bijection (one-to-one and onto function) from
the edges of G to the leaves of T . Then, the pair (T, ν) is called a branch decomposition of G
(Robertson and Seymour [106]).

A partial branch decomposition is a branch decomposition without the restriction of every
nonleaf node having degree 3. A separation of a graph G is a pair (G1,G2) of subgraphs with
G1∪G2 =G and E(G1∩G2) = ∅, and the order of this separation is defined as |V (G1∩G2)|.
Let (T, ν) be a branch decomposition. Then, removing an edge, say e, from T partitions the
edges of G into two subsets Ae and Be. The middle set of e, denoted mid(e), is the set of
vertices of G that are incident to the edges in Ae and the edges in Be, and the width of an
edge e, denoted |mid(e)|, is the order of the separation (G[Ae],G[Be]). The width of a branch
decomposition (T, ν) is the maximum width among all edges of the decomposition. The
branchwidth of G, denoted by β(G), is the minimum width over all branch decompositions
of G. A branch decomposition of G with width equal to the branchwidth is an optimal branch
decomposition of G. Figure 2 illustrates an optimal branch decomposition of the graph given
in Figure 1.

Robertson and Seymour [106] characterized the graphs that have branchwidth ≤2 and
showed that (n× n)-grid graphs have branchwidth n. Other known classes of graphs with
known branchwidth are cliques whose branchwidth is 
(2/3)|V (G)|�. For chordal graphs, the
branchwidth of this class of graphs is characterized by 
(2/3)ω(G)� ≤ β(G)≤ ω(G) where
ω(G) is the maximum clique number of G (Hicks [70] and Robertson and Seymour [106]).

Figure 1. Example graph.
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Figure 2. Branch decomposition of width 3 for the graph of Figure 1.
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A triangulated or chordal graph is a graph in which every cycle of length of at least 4 has
a chord. Related to chordal graphs, another connectivity invariant related to branchwidth
called strong branchwidth was developed by Tuza [122].

2.3. Tangles
A tangle in G of order k is a set T of separations of G, each of order <k, such that

(T1) for every separation (A,B) of G of order < k, one of (A,B), (B,A) is an element
of T ;

(T2) if (A1,B1), (A2,B2), (A3,B3) ∈ T , then A1 ∪A2 ∪A3 = G; and
(T3) if (A,B) ∈ T , then V (A) = V (G).

These are called the first, second, and third tangle axioms. The tangle number of G, denoted
by θ(G), is the maximum order of tangles of G. Figure 3 shows the tangle of order 3 for the
graph in Figure 1.

Figure 3. Tangle of order 3 for the graph G of Figure 1.
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The relationship between tangle number and branchwidth is as follows:

Theorem 1 (Robertson and Seymour [106]). For any hypergraph G, max(β(G),
η(G)) = θ(G) unless η(G) = 0 and V (G) = ∅.

2.4. Tree Decompositions
The notions of a tree decomposition and treewidth were introduced by Robertson and Sey-
mour [104] and measure the tree-likeness of a graph. A tree decomposition of a graph G=
(V,E) is a pair ({Xi, i∈ I}, T = (I,F )) with Xi ⊆ V , i∈ I and T = (I,F ) a tree, such that

(TD1)
⋃
i∈IXi = V ;

(TD2) for all vw ∈E, there is an i∈ I with v,w ∈Xi; and
(TD3) for all v ∈ V , {i∈ I : v ∈Xi} forms a connected subtree of T .

The width of a tree decomposition ({Xi, i∈ I}, T = (I,F )) is maxi∈I |Xi| − 1. The
treewidth τ(G) of G is the minimum width over all tree decompositions of G. The “−1” in
the definition of the width of a tree decomposition has cosmetic reasons only: In this way the
treewidth of a connected graph equals one if and only if it is a tree (or forest if the graph is
unconnected). Figure 4 shows a tree decomposition of the graph in Figure 1. Property (TD3)
is sometimes called the interpolation property. Furthermore, note that (TD1) is obsolete if
G has no isolated vertices.

The notions of branchwidth and treewidth are closely related to each other, as expressed
in the following theorem.

Theorem 2 (Robertson and Seymour [106]). Let G= (V,E) be a graph with E = ∅.
Then max(β(G),2)≤ τ(G) + 1≤max(� 32β(G)�,2).

Several equivalent notions for treewidth have been studied over time, such as partial
k trees, dimension, and k-decomposability. A graph has treewidth of at most k if and only
if it is a partial k-tree, if and only if the dimension of G is at most k, if and only if G is
k-decomposable. See Bodlaender [26] for further details.

If T is restricted to be a path, we refer to ({Xi, i∈ I}, T = (I,F )) as a path decomposition
and the best width as the pathwidth of G. The pathwidth of a tree can be arbitrarily large.
One is referred to survey papers by Bodlaender [26] and Bienstock [19] for a more thorough
exposition of pathwidth.

2.5. Monadic Second-Order Logic
Every class of graphs, when interpreted as a logical object, can be defined by a logical
statement. Furthermore, graph properties, such as the existence of disjoint paths, can be
stated as a logical condition. The following theorem from Courcelle [49] showed that graph
problems that can be stated in monadic second-order logic can be solved in polynomial time
for graphs with bounded branchwidth or treewidth.

Figure 4. Tree decomposition with width 3 for the graph of Figure 1.
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Theorem 3 (Courcelle [49]). Let φ be a monadic second-order logic problem, and let
K be a class of graphs with branchwidth or treewidth bounded above by k. For a graph G
in K, it can be determined in polynomial time if G satisfies φ. If G is given with a branch
decomposition or tree decompositions with width less than or equal to k, then a linear time
algorithm exists.

Monadic second-order logic (MSOL) is an extension of first-order logic that includes vertex
and edge sets and quantification (universal and existential) over these sets. In the context of
graph theory, first-order logic consists of the logical connectives, ∧, ∨, ¬, ⇒ and = (tradi-
tionally interpreted as “and,” “or,” “not,” “implies,” and “equals,” respectively), variables
(e.g., x1, y1, a, b, z), universal (∀) and existential (∃) quantifiers, and a symbol defined to
represent the existence of edges between vertices. An example of a first-order formula φ is

∀x ∃y [(edg(x, y)∨ edg(y,x))∧¬(x= y)],

which is read “for every x there exists y such that the graph in question contains an edge
from x to y or the graph in question contains an edge from y to x and it is not true that
x equals y” or simply the graph contains no isolated vertices. First-order logic is limited in
its expressiveness: It can only be used for local properties. Monadic second-order logic’s set
variables and set quantification allow for larger, more complex expressions.

For problems that involve optimization of a numerical evaluation over the sets of vertices
or edges that are introduced in MSOL, we turn to the language of extended monadic second-
order logic (EMSOL) and the extended monadic second-order extremum problem presented
by Arnborg et al. [14]. These problems are also solvable in polynomial or linear time for
graphs with bounded branchwidth or treewidth.

3. Graph Minors Theorem
In the 1930s, Kuratowski [90] proved that a graph G is planar if and only if G does not
contain a subdivision of K5, the complete graph on five vertices, or K3,3, the complete
bipartite graph with three vertices on each side of the bipartition. Later, Wagner [123] proved
that a graph G is planar if and only if it does not contain K5 or K3,3 as a minor of G.

Let F be a class of graphs. F is minor closed if all the minors of any member of F also
belong to F . Given a minor closed class of graphs F , the obstruction set of F is the set of
minor minimal graphs that are not elements of F (i.e., graphs that do not belong to F , but
all of their proper minors belong to F). Clearly, any class of graphs embedable on a given
surface is a minor closed class.

Recall that the obstruction set for the class of planar graphs was found to beK5 and K3,3.
But what if we had surfaces other than the sphere? In 1979, Glover et al. [62] exhibited
a list of 103 graphs in the obstruction set of projective-planar graphs, and then in 1980
Archdeacon [10] proved that this list is complete. In 1989, Archdeacon and Huneke [11]
proved that the obstruction set for any nonorientable surface is finite. Finally, as a corollary
of the graph minors theorem (GMT), formerly known as Wagner’s conjecture, Robertson
and Seymour [103] proved that every minor closed class of graphs has a finite obstruction
set. The notions of branch decompositions, tangles, and tree decompositions were beneficial
to the proof of GMT.

