Algorithmic Graph Theory: How hard is your combinatorial optimization problem?

Arie M.C.A. Koster

Lecture 9

Clemson, June 13, 2017

RWTHAACHEN UNIVERSITY

Parameterized Problems

W-Hierarchy Designing Parameterized Algorithms

A parameterized problem is a pair (Π, κ) , where Π is a decision problem with set of instances \mathcal{I} and $\kappa : \mathcal{I} \to \mathbb{N}$ a so-called parameter, a in polynomial time (in the size of \mathcal{I}) computable function.

A parameterized problem is a pair (Π, κ) , where Π is a decision problem with set of instances \mathcal{I} and $\kappa : \mathcal{I} \to \mathbb{N}$ a so-called parameter, a in polynomial time (in the size of \mathcal{I}) computable function.

Parameterized problems are denoted by "p-" if parameterized by its "objective".

```
Example (p-VERTEX COVER)
```

Given: G = (V, E) and integer $k \in \mathbb{N}$ Parameter: kQuestion: Does G have a vertex cover of size at most k?

A parameterized problem is a pair (Π, κ) , where Π is a decision problem with set of instances \mathcal{I} and $\kappa : \mathcal{I} \to \mathbb{N}$ a so-called parameter, a in polynomial time (in the size of \mathcal{I}) computable function.

Parameterized problems are denoted by "p-" if parameterized by its "objective".

Example (p-VERTEX COVER)

Given: G = (V, E) and integer $k \in \mathbb{N}$ Parameter: kQuestion: Does G have a vertex cover of size at most k?

Example (p-tw-INDEPENDENT SET)

Given: Graph G = (V, E) and integer $k \in \mathbb{N}$

Parameter: tw(G)

Question: Does G have an independent set of size at least k?

A parameterized problem is a pair (Π, κ) , where Π is a decision problem with set of instances \mathcal{I} and $\kappa : \mathcal{I} \to \mathbb{N}$ a so-called parameter, a in polynomial time (in the size of \mathcal{I}) computable function.

Parameterized problems are denoted by "p-" if parameterized by its "objective".

Example (p-VERTEX COVER)

Given: G = (V, E) and integer $k \in \mathbb{N}$ Parameter: kQuestion: Does G have a vertex cover of size at most k?

Example (p-tw-INDEPENDENT SET)

Given: Graph G = (V, E) of bounded treewidth and integer $k \in \mathbb{N}$ Parameter: tw(G)Question: Does G have an independent set of size at least k?

Let (Π, κ) be a parameterized problem, \mathcal{I} its set of instances.

An algorithm A is called fixed parameter tractable (FPT) w.r.t. a parameter κ, if there exists a computable function f : N → N and a polynomial p, such that for every instance l ∈ I, the running time of A is bounded by

 $f(\kappa(I)) \cdot p(|I|).$

Let (Π, κ) be a parameterized problem, \mathcal{I} its set of instances.

An algorithm A is called fixed parameter tractable (FPT) w.r.t. a parameter κ , if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ and a polynomial p, such that for every instance $l \in \mathcal{I}$, the running time of A is bounded by

 $f(\kappa(I)) \cdot p(|I|).$

 A parameterized problem (Π, κ) is called fixed parameter tractable (FPT) if there exists a FPT-algorithm w.r.t. κ solving the decision problem Π.

Let (Π, κ) be a parameterized problem, \mathcal{I} its set of instances.

An algorithm A is called fixed parameter tractable (FPT) w.r.t. a parameter κ , if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ and a polynomial p, such that for every instance $l \in \mathcal{I}$, the running time of A is bounded by

 $f(\kappa(I)) \cdot p(|I|).$

- A parameterized problem (Π, κ) is called fixed parameter tractable (FPT) if there exists a FPT-algorithm w.r.t. κ solving the decision problem Π.
- \mathcal{FPT} is the class of all parameterized problems that are fixed parameter tractable.

Let (Π, κ) be a parameterized problem, \mathcal{I} its set of instances.

An algorithm A is called fixed parameter tractable (FPT) w.r.t. a parameter κ , if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ and a polynomial p, such that for every instance $l \in \mathcal{I}$, the running time of A is bounded by

 $f(\kappa(I)) \cdot p(|I|).$

- A parameterized problem (Π, κ) is called fixed parameter tractable (FPT) if there exists a FPT-algorithm w.r.t. κ solving the decision problem Π.
- \mathcal{FPT} is the class of all parameterized problems that are fixed parameter tractable.

Theorem

 $p\text{-}TREEWIDTH \in \mathcal{FPT}$

p-VERTEX COVER $\in \mathcal{FPT}$

Examples

Theorem

 $\textit{p-VERTEX COVER} \in \mathcal{FPT}$

Example (LOG-VERTEX COVER)

Given: G = (V, E)

Question: Does G have a vertex cover of size at most $\log |V|$?

