Algorithmic Graph Theory: How hard is your combinatorial optimization problem?

Arie M.C.A. Koster

Lecture 9

Clemson, June 13, 2017

Outline

(1) Parameterized Problems
 W-Hierarchy Designing Parameterized Algorithms

Definition

A parameterized problem is a pair (Π, κ), where Π is a decision problem with set of instances \mathcal{I} and $\kappa: \mathcal{I} \rightarrow \mathbb{N}$ a so-called parameter, a in polynomial time (in the size of \mathcal{I}) computable function.

Definition

A parameterized problem is a pair (Π, κ), where Π is a decision problem with set of instances \mathcal{I} and $\kappa: \mathcal{I} \rightarrow \mathbb{N}$ a so-called parameter, a in polynomial time (in the size of \mathcal{I}) computable function.

Parameterized problems are denoted by "p-" if parameterized by its "objective".

Example (p-VERTEX COVER)
Given: $G=(V, E)$ and integer $k \in \mathbb{N}$
Parameter: k
Question: Does G have a vertex cover of size at most k ?

Definition

A parameterized problem is a pair (Π, κ), where Π is a decision problem with set of instances \mathcal{I} and $\kappa: \mathcal{I} \rightarrow \mathbb{N}$ a so-called parameter, a in polynomial time (in the size of \mathcal{I}) computable function.

Parameterized problems are denoted by "p-" if parameterized by its "objective".

Example (p-VERTEX COVER)
Given: $G=(V, E)$ and integer $k \in \mathbb{N}$
Parameter: k
Question: Does G have a vertex cover of size at most k ?

Example (p-tw-INDEPENDENT SET)

Given: Graph $G=(V, E)$ and integer $k \in \mathbb{N}$
Parameter: $\operatorname{tw}(G)$
Question: Does G have an independent set of size at least k ?

Definition

A parameterized problem is a pair (Π, κ), where Π is a decision problem with set of instances \mathcal{I} and $\kappa: \mathcal{I} \rightarrow \mathbb{N}$ a so-called parameter, a in polynomial time (in the size of \mathcal{I}) computable function.

Parameterized problems are denoted by "p-" if parameterized by its "objective".

Example (p-VERTEX COVER)
Given: $G=(V, E)$ and integer $k \in \mathbb{N}$
Parameter: k
Question: Does G have a vertex cover of size at most k ?

Example (p-tw-INDEPENDENT SET)

Given: Graph $G=(V, E)$ of bounded treewidth and integer $k \in \mathbb{N}$
Parameter: $t w(G)$
Question: Does G have an independent set of size at least k ?

Definition

Let (Π, κ) be a parameterized problem, \mathcal{I} its set of instances.

- An algorithm A is called fixed parameter tractable (FPT) w.r.t. a parameter κ, if there exists a computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial p, such that for every instance $I \in \mathcal{I}$, the running time of A is bounded by

$$
f(\kappa(I)) \cdot p(|I|) .
$$

Definition

Let (Π, κ) be a parameterized problem, \mathcal{I} its set of instances.

- An algorithm A is called fixed parameter tractable (FPT) w.r.t. a parameter κ, if there exists a computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial p, such that for every instance $I \in \mathcal{I}$, the running time of A is bounded by

$$
f(\kappa(I)) \cdot p(|I|) .
$$

- A parameterized problem (Π, κ) is called fixed parameter tractable (FPT) if there exists a FPT-algorithm w.r.t. κ solving the decision problem $П$.

Definition

Let (Π, κ) be a parameterized problem, \mathcal{I} its set of instances.

- An algorithm A is called fixed parameter tractable (FPT) w.r.t. a parameter κ, if there exists a computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial p, such that for every instance $I \in \mathcal{I}$, the running time of A is bounded by

$$
f(\kappa(I)) \cdot p(|I|) .
$$

- A parameterized problem (Π, κ) is called fixed parameter tractable (FPT) if there exists a FPT-algorithm w.r.t. κ solving the decision problem Π.
- $\mathcal{F P \mathcal { T }}$ is the class of all parameterized problems that are fixed parameter tractable.

Definition

Let (Π, κ) be a parameterized problem, \mathcal{I} its set of instances.

- An algorithm A is called fixed parameter tractable (FPT) w.r.t. a parameter κ, if there exists a computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial p, such that for every instance $I \in \mathcal{I}$, the running time of A is bounded by

$$
f(\kappa(I)) \cdot p(|I|) .
$$

- A parameterized problem (Π, κ) is called fixed parameter tractable (FPT) if there exists a FPT-algorithm w.r.t. κ solving the decision problem $П$.
- $\mathcal{F P} \mathcal{T}$ is the class of all parameterized problems that are fixed parameter tractable.

Theorem

$p-T R E E W I D T H \in \mathcal{F P \mathcal { T }}$

Theorem $p-V E R T E X ~ C O V E R \in \mathcal{F P \mathcal { T }}$

Theorem

$p-V E R T E X ~ C O V E R \in \mathcal{F P T}$

Example (LOG-VERTEX COVER)

Given: $G=(V, E)$
Question: Does G have a vertex cover of size at most $\log |V|$?