Given some surface Σ, an antichain for Σ is a list of minor minimal graphs that cannot
be embedded in Σ. This means that no member of an antichain is isomorphic to a minor of
another. In the early 1960s, Wagner conjectured that every surface has a finite antichain.
The proof of this conjecture would imply that the obstruction set for any minor closed class
is finite (Robertson and Seymour [103]).

Theorem 4: Graph Minors Theorem (Robertson and Seymour [109]). For every
infinite sequence of graphs G1,G2, . . . , there exists i, j with i < j such that Gi is isomorphic
to a minor of Gj.
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A class with a reflexive and transitive relation is a quasi-order. For example, the relation
“H is isomorphic to a subgraph of G” defines a quasi-order on the class of all graphs. A
quasi-order, denoted by (Q, ≤), is well quasi-ordered if for every countable sequence q1, q2, . . .
of members of Q there exist 1≤ i < j such that qi ≤ qj . Wagner’s conjecture is equivalent
to stating that the “minor” quasi-order, “H is isomorphic to a minor of G,” is well quasi-
ordered.

One quasi-order that is not well quasi-ordered is the “subgraph” quasi-order stated earlier.
This is true because a countable set of circuit graphs, one of each size, is an infinite antichain
(Robertson and Seymour [103]). A graph G topologically contains a graph H if G has a
subgraph that is isomorphic to a subdivision of H. Topological containment is not well
quasi-ordered either. The set of graphs formed by taking a circuit graph of each size and
replacing each edge by two parallel edges is an infinite antichain (Robertson and Seymour
[103]); however, Kruskal [89] proved that the class of all trees is well quasi-ordered under
topological containment, one of two famous conjectures of Vázsonyi (see [89]). Robertson
and Seymour [105] used this theorem to prove:

Theorem 5. For any integer k, the class of all graphs with treewidth≤ k is well quasi-
ordered by minors.

This theorem and many more like it proved beneficial for proving Theorem 3. The other
conjecture of Vázsonyi [89] was that the class of all graphs with maximum degree of at most
3 is well quasi-ordered under topological containment (Robertson and Seymour [103]).

Another quasi-order is immersion. A pair of adjacent edges ab and bc is lifted if ab and bc
are replaced by the edge ac. A graphH is immersed in a graph G ifH can be obtained from a
subgraph of G by lifting pairs of edges. Nash-Williams [96] conjectured that the “immersion”
quasi-order is well quasi-ordered. This would imply both of Vázsonyi’s conjectures (see [89]).

Tree decompositions were introduced in the proof of GMT because large-order tangles
have a tree-like structure in their association with small-order tangles. Branch decomposi-
tions were introduced in Robertson and Seymour [106], where they studied the relationship
between tree decompositions and tangles.

By a result of Robertson and Seymour [106], for a given integer k, the class of graphs
with branchwidth of at most k is a minor closed class, meaning that if G is a graph that has
branchwidth of at most k, any minor of G has branchwidth of at most k. Hence, the class
of graphs with branchwidth of at most k and the class of graph with treewidth of at most k
have finite obstruction sets. The only completely known obstruction sets are for graphs with
branchwidth or treewidth of 2 and 3. The obstruction set for both graphs with branchwidth
of at most 2 and graphs with treewidth of at most 2 is K4. Bodlaender and Thilikos [34]
proved that a graph has branchwidth of at most 3 if and only if it does not have K5, Q3,M6,
andM8 as minor; see Figure 5(a). Similarly, Arnborg et al. [15] and Satyanarayana and Tung
[113] independently proved that the obstruction set for graphs with treewidth of at most 3
is K5, M6, M8, and M10; see Figure 5(b). The complete obstruction sets are not known
for larger values of either treewidth or branchwidth; however, Hicks [70] did prove that the
Petersen graph is a member of the obstruction set for graphs with branchwidth of at most 4.
Note that the size of an obstruction for graphs with branchwidth or treewidth of at most k
probably grows exponentially with k; it may prove extremely difficult to characterize these
obstructions sets for large k. We refer the reader to the work of Bienstock and Langston
[20] for a more thorough survey of GMT.

4. Branch Decompositions and Algorithms
This section details constructing branch decompositions with width as small as possible
and the use of branch decomposition-based algorithms for solving discrete optimization
problems.
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Figure 5. Obstruction set for graphs with branchwidth and treewidth at most 3.
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4.1. Constructing Branch Decompositions
Because the complexity of branch decomposition-based algorithms is typically exponential
in the given fixed width of an input branch decomposition (cf. §4.2), finding branch decom-
positions whose associated width is as small as possible is vital to the performance of a
branch decomposition-based algorithm.

4.1.1. Construction in Theory. By a result of Seymour and Thomas [116], computing
the branchwidth and finding an optimal branch decomposition of a general graph is NP-
hard. However, there is a polynomial-time algorithm in Robertson and Seymour [108] to
approximate the branchwidth of a graph within a factor of 3. For example, the algorithm
decides if a graph has branchwidth of at least 10 or finds a branch decomposition with width
of at most 30. This algorithm and its improvements by Bodlaender [25], Bodlaender and
Kloks [31], and Reed [101] are only of theoretical importance. Bodlaender and Thilikos [34]
did give an algorithm to compute the optimal branch decomposition for any chordal graph
of, with maximum clique size of at most 4, but the algorithm has been shown to be practical
only for a particular type of three-tree. Bodlaender and Thilikos [33] also developed a tree
decomposition-based linear time algorithm for finding an optimal branch decomposition,
but it appears to be computationally impractical as well.

In terms of planar graphs, Fomin and Thilikos [54] proved that the branchwidth of any
planar graph is asymptotically bounded by the square root of the graph’s number of nodes
(2.122

√
n) based on work on planar separators by Alon et al. [7]. This work also offered a

complexity bound for the minimum dominating set problem on planar graphs smaller than
any known complexity bound for the problem, including the work of Alber and Niedermeier
[3] using tree decompositions. The authors have produced similar results for NP-hard prob-
lems like the independent set problem, the longest-cycle problem and the bisection problem
for planar graphs (Fomin and Thilikos [55]). Kloks et al. [80, 81] gave a polynomial-time
algorithm to compute the branchwidth of interval graphs, but this algorithm has not been
shown to be practical.

4.1.2. Construction in Practice.
Tree Building. To construct a branch decomposition, start with a partial branch de-

composition and refine this decomposition until the tree is ternary. The underlying structure
used in constructing a branch decomposition is the separation; see §2.2. Without loss of
generality, we only use separations (G1, G2) such that E(G1) and E(G2) are nonempty. Sep-
arations are vital to the construction of a branch decomposition, because finding separations
will help refine partial branch decompositions into branch decompositions. In this section, we
may assume that the input graphG is biconnected, because one can derive an optimal branch
decomposition for a disconnected graph G from the optimal branch decompositions of G’s
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Figure 6. A one split.
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connected components; one can also derive an optimal branch decomposition for a connected
graph H from the optimal branch decompositions of the biconnected components of H.

Given a partial branch decomposition, the studied refinements are one splits and two
splits. Let G represent our input graph and let (T1, ν) be a partial branch decomposition
of G. Let v be a nonleaf node of T1 with degree greater than 3 and denote Dv as the set of
edges incident with v. For a set S ⊆ V (G), let he(S) denote a hyperedge where the ends
of the hyperedge are the elements in S. Define Hv as the hypergraph constructed from the
union of hyperedges he(mid(e)) for all e ∈ Dv. Therefore, if T1 is a star, then Hv would
correspond to G because G is assumed to be biconnected. Let (X,Y ) be a separation of Hv.
Create the tree T2 by replacing v with nodes x and y and the edge xy where x would be
incident with the edges that correspond to E(X) and y would be incident with the edges
that correspond to E(Y ). This procedure is called a one split. The middle set for the edge
xy would be V (X)∩V (Y ); Figure 6 offers an illustration of a one split.

