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Take away message

Uncertainties complicates Optimization

but

understanding the complexity increase helps (and is fun)

Case I: developing polyhedral theory further

Case II: reformulating to known problems

Case III: determining complexity border

Joint works with Christina Büsing, Timo Gersing, Alexandra Grub, Manuel Kutschka,

Wlademar Laube, Nils Spiekermann, Martin Tieves
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Motivation: Bandwidth Packing Problem

Given network topology
link dimensioning
demands

Find routing

Observations:

single path routing

binary decision on single link → 0-1 Knapsack Problem

demand values are uncertain
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Optimization under Uncertainty

Robust Optimization according to Ben-Tal and Nemirovski:

Uncertain Linear Program

An Uncertain Linear Optimization problem (ULO) is a collection of linear
optimization problems (instances){

min{cT x : Ax ≤ b}
}

(c,A,b)∈U

where all input data stems from an uncertainty set U ⊂ Rn × Rm×n × Rm.

Robust Knapsack Problem

max
{
cT x : {aT x ≤ b, x ∈ {0, 1}n}a∈U

}
How to define U?
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Uncertainty Sets

How to define the uncertainty set?
Uncertainty set is an ellipsoid, e.g.,

U = {a ∈ Rn : ‖a− ā‖ < κ}

Uncertainty set is a polyhedron, e.g.,

U = {a ∈ Rn : D · a ≤ d}

with D ∈ Rk×n, d ∈ Rk for some k ∈ N.
equivalent: set of discrete scenarios (extreme
points of polyhedron)
special case: Γ-Robustness;
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U(Γ) =

{
a ∈ Rn : ai = āi + âiδi ,

n∑
i=1

δi ≤ Γ, δ ∈ {0, 1}n
}
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Γ-Robust Knapsacks

Γ-Robust Knapsack polytope:

conv

{
x ∈ {0, 1}|N| :

∑
i∈N

ai āixi +
∑
i∈S

âixi ≤ b ∀S ⊆ N, |S | ≤ Γ

}

Cover inequalities for Knapsack:
Set C with a(C ) > b:

x(C ) ≤ |C | − 1

Extended Cover inequalities:
E (C ) := C ∪ {i : ai ≥ maxj∈C aj}:

x(E (C )) ≤ |C | − 1

How to define covers for Γ-robust knapsack?
C ⊆ N is a Γ−robust cover : ∃S ⊆ C with |S | ≤ Γ and ā(C ) + â(S) > b
What about the extension?
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Scenario Extensions

Scenario Extension

(C , S) a cover-pair if S ⊆ C , |S | ≤ Γ, and ā(C ) + â(S) > b.
Extension for cover-pair (C ,S):

E (C , S) := C ∪
{
i ∈ N \ C : āi ≥ max

j∈C\S
āj , āi + âi ≥ max

j∈S
(āj + âj)

}
.

Lemma (Büsing, K., Kutschka (2011))∑
j∈E(C ,S)

xj ≤ |C | − 1 is a valid inequality for all cover-pairs (C , S).
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Example Scenario Extensions

Scenario Extension

E (C ,S) := C ∪
{
i ∈ N : āi ≥ max

j∈C\S
āj , āi + âi ≥ max

j∈S
(āj + âj)

}
.

n = 6 items
b = 21 capacity
Γ = 2 robustness budget

i 1 2 3 4 5 6

āi 5 5 3 3 4 5
âi 3 3 3 3 4 1

C = {1, 2, 3, 4} robust cover

S1 = {1, 2} and S2 = {3, 4} build cover-pairs with C = {1, 2, 3, 4}
extensions E (C ,S1) = C ∪ {5} and E (C ,S2) = C ∪ {6}
but also

∑
j∈C∪{5,6}

xj ≤ 3 = |C | − 1 is valid

does there exist an extension E (C ) = C ∪ {5, 6}?
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Union of Extensions

Union of Extensions

S (C ) := {S ⊆ C | (C ,S) is a cover-pair} all cover-pairs with cover C :

E(C ) :=
⋃

S∈S(C)

E (C ,S) .