Theorem

Example (LOG-VERTEX COVER)

Given: $G=(V, E)$
Question: Does G have a vertex cover of size at most $\log |V|$?

Theorem

LOG-VERTEX COVER can be solved in $O\left(n^{2}\right)$

Theorem

p-VERTEX COVER $\mathcal{F P T}$

Example (LOG-VERTEX COVER)

Given: $G=(V, E)$
Question: Does G have a vertex cover of size at most $\log |V|$?

Theorem

LOG-VERTEX COVER can be solved in $O\left(n^{2}\right)$
Note: Every problem $\Pi \in \mathcal{P}$ is with every parameterization κ in $\mathcal{F P \mathcal { T }}$.

Theorem

$p-V E R T E X ~ C O V E R \in \mathcal{F P T}$

Example (LOG-VERTEX COVER)

Given: $G=(V, E)$
Question: Does G have a vertex cover of size at most $\log |V|$?

Theorem

LOG-VERTEX COVER can be solved in $O\left(n^{2}\right)$
Note: Every problem $\Pi \in \mathcal{P}$ is with every parameterization κ in $\mathcal{F P \mathcal { T }}$. Note: Instead of multiplication, FPT can also be defined equivalently by

$$
f(\kappa(I))+p(|I|)
$$

or the combination

$$
g(\kappa(I))+f(\kappa(I)) \cdot p(|I|+\kappa(I)) .
$$

RWTH AACHEN
 UNIVERSTY

How can we show a problem is in $\mathcal{F P \mathcal { T }}$?

CLEMS?

How can we show a problem is in $\mathcal{F P \mathcal { T }}$?
Find a FPT-algorithm!

How can we show a problem is in $\mathcal{F P \mathcal { T }}$?
Find a FPT-algorithm!
How can we show a problem is NOT in $\mathcal{F P} \mathcal{T}$?

How can we show a problem is in $\mathcal{F P \mathcal { T }}$?

Find a FPT-algorithm!

How can we show a problem is NOT in $\mathcal{F P} \mathcal{T}$?
Prove that no FPT-algorithm can exist, unless $\mathcal{P}=\mathcal{N} \mathcal{P}$.

How can we show a problem is in $\mathcal{F P} \mathcal{T}$?

Find a FPT-algorithm!

How can we show a problem is NOT in $\mathcal{F P} \mathcal{T}$?
Prove that no FPT-algorithm can exist, unless $\mathcal{P}=\mathcal{N} \mathcal{P}$.

Definition

Let (Π, κ) be a parameterized problem and $k \in \mathbb{N}$. Then, the k-th slice of (Π, κ) is the classical decision problem Π restricted to the instances $/$ having $\kappa(I)=k$.

How can we show a problem is in $\mathcal{F P \mathcal { T }}$?

Find a FPT-algorithm!

How can we show a problem is NOT in $\mathcal{F P} \mathcal{T}$?
Prove that no FPT-algorithm can exist, unless $\mathcal{P}=\mathcal{N} \mathcal{P}$.

Definition

Let (Π, κ) be a parameterized problem and $k \in \mathbb{N}$. Then, the k-th slice of (Π, κ) is the classical decision problem Π restricted to the instances $/$ having $\kappa(I)=k$.

Example (p-PARTITION IN INDEPENDENT SETS)
Given: $G=(V, E)$, integer $k \in \mathbb{N}$.
Parameter: k
Question: Does V have a partition in k independent sets?

Theorem

Let (Π, κ) be a parameterized problem and $k \in \mathbb{N}$. Is (Π, κ) fixed parameter tractable, then the k-th slice (Π, κ) can be solved in polynomial time.

Theorem

Let (Π, κ) be a parameterized problem and $k \in \mathbb{N}$. Is (Π, κ) fixed parameter tractable, then the k-th slice (Π, κ) can be solved in polynomial time.

Corollary

Unless $\mathcal{P}=\mathcal{N} \mathcal{P}$, p-PARTITION IN INDEPENDENT SETS $\notin \mathcal{F P} \mathcal{T}$.

Theorem

Let (Π, κ) be a parameterized problem and $k \in \mathbb{N}$. Is (Π, κ) fixed parameter tractable, then the k-th slice (Π, κ) can be solved in polynomial time.

Corollary

Unless $\mathcal{P}=\mathcal{N} \mathcal{P}$, p-PARTITION IN INDEPENDENT SETS $\notin \mathcal{F P} \mathcal{T}$.
Note: If all slices can be solved in polynomial time, it is not yet clear that the problem is in $\mathcal{F P \mathcal { T }}$.

Example

Example (p-INDEPENDENT SET)

Given: Graph $G=(V, E)$ and integer $k \in \mathbb{N}$
Parameter: k
Question: Does G have an independent set of size at least k ?