Let G, (T1, ν), and v be defined as in the previous paragraph. Let e be an edge incident
with v and let he(e) denote the hyperedge of Hv that corresponds to e. Let (X,Y ) be
a separation of the hypergraph Hv \ {he(e)}. Without loss of generality, assume that the
cardinality of E(X) is at most the cardinality of E(Y ). If the cardinality of E(X) is greater
than 1, create T2 by adding new nodes x and y and edges vx and vy to T1 with x incident
with the edges corresponding to E(X) and y incident with the edges corresponding to E(Y ).
Otherwise, create T2 by inserting a new node y and edge vy with y incident with the edges
corresponding to E(Y ). The middle sets of the new edges in either case would be

mid(vx) = (V (Y )∪mid(e))∩V (X), (1)
mid(vy) = (V (X)∪mid(e))∩V (Y ). (2)

This procedure is called a two split. Figure 7 offers the two examples of a two split. Notice
that a two split when |E(X)|= 1 is equivalent to a one split with |E(X)|= 2; otherwise, the
two procedures do not yield the same results.

Figure 7. Two splits.
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To build a branch decomposition, start with a partial branch decomposition whose tree
is a star, and conduct a sequence of one and two splits to achieve a branch decomposition.
The tree-building aspect of using only one splits is equivalent to the tree-building aspect
developed by Cook and Seymour [47, 48], and the tree-building aspect of using only two
splits is equivalent to the tree-building aspect developed by Robertson and Seymour [108].

A partial branch decomposition (T, ν) of a graph G is called extendible given that β(Hv)≤
β(G) for every nonleaf node v ∈ V (T ). This follows from the fact that if every Hv had
branchwidth of at most some number k, then one could use the optimal branch decompo-
sitions of the hypergraphs to build a branch decomposition of G whose width is at most k.
Even though a partial branch decomposition whose tree is a star is extendible, it is NP-hard
to check whether an arbitrary partial branch decomposition is extendible for general graphs.
In contrast, this is not the case for planar graphs, as discussed later.

A separation is called greedy or safe (Cook and Seymour [47, 48]) if the next partial branch
decomposition created by the use of the separation in conjunction with a one or two split is
extendible if the previous partial branch decomposition was extendible. In particular, Cook
and Seymour [47, 48] describe three types of safe separations; the first and more general type
is called a push. For a hypergraph H and F , a subset of nodes or edges, let H[F ] denote the
subhypergraph of H induced by F . The push separation is described in the following lemma.

Lemma 1 (Cook and Seymour [47, 48]). Let G be a graph with a partial branch
decomposition (T, ν). Let v ∈ V (T ) have degree greater than 3, and let Dv ⊆E(T ) be the set of
edges incident with v. Also, let Hv be the corresponding hypergraph for v. Suppose there exist
e1, e2 ∈E(T ) incident with v such that |(mid(e1)∪mid(e2))∩

⋃{mid(f) : f ∈Dv\{e1, e2}}|≤
max{|mid(e1)|, |mid(e2)|}. Let he1 , he2 ∈ E(Hv) be the corresponding hyperedges for e1 and
e2, respectively. Then the resulting partial branch decomposition after taking a one split using
the separation (Hv[{he1 , he2}],Hv[E(Hv) \ {he1 , he2}]) is extendible if T was extendible.

The other types of safe separations utilize two-separations and three-separations that
satisfy some simple conditions. First, given a partial branch decomposition of a biconnected
graph, if a separation (X,Y ) is found such that |V (X)∩V (Y )|= 2, then (X,Y ) is safe. This
is due to the fact that any two-separation is titanic in a biconnected graph (Robertson and
Seymour [106]). All three-separations (X,Y ) are safe unless V (X) ∩ V (Y ) corresponds to
an independent set in G and either V (X) \ V (Y ) or V (Y ) \ V (X) has cardinality 1; this is
another result derived by Robertson and Seymour [106].

Planar Graphs. For planar (hyper)graphs, there exists a polynomial-time algorithm
called the ratcatcher method (Seymour and Thomas [116]) to compute the branchwidth. We
briefly comment on the background behind the method and related results for computing
the branchwidth of planar graphs.

Let G be a graph with node set V (G) and edge set E(G). Let T be a tree having |V (G)|
leaves in which every nonleaf node has degree 3. Let µ be a bijection between the nodes
of G and the leaves of T . The pair (T , µ) is called a carving decomposition of G. Notice that
removing an edge e of T partitions the nodes of G into two subsets Ae and Be. The cut set
of e is the set of edges that are incident with nodes in both Ae and Be (also denoted δ(Ae) or
δ(Be)). The width of a carving decomposition (T , µ) is the maximum cardinality of the cut
sets for all edges in T . The carvingwidth for G, κ(G), is the minimum width over all carving
decompositions of G. A carving decomposition is also known as a minimum-congestion
routing tree, and one is referred to Alvarez et al. [8] for a link between carvingwidth and
network design. The ratcatcher method is really an algorithm to compute the carvingwidth
for planar graphs. To show the relation between carvingwidth and branchwidth, we need
another definition.

Let G be a planar (hyper)graph and let G also denote a particular planar embedding of
the graph on the sphere. For every node v of G, the edges incident with v can be ordered in a
clockwise or counterclockwise order. This ordering of edges incident with v is the cyclic order
of v. Let M(G) be a graph with the vertex set E(G). For a node v ∈ V (G), define the cycle
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Figure 8. Q3 and its medial graph.
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Cv in M(G) as the cycle through the nodes of M(G) that correspond to the edges incident
with v according to v’s cyclic order in G; the edges of M(G) is the union of cycles Cv for
all v ∈ V (G). M(G) is called a medial graph of G; see Figure 8. Notice that every connected
planar hypergraph G with E(G) = ∅ has a medial graph, and every medial graph is planar.
In addition, notice that there is a bijection between the regions of M(G) and the nodes
and regions of G. Hence, one can derive, using the theory of Robertson and Seymour [107],
that if a planar graph and its dual are both loopless, then they have the same branchwidth;
see Hicks [70]. Figure 9 illustrates this result by presenting one branch decomposition for
both Q3 andM6. For the relationship between branchwidth and carvingwidth, Seymour and
Thomas [116] proved:

Theorem 6 (Seymour and Thomas [116]). Let G be a connected planar graph with
|E(G)| ≥ 2, and let M(G) be the medial graph of G. Then the branchwidth of G is half the
carvingwidth of M(G).

Therefore, computing the carvingwidth of M(G) gives us the branchwidth of G. Also,
having a carving decomposition of M(G), (T,µ), gives us a branch decomposition of G,
(T, ν), such that the width of (T, ν) is exactly half the width of (T,µ). The ratcatcher method
actually computes the carvingwidth of planar graphs. In addition, the ratcatcher method
does not search for low cut sets in the medial graph, but for objects that prohibit the existence
of low cut sets. These objects are called antipodalities; see Seymour and Thomas [116] for
more details. The ratcatcher method has time complexity O(n2), but requires a considerable
amount of memory for practical purposes. A slight variation that is more memory friendly
was offered by Hicks [74] at the expense of the time complexity going up to O(n3).

The original algorithm developed by Seymour and Thomas [116] to construct optimal
branch decompositions had complexity O(n4) and used the ratcatcher method to find

Figure 9. Q3 and M6 have branchwidth 4.
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Figure 10. Tamaki’s heuristic [119] gives a width bounded below by 6; the branchwidth is 3.
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extendible separations. A practical improvement on this algorithm using a more thorough
divide-and-conquer approach was offered by Hicks [75]. Recently, Gu and Tamaki [65] found
an O(n3) time algorithm utilizing the ratcatcher method by bounding the number of calls
to the ratcatcher method by O(n). In addition, Tamaki [119] offered a linear time heuristic
for constructing branch decompositions of planar graphs; the heuristic could find a branch
decomposition of a 2,000-node planar graph in about 117 milliseconds on a 900 MHz Ultra
SPARC-III. The heuristic uses the medial-axis tree of M(G) derived from a breadth-first
search tree ofM(G)∗. Thus, the computed width is bounded below by the height of breadth-
first search tree; the difference between this parameter (bounded below by the radius of the
dual of the medial graph) and the branchwidth could be huge using a similar construction
as in Figure 10. Figure 10 raises an interesting question: What characteristics of a planar
graph G guarantee that β(G) will be equal to the radius of M(G)∗?

General Graphs. For general graphs, most work has been done utilizing heuristics
to actually construct branch decompositions. Cook and Seymour [47, 48] gave a heuristic
algorithm to produce branch decompositions. Their heuristic is based on spectral graph
theory and the work of Alon [6]. Moreover, Hicks [71] also found another branchwidth
heuristic that was comparable to the algorithm of Cook and Seymour. This heuristic finds
separations by minimal vertex separators between diameter pairs.

