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Robustness Concepts

Recall: In many problems, all decisions have to be made in advance.

Discrete Scenarios

limited number of scenario vectors

solution should be valid for all
scenarios

Γ Scenarios (Bertsimas & Sim 03/04)

demand dk ∈ [d̄k , d̄k + d̂k ] with
nominal demand d̄k and deviation d̂k

due to statistical multiplexing
only few simultaneous peaks

assume at most Γ peaks at same time

solution should be valid for all
scenarios

In both cases: optimize worst-case

Drawback: “almost always” good solutions might be infeasible
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Recoverable Robustness

Two-Stage RO: some decisions are only taken at 2nd stage
Recoverable robustness: repair 1st stage decisions

uncertainty as two-stage process:
1st stage: a-priori decision
2nd stage: recovery:

limited change of first-stage decision
after realization of uncertainty is known

optimize worst-case w. r. t. recovery
In this lecture: Recoverable Robust Knapsack problem (RRKP) with

Discrete Scenarios1

Γ Scenarios2

1C. Büsing, A. M. C. A. Koster, and M. Kutschka. Recoverable robust knapsacks: the
discrete scenario case. Optimization Letters, 5(3):379–392, 2011

2C. Büsing, A. M. C. A. Koster, and M. Kutschka. Recoverable robust knapsacks:
gamma-scenarios. In Proceedings of INOC 2011, volume 6701 of Lecture Notes on
Computer Science, pages 583–588, 2011
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(k , `)-RRKP with Discrete Scenarios

Given items N = {1, . . . , n},
first stage: profits p0, weight w0, capacity c0,
scenarios S ∈ SD with profits pS , weight wS , capacity cS ,
recovery set X (X ): delete ≤ k items, add ≤ ` items

Find subset X ⊆ N
Such that w0(X ) ≤ c0,

for all S ∈ SD there exists X S ∈ X (X ) with wS(X S) ≤ cS ,
total profit

pT (X ) = p0(X ) + min
S∈SD

max
X S

pS(X S)

is maximized.

S_1 S_2First
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RRKP with Discrete Scenarios - ILP
max

∑
i∈N

p0
i xi + ω

s. t.
∑
i∈N

w0
i xi ≤c0

∑
i∈N

wS
i x

S
i ≤cS ∀S ∈ SD

xi − xSi − yS
i ≤0 ∀S ∈ SD , i ∈ N

n∑
i=1

yS
i ≤k ∀S ∈ SD

xSi − xi − zSi ≤0 ∀S ∈ SD , i ∈ N
n∑

i=1

zSi ≤` ∀S ∈ SD

ω −
n∑

i=1

pSi x
S
i ≤0 ∀S ∈ SD

xi , x
S
i , y

S
i , z

S
i ∈ {0, 1}

first stage
second stage
removal of ≤ k items
addition of ≤ ` items
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k-RRKP with Γ Scenarios

Given Items N = {1, . . . , n},
first stage: profits p0, weights w0, capacity c0,
Γ-scenarios: weights [w̄ , w̄ + ŵ ], capacity c , Γ ∈ N,
recovery set X (X ): delete ≤ k items from X ⊆ N

Find subset X ⊆ N,
Such that w0(X ) ≤ c0,

for all S ∈ SΓ there exists X S ∈ X (X ) with wS(X S) ≤ c ,
total profit p0(X ) is maximized

S_1SecondFirst
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RRKP with Γ scenarios - MP

Mathematical Programming formulation:

max
∑
i∈N

p0
i xi

s. t.
∑
i∈N

w0
i xi ≤c0

∑
i∈N

w̄ixi + max
X⊆N
|X |≤Γ

(
∑
i∈X

ŵixi − max
Y⊆N
|Y |≤k

(
∑
i∈Y

w̄ixi +
∑

i∈X∩Y

ŵixi )) ≤c

xi ∈ {0, 1}

Question: Compact Linear reformulation?
Answer: LP duality and enumeration of solution values!
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Max Weight Set Problem

Example:

Γ = 2, k = 1, Opt= 21

Given Items N (1st stage solution)
weight bounds [w̄ , w̄ + ŵ ]
parameters Γ (robustness)

and k (recovery)
Find Items Z ⊆ N, |Z | ≤ Γ

Such that total weight of recovery set is
maximized (i.e., set after
recovery)

Choice of Z for Γ = 2 does not include choice for Γ = 1!
Reformulation by LP duality!
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RRKP with Γ scenarios - ILP

Let U := {0} ∪ {w̄i : i ∈ N} ∪ {w̄i + ŵi : i ∈ N}
Then, a compact reformulation is:

max
∑
i∈N

p0
i xi

s. t.
∑
i∈N

w0
i xi ≤c0

∑
i∈N:
w̄i<u

w̄ixi +
∑
i∈N:
w̄i≥u

uxi + Γξu +
∑
i∈N

θui ≤c + ku ∀u ∈ U

min{−w̄i + u, ŵi}xi − ξu − θui ≤0 ∀u ∈ U

ξu, θui ≥ 0 ∀u ∈ U, i ∈ N

xi ∈ {0, 1}

Resulting compact model contains O(n2) variables and constraints
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Complexity of Robust Knapsack

Theorem 1 (Karp 72, Bellman 57)
The knapsack problem is weakly NP-hard, i.e., it can be solved in O(nc)
time.

Theorem 2 (Yu 96, Kalai & Vanderpooten 06)
The robust knapsack problem with bounded number of scenarios can be
solved in pseudo-polynomial time.

Theorem 3 (Yu 96, Aissi et al. 07)
The robust knapsack problem with discrete scenarios is strongly NP-hard
and not approximable, unless P = NP.

Theorem 4 (Bertsimas & Sim 03/04, Klopfenstein & Nace 08)
The Γ-robust knapsack problem can be solved in pseudo-polynomial time.
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Complexity of RRKP with Discrete Scenarios

Theorem 5
The (k , `)-rrKP is strongly NP-hard for unbounded sets of discrete
scenarios even if either p0 = 0 or pS = 0 for all S ∈ SD holds.

Reductions from 3SAT.

Corollary 6

The (k , `)-rrKP cannot be approximated within `+1
` , unless P = NP. In

particular, for ` = 0, the problem cannot be approximated.

Theorem 7
The (k , `)-rrKP can be solved in pseudo-polynomial time for a bounded
number of scenarios.

Generalization of dynamic programming for robust knapsack (Yu, 1996).
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Complexity of RRKP with Γ Scenarios

Theorem 8
The RRKP with Γ scenarios is at least weakly NP-hard.

Open Problem
Is the RRKP with Γ scenarios strongly NP-hard or does there exist a
pseudo-polynomial time algorithm?
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Projection of Discrete Scenarios
Let pS ≡ 0 for all S ∈ SD .
⇒ The number ` of items added do not play a role

Definition 9 (RRK Polyhedron)

KD(k) := conv
{
x ∈ {0, 1}n :

∑
i∈N

w0
i xi ≤ c0 and

min
T⊆N
|T |≤k

∑
i∈N\T

wS
i xi ≤ cS ∀S ∈ SD

}

Projection on original variables

If pS ≡ 0, the (k, `)-RRKP with discrete scenarios can be formulated as

max

{∑
i∈N

p0i xi : x ∈ KD(k)

}
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Projection of Γ Scenarios

Definition 10 (Γ-RRK Polyhedron)

KΓ(k) := conv
{
x ∈ {0, 1}n :

∑
i∈N

w0
i xi ≤ c0 and

min
T⊆N
|T |≤k

∑
i∈N\T

wS
i xi ≤ c ∀S ∈ SΓ

}

Projection on original variables
The Γ-RRKP can be formulated as

max

{∑
i∈N

p0i xi : x ∈ KΓ(k)

}

How do KD and KΓ look like?
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Cover Inequalities for Knapsack

Non-robust Knapsack Polytope:

K := conv{x ∈ {0, 1}n :
n∑

i=1

w0
i xi ≤ c0}

Cover C :
∑
i∈C

w0
i ≥ c0 + 1

Cover inequality :∑
i∈C

xi ≤ |C | − 1
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Cover Inequalities for KD

Non-robust cover: If
∑

i∈C w0
i ≥ c0 + 1, then

∑
i∈C xi ≤ |C | − 1.