Example

Example (p-INDEPENDENT SET)

Given: Graph $G=(V, E)$ and integer $k \in \mathbb{N}$
Parameter: k
Question: Does G have an independent set of size at least k ?

```
Algorithm mis 1(G).
Input: Graph \(G=(V, E)\).
Output: The maximum cardinality of an independent set of \(G\).
    if \(|V|=0\) then
        return 0
    choose a vertex \(v\) of minimum degree in \(G\)
    return \(1+\max \{\operatorname{mis} 1(G \backslash N[y]): y \in N[v]\}\)
```

Fig. 1.2 Algorithm misi for MaXimum Independent Set

Example

Example (p-INDEPENDENT SET)

Given: Graph $G=(V, E)$ and integer $k \in \mathbb{N}$
Parameter: k
Question: Does G have an independent set of size at least k ?

```
Algorithm mis 1(G).
Input: Graph \(G=(V, E)\).
Output: The maximum cardinality of an independent set of \(G\).
    if \(|V|=0\) then
        return 0
    choose a vertex \(v\) of minimum degree in \(G\)
    return \(1+\max \{\operatorname{mis} 1(G \backslash N[y]): y \in N[v]\}\)
```

Fig. 1.2 Algorithm misi for MaXimum Independent Set

If k is added, a running time of $O\left((\Delta(G)+1)^{k} n\right)=O(p(n))$ can be achieved (for fixed k).

Example (p-INDEPENDENT SET)

Given: Graph $G=(V, E)$ and integer $k \in \mathbb{N}$
Parameter: k
Question: Does G have an independent set of size at least k ?

```
Algorithm mis 1(G).
Input: Graph \(G=(V, E)\).
Output: The maximum cardinality of an independent set of \(G\).
    if \(|V|=0\) then
        return 0
    choose a vertex \(v\) of minimum degree in \(G\)
    return \(1+\max \{\operatorname{mis} 1(G \backslash N[y]): y \in N[v]\}\)
```

Fig. 1.2 Algorithm mis1 for MaXImum Independent Set

If k is added, a running time of $O\left((\Delta(G)+1)^{k} n\right)=O(p(n))$ can be achieved (for fixed k).
This is not an FPT-algorithm! $(f(k)$ depends on $\Delta(G))$

Example (p-deg-INDEPENDENT SET)

Given: Graph $G=(V, E)$ and integer $k \in \mathbb{N}$
Parameter: $k+\Delta(G)$
Question: Does G have an independent set of size at least k ?

Example (p-deg-INDEPENDENT SET)

Given: Graph $G=(V, E)$ and integer $k \in \mathbb{N}$
Parameter: $k+\Delta(G)$
Question: Does G have an independent set of size at least k ?

```
Corollary p-deg-INDEPENDENT SETE \(\mathcal{F P} \mathcal{T}\)
```

For p-INDEPENDENT SET, the algorithm has running time $O\left(n^{k+1}\right)$.

For p-INDEPENDENT SET, the algorithm has running time $O\left(n^{k+1}\right)$.

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances.

- An algorithm A is called $\mathcal{X P}$-algorithm w.r.t. a parameterization $\kappa: \mathcal{I} \rightarrow \mathbb{N}$ if there exists computable functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that for every instance $I \in \mathcal{I}$ the running time of A is bounded by

$$
f(\kappa(I)) \cdot|I|^{g(\kappa(I))} .
$$

For p-INDEPENDENT SET, the algorithm has running time $O\left(n^{k+1}\right)$.

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances.

- An algorithm A is called $\mathcal{X P}$-algorithm w.r.t. a parameterization $\kappa: \mathcal{I} \rightarrow \mathbb{N}$ if there exists computable functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that for every instance $I \in \mathcal{I}$ the running time of A is bounded by

$$
f(\kappa(I)) \cdot|I|^{g(\kappa(I))} .
$$

- $\mathcal{X P}$ defines the set of all parameterized problems for which an $\mathcal{X} \mathcal{P}$-algorithm exists.

For p-INDEPENDENT SET, the algorithm has running time $O\left(n^{k+1}\right)$.

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances.

- An algorithm A is called $\mathcal{X P}$-algorithm w.r.t. a parameterization $\kappa: \mathcal{I} \rightarrow \mathbb{N}$ if there exists computable functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that for every instance $I \in \mathcal{I}$ the running time of A is bounded by

$$
f(\kappa(I)) \cdot|I|^{g(\kappa(I))} .
$$

- $\mathcal{X P}$ defines the set of all parameterized problems for which an $\mathcal{X P}$-algorithm exists.

Note: $\mathcal{F P \mathcal { T }} \subseteq \mathcal{X} \mathcal{P}$

For p-INDEPENDENT SET, the algorithm has running time $O\left(n^{k+1}\right)$.

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances.