In addition, Hicks [73] has developed a branch decomposition-based algorithm for con-
structing an optimal branch decomposition based on the notion of a tangle basis. For an
integer k and hypergraph G, a tangle basis B of order k is a set of separations of G with
order <k such that

(B1) (G[e],G[E(G) \ e])∈B, ∀ e∈E(G) if η(e)<k;
(B2) (C,D) ∈ B and �e ∈E(G) such that G[e] =C if and only if ∃(A1,B1), (A2,B2) ∈ B

such that A1 ∪A2 =C and B1 ∩B2 =D; and
(B3) B obeys the tangle axioms T2 and T3.

We will refer to B1, B2, and B3 as the tangle basis axioms. A tangle basis B in G of order
k is connected if every separation (A,B) of B has A connected. Define the connected tangle
basis number of G, denoted by θ′(G), as the maximum order of any connected tangle basis
of G. The relationship between connected tangle bases and tangles is given in the following
theorem:

Theorem 7 (Hicks [73]). If hypergraph G is connected such that β(G) ≥ η(G), then
β(G) = θ′(G).

The relationship shown in this theorem was used by Hicks [73] to construct a branch
decomposition-based algorithm that tests whether a given connected graph has branchwidth
of at most k−1 (where k≥ 3) to be used in a practical setting to compute the branchwidth
and the optimal branch decomposition of a graph.

In the same vein of connected tangle bases, Fomin et al. [56] have developed the notion
of connected branch decompositions for two-edge-connected graphs. Given a graph G and
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a branch decomposition (T, ν), (T, ν) is called connected if for every edge e ∈ E(T ), the
two-edge induced subgraphs of G corresponding to the two components of T \ {e} are both
connected. Fomin et al. [56] showed that, given a two-edge-connected graph G and a branch
decomposition of G of width k, there also exists a connected branch decomposition of G of
width k′ ≤ k. The authors used this result to approximate in polynomial time the connected
search strategy for a graph.

4.2. Branch Decomposition-Based Algorithms
The blueprint of a branch decomposition-based algorithm typically consists of two steps:
transforming the tree of the branch decomposition of a graph G into a rooted binary tree,
and visiting the nodes of the tree in post depth-first search order to generate a solution for
the problem of interest. The tree T is transformed into a rooted binary tree by selecting an
edge ab and replacing ab by a node r, the root, and edges ar and rb. Because each leaf of T
corresponds to a particular edge of G, each rooted subtree of T corresponds to a particular
subgraph of G. Also, every node v of T that is not a leaf node and not the root of the tree
is adjacent to three nodes: a parent node p, a left child lc, and a right child rc. For each
tree node v, let Gv denote the subgraph of G induced by the edges corresponding to the
leaves of the tree that are descendants of v. In addition, let Cv denote the middle set of
the parent edge pv. The algorithm then visits the tree nodes in post depth-first order and
builds a set of partial solutions for each tree node. By visiting the tree in post depth-first
order, all descendants of tree node v are visited before v is visited.

To illustrate further, some details for the Steiner tree problem in graphs are as follows.
A partial solution for a tree node v would be a forest F of Gv such that every connected
component D of F has the property that V (D) ∩Cv = ∅ unless F is a Steiner tree of G.
For the case that the tree node v is a leaf, there is one partial solution: ν(v) is an edge of
the desired Steiner tree. For tree node v that is not a leaf, the set of partial solutions of v
is contained in the union of the partial solutions of v’s children, lc and rc, and the merger
of partial solutions from both sets. Thus, every partial solution of lc is merged with every
partial solution of rc on the node set Clc ∩Crc. Figure 11 illustrates this procedure where
Clc = {a, b, c, d, e}, Crc = {c, d, e, f, g}, Cv = {a, b, c, f, g}, and the terminals are in black. The
number of partial solutions for a tree node v can grow very rapidly because the number
of partial solutions for any tree node v is exponential in the cardinality of Cv. Thus, the

Figure 11. Joining partial solutions for lc and rc to obtain a partial solution for v, for the Steiner
tree problem.
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time complexity of a branch decomposition-based algorithm is exponential in the width of
the input branch decomposition, which explains the importance of having low width. In
contrast, some partial solutions can be pruned away if they can never be transformed into
a feasible Steiner tree. For example, if a partial solution containing a cycle is obtained by
merging two partial solutions at a tree node, then that partial solution can be pruned away.
Another example is if a partial solution of a tree node v had a connected component D that
did not intersect with Cv and all the terminals were not contained in D—then that partial
solution can also be pruned.

A branch decomposition-based algorithm was offered by Cook and Seymour [47] for the
ring-routing problem, which arises in the design of reliable cost-effective synchronous optical
networks (SONET networks) and was incorporated into commercial software for Telcordia
Technologies (formerly Bellcore). Cook and Seymour [48] also used a branch decomposition-
based algorithm on a sparse graph generated by fractional solutions of linear programming
(LP) relaxations of a TSP test instance to generate an optimal solution for the sparse graph
and an upper bound for the test instance. This technique produced the best-known solutions
for the 12 unsolved problems in TSPLIB95, a library of standard test instances for the TSP
(Reinelt [102]). Hicks has also developed computationally efficient branch decomposition-
based algorithms for minor containment (Hicks [72]) and optimal branch decompositions
(Hicks [73]). One is also referred to the work of Christian [43] for other practical algo-
rithms. Some examples of branch decomposition-based algorithms proposed in theory are
the notable work of Fomin and Thilikos [54] and the work of Alekhnovich and Razborov
[5], who used the branchwidth of hypergraphs to design a branch decomposition-based algo-
rithm, in theory to solve satisfiability problems. Despite the aforementioned examples of
research in branch decompositions offering glimpses of potentially rewarding research in the
field, overall research in the area has been relatively ignored and vastly unexplored compared
to research in tree decompositions.

5. Tree Decompositions and Algorithms
Besides branch decompositions, tree decompositions have also been used to solve discrete
optimization problems. In this section, we consecutively discuss the construction of a tree
decomposition with width as small as possible, lower bounds on the treewidth of a graph,
and finally algorithms for optimization problems that are based on tree decompositions.

5.1. Constructing Tree Decompositions
The construction of an arbitrary tree decomposition is trivial: Just take a single-node tree
and assign to this node a bag containing all vertices in the graph. This pair of a tree and
a bag satisfies all three conditions of a tree decomposition and thus qualifies as a tree
decomposition. Despite its formal status, it does not deserve the name tree decomposition
from a practical perspective: The tree decomposition does not decompose anything and is
not useful for solving combinatorial problems.

As with branch decompositions, the worth of a tree decomposition depends on its width.
The smaller the size of the largest bag, the more promising a tree decomposition is for solving
combinatorial optimization problems. Therefore, the construction of a tree decomposition
with a small width is desirable. We first discuss the theoretical results. Afterwards, we review
how tree decompositions are constructed in practice.

5.1.1. Construction in Theory. We are confronted with a difficult problem related to
treewidth: Computing the treewidth of a graph is NP-hard. Many theoretical assessments
have been made concerning the difficulty of computing treewidth. The formal decision prob-
lem of treewidth asks whether there exists a tree decomposition with width at most k for
some integer k > 0. If k is part of the input, NP-completeness was proved by Arnborg
et al. [13]. If k may be considered as a constant, not part of the input, the best algorithm
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has been given by Bodlaender [25], and checks in linear time whether or not a tree decom-
position with width at most k exists. The O(n) notation for this algorithm, however, hides a
huge constant coefficient that obstructs its practical computational value. An experimental
evaluation by Röhrig [110] revealed that the algorithm is computationally intractable, even
for k as small as 4.

Graphs with treewidth of at most 4 can be characterized either directly or indirectly. As
already pointed out in §2, τ(G) = 1 if and only if G is a forest. A graph G has τ(G)≤ 2 if and
only if its biconnected components are series-parallel graphs (Bodlaender and Fluiter [35]).
Arnborg and Proskurowski [12] gave six reduction rules that reduce G to the empty graph
if and only if τ(G)≤ 3. Sanders [112] provided a linear time algorithm for testing τ(G)≤ 4.

