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This lecture:

A connection between chance-constrained optimization and Γ-robustness.
Solving robust combinatorial problems by a sequence of deterministic
problems
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Γ-Robust Counterpart

Robust Counterpart For Γ ∈ Z+:

n∑
j=1

āijxj + max
S⊆{1,...,n}:|S |≤Γ

∑
j∈S

âijxj

 ≤ bi (1)

Let J ⊆ {1, . . . , n} be the set of uncertain coefficients of the constraint
aT x ≤ b.
Define

β(x?, Γ) := max
S⊆J,|S|≤Γ

∑
j∈S

âjx
?
j


as maximum added value to the left hand side of ājx? ≤ b.
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Connection with Chance-constraints

Let ζj =
aj−āj
âj

be random variables with values in [−1, 1].

Theorem 1 (Bertsimas and Sim, 2004)
Let x? ≥ 0 be an optimal solution of an ULO containing the robust counterpart

n∑
j=1

ājxj + β(x , Γ) ≤ b

Further, let S? be the index set defining β(x?, Γ). Then,

P

 n∑
j=1

ajx
?
j > b

 ≤ P
∑

j∈J
γjζj ≥ Γ



with γj =

1 if j ∈ S?

âj x
?
j

âr x?r
if j ∈ J \ S?

and r = argminj∈S? âjx
?
j .

Moreover, γj ≤ 1 for all j ∈ J \ S?.
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Γ-Robustness – Theory

Theorem 2 (Bertsimas and Sim, 2004)
Let ζj , j ∈ J be independent and symmetriccally distributed random
variables in [−1, 1]. Then,

P

∑
j∈J

γjζj ≥ Γ

 ≤ exp
(
− Γ2

2|J|

)
Example: |J| = 100, Γ = 10 ⇒ P(violation) ≤ exp(−1

2) ≈ 0.6
|J| = 100, Γ = 20 ⇒ P(violation) ≤ exp(−2) ≈ 0.13

Markov’s Inequality
For a random variable X with finite expectation, it holds that

P (|X | ≥ a) ≤ E(|X |)
a

for all a > 0.

Arie Koster – RWTH Aachen University 6 / 20



Γ-Robustness – Theory

A better bound:

Theorem 3 (Bertsimas and Sim, 2004)
Let ζj , j ∈ J be independent and symmetriccally distributed random variables in [−1, 1]. Then,

P

∑
j∈J

γjζj ≥ Γ

 ≤ B(k, Γ) (2)

with k = |J| and

B(k, Γ) =
1
2k

(1− µ)
( k

bνc

)
+

k∑
`=bνc+1

(k
`

)
where ν = 1

2 (Γ + k) and µ = ν − bνc.
Moreover, the bound (2) is tight whenever ζj has a discrete probability distribution with
P(ζj = 1) = 1

2 and P(ζj = −1) = 1
2 , Γ ≥ 1 and Γ + k even.

For Γ = θ
√
k: limk→∞ B(k, Γ) = 1− Φ(θ) with Φ(θ) = 1√

2π

∫∞
−∞ exp

(
− y2

2

)
dy , the

cumulative distribution function of the standard normal distribution.
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Γ-Robustness – Theory

Corollary 4 (Bertsimas & Sim, 2004)
Let x? be an optimal solution of the Γ-robust counterpart. If aj ,
j = 1, . . . , n, are independent and symmetric distributed random variables in
[āj − âj , āj + âj ], then

P

 n∑
j=1

ajx
?
i > b

 ≤ B(n, Γ)

with

lim
n→∞

B(n, Γ) = 1− Φ

(
Γ√
n

)
where Φ(.) is the CDF of the standard normal distribution.

Instead of the limit: B(n, Γ) ≈ 1− Φ
(

Γ−1√
n

)
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Choice of Γ

Choice of Γ as a function of n so that the
probability of constraint violation is less than p%:

Γ
n p = 1 p = 0.5 p = 0.1
5 5.0 5.0 5.0

10 8.4 9.1 10.0
100 24.3 26.8 31.9
200 33.9 37.4 44.7

1,000 74.6 82.5 98.7
2,000 105.0 116.2 139.2

Note: Result is independent of actual distribution of random variables aij ,
only symmetry and independence are required.
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Violation vs. Price
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Combinatorial Optimization

Definition 5
Let X ⊆ {0, 1}n for some n ∈ Z+. A combinatorial optimization problem is
a problem of the form

min
{
cT x : x ∈ X

}
Assumption (for the moment):
X does not contain any uncertainty. Only c is uncertain!