Examples

Theorem

 $p\text{-VERTEX COVER} \in \mathcal{FPT}$

Example (LOG-VERTEX COVER)

Given: G = (V, E)

Question: Does G have a vertex cover of size at most $\log |V|$?

Theorem

LOG-VERTEX COVER can be solved in $O(n^2)$

 $p\text{-VERTEX COVER} \in \mathcal{FPT}$

```
Example (LOG-VERTEX COVER)
Given: G = (V, E)
Question: Does G have a vertex cover of size at most \log |V|?
```

Theorem

LOG-VERTEX COVER can be solved in $O(n^2)$

Note: Every problem $\Pi \in \mathcal{P}$ is with every parameterization κ in \mathcal{FPT} .

Examples

 $p\text{-VERTEX COVER} \in \mathcal{FPT}$

```
Example (LOG-VERTEX COVER)
Given: G = (V, E)
Question: Does G have a vertex cover of size at most log |V|?
```

Theorem

LOG-VERTEX COVER can be solved in $O(n^2)$

Note: Every problem $\Pi \in \mathcal{P}$ is with every parameterization κ in \mathcal{FPT} . Note: Instead of multiplication, FPT can also be defined equivalently by

 $f(\kappa(I)) + p(|I|)$

or the combination

$$g(\kappa(I)) + f(\kappa(I)) \cdot p(|I| + \kappa(I)).$$

Examples

k-th Slice of a problem

How can we show a problem is in \mathcal{FPT} ?

k-th Slice of a problem

How can we show a problem is in \mathcal{FPT} ?

Find a FPT-algorithm!

Find a FPT-algorithm!

How can we show a problem is NOT in $\mathcal{FPT}?$

Find a FPT-algorithm!

How can we show a problem is NOT in \mathcal{FPT} ?

Prove that no FPT-algorithm can exist, unless $\mathcal{P} = \mathcal{NP}$.

Find a FPT-algorithm!

How can we show a problem is NOT in \mathcal{FPT} ?

Prove that no FPT-algorithm can exist, unless $\mathcal{P} = \mathcal{NP}$.

Definition

Let (Π, κ) be a parameterized problem and $k \in \mathbb{N}$. Then, the *k*-th slice of (Π, κ) is the classical decision problem Π restricted to the instances *l* having $\kappa(l) = k$.

Find a FPT-algorithm!

How can we show a problem is NOT in \mathcal{FPT} ?

Prove that no FPT-algorithm can exist, unless $\mathcal{P} = \mathcal{NP}$.

Definition

Let (Π, κ) be a parameterized problem and $k \in \mathbb{N}$. Then, the *k*-th slice of (Π, κ) is the classical decision problem Π restricted to the instances *l* having $\kappa(l) = k$.

Example (p-PARTITION IN INDEPENDENT SETS) Given: G = (V, E), integer $k \in \mathbb{N}$. Parameter: kQuestion: Does V have a partition in k independent sets?

Let (Π, κ) be a parameterized problem and $k \in \mathbb{N}$. Is (Π, κ) fixed parameter tractable, then the k-th slice (Π, κ) can be solved in polynomial time.

Let (Π, κ) be a parameterized problem and $k \in \mathbb{N}$. Is (Π, κ) fixed parameter tractable, then the k-th slice (Π, κ) can be solved in polynomial time.

Corollary

Unless $\mathcal{P} = \mathcal{NP}$, p-PARTITION IN INDEPENDENT SETS $\notin \mathcal{FPT}$.

Let (Π, κ) be a parameterized problem and $k \in \mathbb{N}$. Is (Π, κ) fixed parameter tractable, then the k-th slice (Π, κ) can be solved in polynomial time.

Corollary

 $\textit{Unless } \mathcal{P} = \mathcal{NP}, \textit{ p-PARTITION IN INDEPENDENT SETS} \notin \mathcal{FPT}.$

Note: If all slices can be solved in polynomial time, it is not yet clear that the problem is in \mathcal{FPT} .

Example (p-INDEPENDENT SET)

Given: Graph G = (V, E) and integer $k \in \mathbb{N}$ Parameter: kQuestion: Does G have an independent set of size at least k?

