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Parameterized Problem

Definition

A parameterized problem is a pair (I, k), where I is a decision problem
with set of instances Z and s : Z — N a so-called parameter, a in
polynomial time (in the size of Z) computable function.
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Definition

A parameterized problem is a pair (I, k), where I is a decision problem
with set of instances Z and s : Z — N a so-called parameter, a in
polynomial time (in the size of Z) computable function.

Parameterized problems are denoted by “p-" if parameterized by its
“objective”.

Example (p-VERTEX COVER)

Given: G = (V,E) and integer k € N
Parameter: k
Question: Does G have a vertex cover of size at most k?
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Definition

A parameterized problem is a pair (I, k), where I is a decision problem
with set of instances Z and s : Z — N a so-called parameter, a in
polynomial time (in the size of Z) computable function.

Parameterized problems are denoted by “p-" if parameterized by its
“objective”.

Example (p-VERTEX COVER)

Given: G = (V,E) and integer k € N
Parameter: k
Question: Does G have a vertex cover of size at most k?

Example (p-tw-INDEPENDENT SET)

Given: Graph G = (V,E) and integer k € N
Parameter: tw(G)
Question: Does G have an independent set of size at least k?
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CLEMS@Niy | RWIH Parameterized Problem

Definition

A parameterized problem is a pair (I, k), where I is a decision problem
with set of instances Z and s : Z — N a so-called parameter, a in
polynomial time (in the size of Z) computable function.

Parameterized problems are denoted by “p-" if parameterized by its
“objective”.

Example (p-VERTEX COVER)

Given: G = (V,E) and integer k € N
Parameter: k
Question: Does G have a vertex cover of size at most k?

Example (p-tw-INDEPENDENT SET)

Given: Graph G = (V, E) of bounded treewidth and integer k € N
Parameter: tw(G)
Question: Does G have an independent set of size at least k?
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Definition

Let (M, k) be a parameterized problem, Z its set of instances.

m An algorithm A is called fixed parameter tractable (FPT) w.r.t. a
parameter &, if there exists a computable function f : N — N and a
polynomial p, such that for every instance | € Z, the running time of A
is bounded by

F(x(1)) - p(I1])-
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Let (M, k) be a parameterized problem, Z its set of instances.

m An algorithm A is called fixed parameter tractable (FPT) w.r.t. a
parameter &, if there exists a computable function f : N — N and a
polynomial p, such that for every instance | € Z, the running time of A
is bounded by

F(x(1)) - p(1])-
m A parameterized problem (1, k) is called fixed parameter tractable

(FPT) if there exists a FPT-algorithm w.r.t. x solving the decision
problem [1.
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Definition

Let (M, k) be a parameterized problem, Z its set of instances.

m An algorithm A is called fixed parameter tractable (FPT) w.r.t. a
parameter &, if there exists a computable function f : N — N and a
polynomial p, such that for every instance | € Z, the running time of A

is bounded by
F(s(1)) - p(1])-

m A parameterized problem (1, k) is called fixed parameter tractable
(FPT) if there exists a FPT-algorithm w.r.t. x solving the decision
problem [1.

m FPT is the class of all parameterized problems that are fixed parameter
tractable.
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Let (M, k) be a parameterized problem, Z its set of instances.

m An algorithm A is called fixed parameter tractable (FPT) w.r.t. a
parameter &, if there exists a computable function f : N — N and a
polynomial p, such that for every instance | € Z, the running time of A
is bounded by

F(x(1)) - p(1])-

m A parameterized problem (1, k) is called fixed parameter tractable
(FPT) if there exists a FPT-algorithm w.r.t. x solving the decision
problem [1.

m FPT is the class of all parameterized problems that are fixed parameter
tractable.

Theorem
p-TREEWIDTHe FPT

| \
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p-VERTEX COVERe FPT I

Arie M.C.A. Koster — RWTH Aachen University 5/26



CLEMS@®N RWTH

NS

ZNN

7
uuuuuuuuu -’

Examples

p-VERTEX COVERe FPT

Example (LOG-VERTEX COVER)

Given: G = (V,E)
Question: Does G have a vertex cover of size at most log |V/|?
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p-VERTEX COVERe FPT

Example (LOG-VERTEX COVER)

Given: G = (V,E)
Question: Does G have a vertex cover of size at most log |V/|?