- An algorithm A is called $\mathcal{X P}$-algorithm w.r.t. a parameterization $\kappa: \mathcal{I} \rightarrow \mathbb{N}$ if there exists computable functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that for every instance $I \in \mathcal{I}$ the running time of A is bounded by

$$
f(\kappa(I)) \cdot|I|^{g(\kappa(I))} .
$$

- $\mathcal{X P}$ defines the set of all parameterized problems for which an $\mathcal{X P}$-algorithm exists.

Note: $\mathcal{F P \mathcal { T }} \subseteq \mathcal{X} \mathcal{P}$

Theorem

p-INDEPENDENT SET $\mathcal{X} \mathcal{P}$

Outline

(7) Parameterized Problems
 (2) W-Hierarchy
 Designing Parameterized Algorithms

Can we distinguish between $\mathcal{F P} \mathcal{T}$ and $\mathcal{X} \mathcal{P}$ in more detail?

Can we distinguish between $\mathcal{F P} \mathcal{T}$ and $\mathcal{X} \mathcal{P}$ in more detail?
Yes, we can!

Can we distinguish between $\mathcal{F P} \mathcal{T}$ and $\mathcal{X P}$ in more detail?

Definition

A parameterized problem $\left(\Pi_{1}, \kappa_{1}\right)$ reduces parameterized to a parameterized problem $\left(\Pi_{2}, \kappa_{2}\right)$ if there exists a function $r: \mathcal{I}_{1} \rightarrow \mathcal{I}_{2}$ such that

- for all $I \in \mathcal{I}_{1}$, I is a "yes"-instance of Π_{1} if and only if $r(I)$ is a "yes"-instance of Π_{2}.

Can we distinguish between $\mathcal{F P \mathcal { T }}$ and $\mathcal{X P}$ in more detail?

Definition

A parameterized problem $\left(\Pi_{1}, \kappa_{1}\right)$ reduces parameterized to a parameterized problem $\left(\Pi_{2}, \kappa_{2}\right)$ if there exists a function $r: \mathcal{I}_{1} \rightarrow \mathcal{I}_{2}$ such that

- for all $I \in \mathcal{I}_{1}$, I is a "yes"-instance of Π_{1} if and only if $r(I)$ is a "yes"-instance of Π_{2}.
- $r(I)$ is computable in time $f\left(\kappa_{1}(I)\right) \cdot p(|I|)$ for a computable function f and a polynomial p.

Can we distinguish between $\mathcal{F P \mathcal { T }}$ and $\mathcal{X P}$ in more detail?

Definition

A parameterized problem $\left(\Pi_{1}, \kappa_{1}\right)$ reduces parameterized to a parameterized problem $\left(\Pi_{2}, \kappa_{2}\right)$ if there exists a function $r: \mathcal{I}_{1} \rightarrow \mathcal{I}_{2}$ such that

- for all $I \in \mathcal{I}_{1}$, I is a "yes"-instance of Π_{1} if and only if $r(I)$ is a "yes"-instance of Π_{2}.
- $r(I)$ is computable in time $f\left(\kappa_{1}(I)\right) \cdot p(|I|)$ for a computable function f and a polynomial p.
- for $I \in \mathcal{I}_{1}$ and a computable function $g: \mathbb{N} \rightarrow \mathbb{N}$ it holds $\kappa_{2}(r(I)) \leq g\left(\kappa_{1}(I)\right)$.

Can we distinguish between $\mathcal{F P \mathcal { T }}$ and $\mathcal{X P}$ in more detail?

Definition

A parameterized problem $\left(\Pi_{1}, \kappa_{1}\right)$ reduces parameterized to a parameterized problem $\left(\Pi_{2}, \kappa_{2}\right)$ if there exists a function $r: \mathcal{I}_{1} \rightarrow \mathcal{I}_{2}$ such that

- for all $I \in \mathcal{I}_{1}$, I is a "yes"-instance of Π_{1} if and only if $r(I)$ is a "yes"-instance of Π_{2}.
- $r(I)$ is computable in time $f\left(\kappa_{1}(I)\right) \cdot p(|I|)$ for a computable function f and a polynomial p.
- for $I \in \mathcal{I}_{1}$ and a computable function $g: \mathbb{N} \rightarrow \mathbb{N}$ it holds $\kappa_{2}(r(I)) \leq g\left(\kappa_{1}(I)\right)$.
- The classical reduction of p-INDEPENDENT SET to p-VERTEX COVER is not a parameterized reduction

Can we distinguish between $\mathcal{F P \mathcal { T }}$ and $\mathcal{X P}$ in more detail?