Theorem (Gersing, 2017)

Let C ⊆ N be a Γ− robust cover. Then∑
j∈E(C)

xj ≤ |C | − 1

is a valid inequality for the Γ-robust knapsack.
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Energy System schematically

Source: ProCom
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Decentralized Energy Case Study

Simultaneous production of heat and power in exchange for fuel

Source: ProCom

Fixed ratio ρ between heat and power generation

Heat can be stored for future use, power cannot be stored

Heat storage has limited capacity and loss factor

Power has to be bought/sold at day-ahead market!
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Lot-Sizing with Storage Deterioration

LS-DET:

min f (q, z) +
T∑
t=1

htut (1a)

s.t. αut−1 + qt = ut + dt ∀t ∈ [T ] (1b)

Ut ≤ ut ≤ Ut ∀t ∈ [T ] (1c)

Qzt ≤ qt ≤ Qzt ∀t ∈ [T ] (1d)

qt , ut ≥ 0 ∀t ∈ [T ] (1e)

zt ∈ {0, 1} ∀t ∈ [T ] (1f)

Lot-Sizing with

Production limitations

Storage limitations

Deterioration of storage

Concave cost function

No backlogging

Complexity

in general: open

if Q = 0,Q =∞, α = 1, f linear:
LS-DET∈ P (Love, 1973; Atamtürk & Küçükyavuz, 2008)

if U = 0,U =∞, α = 1: LS-DET∈ P (Hellion et al., 2012)

both cases still in P if 0 < α < 1 (Schmitz, 2016)

What about uncertain demands?
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Forecast & Actual Heat Demands

Heat demands for week 45, 2007
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Forecast error of up to 20% (average: 4.1%)
Find solutions that are feasible with high probability!

Arie M.C.A. Koster – RWTH Aachen University 16 / 38



Robust Lot-Sizing

Uncertainty Set: U of possible demand realizations (dt)t∈[T ]

Applying Robust Optimization:

αut−1 + qt = ut + dt (1b)

Impossible to find (q, z , u) such that (1b)–(1f) are satisfied ∀d ∈ U

Theorem (folklore)

Every (implicit) equality in Ax ≤ b allows for the elimination of a variable
involved in the equality.

⇒ In robust optimization, elimination of variable x implies that this
variable is moved 2nd stage, i.e., after the uncertain input is known!
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Robust Lot-Sizing with Deterioration

RLS-DET:

min f (q, z) + η (2a)

s.t. αut−1(d) + qt = ut(d) + dt ∀t ∈ [T ], d ∈ U (2b)

U ≤ ut(d) ≤ U ∀t ∈ [T ], d ∈ U (2c)

η ≥
∑
t∈[T ]

htut(d) ∀d ∈ U (2d)

Qzt ≤ qt ≤ Qzt ∀t ∈ [T ] (2e)

qt , ut(d) ≥ 0 ∀t ∈ [T ] (2f)

zt ∈ {0, 1} ∀t ∈ [T ] (2g)

η ≥ 0 (2h)

storage ut(d) per scenario d ∈ U
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Solving RLS-DET as LS-DET instance

Theorem

For an uncertainty set U over which a linear function can be optimized in
polynomial time, RLS-DET can be polynomially reduced (w.r.t. production

plans) to an instance of LS-DET with d = d ′ and U = U
′

thus defined:

d ′t := max
d∈U

{
dt −

t−1∑
i=1

αt−i (d ′i − di
)}

∀t ∈ [T ] (3a)

U
′
t := Ut −max

d∈U

{
t∑

i=1

αt−i (d ′i − di
)}

∀t ∈ [T ]. (3b)
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Robust Lot-Sizing

Corollary

Given an uncertainty set U over which a linear function can be optimized in
polynomial time, RLS-DET is in P (resp., NP-hard) if and only if the
corresponding version of LS-DET is in P (resp., NP-hard).

Robustness models satisfying precondition:

polyhedral uncertainty sets, Γ-robustness

discrete scenarios

ellipsoidal uncertainty sets
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Running times (96h)

Distribution of running times for |U| = 50:
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LS-DET with d ′, U
′

Speed-up factor between 1.82 and 85.67 with average 29.00
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Fixed vs. Flexgrid Optical Networks

Capacity of optical fibre is huge, but limited!

