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About this course

Lecture 1: Discrete Optimization w/o Uncertainties
Lecture 2: Chance-Constrained Optimization
Lecture 3: Uncertain Linear Optimization & Uncertainty Sets
Lecture 4: Γ-Robustness
Lecture 5: More on Γ-Robustness
Lecture 6: Two-Stage Robust Optimization
Lecture 7: Recoverable Robust Optimization and more
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Organization

Lectures:
Monday Feb 26, 2018: 10:15–11:45, ITC 1245
Tuesday Feb 27, 2018: 9:15–10:45 & 11:15–12:45, ITC 2345
Wednesday Feb 28, 2018: 9:15–10:45 & 11:15–12:45, ITC 2345
Thursday Mar 1, 2018: 9:15–10:45 & 11:15–12:45, ITC 1213
Examination: Development of a research proposal, identifying research
topics/problems of relevance and presenting the application of the
knowledge gained from the course and own reading.
Extra: Seminar centering “Solving Mixed-Integer Non-Linear Programs by
Adaptive Discretisation: Two Case Studies”, Tuesday Feb 27, 2018,
15:15–16:15, ITC 1245
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Qualtiy of Optimization

Most important disadvantage of optimization:
“An optimal solution is as good as the input data is”

Example: Packing items in bins
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Uncertainty in Optimization Problems

Optimization problems often contain uncertain parameters, due to
measurement/rounding errors
e.g., temperature, current inventory
estimation errors
e.g., demand, cost or prices
implementation errors
e.g., length, depth, width, voltage

Flaw of using nominal values in optimization problems

RO: find a solution that is robust against this uncertainty in the parameters.

Slide copied from Dick den Hertog (University of Tilburg)

Arie Koster – RWTH Aachen University 6 / 30



Robust Design of Networks

Given network topology
potential link capacities
uncertain demands

Find link dimensioning
routing
at minimum cost

Purple: Sum of 90% quantiles
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Alternative Approaches

Lower overestimation
The network is designed such that capacities are as small as possible; traffic
fluctuations might result in high network congestion

Stochastic Programming
Network design has to be computed for many scenarios; high computational
effort

Multi-period Network Design
Many traffic matrices have to be considered simultaneously; high
computational effort

Our choice: Chance-constrained Programming with Robust Optimization as
“special case”
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Linear Programming Models

Many optimization problems can be formulated as linear programs:
Variables x ∈ Rn

+ model the decisions
Linear constraints aix ≤ bi (i = 1, . . . ,m) model the relations between
the decisions (conflicts, conclusions, etc.)
The best decision can be found by minimizing/maximizing an objective∑n

j=1 cjxj

The linear program reads:

min cT x

s.t. Ax ≤ b

x ≥ 0

or minx∈P cT x with P = {x ∈ Rn
+ : Ax ≤ b}
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Integer Linear Programming Models

Often decisions have a discrete nature:
I On/Off
I Install 0, 1, 2, . . . units of capacity
I Select channel 1, 2, . . . , 12 or 13 for transmission by a WLAN access point

Variables xj ∈ Z+ or xj ∈ {0, 1} model the decisions
The integer linear program reads:

min cT x

s.t. Ax ≤ b

x ∈ Zn
+

or minx∈P∩Zn cT x with P = {x ∈ Rn
+ : Ax ≤ b}
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Integer Linear Programming

objective

LP
solution

Linear programs can be solved efficiently (in theory and practise)
(Mixed) Integer linear programs are harder to tackle
Knowledge about convex hull of integer solutions is needed
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Cutting planes

objective

cutting plane

solution
new LP

Solution of LP relaxation is not part of the convex hull
Explore problem structure: valid inequalities
Add violated inequality to LP relaxation: cutting plane
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Polyhedral combinatorics

objective

facet−defining inequality

Strong valid inequalities are problem dependent
A facet is a face of the convex hull of integer points
Strongest valid inequalities define facets
If enough facets are known, problem can be solved as LP
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Lower bound computation

0

Lower bound

Lower bound improves by adding cutting planes
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Upper bound computation

0

Lower bound

Upper bound

Upper bound can be computed via heuristic or Branch & Bound
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Branch & Bound / Cut

new LP

new LP
solution

objective

solution

Fractional LP solution and no violated inequalities found
Branch on fractional value of integer variable
Bound solution space by best solution
Cutting plane + Branch & Bound: Branch & Cut
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Polyhedral combinatorics – Example

WLAN Frequency Planning

Warwick Mathematics Institute
WLAN Access Points
Edges represent interference if APs operate on same channel
How many APs can be operated at the same channel/frequency?
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Polyhedral combinatorics – Example

Definition Let G = (V ,E ) be a graph. A stable set S is a subset of the
nodes such that no for all v ,w ∈ S , {v ,w} 6∈ E .

zIP = max
∑
v∈V

xv (1)

s.t. xv + xw ≤ 1 ∀{v ,w} ∈ E (2)
xv ∈ {0, 1} ∀v ∈ V (3)

Notation:
STAB(G ) := conv{x ∈ {0, 1}n : xv + xw ≤ 1 ∀{v ,w} ∈ E}
ESTAB(G ) := {x ∈ [0, 1]n : xv + xw ≤ 1 ∀{v ,w} ∈ E}
zIP = max{∑v∈V xv : x ∈ STAB(G )}
zLP = max{∑v∈V xv : x ∈ ESTAB(G )}
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Stable Set polytope

v1

v2

v3

v4

v5

a x <b  T

y*

STAB

QSTAB

C5: zIP = 2, zLP = 212 (xv = 1
2)