Definition

A parameterized problem $\left(\Pi_{1}, \kappa_{1}\right)$ reduces parameterized to a parameterized problem $\left(\Pi_{2}, \kappa_{2}\right)$ if there exists a function $r: \mathcal{I}_{1} \rightarrow \mathcal{I}_{2}$ such that

- for all $I \in \mathcal{I}_{1}$, I is a "yes"-instance of Π_{1} if and only if $r(I)$ is a "yes"-instance of Π_{2}.
- $r(I)$ is computable in time $f\left(\kappa_{1}(I)\right) \cdot p(|I|)$ for a computable function f and a polynomial p.
- for $I \in \mathcal{I}_{1}$ and a computable function $g: \mathbb{N} \rightarrow \mathbb{N}$ it holds $\kappa_{2}(r(I)) \leq g\left(\kappa_{1}(I)\right)$.
- The classical reduction of p-INDEPENDENT SET to p-VERTEX COVER is not a parameterized reduction
- p-INDEPENDENT SET reduces parameterized to p-CLIQUE

```
Theorem
Let \(\left(\Pi_{1}, \kappa_{1}\right)\) and \(\left(\Pi_{2}, \kappa_{2}\right)\) be parameterized problems. If \(\left(\Pi_{1}, \kappa_{1}\right)\) reduces parameterized to \(\left(\Pi_{2}, \kappa_{2}\right)\), and \(\left(\Pi_{2}, \kappa_{2}\right) \in \mathcal{F P} \mathcal{T}\), then \(\left(\Pi_{1}, \kappa_{1}\right) \in \mathcal{F P} \mathcal{T}\).
```

```
Theorem
Let \(\left(\Pi_{1}, \kappa_{1}\right)\) and \(\left(\Pi_{2}, \kappa_{2}\right)\) be parameterized problems. If \(\left(\Pi_{1}, \kappa_{1}\right)\) reduces parameterized to \(\left(\Pi_{2}, \kappa_{2}\right)\), and \(\left(\Pi_{2}, \kappa_{2}\right) \in \mathcal{F P} \mathcal{T}\), then \(\left(\Pi_{1}, \kappa_{1}\right) \in \mathcal{F P} \mathcal{T}\).
```

SAT is the classical $\mathcal{N} \mathcal{P}$-complete problem. Can we define something similar for parameterized complexity?

SAT is the classical $\mathcal{N} \mathcal{P}$-complete problem. Can we define something similar for parameterized complexity?

Definition (p-WEIGHTED SAT)

Given: a boolean formula and integer $k \in \mathbb{N}$
Parameter: k
Question: Is the boolean formula satisfiable with at least k variables set to TRUE?

SAT is the classical $\mathcal{N P}$-complete problem. Can we define something similar for parameterized complexity?

Definition (p-WEIGHTED SAT)

Given: a boolean formula and integer $k \in \mathbb{N}$
Parameter: k
Question: Is the boolean formula satisfiable with at least k variables set to TRUE?

Definition (WEIGHTED WEFT-t-DEPTH-d SAT)

Given: A Boolean formula of depth at most d and weft at most t, and a number k. The depth is the maximal number of gates on any path from the root to a leaf, and the weft is the maximal number of gates of fan-in at least three on any path from the root to a leaf.
Question: Is the boolean formula satisfiable with k variables set to TRUE?

Boolean circuit with weft $=3$ and depth $=5$

Es is conjuctured that boolean formula with high weft are more difficult than those with low weft.

Es is conjuctured that boolean formula with high weft are more difficult than those with low weft.

Definition

The W-Hierarchy consists of the complexity classes $W[t], t \geq 1$. A parameterized problem (Π, κ) is a member of $W[t]$ if it can be reduced parameterized to p-WEIGHTED WEFT-t-DEPTH- d SAT for some $d \in \mathbb{N}$.

Es is conjuctured that boolean formula with high weft are more difficult than those with low weft.

Definition

The W-Hierarchy consists of the complexity classes $W[t], t \geq 1$. A parameterized problem (Π, κ) is a member of $W[t]$ if it can be reduced parameterized to p-WEIGHTED WEFT-t-DEPTH- d SAT for some $d \in \mathbb{N}$.

```
Example p-INDEPENDENT \(S E T \in W[1]\)
```

Es is conjuctured that boolean formula with high weft are more difficult than those with low weft.

Definition

The W-Hierarchy consists of the complexity classes $W[t], t \geq 1$. A parameterized problem (Π, κ) is a member of $W[t]$ if it can be reduced parameterized to p-WEIGHTED WEFT-t-DEPTH- d SAT for some $d \in \mathbb{N}$.

```
Example p -INDEPENDENT \(\mathrm{SET} \in W\) [1]
```


Example p -CLIQUE $\in W[1]$

Example (p-DOMINATING SET)

Given: Graph $G=(V, E)$, integer $k \in \mathbb{N}$
Parameter: k
Question: Does G have a dominating set of size at most k, i.e., a subset of the vertices $S \subseteq V$ such that for all vertices $v \in V: N[v] \cap S \neq \emptyset$.

Example (p-DOMINATING SET)
Given: Graph $G=(V, E)$, integer $k \in \mathbb{N}$
Parameter: k
Question: Does G have a dominating set of size at most k, i.e., a subset of the vertices $S \subseteq V$ such that for all vertices $v \in V: N[v] \cap S \neq \emptyset$.