Example

Example (p-INDEPENDENT SET)

```
Given: Graph G = (V, E) and integer k \in \mathbb{N}
```

Parameter: k

Question: Does G have an independent set of size at least k?

```
Algorithm mis1(G).

Input: Graph G = (V, E).

Output: The maximum cardinality of an independent set of G.

if |V| = 0 then

\bot return 0

choose a vertex v of minimum degree in G

return 1 + \max\{\min i (G \setminus N[y]) : y \in N[v]\}
```

Fig. 1.2 Algorithm mis1 for MAXIMUM INDEPENDENT SET

Example (p-INDEPENDENT SET)

Given: Graph G = (V, E) and integer $k \in \mathbb{N}$

Parameter: k

Question: Does G have an independent set of size at least k?

```
Algorithm mis1(G).

Input: Graph G = (V, E).

Output: The maximum cardinality of an independent set of G.

if |V| = 0 then

\lfloor return 0

choose a vertex v of minimum degree in G

return 1 + \max{\min \mathfrak{sl}(G \setminus N[y]) : y \in N[v]}
```

Fig. 1.2 Algorithm mis1 for MAXIMUM INDEPENDENT SET

If k is added, a running time of $O((\Delta(G) + 1)^k n) = O(p(n))$ can be achieved (for fixed k).

Example (p-INDEPENDENT SET)

Given: Graph G = (V, E) and integer $k \in \mathbb{N}$

Parameter: k

Question: Does G have an independent set of size at least k?

```
Algorithm mis1(G).

Input: Graph G = (V, E).

Output: The maximum cardinality of an independent set of G.

if |V| = 0 then

\perp return 0

choose a vertex v of minimum degree in G

return 1 + \max{\min i(G \setminus N[y]) : y \in N[v]}
```

Fig. 1.2 Algorithm <code>mis1</code> for MAXIMUM INDEPENDENT SET

If k is added, a running time of $O((\Delta(G) + 1)^k n) = O(p(n))$ can be achieved (for fixed k). This is not an FPT-algorithm! (f(k) depends on $\Delta(G)$)

Example (p-deg-INDEPENDENT SET)

Given: Graph G = (V, E) and integer $k \in \mathbb{N}$ Parameter: $k + \Delta(G)$ Question: Does G have an independent set of size at least k?

Example (p-deg-INDEPENDENT SET)

Given: Graph G = (V, E) and integer $k \in \mathbb{N}$ Parameter: $k + \Delta(G)$ Question: Does G have an independent set of size at least k?

Corollary

 $\textit{p-deg-INDEPENDENT SET} \in \mathcal{FPT}$

For p-INDEPENDENT SET, the algorithm has running time $O(n^{k+1})$.

For p-INDEPENDENT SET, the algorithm has running time $O(n^{k+1})$.

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances.

An algorithm A is called XP-algorithm w.r.t. a parameterization κ : I → N if there exists computable functions f, g : N → N such that for every instance I ∈ I the running time of A is bounded by

 $f(\kappa(I)) \cdot |I|^{g(\kappa(I))}.$

 $\mathcal{XP} ext{-Algorithm}$

For p-INDEPENDENT SET, the algorithm has running time $O(n^{k+1})$.

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances.

An algorithm A is called XP-algorithm w.r.t. a parameterization κ : I → N if there exists computable functions f, g : N → N such that for every instance I ∈ I the running time of A is bounded by

 $f(\kappa(I)) \cdot |I|^{g(\kappa(I))}.$

• \mathcal{XP} defines the set of all parameterized problems for which an \mathcal{XP} -algorithm exists.

 $\mathcal{XP} ext{-Algorithm}$

For p-INDEPENDENT SET, the algorithm has running time $O(n^{k+1})$.

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances.

An algorithm A is called XP-algorithm w.r.t. a parameterization κ : I → N if there exists computable functions f, g : N → N such that for every instance I ∈ I the running time of A is bounded by

 $f(\kappa(I)) \cdot |I|^{g(\kappa(I))}.$

• \mathcal{XP} defines the set of all parameterized problems for which an \mathcal{XP} -algorithm exists.

Note: $\mathcal{FPT} \subseteq \mathcal{XP}$

For p-INDEPENDENT SET, the algorithm has running time $O(n^{k+1})$.

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances.

An algorithm A is called XP-algorithm w.r.t. a parameterization κ : I → N if there exists computable functions f, g : N → N such that for every instance I ∈ I the running time of A is bounded by

 $f(\kappa(I)) \cdot |I|^{g(\kappa(I))}.$

• \mathcal{XP} defines the set of all parameterized problems for which an \mathcal{XP} -algorithm exists.

Note: $\mathcal{FPT} \subseteq \mathcal{XP}$

Theorem

 $p\text{-INDEPENDENT SET} \in \mathcal{XP}$

Parameterized Problems

W-Hierarchy

Designing Parameterized Algorithms

Yes, we can!

W-Hierarchy

Can we distinguish between \mathcal{FPT} and \mathcal{XP} in more detail?

