Discrete Optimization under Uncertainty Lecture 1

Arie M.C.A. Koster koster@math2.rwth-aachen.de

PhD course, Uppsala Universitet - February 26 - March 2, 2018

- Lecture 1: Discrete Optimization w/o Uncertainties
- Lecture 2: Chance-Constrained Optimization
- Lecture 3: Uncertain Linear Optimization & Uncertainty Sets
- Lecture 4: Γ-Robustness
- Lecture 5: More on Γ-Robustness
- Lecture 6: Two-Stage Robust Optimization
- Lecture 7: Recoverable Robust Optimization and more

Lectures:

- Monday Feb 26, 2018: 10:15–11:45, ITC 1245
- Tuesday Feb 27, 2018: 9:15-10:45 & 11:15-12:45, ITC 2345
- Wednesday Feb 28, 2018: 9:15-10:45 & 11:15-12:45, ITC 2345
- Thursday Mar 1, 2018: 9:15-10:45 & 11:15-12:45, ITC 1213
- Examination: Development of a research proposal, identifying research topics/problems of relevance and presenting the application of the knowledge gained from the course and own reading.
- Extra: Seminar centering "Solving Mixed-Integer Non-Linear Programs by Adaptive Discretisation: Two Case Studies", Tuesday Feb 27, 2018, 15:15–16:15, ITC 1245

Most important disadvantage of optimization:

"An optimal solution is as good as the input data is"

Example: Packing items in bins

Optimization problems often contain uncertain parameters, due to

- measurement/rounding errors
 - e.g., temperature, current inventory
- estimation errors
 - e.g., demand, cost or prices
- implementation errors
 e.g., length, depth, width, voltage

Flaw of using nominal values in optimization problems

RO: find a solution that is robust against this uncertainty in the parameters.

Slide copied from Dick den Hertog (University of Tilburg)

Robust Design of Networks

Purple: Sum of 90% quantiles

Lower overestimation

The network is designed such that capacities are as small as possible; traffic fluctuations might result in high network congestion

Stochastic Programming

Network design has to be computed for many scenarios; high computational effort

Multi-period Network Design

Many traffic matrices have to be considered simultaneously; high computational effort

Our choice: Chance-constrained Programming with Robust Optimization as "special case"

- Many optimization problems can be formulated as linear programs:
- Variables $x \in \mathbb{R}^n_+$ model the decisions
- Linear constraints a_ix ≤ b_i (i = 1,...,m) model the relations between the decisions (conflicts, conclusions, etc.)
- The best decision can be found by minimizing/maximizing an objective $\sum_{j=1}^{n} c_j x_j$
- The linear program reads:

$$\begin{array}{ll} \min & c^T x\\ \text{s.t.} & Ax \leq b\\ & x \geq 0 \end{array}$$

or min_{x \in P}
$$c^T x$$
 with $P = \{x \in \mathbb{R}^n_+ : Ax \leq b\}$

- Often decisions have a discrete nature:
 - On/Off
 - ▶ Install 0, 1, 2, . . . units of capacity
 - Select channel $1, 2, \ldots, 12$ or 13 for transmission by a WLAN access point
- Variables $x_j \in \mathbb{Z}_+$ or $x_j \in \{0,1\}$ model the decisions
- The integer linear program reads:

$$\begin{array}{ll} \min & c^T x\\ \text{s.t.} & Ax \leq b\\ & x \in \mathbb{Z}^n_+ \end{array}$$

• or
$$\min_{x \in P \cap \mathbb{Z}^n} c^T x$$
 with $P = \{x \in \mathbb{R}^n_+ : Ax \le b\}$

Integer Linear Programming

- Linear programs can be solved efficiently (in theory and practise)
- (Mixed) Integer linear programs are harder to tackle
- Knowledge about convex hull of integer solutions is needed

Cutting planes

- Solution of LP relaxation is not part of the convex hull
- Explore problem structure: valid inequalities
- Add violated inequality to LP relaxation: cutting plane

Polyhedral combinatorics

- Strong valid inequalities are problem dependent
- A facet is a face of the convex hull of integer points
- Strongest valid inequalities define facets
- If enough facets are known, problem can be solved as LP

Lower bound computation

Arie Koster - RWTH Aachen University

Upper bound computation

Upper bound can be computed via heuristic or Branch & Bound

Branch & Bound / Cut

- Fractional LP solution and no violated inequalities found
- Branch on fractional value of integer variable
- Bound solution space by best solution
- Cutting plane + Branch & Bound: Branch & Cut

WLAN Frequency Planning

- Warwick Mathematics Institute
- WLAN Access Points
- Edges represent interference if APs operate on same channel
- How many APs can be operated at the same channel/frequency?

Definition Let G = (V, E) be a graph. A stable set S is a subset of the nodes such that no for all $v, w \in S$, $\{v, w\} \notin E$.

$$z_{IP} = \max \sum_{v \in V} x_v$$
(1)
$$s.t. \ x_v + x_w \le 1 \qquad \forall \{v, w\} \in E \qquad (2)$$

$$x_v \in \{0, 1\} \qquad \forall v \in V \qquad (3)$$

Notation:

•
$$STAB(G) := conv\{x \in \{0,1\}^n : x_v + x_w \le 1 \ \forall \{v,w\} \in E\}$$

•
$$ESTAB(G) := \{x \in [0,1]^n : x_v + x_w \le 1 \ \forall \{v,w\} \in E\}$$

$$z_{IP} = \max\{\sum_{v \in V} x_v : x \in STAB(G)\}$$

$$z_{LP} = \max\{\sum_{v \in V} x_v : x \in ESTAB(G)\}$$

Stable Set polytope

$$C_5: z_{IP} = 2, z_{LP} = 2\frac{1}{2} (x_v = \frac{1}{2})$$

How does $ax \leq b$ look like?

