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Uncertain LPs

Observation
In the knapsack example, normal distribution of the weights was assumed.
What if, the weights are distributed differently, or unknown?

Uncertain Linear Program
An Uncertain Linear Optimization problem (ULO) is a collection of linear
optimization problems (instances){

min{cT x + d : Ax ≤ b}
}

(c,d ,A,b)∈U

where all input data stems from an uncertainty set U ⊂ Rm+1×n+1.
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Uncertain LPs

Perturbation Set
The uncertainty set U is usually described by an affine parameterization: a
perturbation vector ζ from a perturbation set Z describes all possible

deviations from a nominal matrix D0 =

(
cT0 d0
A0 b0

)
:

U =

{
D ∈ Rm+1×n+1 : D = D0 +

L∑
`=1

ζ`D` : ζ ∈ Z ⊂ RL

}

The perturbation set Z describes how the deviations can be combined.
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Example: production planning

Products: DrugI, DrugII containing an active agent A
Parameter DrugI DrugII
Selling price, $ per 1000 packs 6,200 6,900
Content of agent A, g per 1000 packs 0.5 0.6
Manpower required, hours per 1000 packs 90 100
Equipment required, hours per 1000 packs 40 50
Operational costs, $ per 1000 packs 700 800

Contents of Raw material:
Raw material Purchasing price, $ per kg Content of Agent A, g per

kg
RawI 100.00 0.01 ± 0.5%
RawII 199.90 0.02 ± 2%

Resources:
Budget, $ Manpower,

hrs
Equipment,
hrs

Capacity of raw materials stor-
age, kg

100,000 2,000 800 1,000
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Example: production planning

Decision vector: x = [RawI ;RawII ;DrugI ;DrugII ]
Nominal data:

D0 =



100 199.9 −5500 −6100 0
−0.01 −0.02 0.5 0.6 0

1 1 0 0 1000
0 0 90 100 2000
0 0 40 50 800

100.0 199.9 700 800 100000
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
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Example: production planning

Perturbation matrices:

D1 = 5.0 · 10−5 ·



0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, D2 = 4.0 · 10−4 ·



0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Perturbation set:

Z = {ζ ∈ R2 : −1 ≤ ζ1, ζ2 ≤ 1}
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Typical Perturbation Sets

Typical perturbation sets are:
the unit box (interval uncertainty){

ζ ∈ RL : −1 ≤ ζ` ≤ 1 ∀` = 1, . . . , L
}

the discrete scenarios{
ζ ∈ RL :

L∑
`=1

ζ` ≤ 1, 0 ≤ ζ` ≤ 1 ∀` = 1, . . . , L

}

the Eucledian ball with unit radius{
ζ ∈ RL : ||ζ||2 = ζT ζ ≤ 1

}
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Uncertain Linear Optimization

In One-Stage Robust Optimization, we only consider ULOs with the
following characteristics:
1. All decision variables represent here and now decisions; they should be

assigned specific numerical values as a result of solving the problem
before the actual data “reveals itself.”

2. The decision maker is fully responisble for consequences of the decisions
to be made when, and only when, the actual data is within the
prespecified uncertainty set U .

3. The constraints Ax ≤ b are hard – we cannot tolerate violations of
constraints, even small ones, when the data is in U .
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Example

x1

x2 −3x1 + 4x2 ≤ 4

3x1 + 2x2 ≤ 11

2x1 − x2 ≤ 5−2x1 + 4x2 ≤ 4

2.75x1 + 2.75x2 ≤ 11

robust feasible

ax1 + 4x2 ≤ 4 with a ∈ [−3,−2]
bx1 + cx2 ≤ 11 with b ∈ [2.75, 3] and c ∈ [2, 2.75]

Select optimal solution among robust solutions!
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Robust Counterpart
ULO

{
min{cT x + d : Ax ≤ b}

}
(c,d ,A,b)∈U

Robust feasible solution
A vector x ∈ Rn is robust feasible for ULO if

Ax ≤ b ∀(c , d ,A, b) ∈ U

Robust solution value
Given a vector x ∈ Rn, the robust solution value ĉ(x) is defined as

ĉ(x) := sup
(c,d ,A,b)∈U

(
cT x + d

)
Robust Counterpart
The robust counterpart of an ULO is the optimization problem

min {ĉ(x) : x is robust feasible}
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Example

Let
{
min{cT x : Ax ≤ b, x ≥ 0}

}
(c,A,b)∈U

be an ULO with uncertain

right-hand-side
b ∈ [b̄, b̄ + b̂]

uncertain matrix A,
aij ∈ [āij , āij + âij ]

but certain objective vector c .

The robust counterpart can be written as

min{cT x : (Ā + Â)x ≤ b̄, x ≥ 0}
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Exercise

Let A be a m × n matrix. Consider the following uncertain linear
optimization problem:

min
x
{cT x : Ax ≤ b},

under the uncertainty:

U = {(c ,A, b) : |cj − c̄j | ≤ σj ,
∣∣Aij − Āij

∣∣ ≤ αij ,
∣∣bi − b̄i

∣∣ ≤ βi ,∀i , j},
where c̄j , etc. denotes the nominal data.
Reduce the robust counterpart of the problem to a linear program with

m constraints (not counting the non-negativity constraints) and
2n nonnegative variables.

Answer: x is free, and has to be replaced by x = x+ − x− with x+ ≥ 0,
x− ≥ 0
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Robust Counterpart

Observation
If the objective is certain, the robust counterpart can be constructed
row-wise, i.e.,

keep the objective
replace every constraint aTi x ≤ bi by its robust counterpart

aTi x ≤ bi ∀(ai , bi ) ∈ Ui

where

Ui :=
{

(ãi , b̃i ) ∈ Rn+1 : ∃(A, b) ∈ U with Ai . = ãi , bi = b̃i

}
Note: the robust counterpart does not change if Û = U1 × U2 × . . .× Um
instead of U is used.
Wlog: Objective vector c is certain!
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Robust Counterpart

Corollary
If only the right hand side b is uncertain, the robust counter part reads

Ax ≤ b̄

with b̄i = min{bi : (A, b, c) ∈ U}.