Idea: More efficient usage of optical channels1

Technology:
Fixed grid

vs.
Flexgrid

1Figure taken from “Innovative Future Optical Transport Network Technologies” by T.
Morioka et al., NTT Technical Review, 9 (2011).
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Flexgrid Optical Networks

Idea: fixed spectrum-block size → flexible block-size

Standard grid

Flexgrid

Spectrum is divided into smaller slots (e.g. 6.25GHz)

Demands request a custom amount of these slots (’size’)
⇒ Less spectrum wasted by custom-tailored slot sizes

“Freedom” is paid for: contiguity of assigned slots required

In future, demands will be dynamic over time
⇒ flexible slot allocation needed

Question: How to allocate spectrum such that demands can “breath”?
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Spectrum Allocation Problem

Spectrum 1 2 3 4 5 6 7 8 9

Demands: 2 3 4 2

Definition (Spectrum Allocation Problem (SA))

Given a simple undirected graph G = (V ,E ) and a set R of pairs
Ri = (Pi , di ) ∈ P × N, 1 ≤ i ≤ l , determine

1. for every Ri an interval Ii = [ai , bi ) with ai ≤ bi ∈ N und bi − ai = di ,
such that max{bi |i = 1, . . . , l} minimal, where Ii ∩ Ij = ∅ if paths Pi and
Pj share an edge in G .

Let SA(G ,R) denote the value of an optimal solution.
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Star and Path Networks

Lemma (Büsing et al., 2017)

Spectrum Allocation is NP-hard on general networks as well as on star
networks

Proof for star networks: wavelength assignment (di = 1) is NP-hard by
a reduction from edge coloring.

Lemma (Büsing et al., 2017)

Spectrum Allocation is already NP-hard on path networks and di ∈ {1, 2}

Proof: Spectrum Allocation on a path is equivalent to Dynamic
Storage Allocation, which is known to be NP-hard (GJ, 1979).
Proof for di ∈ {c , d} by Ślusarek (1987), corrected by Laube (2017).
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Small Path Networks

Theorem (Büsing et al., 2017)

SA is at least weakly NP-hard, even if G is a path of 5 edges.

Proof: Reduction from Partition,
∑

i∈N ai = B.
S

p
ec

tr
u

m
:

0

B

2B

G : 0 1 2 3 4 5

a

b

c

d

e

N N ′

B ′

B ′

Note: If G is a path of ≤ 3 edges, then SA can be solved in polynomial
time.
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Robust Spectrum Allocation

Robust Spectrum Allocation: Given a number of demand scenarios

d1, . . . , dK ∈ Z|R|+ , allocate in every scenario the required number of slots
such that the total number of slots accross the scenarios is minimized.
⇒ discrete uncertainty set

Applications:

Prepare for the future: one of the K scenarios will realize, but unknown
which one

Demand will fluctuate between the considered scenarios

Multi-period Spectrum Allocation with breathing demands

Allocations can breath, but not move (service interruption):
Allocations between scenarios are interwoven!

Any Impact on Optimization?
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Robust Spectrum Allocation Strategies

Five (technology) variants:

k = 1

k = 2

k = 3

(a) RobSA-A: one
joint slot

k = 1

k = 2

k = 3

(b) RobSA-B: min.
joint slots

k = 1

k = 2

k = 3

(c) RobSA-C: nested

k = 1

k = 2

k = 3

(d) RobSA-D: aligned
(left/right)

k = 1

k = 2

k = 3

(e) RobSA-E: overlap in
central slot

Lemma

RobSAA(G ,R) ≤ RobSAB(G ,R) ≤ RobSAC (G ,R) ≤
min{RobSAD(G ,R),RobSAE (G ,R)}
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Robust Spectrum Allocation Strategies

Lemma

There exists instances with
RobSAA(G ,R) < RobSAB(G ,R) <
RobSAC (G ,R) < RobSAD(G ,R),
RobSAC (G ,R) < RobSAE (G ,R)

Proof by example:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Request: 1 2 3

k = 1

k = 2

k = 3

(a) A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Request: 1 2 3

k = 1

k = 2

k = 3

(b) B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Request: 1 2 3

k = 1

k = 2

k = 3

(c) C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Request: 1 2 3

k = 1

k = 2

k = 3

(d) D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Request: 1 2 3

k = 1

k = 2

k = 3

(e) E
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Robust Spectrum Allocation I

Obviously: RobSA∗(G ,R) is NP-hard to compute in general networks

What about cases where SA(G ,R) is still polynomial solvable?

