Robust Optimization & Network Design Lecture 5

Arie M.C.A. Koster koster@math2.rwth-aachen.de

PhD course, Uppsala Universitet - February 26 - March 2, 2018

Chance-Constraints and Γ-Robustness Combinatorial Optimization with Uncertain Object

This lecture:

- A connection between chance-constrained optimization and Γ -robustness.
- Solving robust combinatorial problems by a sequence of deterministic problems

Robust Counterpart For $\Gamma \in \mathbb{Z}_+$:

$$\sum_{j=1}^{n} \bar{a}_{ij} x_j + \max_{S \subseteq \{1, \dots, n\} : |S| \le \Gamma} \left(\sum_{j \in S} \hat{a}_{ij} x_j \right) \le b_i \tag{1}$$

Let $J \subseteq \{1, ..., n\}$ be the set of uncertain coefficients of the constraint $a^T x \leq b$. Define

$$eta(x^\star, \Gamma) := \max_{S \subseteq J, |S| \leq \Gamma} \left\{ \sum_{j \in S} \hat{a}_j x_j^\star
ight\}.$$

as maximum added value to the left hand side of $\bar{a}_j x^* \leq b$.

Let
$$\zeta_j = \frac{a_j - \bar{a}_j}{\hat{a}_j}$$
 be random variables with values in $[-1, 1]$.

Theorem 1 (Bertsimas and Sim, 2004)

Let $x^* \ge 0$ be an optimal solution of an ULO containing the robust counterpart

$$\sum_{j=1}^n \bar{a}_j x_j + \beta(x, \Gamma) \le b$$

Further, let S^* be the index set defining $\beta(x^*, \Gamma)$. Then,

$$\mathcal{P}\left(\sum_{j=1}^{n} a_j x_j^{\star} > b\right) \leq \mathcal{P}\left(\sum_{j \in J} \gamma_j \zeta_j \geq \Gamma\right)$$

with
$$\gamma_j = \begin{cases} 1 & \text{if } j \in S^* \\ \frac{\hat{a}_j x_j^*}{\hat{a}_r x_r^*} & \text{if } j \in J \setminus S^* \end{cases}$$
 and $r = \arg \min_{j \in S^*} \hat{a}_j x_j^*$.
Moreover, $\gamma_j \leq 1$ for all $j \in J \setminus S^*$.

Γ-Robustness – Theory

Theorem 2 (Bertsimas and Sim, 2004)

Let ζ_j , $j \in J$ be independent and symmetriccally distributed random variables in [-1, 1]. Then,

$$\mathcal{P}\left(\sum_{j\in J}\gamma_j\zeta_j\geq\mathsf{\Gamma}
ight)\leq \exp\left(-rac{\mathsf{\Gamma}^2}{2|J|}
ight)$$

Example: |J| = 100, $\Gamma = 10 \Rightarrow \mathcal{P}(\text{violation}) \le \exp(-\frac{1}{2}) \approx 0.6$ |J| = 100, $\Gamma = 20 \Rightarrow \mathcal{P}(\text{violation}) \le \exp(-2) \approx 0.13$

Markov's Inequality

For a random variable X with finite expectation, it holds that

$$\mathcal{P}\left(|X| \geq a
ight) \leq rac{\mathbb{E}(|X|)}{a}$$

for all a > 0.

Arie Koster - RWTH Aachen University

A better bound:

Theorem 3 (Bertsimas and Sim, 2004)

Let ζ_j , $j \in J$ be independent and symmetric ally distributed random variables in [-1, 1]. Then,

$$\mathcal{P}\left(\sum_{j\in J}\gamma_j\zeta_j\geq\Gamma\right)\leq B(k,\Gamma)$$
(2)

with k = |J| and

$$B(k,\Gamma) = \frac{1}{2^{k}} \left\{ (1-\mu) \binom{k}{\lfloor \nu \rfloor} + \sum_{\ell=\lfloor \nu \rfloor+1}^{k} \binom{k}{\ell} \right\}$$

where $\nu = \frac{1}{2}(\Gamma + k)$ and $\mu = \nu - \lfloor \nu \rfloor$. Moreover, the bound (2) is tight whenever ζ_j has a discrete probability distribution with $\mathcal{P}(\zeta_j = 1) = \frac{1}{2}$ and $\mathcal{P}(\zeta_j = -1) = \frac{1}{2}$, $\Gamma \ge 1$ and $\Gamma + k$ even. For $\Gamma = \theta \sqrt{k}$: $\lim_{k \to \infty} B(k, \Gamma) = 1 - \Phi(\theta)$ with $\Phi(\theta) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{y^2}{2}\right) dy$, the cumulative distribution function of the standard normal distribution.