LOG-VERTEX COVER can be solved in O(n?)
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Examples

p-VERTEX COVERe FPT

Example (LOG-VERTEX COVER)

Given: G = (V,E)
Question: Does G have a vertex cover of size at most log |V/|?

LOG-VERTEX COVER can be solved in O(n?)

Note: Every problem IT € P is with every parameterization x in FPT.
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p-VERTEX COVERe FPT

Example (LOG-VERTEX COVER)

Given: G = (V,E)
Question: Does G have a vertex cover of size at most log |V/|?

LOG-VERTEX COVER can be solved in O(n?)

Note: Every problem IT € P is with every parameterization x in FPT.
Note: Instead of multiplication, FPT can also be defined equivalently by

F(r(1)) + p(I11)

or the combination
g(s(1) + £(x(1)) - p(I] + £(1)).
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How can we show a problem is in FP7T?
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How can we show a problem is in FP7T?

Find a FPT-algorithm!
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How can we show a problem is in FP7T?

Find a FPT-algorithm!

How can we show a problem is NOT in FP7T7?
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How can we show a problem is in FP7T?

Find a FPT-algorithm!
How can we show a problem is NOT in FP7T7?

Prove that no FPT-algorithm can exist, unless P = N'P.
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k-th Slice of a problem

How can we show a problem is in FP7T?
Find a FPT-algorithm!
How can we show a problem is NOT in FP7T7?

Prove that no FPT-algorithm can exist, unless P = N'P.

Definition

Let (M, k) be a parameterized problem and k € N. Then, the k-th slice of
(M, k) is the classical decision problem [1 restricted to the instances /
having k() = k.
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CLEMS@Ng | WM k-th Slice of a problem
How can we show a problem is in FP7T?

Find a FPT-algorithm!
How can we show a problem is NOT in FP7T7?

Prove that no FPT-algorithm can exist, unless P = N'P.

Definition
Let (M, k) be a parameterized problem and k € N. Then, the k-th slice of
(M, k) is the classical decision problem [1 restricted to the instances /
having (/) = k.

Example (p-PARTITION IN INDEPENDENT SETS)

Given: G = (V,E), integer k € N.
Parameter: k
Question: Does V' have a partition in k independent sets?
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k-th Slice of a problem

Let (N, k) be a parameterized problem and k € N. Is (I, k) fixed parameter
tractable, then the k-th slice (I, k) can be solved in polynomial time.
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Let (N, k) be a parameterized problem and k € N. Is (I, k) fixed parameter
tractable, then the k-th slice (I, k) can be solved in polynomial time.

Unless P = N'P, p-PARTITION IN INDEPENDENT SETS¢ FPT. \
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Let (N, k) be a parameterized problem and k € N. Is (I, k) fixed parameter
tractable, then the k-th slice (I, k) can be solved in polynomial time.

Unless P = N'P, p-PARTITION IN INDEPENDENT SETS¢ FPT.

Note: If all slices can be solved in polynomial time, it is not yet clear that
the problem is in FPT.
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Example (p-INDEPENDENT SET)

Given: Graph G = (V, E) and integer k € N
Parameter: k
Question: Does G have an independent set of size at least k?
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Example (p-INDEPENDENT SET)

Given: Graph G = (V, E) and integer k € N
Parameter: k
Question: Does G have an independent set of size at least k?

Algorithm mis1(G).
Input: Graph G = (V,E).
Output: The maximum cardinality of an independent set of G.
if V| =0 then
L return O
choose a vertex v of minimum degree in G
return 1 +max{mis1(G\N[y]) :y € N[v]}

Fig. 1.2 Algorithmmis1 for MAXIMUM INDEPENDENT SET
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Example

Example (p-INDEPENDENT SET)

Given: Graph G = (V, E) and integer k € N
Parameter: k
Question: Does G have an independent set of size at least k?