Odd cycle inequality:
$$\sum_{\nu\in \mathit{C}_{5}}x_{\nu}\leq 2$$

Validity: At most 2 nodes can be in any stable set

$$\max\left\{\sum_{v\in C_5} x_v : x\in \textit{ESTAB}(C_5), \sum_{v\in C_5} x_v \leq 2\right\} = 2$$

Dimension of a polytope: number of linearly independent directions

Lemma dim(STAB(G)) = n (number of nodes) Facet of a polytope P: face of dimension dim(P) - 1Observation A polytope (the convex hull of integer points) is completely described by its facet-defining inequalities $a_i x \leq b_i$ for i = 1, ..., N (N can be very large) Lemma

Lemma

• $\sum_{v \in C_{2k+1}} x_v \le k$ describes a facet of $STAB(C_{2k+1})$ for $k \in \{1, 2, \ldots\}$

Proof: There exist 2k + 1 affinely independent solutions with $\sum_{v \in C_{2k+1}} x_v = k$ (characterized by $x_{v_i} = x_{v_{i+1}} = 0$ for some i = 1, ..., 2k + 1).

Observation

Let S induce a subgraph of G and let $ax \le b$ be a facet-defining inequality for STAB(G[S]). Then, $ax \le b$ is a strong *but* not necessarily facet-defining inequality for STAB(G).

WLAN - Beyond Stable Sets

WLAN Frequency Planning

- Which APs are operated at which channel/frequency?
- Which AP locations have to be selected?

Another view on odd cycle inequalities:

Inequalities defining $ESTAB(C_5)$									
	<i>x</i> ₁	$+x_{2}$			≤ 1				
		<i>x</i> ₂	$+x_{3}$		≤ 1				
			<i>x</i> 3	$+x_{4}$	≤ 1				
				<i>X</i> 4	$+x_5 \leq 1$				
	x_1				$+x_5 \leq 1$				
$\operatorname{sum}: \frac{1}{2} * ($	$2x_1$	$+2x_{2}$	$+2x_{3}$	$+2x_{4}$	$+2x_{5} \leq 5$)	<i>x</i> ₁	$+ x_{2}$	$+ x_{3}$	$+ x_{4}$

Chvátal-Gomory cuts

Given a system of linear inequalities $Ax \leq b$ and a vector μ , the Chvátal-Gomory cut $\lfloor \mu^T A \rfloor x \leq \lfloor \mu^T b \rfloor$ is valid for all integer solutions of the system.

 \Rightarrow Chvátal-Gomory cuts are among the most powerful general cutting planes applied in state-of-the-art Branch & Cut solvers like ILOG CPLEX, GuRoBi, XPRESS MP, or SCIP.

Beyond Chvátal-Gomory cuts:

Base inequality: $af + x \le d$ where $f \in \mathbb{R}_+, x \in \mathbb{Z}_+$

$$\label{eq:minequality:} \begin{split} \text{MIR inequality:} \quad & \frac{a}{1- < d >} f + x \leq \lfloor d \rfloor \,, \\ \text{where} < d >= d - \lfloor d \rfloor \end{split}$$

Note: MIR introduces integral vertices!

MIR in higher dimensions

Base:

$$\sum_{i=1}^m a_j f_j + \sum_{j=1}^n c_j x_j \ge d$$

Apply MIR function:

$$\sum_{i=1}^{m} \bar{F}_{d,c}(a_j)f_j + \sum_{j=1}^{n} F_{d,c}(c_j)x_j \geq F_{d,c}(d)$$

where

$$F_{d,c}(a) := r(d,c) \lceil a \rceil - (r(d,c) - r(a,c))^+$$

$$\bar{F}_{d,c}(a) := r(d,c)a^+ = \lim_{t \searrow 0} F_{d,c}(at)/t$$

$$r(d,c) := a - c \left(\left\lceil \frac{a}{c} \right\rceil - 1 \right)$$

Details: $F_{d,c}$ has to be subadditive and nondecreasing with $F_{d,c}(0) = 0$. (see Nemhauser/Wolsey 1988)

Examples:

- ZIMPL: modelling only, opensource, http://zibopt.zib.de
- Example of ZIMPL:

```
# This is the stable set problem for the Petersen graph
set V := 1 .. 10 ;
set E := <1,2>, <1,5>, <1,6>, <2,3>, <2,7>,
<3,4>, <3,8>, <4,5>, <4,9>, <5,10>,
<6.8>, <6.9>, <7.9>, <7.10>, <8.10>;
var x[V] binary;
maximize stableset: sum <v> in V : x[v];
subto conflict:
forall <v.w> in E do
x[v] + x[w] <= 1:
# That's it.
```


Examples:

- ZIMPL: modelling only, opensource, http://zibopt.zib.de
- AIMMS: modelling + black-box solver, commercial, http://www.aimms.com
- AMPL, ILOG OPL Studio, commercial, http: //www-01.ibm.com/software/websphere/products/optimization/
- GAMS, http://www.gams.com
- Advantages: Perfect for testing of models and black-box ILP solving. Disadvantages: Limited interaction to enhance solution process.

Examples:

- IBM ILOG CPLEX: commercial, http: //www-01.ibm.com/software/websphere/products/optimization/
- GuRoBi: commercial, but free for academic usage, http://www.gurobi.com
- SCIP: opensource, http://zibopt.zib.de
- COIN-OR: opensource, http://www.coin-or.org
- LP solvers: SOPLEX, CLP, ...

Advantages: Full control of many parameter settings, callback functionality for user defined cutting planes, heuristics, etc.

Disadvantages: Full control only via C/C++/JAVA/python interface; careful programming required to avoid invalid inequalities, etc.