Lemma

p-DOMINATING SET \mathcal{W} [2]

$W[t]$-Completeness

Definition

- A parameterized problem (Π, κ) is $W[t]$-hard if every problem in $W[t]$ can be reduced parameterized to (Π, κ).

$W[t]$-Completeness

Definition

- A parameterized problem (Π, κ) is $W[t]$-hard if every problem in $W[t]$ can be reduced parameterized to (Π, κ).
- A parameterized problem (Π, κ) is $W[t]$-complete if it is $W[t]$-hard and a member of $W[t]$ itself.

Corollary: p-WEIGHTED WEFT- t-DEPTH- d SAT is $W[t]$-complete (by definition).

Definition

- A parameterized problem (Π, κ) is $W[t]$-hard if every problem in $W[t]$ can be reduced parameterized to ($\Pi, \kappa)$.
- A parameterized problem (Π, κ) is $W[t]$-complete if it is $W[t]$-hard and a member of $W[t]$ itself.

Corollary: p-WEIGHTED WEFT- t-DEPTH- d SAT is $W[t]$-complete (by definition).

Theorem

- p-INDEPENDENT SET and p-CLIQUE are W[1]-complete

$W[t]$-Completeness

Definition

- A parameterized problem (Π, κ) is $W[t]$-hard if every problem in $W[t]$ can be reduced parameterized to ($\Pi, \kappa)$.
- A parameterized problem (Π, κ) is $W[t]$-complete if it is $W[t]$-hard and a member of $W[t]$ itself.

Corollary: p-WEIGHTED WEFT- t-DEPTH- d SAT is $W[t]$-complete (by definition).

Theorem

- p-INDEPENDENT SET and p-CLIQUE are W[1]-complete
- p-DOMINATING SET is W[2]-complete

Theorem

For every $t \geq 1, W[t]=\mathcal{F P \mathcal { T }}$ if and only if a $W[t]$-hard problem is a member of $\mathcal{F P \mathcal { T }}$.

Outline

(1) Parameterized Problems W-Hierarchy
 (3) Designing Parameterized Algorithms

Idea: reduce an instance I to an instance I^{\prime} which size only depends on the parameter, not on the original instance size

Idea: reduce an instance I to an instance I^{\prime} which size only depends on the parameter, not on the original instance size

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances of Π. A in polynomial time computable function $f: \mathcal{I} \times \mathbb{N} \rightarrow \mathcal{I} \times \mathbb{N}$ is called kernelization for (Π, κ) if $\left(I^{\prime}, \kappa\left(I^{\prime}\right)\right)=f(I, \kappa(I))$ satisfies the following three properties:

Idea: reduce an instance I to an instance I^{\prime} which size only depends on the parameter, not on the original instance size

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances of Π. A in polynomial time computable function $f: \mathcal{I} \times \mathbb{N} \rightarrow \mathcal{I} \times \mathbb{N}$ is called kernelization for (Π, κ) if $\left(I^{\prime}, \kappa\left(I^{\prime}\right)\right)=f(I, \kappa(I))$ satisfies the following three properties:

1. For all $I \in \mathcal{I},(I, \kappa(I))$ is a "yes"-instance if and only if $\left(I^{\prime}, \kappa\left(I^{\prime}\right)\right)$ a "yes"-instance of Π

Idea: reduce an instance I to an instance I^{\prime} which size only depends on the parameter, not on the original instance size

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances of Π. A in polynomial time computable function $f: \mathcal{I} \times \mathbb{N} \rightarrow \mathcal{I} \times \mathbb{N}$ is called kernelization for (Π, κ) if $\left(I^{\prime}, \kappa\left(I^{\prime}\right)\right)=f(I, \kappa(I))$ satisfies the following three properties:

1. For all $I \in \mathcal{I},(I, \kappa(I))$ is a "yes"-instance if and only if $\left(I^{\prime}, \kappa\left(I^{\prime}\right)\right)$ a "yes"-instance of Π
2. There exists a function $f^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ such that $\left|I^{\prime}\right| \leq f^{\prime}(\kappa(I))$

Idea: reduce an instance I to an instance I^{\prime} which size only depends on the parameter, not on the original instance size

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances of Π. A in polynomial time computable function $f: \mathcal{I} \times \mathbb{N} \rightarrow \mathcal{I} \times \mathbb{N}$ is called kernelization for (Π, κ) if $\left(I^{\prime}, \kappa\left(I^{\prime}\right)\right)=f(I, \kappa(I))$ satisfies the following three properties:

1. For all $I \in \mathcal{I},(I, \kappa(I))$ is a "yes"-instance if and only if $\left(I^{\prime}, \kappa\left(I^{\prime}\right)\right)$ a "yes"-instance of Π
2. There exists a function $f^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ such that $\left|I^{\prime}\right| \leq f^{\prime}(\kappa(I))$
3. $\kappa\left(I^{\prime}\right) \leq \kappa(I)$

Idea: reduce an instance I to an instance I^{\prime} which size only depends on the parameter, not on the original instance size