Algorithm mis1(G).
Input: Graph G = (V,E).
Output: The maximum cardinality of an independent set of G.
if V| =0 then
L return O
choose a vertex v of minimum degree in G
return 1 +max{mis1(G\N[y]) :y € N[v]}

Fig. 1.2 Algorithmmis1 for MAXIMUM INDEPENDENT SET

If k is added, a running time of O((A(G) + 1)kn) = O(p(n)) can be
achieved (for fixed k).
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o Example

Example (p-INDEPENDENT SET)

Given: Graph G = (V, E) and integer k € N
Parameter: k
Question: Does G have an independent set of size at least k?

Algorithm mis1(G).
Input: Graph G = (V,E).
Output: The maximum cardinality of an independent set of G.
if V| =0 then
L return O
choose a vertex v of minimum degree in G
return 1 +max{mis1(G\N[y]) :y € N[v]}

Fig. 1.2 Algorithmmis1 for MAXIMUM INDEPENDENT SET

If k is added, a running time of O((A(G) + 1)kn) = O(p(n)) can be
achieved (for fixed k).
This is not an FPT-algorithm! (f(k) depends on A(G))
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Example (p-deg-INDEPENDENT SET)

Given: Graph G = (V. E) and integer k € N
Parameter: k + A(G)
Question: Does G have an independent set of size at least k?
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Example (cont.)

Example (p-deg-INDEPENDENT SET)

Given: Graph G = (V. E) and integer k € N
Parameter: k + A(G)
Question: Does G have an independent set of size at least k?

p-deg-INDEPENDENT SETe FPT
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For p-INDEPENDENT SET, the algorithm has running time O(n**1).
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For p-INDEPENDENT SET, the algorithm has running time O(n**1).
Let (I, k) be a parameterized problem with Z the set of instances.

m An algorithm A is called XP-algorithm w.r.t. a parameterization
k : Z — N if there exists computable functions f, g : N — N such that
for every instance | € Z the running time of A is bounded by

Fs(1) - 11,
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For p-INDEPENDENT SET, the algorithm has running time O(n**1).
Definition

Let (I, k) be a parameterized problem with Z the set of instances.

m An algorithm A is called XP-algorithm w.r.t. a parameterization
k : Z — N if there exists computable functions f, g : N — N such that
for every instance | € Z the running time of A is bounded by

Fs(1) - 11,

m X'P defines the set of all parameterized problems for which an
X P-algorithm exists.
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For p-INDEPENDENT SET, the algorithm has running time O(n**1).

Definition

Let (I, k) be a parameterized problem with Z the set of instances.

m An algorithm A is called XP-algorithm w.r.t. a parameterization
k : Z — N if there exists computable functions f, g : N — N such that
for every instance | € Z the running time of A is bounded by

Fs(1) - 11,

m X'P defines the set of all parameterized problems for which an
X P-algorithm exists.

Note: FPT C XP
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For p-INDEPENDENT SET, the algorithm has running time O(n**1).

Definition

Let (I, k) be a parameterized problem with Z the set of instances.

m An algorithm A is called XP-algorithm w.r.t. a parameterization
k : Z — N if there exists computable functions f, g : N — N such that
for every instance | € Z the running time of A is bounded by

Fs(1) - 11,

m X'P defines the set of all parameterized problems for which an
X P-algorithm exists.

Note: FPT C XP

p-INDEPENDENT SETe XP
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Can we distinguish between FP7T and XP in more detail?
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Can we distinguish between FP7T and XP in more detail?

Yes, we can!
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Can we distinguish between FP7T and XP in more detail?

Definition

A parameterized problem (I, 1) reduces parameterized to a

parameterized problem ([, x2) if there exists a function r : Zy — Z, such
that

m for all | € 7y, | is a "yes"-instance of My if and only if r(/) is a
“yes" -instance of [l5.
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Can we distinguish between FP7T and XP in more detail?

