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Robust Maximum Flow Revisited

Maximum Flow in directed graph G = (V ,A) with uncertain capacities ua

What flow value z can be guaranteed without fixing the flow?

1st Stage: Fix z independent of realization u ∈ U
2nd Stage: Find flow x of value at least z for every u ∈ U

max z

s.t.
∑

a∈δ+(v)

xa(u)−
∑

a∈δ−(v)

xa(u) =


z v = s

−z v = t

0 otherwise

∀u ∈ U , v ∈ V

xa(u) ≤ ua(u) ∀u ∈ U , a ∈ A

z ≥ 0, xa(u) ≥ 0

Note: 2nd stage does not mean this is done afterwards; optimization
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Robust Maximum Flow

Theorem 1 (Minoux, 2010)
The robust maximum flow problem is solvable in polynomial time

for a fixed number of K scenarios
for U = [ū1 − û1, ū1]× [ū2 − û2, ū2]× · · · × [ūm − ûm, ūm] (with
A = {1, . . . ,m}), i.e., interval scenarios

The problem is strongly NP-hard if U is defined budget uncertainty
(Γ-robustness)
The latter problem is polynomial time solvable if G is planar.

The results1 can be extended to general LPs with uncertain
right-hand-side.2

1M. Minoux. On robust maximum flow with polyhedral uncertainty sets.
Optimization Letters, 3:367–376, 2009

2M. Minoux. On 2-stage robust LP with RHS uncertainty: complexity results and
applications.
Journal on Global Optimization, 49:521–537, 2011
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Energy System schematically

Source: ProCom
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CHP case study

Simultaneous production of heat and power in exchange for fuel

Source: ProCom

Fixed ratio ρ between heat and power generation
Heat can be stored for future use, power cannot be stored
Heat storage has limited capacity and loss factor

Power has to be bought/sold at day-ahead market!
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Forecast & Actual Heat Demands
Heat demands for week 45, 2007
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Forecast error of up to 20% (average: 4.1%)
Find solutions that are feasible with high probability!
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Production Planning

$

fuel
ft

CHP

zt

power
market

qt

pg
t

pb
t

ps
t

ut

heat
storage

dh
t heat

demand

dp
t power

demand

Time horizon T (T = 24)
Demand for power dp

t and heat dh
t

Fuel ft to operate CHP costs c f
t per unit

Power bought pb
t /sold ps

t on day-ahead market at cp
t per unit

Generation at time t: pg
t (power), qt (heat), zt (on/off)

Heat can be stored with loss factor α per time unit
Storage at end of period t: ut
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The nominal problem

min
T∑

t=1

(
c f

t ft(sqt + hzt) + cp
t (pb

t − ps
t d

p
t − ρqt)

)
(1a)

s.t. αut−1 + qt = ut + dh
t ∀t ∈ [T ] (1b)

pg
t ρqt + pb

t = dp
t + ps

t ∀t ∈ [T ] (1c)

U ≤ ut ≤ U ∀t ∈ [T ] (1d)

Qzt ≤ qt ≤ Qzt ∀t ∈ [T ] (1e)
ft = sqt + hzt ∀t ∈ [T ] (1f)
pg

t = ρqt ∀t ∈ [T ] (1g)

qt , ut , ft , p
g
t , p

b
t , p

s
t ≥ 0 ∀t ∈ [T ] (1h)

zt ∈ {0, 1} ∀t ∈ [T ] (1i)

Lot-Sizing Problem with Storage Deterioration
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Lot-Sizing with Storage Deterioration
LS-DET:

min f (q, z) +
T∑

t=1

htut (2a)

s.t. αut−1 + qt = ut + dt ∀t ∈ [T ] (2b)

Ut ≤ ut ≤ Ut ∀t ∈ [T ] (2c)

Qzt ≤ qt ≤ Qzt ∀t ∈ [T ] (2d)
qt , ut ≥ 0 ∀t ∈ [T ] (2e)
zt ∈ {0, 1} ∀t ∈ [T ] (2f)

Lot-Sizing with

Production limitations

Storage limitations

Deterioration of storage

Concave cost function

No backlogging

Complexity

in general: open

if Q = 0,Q =∞, α = 1, f linear:
LS-DET∈ P (Love, 1973; Atamtürk & Küçükyavuz, 2008)

if U = 0,U =∞, α = 1: LS-DET∈ P (Hellion et al., 2012)

both cases still in P if 0 < α < 1 (Schmitz, 2016)

What about uncertain demands?
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Robust Lot-Sizing

Uncertainty Set: U of possible demand realizations

Applying Robust Optimization:
Due to equalities (2b): Impossible to find (q, z , u) such that (2b)–(2f) are
satisfied ∀d ∈ U

Theorem (folklore) Every (implicit) equality in Ax ≤ b allows for the
elimination of a variable involved in the equality.