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances of Π. A in polynomial time computable function $f: \mathcal{I} \times \mathbb{N} \rightarrow \mathcal{I} \times \mathbb{N}$ is called kernelization for (Π, κ) if $\left(I^{\prime}, \kappa\left(I^{\prime}\right)\right)=f(I, \kappa(I))$ satisfies the following three properties:

1. For all $I \in \mathcal{I},(I, \kappa(I))$ is a "yes"-instance if and only if $\left(I^{\prime}, \kappa\left(I^{\prime}\right)\right)$ a "yes"-instance of Π
2. There exists a function $f^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ such that $\left|I^{\prime}\right| \leq f^{\prime}(\kappa(I))$
3. $\kappa\left(I^{\prime}\right) \leq \kappa(I)$

The instance I^{\prime} is called kernel of (Π, κ) and $f^{\prime}(\kappa(I))$ is called the size of the kernel.

Idea: reduce an instance I to an instance I^{\prime} which size only depends on the parameter, not on the original instance size

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances of Π. A in polynomial time computable function $f: \mathcal{I} \times \mathbb{N} \rightarrow \mathcal{I} \times \mathbb{N}$ is called kernelization for (Π, κ) if $\left(I^{\prime}, \kappa\left(I^{\prime}\right)\right)=f(I, \kappa(I))$ satisfies the following three properties:

1. For all $I \in \mathcal{I},(I, \kappa(I))$ is a "yes"-instance if and only if $\left(I^{\prime}, \kappa\left(I^{\prime}\right)\right)$ a "yes"-instance of Π
2. There exists a function $f^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ such that $\left|I^{\prime}\right| \leq f^{\prime}(\kappa(I))$
3. $\kappa\left(I^{\prime}\right) \leq \kappa(I)$

The instance I^{\prime} is called kernel of (Π, κ) and $f^{\prime}(\kappa(I))$ is called the size of the kernel.

Example: p-VERTEX COVER

2 Reduction rules:

Lemma

Let $G=(V, E)$ be a graph and $v \in V$ a vertex of degree 0 . G has a vertex cover of size k, if and only if $G-v$ has a vertex cover of size k.

2 Reduction rules:

Lemma

Let $G=(V, E)$ be a graph and $v \in V$ a vertex of degree 0 . G has a vertex cover of size k, if and only if $G-v$ has a vertex cover of size k.

Lemma

Let $G=(V, E)$ be a graph and $v \in V$ a vertex of degree at least $k+1 . G$ has a vertex cover of size k if and only if $G-v$ has a vertex cover of size $k-1$.

2 Reduction rules:

Lemma

Let $G=(V, E)$ be a graph and $v \in V$ a vertex of degree 0 . G has a vertex cover of size k, if and only if $G-v$ has a vertex cover of size k.

Lemma

Let $G=(V, E)$ be a graph and $v \in V$ a vertex of degree at least $k+1 . G$ has a vertex cover of size k if and only if $G-v$ has a vertex cover of size $k-1$.

Lemma

Let $G=(V, E)$ be a graph without isolated vertices. If G has a vertex cover of size at most k and $\Delta(G) \leq d$, then G has at most $k(d+1)$ vertices.

Lemma

p-VERTEX COVER has a kernel of size at most $k(k+1)$, where k is the parameter of the problem.

Lemma

p-VERTEX COVER has a kernel of size at most $k(k+1)$, where k is the parameter of the problem.

Theorem

- If a parameterized problem (Π, κ) has a kernelization, then the problem is a member of $\mathcal{F P \mathcal { T }}$

Lemma

p-VERTEX COVER has a kernel of size at most $k(k+1)$, where k is the parameter of the problem.

Theorem

- If a parameterized problem (Π, κ) has a kernelization, then the problem is a member of $\mathcal{F P \mathcal { T }}$
- Every problem (Π, κ) in the class $\mathcal{F P \mathcal { T }}$ can be solved by a kernelization algorithm.

Lemma

p-VERTEX COVER has a kernel of size at most $k(k+1)$, where k is the parameter of the problem.

Theorem

- If a parameterized problem (Π, κ) has a kernelization, then the problem is a member of $\mathcal{F P \mathcal { T }}$
- Every problem (Π, κ) in the class $\mathcal{F P} \mathcal{T}$ can be solved by a kernelization algorithm.