Definition

A parameterized problem (I, 1) reduces parameterized to a

parameterized problem ([, x2) if there exists a function r : Zy — Z, such
that

m for all | € 7y, | is a "yes"-instance of My if and only if r(/) is a
“yes" -instance of [l5.

m r(/) is computable in time f(x1(/)) - p(|/|) for a computable function f
and a polynomial p.
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Can we distinguish between FP7T and XP in more detail?
Definition

A parameterized problem (I, 1) reduces parameterized to a

parameterized problem ([, x2) if there exists a function r : Zy — Z, such
that

m for all | € 7y, | is a "yes"-instance of My if and only if r(/) is a
“yes" -instance of [l5.

m r(/) is computable in time f(x1(/)) - p(|/|) for a computable function f
and a polynomial p.

m for | € 73 and a computable function g : N — N it holds

ra(r(1)) < g(ra(/))-
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Can we distinguish between FP7T and XP in more detail?

Definition

A parameterized problem (I, 1) reduces parameterized to a
parameterized problem ([, x2) if there exists a function r : Zy — Z, such
that

m for all | € 7y, | is a "yes"-instance of My if and only if r(/) is a
“yes" -instance of [l5.

m r(/) is computable in time f(x1(/)) - p(|/|) for a computable function f
and a polynomial p.

m for | € 73 and a computable function g : N — N it holds

ra(r(1)) < g(ra(/))-

m The classical reduction of p-INDEPENDENT SET to p-VERTEX
COVER is not a parameterized reduction
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Can we distinguish between FP7T and XP in more detail?

Definition

A parameterized problem (I, 1) reduces parameterized to a
parameterized problem ([, x2) if there exists a function r : Zy — Z, such
that

m for all | € 7y, | is a "yes"-instance of My if and only if r(/) is a
“yes" -instance of [l5.

m r(/) is computable in time f(x1(/)) - p(|/|) for a computable function f
and a polynomial p.

m for | € 73 and a computable function g : N — N it holds

ra(r(1)) < g(ra(/))-

m The classical reduction of p-INDEPENDENT SET to p-VERTEX
COVER is not a parameterized reduction

m p-INDEPENDENT SET reduces parameterized to p-CLIQUE
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Parameterized Reduction

Let (M1, k1) and (M, k2) be parameterized problems. If (M1, k1) reduces
parameterized to (M2, k2), and (M2, k2) € FPT, then (M1, k1) € FPT.
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Parameterized Reduction

Let (M1, k1) and (M, k2) be parameterized problems. If (M1, k1) reduces
parameterized to (M2, k2), and (M2, k2) € FPT, then (M1, k1) € FPT.
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SAT is the classical N’P-complete problem. Can we define something
similar for parameterized complexity?
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SAT is the classical NP-complete problem. Can we define something
similar for parameterized complexity?

Definition (p-WEIGHTED SAT)

Given: a boolean formula and integer k € N

Parameter: k

Question: Is the boolean formula satisfiable with at least k variables set to
TRUE?
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CLEMS@Ny | Wit W-Hierarchy

SAT is the classical NP-complete problem. Can we define something
similar for parameterized complexity?

Definition (p-WEIGHTED SAT)

Given: a boolean formula and integer k € N

Parameter: k

Question: Is the boolean formula satisfiable with at least k variables set to
TRUE?

Definition (WEIGHTED WEFT-t-DEPTH-d SAT)

Given: A Boolean formula of depth at most d and weft at most t, and a
number k. The depth is the maximal number of gates on any path from
the root to a leaf, and the weft is the maximal number of gates of fan-in at
least three on any path from the root to a leaf.

Question: Is the boolean formula satisfiable with k variables set to TRUE?
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Example

Boolean circuit with weft=3 and depth=5
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Es is conjuctured that boolean formula with high weft are more difficult
than those with low weft.
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o W-Hierarchy

Es is conjuctured that boolean formula with high weft are more difficult
than those with low weft.

Definition

The W-Hierarchy consists of the complexity classes W([t], t > 1. A
parameterized problem (I, k) is a member of W/[t] if it can be reduced
parameterized to p-WEIGHTED WEFT-t-DEPTH-d SAT for some d € N.
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Es is conjuctured that boolean formula with high weft are more difficult
than those with low weft.

Definition

The W-Hierarchy consists of the complexity classes W([t], t > 1. A

parameterized problem (I, k) is a member of W/[t] if it can be reduced
parameterized to p-WEIGHTED WEFT-t-DEPTH-d SAT for some d € N.