Max-Flow with uncertain capacities:
Take minimum capacity on every arc, and solve the max flow problem.

Min-Cut with uncertain capacities:
Objective vector c is uncertain! Requires solving of a new problem.

Corollary: Robust Max-Flow 6= Robust Min-Cut
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General framework

By the earlier observation, we can focus on a single uncertainty-affected
linear inequality

{aT x ≤ b}[a;b]∈U (1)

with uncertainty set

U =

{
[a; b] = [a0; b0] +

L∑
`=1

ζ`[a
`; b`] : ζ ∈ Z

}
(2)

The robust counterpart reads

aT x ≤ b ∀

(
[a; b] = [a0; b0] +

L∑
`=1

ζ`[a
`; b`] : ζ ∈ Z

)
(3)
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Interval Uncertainty
Let

Z = {ζ ∈ RL : ||ζ||∞ ≤ 1}

thus a box around the origin, also called interval uncertainty.
In this case, (3) reads

[a0]T x +
L∑
`=1

ζ`[a
`]T x ≤ b0 +

L∑
`=1

ζ`b
` ∀ζ : ||ζ||∞ ≤ 1

⇔
L∑
`=1

ζ`

[
[a`]T x − b`

]
≤ b0 − [a0]T x ∀ζ : |ζ`| ≤ 1, ` = 1, . . . , L

⇔
L∑
`=1

max
−1≤ζ`≤1

[
ζ`

[
[a`]T x − b`

]]
≤ b0 − [a0]T x

⇔
L∑
`=1

|[a`]T x − b`| ≤ b0 − [a0]T x
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Interval Uncertainty

Now,
L∑
`=1

|[a`]T x − b`| ≤ b0 − [a0]T x

can be easily reformulated by a system of linear inequalities:

[a0]T x +
L∑
`=1

u` ≤ b0

− u` ≤ [a`]T x − b` ≤ u` ∀` = 1, . . . , L
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Knapsack with Interval Uncertainty

Knapsack with n Items, profits ci , uncertain weights ai ∈ [ai , āi ], and
capacity b
Exercise:
1. Define [a`; b`] for all ` = 1, . . . , L (how large is L?)
2. Simplify max−1≤ζ`≤1 ζ`([a`]T x − b`)

3. How does the Robust Counterpart look like?

Arie Koster – RWTH Aachen University 21 / 27



Ellipsoidal Uncertainty Set

Let
Z = {ζ ∈ RL : ||ζ||2 ≤ Ω}

thus a ball of radius Ω around the origin.

In this case, (3) reads

[a0]T x +
L∑
`=1

ζ`[a
`]T x ≤ b0 +

L∑
`=1

ζ`b
` ∀ζ : ||ζ||2 ≤ Ω

⇔ max
||ζ||2≤Ω

[
L∑
`=1

ζ`

[
[a`]T x − b`

]]
≤ b0 − [a0]T x

⇔Ω

√√√√ L∑
`=1

([a`]T x − b`)2 ≤ b0 − [a0]T x
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Polyhedral Uncertainty Set
Let

Z = {ζ ∈ RL : Pζ ≤ q}
with P ∈ RM×L, q ∈ RM , i.e., Z is described by a polyhedron.
In this case, (3) reads

[a0]T x +
L∑
`=1

ζ`[a
`]T x ≤ b0 +

L∑
`=1

ζ`b
` ∀ζ : Pζ ≤ q

⇔ max
ζ:Pζ≤q

[
L∑
`=1

ζ`

[
[a`]T x − b`

]]
≤ b0 − [a0]T x (4)

Given x (fixed), feasability of (4) can be checked by solving the LP:

z(x) = max
L∑
`=1

[
[a`]T x − b`

]
ζ`

s.t.Pζ ≤ q

If z(x) ≤ b0 − [a0]T x , then x is robust feasible, otherwise not.
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Discrete Uncertainty Set

Let [a; b] be taken from a discrete set of N possible realizations
{[ai ; bi ]}i=1,...,N .

Approach 1:

Define [a1; b1] as the nominal case
Set [ãi ; b̃i ] := [ai − a1; bi − b1] for all i = 2, . . . ,N
Define the perturbation set

Z =

{
ζ ∈ RN−1 : ζi ∈ {0, 1}[0, 1],

N∑
i=2

ζi ≤ 1

}

Construct Robust Counterpart
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Discrete Uncertainty Set

Let [a; b] be taken from a discrete set of N possible realizations
{[ai ; bi ]}i=1,...,N .
Approach 2:

Compute a polyhedral description of the convex hull of
{[ai ; bi ], i = 1, . . . ,N}
I.e., {ζ ∈ Rn+1 : Pζ ≤ q} has as extreme points [ai ; bi ]

Define the perturbation set

Z =
{
ζ ∈ Rn+1 : Pζ ≤ q

}
and the uncertainty set

U =

{
[a; b] = [0; 0] +

n∑
i=0

ζi [e
i ; 0] + ζn+1[0, 1]

}

Construct Robust Counterpart
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Discrete Uncertainty Set

Let [a; b] be taken from a discrete set of N possible realizations
{[ai ; bi ]}i=1,...,N .

Approach 3:

Replace aT x ≤ b by

[ai ]T x ≤ bi ∀i = 1, . . . ,N

Definition of Z and U is sometimes unnecessarily difficult!
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