Definition 11
A set C ⊆ N is called an rrKP cover if
first stage cover: w0(C ) ≥ c0 + 1 or
scenario cover: wS(C )− wS(max,C , k) ≥ cS + 1,
where wS(max,C , k) := max

B⊆C
|B|≤k

wS(B).

Theorem 12
Given a rrKP cover C , the rrKP cover inequality∑

i∈C
xi ≤ |C | − 1

is valid for KD .
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Cover Inequalities for KΓ

C ⊆ N nominal items (wi = w̄i )

J ⊆ N peak items (wi = w̄i + ŵi )

K1 ⊆ C recovered(=removed) nominal
items

K2 ⊆ J recovered(=removed) peak
items C J

K_1 K_2

Definition 13 (A quadruple (C , J ,K1,K2) is a Γ-rrKP cover if)
|J| ≤ Γ, C ∩ J = ∅, and |K1|+ |K2| = k and

w0(C ∪ J) ≥ c0 + 1 (first stage cover)

or (C ,K1, J,K2) is a second stage cover:∑
i∈C\K1

w̄i +
∑

i∈J\K2

(w̄i + ŵi ) ≥ c + 1

Theorem 14
Given a Γ-rrKP cover (C ,K1, J,K2), the Γ-rrKP cover inequality∑

i∈C∪J

xi ≤ |C ∪ J| − 1

is valid for KΓ.
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Sufficiency of Cover Inequalities

Theorem 15
Let x ∈ {0, 1}n. Then x ∈ KD (x ∈ KΓ) if and only if x satisfies all
minimal (Γ-)rrKP cover inequalities.

I.e., the minimal cover inequalities provide a formulation of the problem.

But, they do not provide a complete description of the convex hull of binary
solutions.
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Extended Cover Inequalities

Non-robust knapsack: Let E (C ) :=

{
j ∈ N : w0

j ≥ max
i∈C

w0
i

}
∪ C . Then

the Extended Cover inequality for non-robust knapsack reads:∑
i∈E(C)

xi ≤ |C | − 1

rrKP with discrete scenarios: A cover C w.r.t. scenario S can be extended
with items whose weights exceed
(canonical extension) the weight of the k + 1 highest-weight-item in C
(advanced extension)

1. the residual capacity according to the weights of the first
|C | − k − 1 lowest-weight-items

2. the weight of the k + 2 highest-weight-item in C

Theorem 16
Let S be a cover w.r.t scenario S and ES(C ) its extension. Then∑

i∈ES (C)

xi ≤ |C | − 1

is valid for KD .
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Extended Cover Inequalities

rrKP with Γ scenarios:

E (C ,K1, J,K2) :=

{
j ∈ N : w̄j ≥ max

i∈C\K1
w̄i and w̄j + ŵj ≥ max

i∈J\K2
w̄i + ŵi

}
∪ {C ∪ J}

Theorem 17
Let (C ,K1, J,K2) be a Γ cover and E (C ,K1, J,K2) its extension. Then∑

i∈E(C ,K1,J,K2)

xi ≤ |C ∪ J| − 1

is valid for KΓ.
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Discrete scenarios

Gap closed by cover inequalities:

Note: the complete ILP formulation is used
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Γ Scenarios

exact separation by ILP

Gain of Recovery:

geometric mean observed maximum

For each instance, Γ,and k, the gain of recovery is determined by the objective value normalized

to the corresponding case with k = 0%.
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Further Robustness Concepts

Light Robustness: bound price of robustness of budget uncertainty and
minimize weighted sum of constraint violations
Distributionally Robust Optimization: given historical data, find solutions
that are robust whatever probability distribution the data follows.
Marriage between stochastic and robust optimization
Minimax Regret Optimization or Robust deviation: Minimize largest
possible difference between observed objective value of robust solution
and optimal solution value (knowing uncertain parameters in advance)
Relative robust deviation: Minimize largest possible ratio of robust
deviation to the optimal objective value
Multi-Band Robustness Multiple nested intervals with multiple decreasing
Γ values
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