Example
p-INDEPENDENT SETe W[1]
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Es is conjuctured that boolean formula with high weft are more difficult
than those with low weft.

Definition
The W-Hierarchy consists of the complexity classes W([t], t > 1. A

parameterized problem (I, k) is a member of W/[t] if it can be reduced
parameterized to p-WEIGHTED WEFT-t-DEPTH-d SAT for some d € N.

Example
p-INDEPENDENT SETe W[1]

Example
p-CLIQUEE W[1]
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Example (p-DOMINATING SET)

Given: Graph G = (V,E), integer k € N

Parameter: k

Question: Does G have a dominating set of size at most k, i.e., a subset of
the vertices S C V such that for all vertices v € V: N[v]NS # 0.
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Example (p-DOMINATING SET)

Given: Graph G = (V,E), integer k € N

Parameter: k

Question: Does G have a dominating set of size at most k, i.e., a subset of
the vertices S C V such that for all vertices v € V: N[v]NS # 0.

p-DOMINATING SETe W/[2] \

Arie M.C.A. Koster — RWTH Aachen University 17 / 26



Wt]-Completeness

Definition

m A parameterized problem (1, x) is W/[t]-hard if every problem in W/[t]
can be reduced parameterized to (I, k).
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Wt]-Completeness

Definition

m A parameterized problem (1, x) is W/[t]-hard if every problem in W/[t]
can be reduced parameterized to (I, k).

m A parameterized problem (1, k) is W/[t]-complete if it is W([t]-hard and
a member of W[t] itself.

Corollary: p-WEIGHTED WEFT-t-DEPTH-d SAT is W/[t]-complete (by
definition).
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Definition

m A parameterized problem (I, ) is W{t]-hard if every problem in W/|t]
can be reduced parameterized to (I, k).

m A parameterized problem (1, k) is W/[t]-complete if it is W([t]-hard and
a member of W/[t] itself.

Corollary: p-WEIGHTED WEFT-t-DEPTH-d SAT is W/[t]-complete (by
definition).

m p-INDEPENDENT SET and p-CLIQUE are W(1]-complete
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Definition

m A parameterized problem (I, ) is W{t]-hard if every problem in W/|t]
can be reduced parameterized to (I, k).

m A parameterized problem (1, k) is W/[t]-complete if it is W([t]-hard and
a member of W/[t] itself.

Corollary: p-WEIGHTED WEFT-t-DEPTH-d SAT is W/[t]-complete (by
definition).

Theorem
m p-INDEPENDENT SET and p-CLIQUE are W(1]-complete
m p-DOMINATING SET is W[2]-complete

Theorem

For every t > 1, W([t] = FPT if and only if a W|t]-hard problem is a
member of FPT.
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Idea: reduce an instance / to an instance I” which size only depends on the
parameter, not on the original instance size
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Idea: reduce an instance / to an instance I’ which size only depends on the
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2 Reduction rules:

Let G = (V,E) be a graph and v € V a vertex of degree 0. G has a vertex
cover of size k, if and only if G — v has a vertex cover of size k.
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2 Reduction rules:

Lemma

Let G = (V,E) be a graph and v € V a vertex of degree 0. G has a vertex
cover of size k, if and only if G — v has a vertex cover of size k.

Lemma

Let G = (V,E) be a graph and v € V a vertex of degree at least k +1. G
has a vertex cover of size k if and only if G — v has a vertex cover of size
k—1.
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2 Reduction rules:

Lemma

Let G = (V,E) be a graph and v € V a vertex of degree 0. G has a vertex
cover of size k, if and only if G — v has a vertex cover of size k.

Lemma

Let G =(V,E) be a graph and v € V a vertex of degree at least k + 1. G
has a vertex cover of size k if and only if G — v has a vertex cover of size
k—1.