Besides forests and series-parallel graphs, the complexity of treewidth for some special
classes of graphs are known (by presenting either a polynomial-time algorithm or an NP-
completeness proof). We refer the interested reader to two surveys on the topic by Bod-
laender [24, 29]. Most remarkable in this context is that, so far, the complexity of treewidth
for planar graphs is unknown, whereas for branchwidth a polynomial-time algorithm exists;
see §4. Lapoire [91] and Bouchitté et al. [40] proved that the treewidth of a planar graph
and of its geometric dual differ by at most 1.

As it is NP-complete to decide whether the treewidth of a graph is at most k, a natural
way to proceed is to consider polynomial-time approximation algorithms for the problem.
Given a graph G with τ(G) = k, the best algorithms are given by Bouchitté et al. [41] and
Amir [9], both providing a tree decomposition of width at most O(k logk) (i.e., an O(logk)
approximation). So far, neither is a constant approximation algorithm known nor is it proven
that no such algorithm exists.

If we insist on computing the treewidth exactly, unless P =NP, the only way to go is
the development of an exponential time algorithm; see Woeginger [124] for a survey in this
recent branch of algorithm theory. For treewidth, Arnborg et al. [13] gave an algorithm with
running time O(2npoly(n)), where poly(n) is a polynomial in n. Fomin et al. [57] presented
a O(1.9601npoly(n)) algorithm. Whether these algorithms are of practical usefulness for
computing treewidth is a topic of further research.

5.1.2. Construction in Practice. Most results presented in the previous subsection are
of theoretical interest only: The computational complexity hides huge constant coefficients
that make the algorithms impractical for actually computing treewidth. So far, only the
reduction rules for treewidth of at most 3 have been proved to be of practical use in prepro-
cessing the input graph. However, in all those cases where the treewidth is larger than 3, we
have to turn to heuristics without any performance guarantee. Many of the results reviewed
here have been tested on graphs of different origin, see TreewidthLIB [28] for a compendium.

Preprocessing. The reduction rules of Arnborg and Proskurowski [12] not only reduce
graphs of treewidth of at most 3 to the empty graph, but can also be used as a preprocessing
technique to reduce the size of general graphs. In Bodlaender et al. [39], the rules have
been adapted and extended so as to preprocess general graphs. Given an input graph G, a
value low is maintained during the preprocessing such that max{low, τ(G′)}= τ(G), where
G′ is the (partly) preprocessed graph. If at any point no further preprocessing rules can
be applied anymore, a tree decomposition of the preprocessed graph G′ is computed (see
below). Finally, given a tree decomposition for G′, a tree decomposition for the input graph
can be obtained by reversal of the preprocessing steps and adapting the tree decomposition
appropriately. Computational experiments have shown that significant reductions in the
graph size can be achieved by these rules.

The above-mentioned preprocessing rules emphasize the removal of vertices from the
graph. Another way to reduce the complexity of finding a good tree decomposition is the
splitting of the input graph into smaller graphs for which we can construct a tree decompo-
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sition independently. In Bodlaender and Koster [32], so-called safe separators are introduced
for this purpose. A separator S is a set of vertices whose removal disconnects a graph G.
Let V i, i= 1, . . . , p (p≥ 2) induce the connected components of G−S. On each of the con-
nected components G[V i], a graph Gi is defined as G[V i ∪ S]∪ clique(S), where clique(S)
denotes a complete graph, or clique, on S. If τ(G) = maxi=1,...,p τ(Gi), then S is called safe
for treewidth. In particular, clique separators (i.e., S induces a clique) and almost clique
separators (i.e., S contains a |S| − 1 clique) are safe. Experiments revealed that, roughly
speaking, by applying a safe separator decomposition to a graph, it remains to construct a
tree decomposition for the smaller graphs given by the decomposition.

Exact Algorithms. Although treewidth is NP-hard in general, there have been a
couple of attempts to tackle the problem by exact approaches. Shoikhet and Geiger [117]
implemented a modified version of the O(nk+2) algorithm by Arnborg et al. [13]. A
branch-and-bound algorithm based on vertex ordering has been proposed by Gogate and
Dechter [63].

Upper-Bound Heuristics. The operations research toolbox for constructing solutions
to combinatorial optimization problems has been opened but not yet fully explored for
computing the treewidth of a graph. Most heuristics are of a constructive nature: According
to some principle, we construct a tree decomposition from scratch. Improvement heuristics
as well as metaheuristics are less frequently exploited.

At first sight, condition (TD3) does not simplify the construction of good tree decom-
positions from scratch. However, an alternative definition of treewidth by means of graph
triangulations reveals the key to constructive heuristics. A triangulated or chordal graph is
a graph in which every cycle of length of at least 4 has a chord. A triangulation of a graph
G= (V,E) is a chordal graph H = (V,F ) with E ⊆ F .

Lemma 2. Let G be a graph, and let H be the set of all triangulations of G. Then,
τ(G) = minH∈H ω(H)− 1, where ω(H) is the size of the maximum clique in H.

Thus, if G is triangulated, then τ(G) = ω(G)− 1, otherwise we have to find a triangula-
tion of H with small maximum clique size. Several algorithms exist to check whether G is
triangulated, or to construct a triangulation of G. All are based on a special ordering of the
vertices. A perfect elimination scheme of a graph G= (V,E) is an ordering of the vertices
v1, . . . , vn such that for all vi ∈ V , δG[vi,...,vn](vi) induce a clique.

Lemma 3 (Gavril [59], Golumbic [64]). A graph G is triangulated if and only if there
exists a perfect elimination scheme.

To check whether a graph is triangulated, it is thus enough to construct a perfect elimi-
nation scheme or to prove that no such scheme exists. The lexicographic breadth first search
(LEX) recognition algorithm by Rose et al. [111] constructs in O(n+m) time a perfect elim-
ination scheme if such a scheme exists. The maximum cardinality search (MCS) by Tarjan
and Yannakakis [120] does the same (with the same complexity in theory, but is faster in
practice). Both algorithms can be adapted to find a triangulation H if G is not triangu-
lated itself. With the help of Lemma 2, a tree decomposition can be constructed with width
equal to the maximum clique size of H minus one. The triangulated graph given by both
algorithms is not necessarily minimal in the sense that there may not exist a triangulation
H ′ = (V,F ′) with E ⊂ F ′ ⊂ F . As unnecessarily inserted edges can increase the maximum
clique size, it is desirable to find a minimal triangulation. For both algorithms there exist
variants that guarantee the ability to find a minimal triangulationH ′ ofG, known as LEX–M
(Rose et al. [111]) and MCS–M (Berry et al. [17]), respectively. See Koster et al. [84] for
some experimental results for LEX–P, MCS, and LEX–M. Recently, Heggernes et al. [69]
proposed a new algorithm to find a minimal triangulation. Alternatively, we can add as
a postprocessing step to MCS and LEX–P an algorithm that turns a triangulation into a
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minimal triangulation (Blair et al. [22], Dahlhaus [51], and Heggernes and Villanger [68]).
Note that in case the input graph is chordal, the minimal triangulation is the graph itself,
and the treewidth of the graph is computed exactly with all described algorithms.

The minimal fill-in problem is another problem that is studied in relation to triangulation
of graphs. The minimum fill-in of a graph is the minimum number of edges to be added to
a graph such that the resulting graph is chordal/triangulated. This problem is known to be
NP-hard (Yannakakis [126]), but it is not difficult to think of two heuristics. The first one
is a greedy algorithm: Select repeatedly the vertex for which the fill-in among its neighbors
is minimized, turn its neighbors into a clique, and remove that vertex. This algorithm is
called greedy fill-in (GFI), or simply the minimum fill-in algorithm in some articles. The
second algorithm does the same except that it selects the vertex according to the minimum
degree. See Bachoore and Bodlaender [16] and Clautiaux et al. [44, 45] for computational
experiments and fine-tuning of these algorithms.

Except for the algorithm that turns a triangulation into a minimal triangulation, all
heuristics described so far are constructive. The algorithm described in Koster [83] can be
viewed as an improvement heuristic, similar to the tree-building idea for branchwidth. Given
a tree decomposition, it tries to replace the largest bag(s) by smaller ones, preserving all
conditions of a tree decomposition. If the algorithm starts with the trivial tree decomposition
consisting of a single node, the algorithm can be viewed as a constructive algorithm; if it
starts with a tree decomposition constructed by another method, it can be considered an
improvement heuristic as well.

Metaheuristics have been applied to treewidth as well. Clautiaux et al. [45] experimented
with a tabu search algorithm. For a problem closely related to treewidth, Kjærulff [79]
applies simulated annealing, whereas Larrañaga et al. [92] use a genetic algorithm.

