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IRERKEY About this course

Lecture 1: Discrete Optimization w/o Uncertainties

Lecture 2: Chance-Constrained Optimization

Lecture 3: Uncertain Linear Optimization & Uncertainty Sets
Lecture 4: T-Robustness

Lecture 5: More on '-Robustness

Lecture 6: Two-Stage Robust Optimization

Lecture 7: Recoverable Robust Optimization and more
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iy | ST Organization

Lectures:

Monday Feb 26, 2018: 10:15-11:45, ITC 1245

Tuesday Feb 27, 2018: 9:15-10:45 & 11:15-12:45, ITC 2345
Wednesday Feb 28, 2018: 9:15-10:45 & 11:15-12:45, ITC 2345
Thursday Mar 1, 2018: 9:15-10:45 & 11:15-12:45, ITC 1213

Examination: Development of a research proposal, identifying research
topics/problems of relevance and presenting the application of the
knowledge gained from the course and own reading.

Extra: Seminar centering “Solving Mixed-Integer Non-Linear Programs by
Adaptive Discretisation: Two Case Studies”, Tuesday Feb 27, 2018,
15:15-16:15, ITC 1245
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@ | IR Outline
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@ | A Qualtiy of Optimization

Most important disadvantage of optimization:

“An optimal solution is as good as the input data is’

Example: Packing items in bins
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Uncertainty in Optimization Problems

Optimization problems often contain uncertain parameters, due to

m measurement/rounding errors
e.g., temperature, current inventory

m estimation errors
e.g., demand, cost or prices

m implementation errors
e.g., length, depth, width, voltage
Flaw of using nominal values in optimization problems

RO: find a solution that is robust against this uncertainty in the parameters.

Slide copied from Dick den Hertog (University of Tilburg)
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i | TR Robust Design of Networks

Given  network topology
potential link capacities
uncertain demands

link dimensioning

routing
at minimum cost

1 a1 1001 1501 2001

Purple: Sum of 90% quantiles
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@ Alternative Approaches

Lower overestimation

The network is designed such that capacities are as small as possible; traffic
fluctuations might result in high network congestion

Stochastic Programming

Network design has to be computed for many scenarios; high computational
effort

Multi-period Network Design

Many traffic matrices have to be considered simultaneously; high
computational effort

Our choice: Chance-constrained Programming with Robust Optimization as
“special case”
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@ | IR Outline
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o Linear Programming Models

\’H/

Many optimization problems can be formulated as linear programs:

Variables x € Rl model the decisions

Linear constraints ajx < b; (i = 1,..., m) model the relations between
the decisions (conflicts, conclusions, etc.)

The best decision can be found by minimizing/maximizing an objective
ZJ 16X

m The linear program reads:

min c'x
s.t. Ax < b
x>0

m or mingepc! x with P = {x € R? : Ax < b}
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Integer Linear Programming Models

m Often decisions have a discrete nature:

» On/Off
» Install 0,1,2,... units of capacity
» Select channel 1,2,...,12 or 13 for transmission by a WLAN access point

m Variables x; € Z or x; € {0,1} model the decisions

m The integer linear program reads:

min cx
s.t. Ax < b
x e

m or mingeprzn ¢ x with P = {x € R7 : Ax < b}
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& Integer Linear Programming

/

objective

LP
solution

\ /

m Linear programs can be solved efficiently (in theory and practise)

m (Mixed) Integer linear programs are harder to tackle
m Knowledge about convex hull of integer solutions is needed
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@ | A Cutting planes

objective

cutting plane

new LP
solution

N

m Solution of LP relaxation is not part of the convex hull
m Explore problem structure: valid inequalities
m Add violated inequality to LP relaxation: cutting plane
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iy | T Polyhedral combinatorics

objective
facet—defining inequality

Strong valid inequalities are problem dependent

A facet is a face of the convex hull of integer points
Strongest valid inequalities define facets

If enough facets are known, problem can be solved as LP
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dhy | PTER Lower bound computation

0

Lower bound improves by adding cutting planes
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dhy | PTER Upper bound computation

Upper bound |
L~

Lower bound |

0

Upper bound can be computed via heuristic or Branch & Bound
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@ | Branch & Bound / Cut

/

objective

new LP
solution

sol ut|on

ER4

Fractional LP solution and no violated inequalities found
Branch on fractional value of integer variable

Bound solution space by best solution

Cutting plane + Branch & Bound: Branch & Cut
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Polyhedral combinatorics — Example

WLAN Frequency Planning

m Warwick Mathematics Institute
m WLAN Access Points
m Edges represent interference if APs operate on same channel

m How many APs can be operated at the same channel/frequency?

Arie Koster — RWTH Aachen University 18 / 30



@y | T Polyhedral combinatorics — Example

Definition Let G = (V/, E) be a graph. A stable set S is a subset of the
nodes such that no for all v,w € S, {v,w} ¢ E.