Let G = (V,E) be a graph without isolated vertices. If G has a vertex
cover of size at most k and A(G) < d, then G has at most k(d + 1)
vertices.
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Kernelization

p-VERTEX COVER has a kernel of size at most k(k + 1), where k is the
parameter of the problem.
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p-VERTEX COVER has a kernel of size at most k(k + 1), where k is the
parameter of the problem.

m If a parameterized problem (M, k) has a kernelization, then the problem
is a member of FPT

m Every problem (I, k) in the class FPT can be solved by a kernelization
algorithm.

p-VERTEX COVERe FPT
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FPT algorithm for p-VERTEX COVER
1. (G, k) = (G — v,k — 1) for all vertices v of degree > k
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FPT algorithm for p-VERTEX COVER
1. (G, k) = (G — v,k — 1) for all vertices v of degree > k
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FPT algorithm for p-VERTEX COVER

1. (G, k) = (G — v,k — 1) for all vertices v of degree > k
2. remove isolated vertices

3. If |V| > k(k 4 1), then return "No”
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FPT algorithm for p-VERTEX COVER

1. (G, k) = (G — v,k — 1) for all vertices v of degree > k
2. remove isolated vertices

3. If |V| > k(k 4 1), then return "No”

4

. If |V| < k(k + 1), then enumerate all subsets S, and check on vertex
cover, take the smallest.
If |S| < k, then return “Yes" else return “No”
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o COVER

FPT algorithm for p-VERTEX COVER

1.

(G, k) = (G — v,k —1) for all vertices v of degree > k

2. remove isolated vertices
3.
4. If |V| < k(k 4 1), then enumerate all subsets S, and check on vertex

If |V| > k(k + 1), then return “No”

cover, take the smallest.
If |S| < k, then return “Yes" else return “No”

The FPT-algorithm for p-VERTEX COVER decides for every graph G with
n vertices in O(kn + k) whether G has a vertex cover of size at most k.
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Let G = (V,E) be a graph and v € V a vertex of degree 1 with neighbor
w. G has a vertex cover of size k if and only if G — {v,w} has a vertex
cover of size k — 1.

Arie M.C.A. Koster — RWTH Aachen University 24 /26



o COVER

CLEMS@N @

TN T VERS TV M

Let G = (V,E) be a graph and v € V a vertex of degree 1 with neighbor
w. G has a vertex cover of size k if and only if G — {v,w} has a vertex
cover of size k — 1.

p-VERTEX COVER has a kernel of size at most k?
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Let G = (V,E) be a graph and v € V a vertex of degree 1 with neighbor
w. G has a vertex cover of size k if and only if G — {v,w} has a vertex
cover of size k — 1.

p-VERTEX COVER has a kernel of size at most k?

p-VERTEX COVER has a kernel of size at most 2k
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neighbors of v are: branch into (G — N(v), k —2) and
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Search trees of limited height: Example p-VERTEX COVER (earlier)
3 rules:

VC1 If v is a vertex of degree 1, add w € N(v) to the vertex
cover; continue with (G — w, k — 1)

VC2 If v is a vertex of degree 2, either both neighbors of v are
part of the vertex cover or v and all neighbors of both
neighbors of v are: branch into (G — N(v), k —2) and
(G—v—Ny(v),k—10)

VC3 If v is a vertex of degree at least 3, then either v or all its

neighbors are part of the vertex cover: branch into
(G—v,k—1)and (G — N(v),k — [N(v)]).

The search tree defined by VC1, VC2, and VC3 for p-VERTEX COVER has
a size of O(1.47%).
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Search trees of limited height: Example p-VERTEX COVER (earlier)
3 rules:

VC1 If v is a vertex of degree 1, add w € N(v) to the vertex
cover; continue with (G — w, k — 1)

VC2 If v is a vertex of degree 2, either both neighbors of v are
part of the vertex cover or v and all neighbors of both
neighbors of v are: branch into (G — N(v), k —2) and
(G—v—Ny(v),k—10)

VC3 If v is a vertex of degree at least 3, then either v or all its

neighbors are part of the vertex cover: branch into
(G—v,k—1)and (G — N(v),k — [N(v)]).

The search tree defined by VC1, VC2, and VC3 for p-VERTEX COVER has
a size of O(1.47%).

A combination of kernelization and search tree is also possible.
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