Branchwidth and Treewidth. As already pointed out in §2, the notions branchwidth
and treewidth are closely related. Given a branch decomposition with width k, a tree
decomposition with width at most �3/2k� can be constructed in polynomial time: Let i
be an internal node of the branch decomposition and let j1, j2, j3 be its neighbors. More-
over, let Uj1 , Uj2 , Uj3 ⊆ V be the vertex sets induced by edges corresponding to the leafs
of the subtrees rooted at j1, j2, and j3 respectively. Thus mid(ij1) := Uj1 ∩ (Uj2 ∪ Uj3),
mid(ij2) := Uj2 ∩ (Uj1 ∪ Uj3), and mid(ij3) := Uj3 ∩ (Uj1 ∪ Uj2). Now, associate with node
i the bag Xi := mid(ij1) ∪ mid(ij2) ∪ mid(ij3). Because the union contains Uj ∩ Uk,
j, k ∈ {j1, j2, j3}, j = k, twice, the size of Xi is at most �3/2k�. It is left to the reader to
verify that ({Xi, i∈ I}, T = (I,F )) satisfies all conditions of a tree decomposition.

5.2. Treewidth Lower Bounds
The heuristics for practical use described above do not generally guarantee a tree decompo-
sition with width close to optimal. To judge the quality of the heuristics, lower bounds on
treewidth are of great value. Moreover, obtaining good lower bounds quickly is essential for
the performance of branch-and-bound algorithms (see Gogate and Dechter [63]), and the
height of a treewidth lower bound is a good indication of the computational complexity of
tree decomposition-based algorithms to solve combinatorial optimization problems.

In recent years, substantial progress on treewidth lower bounds has been achieved, both
theoretically and practically. Probably the widest-known lower bound is given by the max-
imum clique size. This can be seen by Lemma 2: The maximum clique of G will be part of
a clique in any triangulation of G.

Scheffler [114] proved that every graph of treewidth of at most k contains a vertex of
degree at most k. Stated differently, the minimum degree δ(G) is a lower bound on the
treewidth of a graph. Typically this lower bound is of no real interest, as the minimum
degree can be arbitrarily small. Even if the preprocessing rules of the previous section have
been applied before, only δ(G)≥ 3 can be guaranteed.
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Ramachandramurthi [99, 100] introduced the parameter

γR(G) = min
(
n− 1, min

v,w∈V, v �=w,{v,w}/∈E
max(d(v), d(w))

)

and proved that this is a lower bound on the treewidth of G. Note that γR(G) = n−1 if and
only if G is a complete graph on n vertices. If G is not complete, then γR(G) is determined
by a pair {v,w} /∈E with max(d(v), d(w)) as small as possible. From its definition it is clear
that γR(G)≥ δ2(G)≥ δ(G), where δ2(G) is the second-smallest degree appearing in G (note
δ(G) = δ2(G) if the minimum-degree vertex is not unique). So, we have

δ(G)≤ δ2(G)≤ γR(G)≤ τ(G)

and all these three lower bounds can be computed in polynomial time.
One of the heuristics for constructing a (good) tree decomposition is the maximum cardi-

nality search algorithm (MCS); see §5.1.2. Lucena [94] proved that with the same algorithm
a lower bound on the treewidth can be obtained. The MCS visits the vertices of a graph in
some order, such that at each step an unvisited vertex that has the largest number of vis-
ited neighbors becomes visited (note that the algorithm can start with an arbitrary vertex).
An MCS ordering of a graph is an ordering of the vertices that can be generated by the
algorithm. The visited degree of a vertex v in an MCS ordering is the number of neighbors
of v that are before v in the ordering. The visited degree of an MCS ordering ψ of G is the
maximum visited degree over all vertices v in ψ and denoted by mcslbψ(G).

Theorem 8 (Lucena [94]). Let G be a graph and ψ an MCS ordering. Then,mcslbψ(G)
≤ τ(G).

If we define the maximum visited degree MCSLB(G) of G as the maximum visited degree
over all MCS orderings of graph G, then obviously MCSLB(G) ≤ τ(G) as well. Bodlaen-
der and Koster [32] proved that determining whether MCSLB(G) ≤ k for some k ≥ 7 is
NP-complete and presented computational results by constructing MCS orderings using
tiebreakers for the decisions within the MCS algorithm.

It is easy to see that every lower bound for treewidth can be extended by taking the maxi-
mum of the lower bound over all subgraphs or minors: Given an optimal tree decomposition
for G and H a subgraph (minor) of G, then we can construct a tree decomposition with
equal or better width for H by removing vertices from the bags that are not part of the
subgraph (minor) and replacing contracted vertices by their new vertex.

In Koster et al. [84], the minimum-degree lower bound has been combined with taking
subgraphs. The maximum-minimum degree over all subgraphs, denoted by δD(G), is known
as the degeneracy of a graph G, and can be computed in polynomial time by repeatedly
removing a vertex of minimum degree and recording the maximum encountered. Szekeres and
Wilf [118] proved that δD(G)≥ χ(G)−1, and thus δD(G)≥ ω(G)−1. Hence, the degeneracy
provides a lower bound no worse than the maximum clique size, and in addition it can be
computed more efficiently. In Bodlaender and Koster [32] it is shown that MCSLB(G) ≥
δD(G).

Independently, Bodlaender et al. [37] and Gogate and Dechter [63] combined the
minimum-degree lower bound with taking minors. The so-called contraction degeneracy
δC(G) is defined as the maximum-minimum degree over all minors of G. In Bodlaender
et al. [37], it is proven that computing δC(G) is NP-hard and computational experiments
are presented by applying tiebreakers to the following algorithm: Repeatedly contract a
vertex of minimum degree to one of its neighbors and record the maximum encountered.
Significantly better lower bounds than the degeneracy are obtained this way. In Wolle et al.
[125], further results for contraction degeneracy are discussed, showing, for example, that
δC(G)≤ 5 + γ(G), where γ(G) is the genus of G.
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Figure 12. Degree-based treewidth lower bounds.
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Also, the lower bounds δ2(G), γR(G), and MCSLB(G) can be computed over all subgraphs
or minors. In Bodlaender et al. [37] the combination of MCSLB(G) and taking minors has
been studied, whereas the combination of δ2(G) and γR(G) with taking subgraphs or minors
is the topic of research in Koster et al. [88]. Whereas computing δ2(G) over all subgraphs
(denoted by δ2D(G)) can be computed in polynomial time, surprisingly, computing γR(G)
over all subgraphs (denoted by γRD(G)) is already NP-hard. A two-approximation for
γRD(G) is given by δ2D(G). Furthermore, δ2D(G)≤ δD(G) + 1 and δ2C(G)≤ δC(G) + 1,
where δ2C(G) is the minor-taking variant of δ2(G). Figure 12 shows an overview of the lower
bounds for treewidth discussed so far. In practice, δ2C(G) and γRC(G) are only marginal
better (if at all) than the lower bounds computed for the contraction degeneracy.

Another vital idea to improve lower bounds for treewidth is based on the following result.

Theorem 9 (Bodlaender [27]). LetG= (V,E) be a graph with τ(G)≤ k and {v,w} /∈E.
If there exist at least k+ 2 vertex disjoint paths between v and w, then {v,w} ∈ F for every
triangulation H of G with ω(H)≤ k.

Hence, if we know that τ(G) ≤ k and there exist k + 2 vertex disjoint paths between v
and w, adding {v,w} to G should not hamper the construction of a tree decomposition with
small width. Clautiaux et al. [44] explored this result in a creative way. First, they compute
a lower bound @ on the treewidth of G by any of the above methods (e.g., @= δC(G)). Next,
they assume τ(G)≤ @ and add edges {v,w} to G for which there exist @+ 2 vertex disjoint
paths in G. Let G′ be the resulting graph. Now, if it can be shown that τ(G′) > @ by a
lower-bound computation on G′, our assumption that τ(G)≤ @ is false. Hence, τ(G)> @ or
stated equally τ(G)≥ @+ 1: An improved lower bound for G is determined. This procedure
can be repeated until it is not possible anymore to prove that τ(G′) > @ (which of course
does not imply that τ(G′) = @).