⇒ In robust optimization, elimination of variable x implies that this variable
is moved 2nd stage, i.e., after the uncertain input is known!
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Robust Lot-Sizing with Deterioration

RLS-DET:

min f (q, z) + η (3a)
s.t. αut−1(d) + qt = ut(d) + dt ∀t ∈ [T ], d ∈ U (3b)

U ≤ ut(d) ≤ U ∀t ∈ [T ], d ∈ U (3c)

η ≥
∑

t∈[T ]

htut(d) ∀d ∈ U (3d)

Qzt ≤ qt ≤ Qzt ∀t ∈ [T ] (3e)
qt , ut(d) ≥ 0 ∀t ∈ [T ] (3f)
zt ∈ {0, 1} ∀t ∈ [T ] (3g)
η ≥ 0 (3h)

storage ut(d) per scenario d ∈ U
minimization of worst-case storage cost
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Solving RLS-DET as LS-DET instance

Theorem 2
For an uncertainty set U over which a linear function can be optimized in
polynomial time, RLS-DET can be polynomially reduced (w.r.t. production
plans) to an instance of LS-DET with d = d ′ and U = U

′ thus defined:

d ′t := max
d∈U

{
dt −

t−1∑
i=1

αt−i
(
d ′i − di

)}
∀t ∈ [T ] (4a)

U
′
t := Ut −max

d∈U

{
t∑

i=1

αt−i
(
d ′i − di

)}
∀t ∈ [T ]. (4b)

Corollary 3
Given an uncertainty set U over which a linear function can be optimized in
polynomial time, RLS-DET is in P (resp., NP-hard) if and only if the
corresponding version of LS-DET is in P (resp., NP-hard).

Robustness models satisfying precondition:
polyhedral uncertainty sets, Γ-robustness
discrete scenarios
ellipsoidal uncertainty sets
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Robust CHP Planning

CHP plan
Solve ILP
(1a)–(1i)

Day-ahead
forecast

Without
Uncertainty

Robust
CHP plan

Solve
Robust ILP

Scenarios
1, . . . ,K

With
Uncertainty

Evaluate
CHP plan

Operating CHP according to forecast may result in storage violations
Robust CHP plan will be more costly than forecast-based CHP plan
Evaluation of CHP reveals real benefits

Arie Koster – RWTH Aachen University 15 / 26



Computational Setting

Uncertainty Set:
Discrete Scenarios and Γ-Scenarios based on historical data
historical data for one year, forecasts available for next 232 days
⇒ 232 instances with 24h planning horizon
⇒ 229 instances with 96h planning horizon

Discrete Scenarios:
K = 1, . . . , 70 considered heat demand scenarios
k = 1: current forecast
k > 1: current forecast + forecast error for similar days in the past

Γ-Scenarios:
classify forecast on basis of hour, outside temperature, weekday
determine deviations by similar historical data
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Running times (96h)
Distribution of running times for K = 50:
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Speed-up between 1.82 and 85.67 with average 29.00
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Storage violations

Evaluation of robust solutions with real heat demand values (Ū = 120)
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Affine Decision Model
Idea: let production qt anticipate upon higher/lower demands

Multi-stage approach: qt can only anticipate on d1, . . . , dt−1
Affine decision rule (with nominal demand d̄j):

qt(d) =
t−1∑
j=1

(dj − d̄j )q
j
t + q0t

For fixed production plan: qj
t := 0, j = 1, . . . , t − 1.