Corollary
p-VERTEX COVER F FPT

FPT algorithm for p-VERTEX COVER

1. $(G, k) \rightarrow(G-v, k-1)$ for all vertices v of degree $>k$

FPT algorithm for p-VERTEX COVER

1. $(G, k) \rightarrow(G-v, k-1)$ for all vertices v of degree $>k$
2. remove isolated vertices

FPT algorithm for p-VERTEX COVER

1. $(G, k) \rightarrow(G-v, k-1)$ for all vertices v of degree $>k$
2. remove isolated vertices
3. If $|V|>k(k+1)$, then return "No"

FPT algorithm for p-VERTEX COVER

1. $(G, k) \rightarrow(G-v, k-1)$ for all vertices v of degree $>k$
2. remove isolated vertices
3. If $|V|>k(k+1)$, then return "No"
4. If $|V| \leq k(k+1)$, then enumerate all subsets S, and check on vertex cover, take the smallest.
If $|S| \leq k$, then return "Yes" else return "No"

FPT algorithm for p-VERTEX COVER

1. $(G, k) \rightarrow(G-v, k-1)$ for all vertices v of degree $>k$
2. remove isolated vertices
3. If $|V|>k(k+1)$, then return "No"
4. If $|V| \leq k(k+1)$, then enumerate all subsets S, and check on vertex cover, take the smallest.
If $|S| \leq k$, then return "Yes" else return "No"

Theorem

The FPT-algorithm for p-VERTEX COVER decides for every graph G with n vertices in $O\left(k n+k^{2 k}\right)$ whether G has a vertex cover of size at most k.

Lemma

Let $G=(V, E)$ be a graph and $v \in V$ a vertex of degree 1 with neighbor w. G has a vertex cover of size k if and only if $G-\{v, w\}$ has a vertex cover of size $k-1$.

Lemma

Let $G=(V, E)$ be a graph and $v \in V$ a vertex of degree 1 with neighbor w. G has a vertex cover of size k if and only if $G-\{v, w\}$ has a vertex cover of size $k-1$.

Theorem

Lemma

Let $G=(V, E)$ be a graph and $v \in V$ a vertex of degree 1 with neighbor w. G has a vertex cover of size k if and only if $G-\{v, w\}$ has a vertex cover of size $k-1$.

Theorem

p-VERTEX COVER has a kernel of size at most k^{2}

Theorem

p-VERTEX COVER has a kernel of size at most $2 k$

Search trees of limited height: Example p-VERTEX COVER (earlier)

Search trees of limited height: Example p-VERTEX COVER (earlier) 3 rules:

VC1 If v is a vertex of degree 1 , add $w \in N(v)$ to the vertex cover; continue with $(G-w, k-1)$

Search trees of limited height: Example p-VERTEX COVER (earlier) 3 rules:

VC1 If v is a vertex of degree 1 , add $w \in N(v)$ to the vertex cover; continue with $(G-w, k-1)$
VC2 If v is a vertex of degree 2, either both neighbors of v are part of the vertex cover or v and all neighbors of both neighbors of v are: branch into $(G-N(v), k-2)$ and $\left(G-v-N_{2}(v), k-\ell\right)$

Search trees of limited height: Example p-VERTEX COVER (earlier) 3 rules:

VC1 If v is a vertex of degree 1 , add $w \in N(v)$ to the vertex cover; continue with $(G-w, k-1)$
VC2 If v is a vertex of degree 2, either both neighbors of v are part of the vertex cover or v and all neighbors of both neighbors of v are: branch into ($G-N(v), k-2$) and $\left(G-v-N_{2}(v), k-\ell\right)$
VC3 If v is a vertex of degree at least 3, then either v or all its neighbors are part of the vertex cover: branch into $(G-v, k-1)$ and $(G-N(v), k-|N(v)|)$.

RWTHACHEN

Further FPT Techniques

Search trees of limited height: Example p-VERTEX COVER (earlier) 3 rules:

VC1 If v is a vertex of degree 1 , add $w \in N(v)$ to the vertex cover; continue with $(G-w, k-1)$
VC2 If v is a vertex of degree 2, either both neighbors of v are part of the vertex cover or v and all neighbors of both neighbors of v are: branch into $(G-N(v), k-2)$ and $\left(G-v-N_{2}(v), k-\ell\right)$
VC3 If v is a vertex of degree at least 3, then either v or all its neighbors are part of the vertex cover: branch into $(G-v, k-1)$ and $(G-N(v), k-|N(v)|)$.

Theorem

The search tree defined by VC1, VC2, and VC3 for p-VERTEX COVER has a size of $O\left(1.47^{k}\right)$.

RWTHACHEN

Further FPT Techniques

Search trees of limited height: Example p-VERTEX COVER (earlier) 3 rules:

VC1 If v is a vertex of degree 1 , add $w \in N(v)$ to the vertex cover; continue with $(G-w, k-1)$
VC2 If v is a vertex of degree 2, either both neighbors of v are part of the vertex cover or v and all neighbors of both neighbors of v are: branch into $(G-N(v), k-2)$ and $\left(G-v-N_{2}(v), k-\ell\right)$
VC3 If v is a vertex of degree at least 3, then either v or all its neighbors are part of the vertex cover: branch into $(G-v, k-1)$ and $(G-N(v), k-|N(v)|)$.

Theorem

The search tree defined by VC1, VC2, and VC3 for p-VERTEX COVER has a size of $O\left(1.47^{k}\right)$.

A combination of kernelization and search tree is also possible.

Algorithmic Graph Theory: How hard is your combinatorial optimization problem?

Arie M.C.A. Koster

Lecture 9

Clemson, June 13, 2017