In Clautiaux et al. [44], δD(G′) is used to compute the lower bounds for G′. Because
computing the existence of at least @+2 vertex disjoint paths can be quite time consuming,
a simplified version checks whether v and w have at least @+ 2 common neighbors. In Bod-
laender et al. [38] the above described approach is nested within a minor-taking algorithm,
resulting in the best-known lower bounds for most tested graphs; see [28]. In many cases
optimality could be proved by combining lower and upper bounds.

For graphs of low genus, in particular for planar graphs, the above described lower bounds
typically are far from the real treewidth. For planar graphs, we can once more profit from
Theorem 2. Treewidth is bounded from below by branchwidth, and branchwidth can be
computed in polynomial time on planar graphs. Hence, a polynomial-time computable lower
bound for treewidth of planar graphs is found. Further research in finding lower bounds
(based on the concept of brambles (Seymour and Thomas [115])) for (near) planar graphs is
underway (Bodlaender et al. [36]). One of these bounds is also a lower bound for branchwidth.
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5.3. Tree Decomposition-Based Algorithms
All efforts to compute good tree decompositions (and lower bounds on treewidth) have two
major reasons:

• Several practical problems in various fields of research are equivalent to treewidth on
an associated graph.
• For many NP-hard combinatorial problems that contain a graph as part of the input,

polynomial-time algorithms are known in case the treewidth of the graph is bounded by
some constant (as is the case for branchwidth).

For a long time, the second reason has been considered to be of theoretical value only, but
(as with branchwidth) more and more practical work has been carried out in this direction.

Examples of the first reason can be found in VLSI design, Cholesky factorization, and
evolution theory. We refer to Bodlaender [24] for an overview. In this context we also
should mention that the control flow graph of goto-free computer programs written in com-
mon imperative programming languages like C or Pascal have treewidth bounded by small
constants; see Thorup [121] and Gustedt et al. [66]. Recently, Bienstock and Ozbay [21]
connected treewidth with the Sherali-Adams operator for 0/1 integer programs.

For many NP-complete problems like Independent Set, Hamiltonian Circuit,
Chromatic Index (Bodlaender [23]), or Steiner Tree (Korach and Solel [82]) it has been
shown that they can be solved in polynomial time if defined on a graph of bounded treewidth.
Typically there exists a kind of dynamic programming algorithm based on the tree decompo-
sition. Because such algorithms follow a scheme similar to the branch decomposition-based
algorithms described before, we leave out such a formal description (see, e.g., Bodlaender
[24] for a description of the algorithm for the independent set problem, or Koster [83, 87]
for frequency assignment).

Probably the first tree decomposition-based algorithm that has been shown to be of prac-
tical interest is given by Lauritzen and Spiegelhalter [93]. They solve the inference problem
for probabilistic (or Bayesian belief) networks by using tree decompositions. Bayesian belief
networks are often used in decision support systems. Applications of Bayesian belief net-
works can be found in medicine, agriculture, and maritime applications.

For problems where integer linear programming turns out to be troublesome, using a
tree decomposition-based algorithm could be a good alternative. A demonstrative example
in this context is a frequency assignment problem studied by Koster [83] (see also Koster
et al. [86, 87]). In the so-called minimum interference frequency assignment problem, we
have to assign frequencies to transmitters (base stations) in a wireless network such that the
overall interference is minimized. For this purpose, let G= (V,E) be a graph, and for every
vertex v ∈ V , a set of radio frequencies Fv is given. For every pair {v,w} and every f ∈ Fv,
g ∈ Fw, a penalty pvfwg ≥ 0 is defined. The penalties measure the interference caused by
assigning two frequencies to the vertices. For v and w, {v,w} ∈E if and only if at least one
penalty pvfwg > 0. In Koster et al. [85], a cutting-plane algorithm is shown to be effective
only for |Fv| ≤ 6. In practice, however, |Fv|= 40 on average. In Koster et al. [83, 87], a tree
decomposition-based algorithm is developed for the problem. First, a tree decomposition is
computed with the improvement heuristic described in §5.1.2. Next, the tree decomposition
is used to run a dynamic programming algorithm to solve the problem. Several reduction
techniques have been developed to keep the number of partial solutions to be maintained
during the algorithm small. The algorithm is tested on frequency assignment problems that
have been defined in the context of the CALMA project (see Aardal et al. [1, 2] for more
information on the problems and overview of the results). It was indeed possible to solve 7
out of the 11 instances to optimality by this technique. For the other instances, the computer
memory was exhausted before optimality of the best-known solution could be proven.

In Koster et al. [86] the algorithm is adapted to an interference lower-bound algorithm
by considering subsets of the frequencies instead of the single frequencies. Step by step the
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subsets are refined to improve the lower bound until either the best-known solution is proved
to be optimal, or computer memory prohibits further computation.

In Koster et al. [87], this tree decomposition-based algorithm is discussed in the more gen-
eral context of partial constraint satisfaction problems with binary relations. It is shown that
the maximum satisfiability (MAX SAT) problem can be converted to a partial constraint
satisfaction problem and computational results are presented for instances taken from the
second DIMACS challenge on cliques, colorings, and satisfiability [78].

Other experimental work has been carried out for vertex covering and vertex coloring.
Alber et al. [4] applied a tree decomposition-based algorithm for solving the vertex cover
problem on planar graphs. Commandeur [46] experimented with an algorithm that solves the
vertex coloring by first coloring the heaviest bag of a tree decomposition, and the remaining
vertices afterward.

As already pointed out in the frequency assignment application, memory consumption is
a major concern for tree decomposition-based algorithms. Recently, Betzler et al. [18] have
proposed a technique for reducing the memory requirements of these algorithms.

Requests for computational assistance in the construction of tree decompositions for var-
ious graphs exemplify that applying treewidth approaches to various other combinatorial
problems is gaining more and more interest in fields as different as bioinformatics, artificial
intelligence, operations research, and (theoretical) computer science.

6. Branchwidth, Treewidth, and Matroids
6.1. Branchwidth of Matroids
It is only natural that branch decompositions can be extended to matroids. In fact, branch
decompositions have been used to produce a matroid analogue of the graph minors theorem
(Geelen et al. [60]). A formal definition for the branchwidth of a matroid is given below.

The reader is referred to the book by Oxley [98] if not familiar with matroid theory. Let
M be a matroid with finite ground set S(M) and rank function ρ. The rank function ofM∗,
the dual of M , is denoted ρ∗.

A separation (A,B) of a matroid M is a pair of complementary subsets of S(M), and the
order of the separation, denoted ρ(M,A,B), is defined to be following:

ρ(M,A,B) =



ρ(A) + ρ(B)− ρ(M) + 1 if A = ∅ =B,

0 else,

A branch decomposition of a matroid M is a pair (T,µ) where T is a tree having |S(M)|
leaves in which every nonleaf node has degree 3 and µ is a bijection from the ground set of
M to the leaves of T . Notice that removing an edge, say e, of T partitions the leaves of T
and the ground set ofM into two subsets Ae and Be. The order of e and of (Ae,Be), denoted
order(e) or order(Ae,Be), is equal to ρ(M,Ae,Be). The width of a branch decomposition
(T , µ) is the maximum order of all edges in T . The branchwidth of M , denoted by β(M),
is the minimum width over all branch decompositions of M . A branch decomposition of M
is optimal if its width is equal to the branchwidth of M . For example, Figure 13 gives a
Euclidean representation of a matroid and its optimal branch decomposition where all of
the orders for the edges of the branch decomposition are provided.

Some results characterizing the branchwidth of matroids are given in the following lemma.

Lemma 4 (Dharmatilake [52]). Let M be a matroid. Then, β(M) = β(M∗), and if
M ′ is a minor of M , then β(M ′)≤ β(M).

Lemma 5 (Dharmatilake [52]). Let M be a matroid. Then β(M) ≤ 1 if and only if
M has no nonloop cycle. Moreover, β(M) ≤ 2 if and only if M is the cycle matroid of a
series-parallel graph.
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Figure 13. Fano matroid F7 with optimal branch decomposition (T,µ) of width 4.
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The cycle matroid of graph G, denoted M(G), has E(G) as its ground set and the cycles
of G as the cycles of M(G). For example, Figure 14 gives an optimal branch decomposition
of the cycle matroid of the example graph given in Figure 1, where some of the orders for
the edges of the branch decomposition are provided.