Corollary 4 (Bertsimas & Sim, 2004)

Let x^* be an optimal solution of the Γ -robust counterpart. If a_j , $j = 1, \ldots, n$, are independent and symmetric distributed random variables in $[\bar{a}_j - \hat{a}_j, \bar{a}_j + \hat{a}_j]$, then

$$\mathcal{P}\left(\sum_{j=1}^{n}\mathsf{a}_{j}x_{i}^{\star}>b
ight)\leq B(n,\Gamma)$$

with

$$\lim_{n\to\infty}B(n,\Gamma)=1-\Phi\left(\frac{\Gamma}{\sqrt{n}}\right)$$

where $\Phi(.)$ is the CDF of the standard normal distribution.

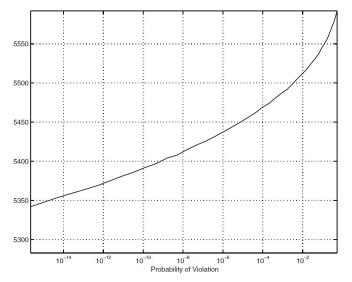
Instead of the limit: $B(n,\Gamma) \approx 1 - \Phi\left(\frac{\Gamma-1}{\sqrt{n}}\right)$

Choice of Γ as a function of *n* so that the probability of constraint violation is less than p%:

		Г	
п	p = 1	<i>p</i> = 0.5	p = 0.1
5	5.0	5.0	5.0
10	8.4	9.1	10.0
100	24.3	26.8	31.9
200	33.9	37.4	44.7
1,000	74.6	82.5	98.7
2,000	105.0	116.2	139.2

Note: Result is independent of actual distribution of random variables a_{ij} , only symmetry and independence are required.

Optimal value of the robust knapsack formulation as a function of the probability bound of constraint violation given in Equation (18).



Chance-Constraints and F-Robustness Combinatorial Optimization with Uncertain Objective

Definition 5

Let $X \subseteq \{0,1\}^n$ for some $n \in \mathbb{Z}_+$. A combinatorial optimization problem is a problem of the form

$$\min\left\{c^{\mathcal{T}}x:x\in X\right\}$$

Assumption (for the moment):

X does not contain any uncertainty. Only c is uncertain!

Theorem 6 (Bertsimas and Sim, 2003)

Let $c_i \in [\bar{c}_i - \hat{c}_i, \bar{c}_i + \hat{c}_i]$ $(i \in N = \{1, ..., n\})$ and uncertainty budget $\Gamma \in \mathbb{Z}_+$ define an Γ -uncertain combinatorial optimization (UCO) problem. Then, the robust counterpart of $\max\{c^T x : x \in X\}$ can be solved by solving n + 1 deterministic problems of the form $\max\{d^T x : x \in X\}$.

Robust Counterpart of Γ -UCO

Robust Counterpart:

$$\begin{array}{ll} \min & \sum_{i=1}^{n} \bar{c}_{i} x_{i} + \Gamma \pi + \sum_{i=1}^{n} \rho_{i} \\ s.t. & \pi + \rho_{i} \geq \hat{c}_{i} x_{i} & \forall i \in N \\ & \pi, \rho_{i} \geq 0 & \forall i \in N \\ & x \in X \end{array}$$

Question: Given $x \in X$, what is the minimum contribution of $\Gamma \pi + \sum_{i=1}^{n} \rho_i$?