How does ax ≤ b look like?
Odd cycle inequality:

∑
v∈C5

xv ≤ 2

Validity: At most 2 nodes can be in any stable set

max

∑
v∈C5

xv : x ∈ ESTAB(C5),
∑
v∈C5

xv ≤ 2

 = 2
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Strength of valid inequalities

Dimension of a polytope: number of linearly independent directions

Lemma
dim(STAB(G )) = n (number of nodes)

Facet of a polytope P : face of dimension dim(P)− 1

Observation
A polytope (the convex hull of integer points) is completely described by its
facet-defining inequalities aix ≤ bi for i = 1, . . . ,N (N can be very large)

Lemma∑
v∈C5

xv ≤ 2 describes a facet of STAB(C5)∑
v∈C2k+1

xv ≤ k describes a facet of STAB(C2k+1) for k ∈ {1, 2, . . .}
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Stable Set polytope

Lemma∑
v∈C2k+1

xv ≤ k describes a facet of STAB(C2k+1) for k ∈ {1, 2, . . .}

Proof: There exist 2k + 1 affinely independent solutions with∑
v∈C2k+1

xv = k (characterized by xvi = xvi+1 = 0 for some
i = 1, . . . , 2k + 1).

Observation
Let S induce a subgraph of G and let ax ≤ b be a facet-defining inequality
for STAB(G [S ]). Then, ax ≤ b is a strong but not necessarily
facet-defining inequality for STAB(G ).
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WLAN – Beyond Stable Sets

WLAN Frequency Planning

Which APs are operated at which channel/frequency?
Which AP locations have to be selected?
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Chvátal-Gomory cuts

Another view on odd cycle inequalities:

Inequalities defining ESTAB(C5)

1
2 ∗ (

x1 +x2 ≤ 1

)
1
2 ∗ (

x2 +x3 ≤ 1

)
1
2 ∗ (

x3 +x4 ≤ 1

)
1
2 ∗ (

x4 +x5 ≤ 1

)
1
2 ∗ (

x1 +x5 ≤ 1

)

sum:12 ∗ ( 2x1 +2x2 +2x3 +2x4 +2x5 ≤ 5) x1 + x2 + x3 + x4 + x5 ≤ 212 x1 +x2 +x3 +x4 +x5 ≤
⌊
212
⌋

= 2
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Chvátal-Gomory cuts

Chvátal-Gomory cuts
Given a system of linear inequalities Ax ≤ b and a vector µ, the
Chvátal-Gomory cut

⌊
µTA

⌋
x ≤

⌊
µTb

⌋
is valid for all integer solutions of

the system.

⇒ Chvátal-Gomory cuts are among the most powerful general cutting
planes applied in state-of-the-art Branch & Cut solvers like ILOG CPLEX,
GuRoBi, XPRESS MP, or SCIP.
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Mixed-Integer Rounding (MIR)

Beyond Chvátal-Gomory cuts:

b c

x

f

d
d

Y

MIR-cut Base inequality: af + x ≤ d

where f ∈ R+, x ∈ Z+

MIR inequality: a
1−<d> f + x ≤ bdc ,

where < d >= d − bdc

Note: MIR introduces integral vertices!
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MIR in higher dimensions
Base:

m∑
i=1

aj fj +
n∑

j=1

cjxj ≥ d

Apply MIR function:

m∑
i=1

F̄d ,c(aj)fj +
n∑

j=1

Fd ,c(cj)xj ≥ Fd ,c(d)

where

Fd ,c(a) := r(d , c) dae − (r(d , c)− r(a, c))+

F̄d ,c(a) := r(d , c)a+ = lim
t↘0

Fd ,c(at)/t

r(d , c) := a− c
(⌈a

c

⌉
− 1
)

Details: Fd ,c has to be subadditive and nondecreasing with Fd ,c(0) = 0.
(see Nemhauser/Wolsey 1988)
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Modelling Software

Examples:

ZIMPL: modelling only, opensource, http://zibopt.zib.de
Example of ZIMPL:
# This is the stable set problem for the Petersen graph
set V := 1 .. 10 ;
set E := <1,2>, <1,5>, <1,6>, <2,3>, <2,7>,
<3,4>, <3,8>, <4,5>, <4,9>, <5,10>,
<6,8>, <6,9>, <7,9>, <7,10>, <8,10> ;
var x[V] binary;
maximize stableset: sum <v> in V : x[v];
subto conflict:
forall <v,w> in E do
x[v] + x[w] <= 1;
# That’s it.
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Modelling Software

Examples:

ZIMPL: modelling only, opensource, http://zibopt.zib.de
AIMMS: modelling + black-box solver, commercial,
http://www.aimms.com

AMPL, ILOG OPL Studio, commercial, http:
//www-01.ibm.com/software/websphere/products/optimization/

GAMS, http://www.gams.com

Advantages: Perfect for testing of models and black-box ILP solving.
Disadvantages: Limited interaction to enhance solution process.
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Solver Software

Examples:

IBM ILOG CPLEX: commercial, http:
//www-01.ibm.com/software/websphere/products/optimization/

GuRoBi: commercial, but free for academic usage,
http://www.gurobi.com

SCIP: opensource, http://zibopt.zib.de
COIN-OR: opensource, http://www.coin-or.org
LP solvers: SOPLEX, CLP, ...

Advantages: Full control of many parameter settings, callback functionality
for user defined cutting planes, heuristics, etc.
Disadvantages: Full control only via C/C++/JAVA/python interface;
careful programming required to avoid invalid inequalities, etc.
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