In addition, there is also the concept of matroid tangles, first offered by Dharmatilake [52].
Let k be a positive integer, and let M be a matroid. A tangle of order k in M is a set T of
<k separations of M such that
• for every separation (A,B) ofM such that ρ(M,A,B)<k, either (A,B)∈T or (B,A)∈T ;
• if (A1,B1), (A2,B2), (A3,B3)∈ T , then A1 ∪A2 ∪A3 = S(M); and
• if (A,B)∈ T , then ρ(A)< ρ(M).

They are referred to as the first, second, and third matroid tangle axioms. Likewise, the
tangle number of a matroid M , denoted θ(M), is the largest order of a tangle for M . Notice
that the third matroid tangle axiom offers instances where the tangle number could be
infinity. This occurs when the matroid has a coloop because the coloop can always be on
the second part of the separations of a tangle. In addition, Dharmatilake gave a min-max
relationship between tangles of matroids and the branchwidth of matroids, given below.

Theorem 10 (Dharmatilake [52]). Let M be a matroid. Then β(M) = θ(M) if and
only if M has no coloop and β(M) = 1.

It was conjectured by Geelen et al. [61] that the branchwidth of a graph and the branch-
width of the graph’s cycle matroid are equal if the graph has a cycle of length of at least 2.

Figure 14. Optimal branch decomposition (T,µ) of width 3 for the cycle matroid of the graph in
Figure 1.
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Similar to the work on characterizing the classes of graphs with bounded branchwidth,
there have been some developments in characterizing the classes of matroids with bounded
branchwidth. Most notable is the work of Robertson and Seymour [106], characterizing the
class of matroids with branchwidth of at most 2, and the work of Geelen et al. [60], proving
that the size of excluded minors for the class of matroids with bounded branchwidth is finite.
In addition, Hall et al. [67] showed that there are at most 14 excluded minors of the class of
matroids with branchwidth of at most 3. Recently, Oum and Seymour [97] have derived a
polynomial-time algorithm to approximate the branchwidth of any matroid, similar to the
algorithm offered by Robertson and Seymour [108] for graphs. One is also referred to the
work of Hliněný [76] for more detailed discussions on the branchwidth of matroids.

6.2. Treewidth of Matroids
In contrast to branchwidth, it is not straightforward to generalize the notion of treewidth
to matroids. Where the width of a branch decomposition is defined on edges of the graph,
the width of a tree decomposition is defined on graph vertex sets (the bags). The ground
set of the cycle matroid corresponds with the edge set of the associated graph, whereas the
vertices do not play a role in the cycle matroid.

Hliněný and Whittle [77], inspired by an unpublished work of Geelen, state a definition for
treewidth of matroids and show that in the case of the cycle matroid of a graph this definition
is equivalent to the graph-based definition, by providing an alternative characterization of
the treewidth of graphs.

Let M be a matroid on the ground set S(M). A pair (T,µ), where T is a tree and
µ : S→ V (T ) is an arbitrary mapping, is called a tree decomposition of M . For a node x of
T , denote the connected components of T − x by T1, . . . , Td, and set Fi = µ−1(V (Ti)). The
width of x is

(MW)
d∑
i=1

ρM (S−Fi)− (d− 1) · ρ(M),

and the width of the decomposition (T,µ) is the maximum width over all nodes of T . The
treewidth τ(M) of M is the minimum width over all tree decompositions of M .

Theorem 11 (Hliněný and Whittle [77]). Let G be a graph with at least one edge,
and let M(G) be the cycle matroid of G. Then, τ(G) = τ(M(G)).

Note that the mapping µ in the definition has nothing to do with the bags Xi defined in
the graph version of tree decompositions. The mapping µ guarantees that property (TD2)
is fulfilled, whereas the interpolation property (TD3) is hidden in (MW). The width of a
node x of T can be rewritten as

ρ(M)−
d∑
i=1

(ρ(M)− ρM (S−Fi)),

which can be seen as minimizing the rank defect of the branches of each node (here rank
defect is defined as ρ(M)− ρM (S−F ) for a set F ⊆ S).

Besides the equivalence of graph and matroid treewidth, Hliněný and Whittle [77] also
prove the relation between matroid branchwidth and matroid treewidth, similar to Theo-
rem 2. They show that β(M) ≤ τ(M) + 1 ≤max(2β(M)− 1,2) holds for all matroids M .
Hence, all results for matroids of bounded branchwidth carry over to matroids of bounded
treewidth and vice versa. Note that the upper bound is not as tight as in the case of graphs.
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7. Open Problems
Related to branchwidth and treewidth, the following open questions are worth considering:
• Does there exist a polynomial-time algorithm to compute the branchwidth and optimal

branch decomposition of a planar graph with complexity smaller than O(n3)?
• Is the branchwidth of a graph and its cycle matroid equal if the graph has a cycle of

length of at least 2?
• Do there exist polynomial-time algorithms to compute the branchwidth and optimal

branch decomposition of graphs embedable on orientable surfaces other than the sphere,
such as the torus or double torus?
• Do there exist (practical) integer-programming formulations for finding the branchwidth

or treewidth of a graph?
• Does there exist a polynomial-time approximation algorithm for treewidth with con-

stant approximation guarantee?
• Does there exist a polynomial-time algorithm for computing treewidth of a planar

graph, or a proof that this problem is NP-hard?
• Do heuristics other than MCS have a lower-bounding counterpart?
• How good can the contraction degeneracy δC(G) be in general graphs? Is there a bound

(different from treewidth) that limits this parameter?
• Do there exist computational efficient algorithms to compute the treewidth of general

graphs? Are the exponential-time algorithms useful for practical computations?
Finally, the real application of the methodology to other combinatorial problems is of

importance for both the operations research community and the algorithmic graph theory
community. For operations researchers, it is good to have alternative methodologies other
than integer linear programming that indeed solve real-world problems. For the algorithmic
graph theorists, more applications will drive the research to improved lower and upper
bounds for treewidth or related notions.
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Hicks, Koster, and Kolotoğlu: Branch and Tree Decomposition Techniques for Discrete Optimization
Tutorials in Operations Research, c© 2005 INFORMS 27

[57] F. V. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for treewidth and
minimum fill-in. Proceedings of the 31st International Colloquium on Automata, Languages
and Programming, 568–580, 2004.

[58] M. R. Garey, R. L. Graham, D. S. Johnson, and D. E. Knuth. Complexity results for band-
width minimization. SIAM Journal of Applied Mathematics 34:477–495, 1978.

[59] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal
of Combinatorial Theory Series B 16:47–56, 1974.

[60] J. F. Geelen, A. M. H. Gerards, and G. Whittle. Branch width and well-quasi-ordering in
matroids and graphs. Journal of Combinatorial Theory Series B 84:270–290, 2002.

[61] J. F. Geelen, A. M. H. Gerards, N. Robertson, and G. P. Whittle. On the excluded minors
for the matroids of branch-width k. Journal of Combinatorial Theory Series B 88:261–265,
2003.

[62] H. Glover, P. Huneke, and C. S. Wang. 103 graphs that are irreducible for the projective
plane. Journal of Combinatorial Theory Series B 27:332–370, 1979.

[63] V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. Proceedings of the
20th Annual Conference on Uncertainty in Artificial Intelligence UAI-04, UAI Press, Arling-
ton, VA, 201–208, 2004.

[64] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York,
1980.

[65] Q.-P. Gu and H. Tamaki. Optimal branch-decomposition of planar graphs in O(n3) time.
Technical Report 2004-14, School of Computing Science, Simon Fraser University, Burnaby,
BC, Canada, 2004.

[66] J. Gustedt, O. A. Mæhle, and J. A. Telle. The treewidth of Java programs. David M. Mount
and Clifford Stein, eds. Proceedings 4th International Workshop on Algorithm Engineering
and Experiments. Lecture Notes in Computer Science, Vol. 2409. Springer-Verlag, Berlin,
Germany, 86–97, 2002.

[67] R. Hall, J. Oxley, C. Semple, and G. Whittle. On matroids of branch-width three. Journal of
Combinatorial Theory Series B 86:148–171, 2002.

[68] P. Heggernes and Y. Villanger. Efficient implementation of a minimal triangulation algorithm.
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[76] P. Hliněný. On the excluded minors for matroids of branch-width three. Electronic Journal

of Combinatorics 9(Research Paper 32):13pp, 2002.
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