Answer:

1. Find a permutation σ of the items such that

$$\hat{c}_{\sigma(1)} x_{\sigma(1)} \geq \hat{c}_{\sigma(2)} x_{\sigma(2)} \geq \ldots \geq \hat{c}_{\sigma(n)} x_{\sigma(n)}$$

2. Set
$$\pi := \hat{c}_{\sigma(\Gamma)} x_{\sigma(\Gamma)}$$

3. Set
$$\rho_i := \max(0, \hat{c}_i x_i - \pi)$$

i.e., $\rho_i = 0$ for all $i : \sigma^{-1}(i) \ge \Gamma$, and $\hat{c}_i x_i - \pi$ if $\sigma^{-1}(i) < \sigma^{-1}(i) < 0$

- Find a permutation σ of the items such that *ĉ*_{σ(1)}x_{σ(1)} ≥ *ĉ*_{σ(2)}x_{σ(2)} ≥ ... ≥ *ĉ*_{σ(n)}x_{σ(n)}
 2. Set π := *ĉ*_{σ(Γ)}x_{σ(Γ)}
- 3. Set $\rho_i := \max(0, \hat{c}_i x_i \pi)$

Corollary 7

Given $x \in X \subseteq \{0,1\}^n$, the optimal value of π is one of the values $\{0\} \cup \{\hat{c}_1, \ldots, \hat{c}_n\}.$

Corollary 8

Given $x \in X \subseteq \{0,1\}^n$, the optimal solution value is determined by

$$\sum_{i=1}^{n} \bar{c}_{i} x_{i} + \max\left\{\sum_{i=1}^{n} \hat{c}_{i} x_{i}, \max_{k=1,\dots,n} \left\{ \Gamma \hat{c}_{k} + \sum_{i=1}^{n} (\hat{c}_{i} - \hat{c}_{k})^{+} x_{i} \right\} \right\}$$

where
$$(a)^+ := \max\{0, a\}$$
.

Theorem 9 (Bertsimas and Sim, 2003)

The UCO min{ $c^T x : x \in X$ } can be solved by solving for all $\pi \in \{0, \hat{c}_1, \dots, \hat{c}_n\}$ the following CO problem

$$\Gamma \pi + \min\{\sum_{i=1}^{n} (\bar{c}_i + (\hat{c}_i - \pi)^+) x_i : x \in X\}$$

and selecting the cheapest solution.

Corollary 10

 If a CO problem can be solved in polynomial time (e.g., shortest path, min spanning tree, min cost flow, max matching) the UCO (with uncertain objective) can be solved in polynomial time

• The knapsack problem with uncertain objective can be solved in $O(n^2B)$.

Consider the Γ -robust knapsack problem

$$\max\left\{\sum_{i=1}^{n} c_{i} x_{i} : \sum_{i=1}^{n} a_{i} x_{i} \le b, x_{i} \in \{0, 1\}\right\}$$

where c_i are random variables, $c_i \in [\bar{c}_i - \hat{c}_i, \bar{c}_i + \hat{c}_i]$. Let n = 5, b = 250, $\bar{c} = \begin{pmatrix} 50\\30\\45\\25\\70 \end{pmatrix}$, $\hat{c} = \begin{pmatrix} 18\\8\\15\\4\\33 \end{pmatrix}$, and $a = \begin{pmatrix} 61\\67\\64\\52\\113 \end{pmatrix}$.

Determine the optimal solution for $\Gamma = 0, 1, 2, 3, 4$, and 5.

Corollary 11

The knapsack problem with uncertain objective can be solved in $O(n^2B)$.

Theorem 12

The knapsack problem with uncertain weight can be solved in $O(n^2B)$.

Theorem 13 (Monaci et al. (2013))

The knapsack problem with uncertain weight can be solved in $O(n\Gamma B)$.

The knapsack problem $\max\{c^T x : a^T x \leq B, x \in \{0,1\}^n\}$ can be solved by a dynamic programming algorithm in O(nB) time. For this, the function

$$f(k, d) := \max\left\{\sum_{i=1}^{k} c_i x_i : \sum_{i=1}^{k} a_i x_i = d, x_i \in \{0, 1\}\right\}$$

is solved for all $k \in \{0, ..., n\}$ and $d \in \{0, ..., b\}$. Develop a dynamic programming algorithm for the Γ -robust knapsack problem with uncertain weights. What is the running time?

Theorem 14 (Bertsimas and Sim, 2003)

If a CO problem can be approximated in polynomial time with approximation factor α , the UCO (with uncertain objective) can be approximated in polynomial time with approximation factor α .

Remark: The approximation should hold for all possible inputs. In case of the symm. TSP under triangle inequality, $\alpha = \frac{3}{2}$, but it has to be guaranteed that also with (some of) the deviations, the triangle inequality still holds.

Robust Optimization & Network Design Lecture 5

Arie M.C.A. Koster koster@math2.rwth-aachen.de

PhD course, Uppsala Universitet - February 26 - March 2, 2018