Production of power now depends on considered demand:

pg
t (d) = ρqt(d)

Hence, power balance cannot be guaranteed anymore

pg
t (d) + pb

t = dp
t + ps

t ∀d ∈ U
Difference has to be bought/sold on reserve market:

min . . .+ max
d∈U

{
T∑

t=1

cR
t ·
∣∣∣pg

t (d)− dp
t + pb

t − ps
t

∣∣∣}
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Computations

Discrete Scenarios: Affine Decision Rules
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Computations

Γ-Scenarios: Affine Decision Rules
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Classical Network Design Model

Integer Linear Programming formulation:

min
∑
a∈A

∑
m∈M

κm
a xm

a

s.t.
∑

a∈δ+(sk )

f k
a −

∑
a∈δ−(sk )

f k
a = dk ∀k ∈ K

∑
a∈δ+(i)

f k
a −

∑
a∈δ−(i)

f k
a = 0 ∀k ∈ K ,∀i ∈ V , i 6= sk , tk

∑
m∈M

Cmxm
a −

∑
k∈K

f k
a ≥ 0 ∀a ∈ A

xm
a ∈ Z+, f

k
a ≥ 0

Uncertain demand values dk in right hand side
For robust solution, worst case dk value have to be taken, say d̄k + d̂k

Can’t we do better? What about dynamic routing?
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Dynamic Routing Model

For d ∈ U , f k
a (d) denotes the flow on arc a.

min
∑
a∈A

∑
m∈M

κm
a xm

a

s.t.
∑

a∈δ+(sk )

f k
a (d)−

∑
a∈δ−(sk )

f k
a (d) = dk (d) ∀d ∈ U , k ∈ K

∑
a∈δ+(i)

f k
a (d)−

∑
a∈δ−(i)

f k
a (d) = 0 ∀d ∈ U , k ∈ K , i ∈ V \ {sk , tk}

∑
m∈M

Cmxm
a −

∑
k∈K

f k
a (d) ≥ 0 ∀d ∈ U , a ∈ A

xm
a ∈ Z+, f

k
a (d) ≥ 0

Extremely large model!

Arie Koster – RWTH Aachen University 20 / 26



Projection on Capacity Space

Reduction model size by projection on capacity space
For fixed demand, we have:

Px = projx P

= conv{x ∈ Z|E |+ : ∃ f ∈ [0, 1]|P| such that (f , x) ∈ P}

= conv{x ∈ Z|E |+ : x satisfies (5) for all `M ∈ Met(G )}

where ∑
e∈E

`M(e)xe ≥
∑
k∈K

dk`M(sk , tk ), (5)

and Met(G ) denotes the cone of metrics in G .

Note, for static (template) routing this result did not hold!
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Metric Inequalities for Dynamic Routing

Metric Inequalities for Dynamic Routing3∑
e∈E

`M(e)xe ≥ max
d∈U

∑
k∈K

dk`M(sk , tk ), (6)

Theorem 4 (Mattia, 2013)

Px (U) = conv{x ∈ Z|E |+ : x satisfies (6) for all `M ∈ Met(G )}

Theorem 5 (Mattia, 2013)
If ax ≥ b is valid for Px (U), then there exists a metric `M ∈ Met(G ) such
that `Mx ≥ b is still valid and `M(e) ≤ ae for all e ∈ E .

3S. Mattia. The robust network loading problem with dynamic routing.
Computational Optimization and Applications, 54:619–643, 2013
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Summary Dynamic Routing

Dynamic Routing is just one example of two-stage robust optimization:
At the first stage, some decisions have to be made before the uncertain
data is known
Af the second stage, the uncertain data becomes available and the
remaining decisions have to be taken.

Two-stage Robust Optimization vs. Two-stage Stochastic Optimization

min cT x + max

[
min qT z

Bz = h − Tx
z ≥ 0

]
mincT x + E

[
min qT z

Bz = h − Tx
z ≥ 0

]
s.t. Ax = b s.t. Ax = b

x ≥ 0 x ≥ 0
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Static vs. Dynamic Routing

Static Routing:
Capacities have to be installed in integer amounts
Routing templates fixes percentual distribution of traffic volume along
paths

Dynamic Routing:
Capacities have to be installed in integer amounts
Routing can be adapted to actual traffic volumes (realization from
uncertainty set)

Do there exist routing models in between static and dynamic routing?
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Affine Routing Function

Robust Network Design with Affine Routing:4

Capacities have to be installed in integer amounts
Routing follows a linear function of all traffic values

f k
ij (d) := hk0

ij +
∑
k̄∈K

hkk̄
ij d k̄

where hk0
ij , h

kk̄
ij ∈ R for all ij ∈ A, k , k̄ ∈ K .

Theorem (Poss & Raack, 2011)
Let D be an arbitrary demand uncertainty set. Then

OPTdyn(D) ≤ OPTaff (D) ≤ OPTstat(D)

4M. Poss and C. Raack. Affine recourse for the robust network design problem:
between static and dynamic routing.
Networks, 61(2):180–191, 2013
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