Theorem 6 (Bertsimas and Sim, 2003)
Let ci ∈ [c̄i − ĉi , c̄i + ĉi ] (i ∈ N = {1, . . . , n}) and uncertainty budget
Γ ∈ Z+ define an Γ-uncertain combinatorial optimization (UCO) problem.
Then, the robust counterpart of max{cT x : x ∈ X} can be solved by
solving n + 1 deterministic problems of the form max{dT x : x ∈ X}.
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Robust Counterpart of Γ-UCO

Robust Counterpart:

min
n∑

i=1

c̄ixi + Γπ +
n∑

i=1

ρi

s.t. π + ρi ≥ ĉixi ∀i ∈ N

π, ρi ≥ 0 ∀i ∈ N

x ∈ X

Question: Given x ∈ X , what is the minimum contribution of Γπ +
n∑

i=1

ρi ?

Answer:
1. Find a permutation σ of the items such that

ĉσ(1)xσ(1) ≥ ĉσ(2)xσ(2) ≥ . . . ≥ ĉσ(n)xσ(n)

2. Set π := ĉσ(Γ)xσ(Γ)

3. Set ρi := max (0, ĉixi − π)
I.e., ρi = 0 for all i : σ−1(i) ≥ Γ, and ĉixi − π if σ−1(i) < Γ
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Robust Counterpart of Γ-UCO

1. Find a permutation σ of the items such that
ĉσ(1)xσ(1) ≥ ĉσ(2)xσ(2) ≥ . . . ≥ ĉσ(n)xσ(n)

2. Set π := ĉσ(Γ)xσ(Γ)

3. Set ρi := max (0, ĉixi − π)

Corollary 7
Given x ∈ X ⊆ {0, 1}n, the optimal value of π is one of the values
{0} ∪ {ĉ1, . . . , ĉn}.

Corollary 8
Given x ∈ X ⊆ {0, 1}n, the optimal solution value is determined by

n∑
i=1

c̄ixi + max

{
n∑

i=1

ĉixi , max
k=1,...,n

{
Γĉk +

n∑
i=1

(ĉi − ĉk)+xi

}}

where (a)+ := max{0, a}.
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Robust Counterpart of Γ-UCO

Theorem 9 (Bertsimas and Sim, 2003)

The UCO min{cT x : x ∈ X} can be solved by solving for all
π ∈ {0, ĉ1, . . . , ĉn} the following CO problem

Γπ + min{
n∑

i=1

(c̄i + (ĉi − π)+)xi : x ∈ X}

and selecting the cheapest solution.

Corollary 10
If a CO problem can be solved in polynomial time (e.g., shortest path,
min spanning tree, min cost flow, max matching) the UCO (with
uncertain objective) can be solved in polynomial time
The knapsack problem with uncertain objective can be solved in O(n2B).
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Exercise 1

Consider the Γ-robust knapsack problem

max

{
n∑

i=1

cixi :
n∑

i=1

aixi ≤ b, xi ∈ {0, 1}

}

where ci are random variables, ci ∈ [c̄i − ĉi , c̄i + ĉi ].

Let n = 5, b = 250, c̄ =


50
30
45
25
70

, ĉ =


18
8
15
4
33

, and a =


61
67
64
52
113

.

Determine the optimal solution for Γ = 0, 1, 2, 3, 4, and 5.
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Robust Counterpart of Γ-UCO

Corollary 11
The knapsack problem with uncertain objective can be solved in O(n2B).

Theorem 12
The knapsack problem with uncertain weight can be solved in O(n2B).

Theorem 13 (Monaci et al. (2013))
The knapsack problem with uncertain weight can be solved in O(nΓB).
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Exercise 2

The knapsack problem max{cT x : aT x ≤ B, x ∈ {0, 1}n} can be solved by
a dynamic programming algorithm in O(nB) time. For this, the function

f (k , d) := max

{
k∑

i=1

cixi :
k∑

i=1

aixi = d , xi ∈ {0, 1}

}

is solved for all k ∈ {0, . . . , n} and d ∈ {0, . . . , b}.
Develop a dynamic programming algorithm for the Γ-robust knapsack
problem with uncertain weights. What is the running time?
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Approximating Γ-UCO

Theorem 14 (Bertsimas and Sim, 2003)
If a CO problem can be approximated in polynomial time with
approximation factor α, the UCO (with uncertain objective) can be
approximated in polynomial time with approximation factor α.

Remark: The approximation should hold for all possible inputs. In case of
the symm. TSP under triangle inequality, α = 3

2 , but it has to be
guaranteed that also with (some of) the deviations, the triangle inequality
still holds.
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