Polynomial solvable cases:

??? |E | = 1, i.e., single edge case: SA(G ,R) = d(R)
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Variant B & C

Theorem (Büsing et al., 2017)

Given a C ∈ Z+, the problems whether RobSAB(G ,R) ≤ C and
RobSAC (G ,R) ≤ C are strongly NP-complete, even if |E | = 1 and |K | = 2.

Reduction from 3-PARTITION: 3m items with size ai , bound B

a1 = 2

B + 3

a2 = 3

B + 3

a3 = 2 k = 1

k = 2

Define 5m requests with

dk
r :=


2ar + 2 if 1 ≤ r ≤ 3m, k = 1

2 if 1 ≤ r ≤ 3m, k = 2

3 if 3m + 1 ≤ r ≤ 5m, k = 1

B + 3 if 3m + 1 ≤ r ≤ 5m, k = 2

Corollary (Büsing et al., 2017)

Given a C ∈ Z+, the problem whether RobSAA(G ,R) ≤ C is strongly
NP-complete, even if |E | = 1 and |K | = 2.
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Robust Spectrum Allocation II

Any good news?

Theorem (Büsing et al., 2017)

RobSAD(G ,R) can be solved in polynomial time on a single link.

Proof:

k = 1

k = 2

k = 3r r ′

. . .

Requests are aligned left or right!

Slots can be saved by combining a left and right request

Min. weighted perfect matching on complete graph K|R| has to be solved

What about E?

Arie M.C.A. Koster – RWTH Aachen University 33 / 38



Robust Spectrum Allocation III

Theorem (Büsing et al., 2017)

Let |K | = 2 and let dk
r be odd for all r ∈ R and k ∈ K . Then,

RobSAE (G ,R) on a single link is polynomial-time solvable.

Proof: RobSAE can be modelled as Gilmore-Gomory-TSP:
NP-complete cases of variants D and E?

Theorem (Büsing et al., 2017)

Given a C ∈ Z+, the problem whether RobSAD(G ,R) ≤ C is strongly
NP-complete, even if |E | = 2 and |K | = 2.

Reduction from 3-PARTITION

Theorem (Büsing et al., 2017)

Given a C ∈ Z+, the problem whether RobSAE (G ,R) ≤ C is strongly
NP-complete, even if |E | = 1 and |K | = |R| or |E | = 2 and |K | = 2.

Reductions from HAMILTONIAN PATH and 3-PARTITION,
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Summary

Without uncertainty:

Requests R
Graph G dr = c dr ∈ {c, d} |Pr | ≤ k, k ≥ 3 |Pr | = 3 |Pr | ≤ 2

S1,n str . NP-c str. NP-c str. NP-c - str. NP-c
Pn P str. NP-c weak NP-c weak NP-c P
Pn, n = 6 P open weak NP-c P P
Pn, n = 5 P open open P P
Pn, n ≤ 4 P P P P P

With uncertainty:

number of scenarios
|K | = 2 |K | = |R| general

graph G A,B,C D,E E D

|E | = 1 str. NP-c P str. NP-c P
|E | ≥ 2 str. NP-c str. NP-c str. NP-c str. NP-c
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Concluding Remarks

Incorporation of Uncertainties in Optimization pays off!
I ProCom @E-world 2017: BoFiT Optimierung 7.0 – Robust Optimization

but impacts solution process

Different ways to model uncertainties yield different results:
I Multi-Stage Robustness, Recoverable Robustness, Chance-Constrained

Models, Affine Models, etc.
I Evaluation determines feasibility of approach

New theory:
I Robust valid inequalities for knapsack, network design, etc.
I Robust Lot-Sizing can be solved as deterministic Lot-Sizing
I Complexity border yields useful insights on robust concepts

Optimization under Uncertainties: just do it!
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