Z|p = max Z Xy (1)
veV

st xy +xu <1 V{v,w} € E (2)

x, € {0,1} Vv eV (3)

Notation:

STAB(G) :=conv{x € {0,1}" : x, + xo < 1V{v,w} € E}
ESTAB(G) :={x€[0,1]" : x, + xo < 1V{v,w} € E}

zip = max{)_ oy X : x € STAB(G)}

zip = max{d cy X, : x € ESTAB(G)}
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N Stable Set polytope

@ QSTAB

@ STAB - axsb

Cs: zip=2, z1p = 2% (xv = %)

How does ax < b look like?
Odd cycle inequality: > o x <2

Validity: At most 2 nodes can be in any stable set

max Z xy . x € ESTAB(Gs), Z x, <23 =2

veCs veGs
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0 Strength of valid inequalities

Dimension of a polytope: number of linearly independent directions

Lemma
dim(STAB(G)) = n (number of nodes)

Facet of a polytope P: face of dimension dim(P) — 1

Observation

A polytope (the convex hull of integer points) is completely described by its
facet-defining inequalities a;x < b; for i =1,..., N (N can be very large)

Lemma
B ) ,cc Xv < 2 describes a facet of STAB(Gs)

] Zveczkﬂ x, < k describes a facet of STAB(Cpk41) for k € {1,2,...}
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@y | ™ Stable Set polytope

Lemma
B D cCo,q Xv S k describes a facet of STAB(Cok41) for k € {1,2,...}

Proof: There exist 2k + 1 affinely independent solutions with
Zveczkﬂ x, = k (characterized by x,, = x,,, = 0 for some
i=1,...,2k+1).

Observation
Let S induce a subgraph of G and let ax < b be a facet-defining inequality
for STAB(G[S]). Then, ax < b is a strong but not necessarily
facet-defining inequality for STAB(G).
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@ | A WLAN — Beyond Stable Sets

WLAN Frequency Planning

m Which APs are operated at which channel/frequency?
m Which AP locations have to be selected?
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@ Chvatal-Gomory cuts

Another view on odd cycle inequalities:

Inequalities defining ESTAB(Gs)

X1 +x <1
X2 +x3 <1

X3 +xa <1

xa +x5<1

X1 +x5 <1

sum:%*( 2x1 4+2xp +2x3 +2x4 +2x5<5) x31 +x2 +x3 +xa

Arie Koster — RWTH Aachen University 24 / 30



iy | ST Chvatal-Gomory cuts

Chvatal-Gomory cuts

Given a system of linear inequalities Ax < b and a vector p, the
Chvatal-Gomory cut |pu" A| x < |p"b] is valid for all integer solutions of
the system.

= Chvatal-Gomory cuts are among the most powerful general cutting
planes applied in state-of-the-art Branch & Cut solvers like ILOG CPLEX,
GuRoBi, XPRESS MP, or SCIP.
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Mixed-Integer Rounding (MIR)

Beyond Chvatal-Gomory cuts:

X
MIR-cut

|d]..

Base inequality: af +x<d

where f e Ry, x € Z4

MIR inequality: =255 f +x < |d],
where < d >=d — |d|

Note: MIR introduces integral vertices!
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MIR in higher dimensions

Base:

m n
doafi+ Y gx=>d
j=1

i=1

Apply MIR function:
Z 'Ed,c(aj)fi + Fa.c(¢j)xj > Fa.c(d)
i=1

where

Details: Fg4 . has to be subadditive and nondecreasing with Fy4 -(0) = 0.
(see Nemhauser/Wolsey 1988)
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iy | TNERERSE Modelling Software

Examples:

m ZIMPL: modelling only, opensource, http://zibopt.zib.de

m Example of ZIMPL:
# This is the stable set problem for the Petersen graph
set V:= 1 .. 10 ;
set E := <1,2>, <1,5>, <1,6>, <2,3>, <2,7>,
<3,4>, <3,8>, <4,5>, <4,9>, <5,10>,
<6,8>, <6,9>, <7,9>, <7,10>, <8,10> ;
var x[V] binary;
maximize stableset: sum <v> in V : x[v];
subto conflict:
forall <v,w> in E do
x[v] + x[w] <= 1;
# That’s it.
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i Modelling Software

Examples:

m ZIMPL: modelling only, opensource, http://zibopt.zib.de

m AIMMS: modelling + black-box solver, commercial,
http://www.aimms.com

m AMPL, ILOG OPL Studio, commercial, http:
//www-01.ibm.com/software/websphere/products/optimization/

m GAMS, http://www.gams.com

Advantages: Perfect for testing of models and black-box ILP solving.
Disadvantages: Limited interaction to enhance solution process.
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0 Solver Software

b

Examples:
m IBM ILOG CPLEX: commercial, http:
//www-01.ibm.com/software/websphere/products/optimization/

m GuRoBi: commercial, but free for academic usage,
http://www.gurobi.com

m SCIP: opensource, http://zibopt.zib.de

m COIN-OR: opensource, http://www.coin-or.org

m LP solvers: SOPLEX, CLP, ...

Advantages: Full control of many parameter settings, callback functionality
for user defined cutting planes, heuristics, etc.

Disadvantages: Full control only via C/C++/JAVA/python interface;
careful programming required to avoid invalid inequalities, etc.
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