Definition

A parameterized problem (Π_1, κ_1) reduces parameterized to a parameterized problem (Π_2, κ_2) if there exists a function $r : \mathcal{I}_1 \to \mathcal{I}_2$ such that

• for all $I \in \mathcal{I}_1$, I is a "yes"-instance of Π_1 if and only if r(I) is a "yes"-instance of Π_2 .

W-Hierarchy

Can we distinguish between \mathcal{FPT} and \mathcal{XP} in more detail?

Definition

A parameterized problem (Π_1, κ_1) reduces parameterized to a parameterized problem (Π_2, κ_2) if there exists a function $r : \mathcal{I}_1 \to \mathcal{I}_2$ such that

- for all $I \in \mathcal{I}_1$, I is a "yes"-instance of Π_1 if and only if r(I) is a "yes"-instance of Π_2 .
- r(1) is computable in time f(κ₁(1)) · p(|1|) for a computable function f and a polynomial p.

Definition

A parameterized problem (Π_1, κ_1) reduces parameterized to a parameterized problem (Π_2, κ_2) if there exists a function $r : \mathcal{I}_1 \to \mathcal{I}_2$ such that

- for all $I \in \mathcal{I}_1$, I is a "yes"-instance of Π_1 if and only if r(I) is a "yes"-instance of Π_2 .
- r(1) is computable in time f(κ₁(1)) · p(|1|) for a computable function f and a polynomial p.

• for $I \in \mathcal{I}_1$ and a computable function $g : \mathbb{N} \to \mathbb{N}$ it holds $\kappa_2(r(I)) \leq g(\kappa_1(I))$.

Definition

A parameterized problem (Π_1, κ_1) reduces parameterized to a parameterized problem (Π_2, κ_2) if there exists a function $r : \mathcal{I}_1 \to \mathcal{I}_2$ such that

- for all $I \in \mathcal{I}_1$, I is a "yes"-instance of Π_1 if and only if r(I) is a "yes"-instance of Π_2 .
- r(1) is computable in time f(κ₁(1)) · p(|1|) for a computable function f and a polynomial p.

• for $I \in \mathcal{I}_1$ and a computable function $g : \mathbb{N} \to \mathbb{N}$ it holds $\kappa_2(r(I)) \leq g(\kappa_1(I))$.

The classical reduction of p-INDEPENDENT SET to p-VERTEX COVER is not a parameterized reduction

Definition

A parameterized problem (Π_1, κ_1) reduces parameterized to a parameterized problem (Π_2, κ_2) if there exists a function $r : \mathcal{I}_1 \to \mathcal{I}_2$ such that

- for all $I \in \mathcal{I}_1$, I is a "yes"-instance of Π_1 if and only if r(I) is a "yes"-instance of Π_2 .
- r(1) is computable in time f(κ₁(1)) · p(|1|) for a computable function f and a polynomial p.

• for $I \in \mathcal{I}_1$ and a computable function $g : \mathbb{N} \to \mathbb{N}$ it holds $\kappa_2(r(I)) \leq g(\kappa_1(I))$.

- The classical reduction of p-INDEPENDENT SET to p-VERTEX COVER is not a parameterized reduction
- p-INDEPENDENT SET reduces parameterized to p-CLIQUE

Theorem

Let (Π_1, κ_1) and (Π_2, κ_2) be parameterized problems. If (Π_1, κ_1) reduces parameterized to (Π_2, κ_2) , and $(\Pi_2, \kappa_2) \in \mathcal{FPT}$, then $(\Pi_1, \kappa_1) \in \mathcal{FPT}$.

Theorem

Let (Π_1, κ_1) and (Π_2, κ_2) be parameterized problems. If (Π_1, κ_1) reduces parameterized to (Π_2, κ_2) , and $(\Pi_2, \kappa_2) \in \mathcal{FPT}$, then $(\Pi_1, \kappa_1) \in \mathcal{FPT}$.

W-Hierarchy

SAT is the classical \mathcal{NP} -complete problem. Can we define something similar for parameterized complexity?

SAT is the classical $\mathcal{NP}\text{-}\mathsf{complete}$ problem. Can we define something similar for parameterized complexity?

Definition (p-WEIGHTED SAT)

Given: a boolean formula and integer $k \in \mathbb{N}$

Parameter: k

Question: Is the boolean formula satisfiable with at least k variables set to TRUE?

SAT is the classical \mathcal{NP} -complete problem. Can we define something similar for parameterized complexity?

Definition (p-WEIGHTED SAT)

Given: a boolean formula and integer $k \in \mathbb{N}$

Parameter: k

Question: Is the boolean formula satisfiable with at least k variables set to TRUE?

Definition (WEIGHTED WEFT-*t*-DEPTH-*d* SAT)

Given: A Boolean formula of depth at most d and weft at most t, and a number k. The depth is the maximal number of gates on any path from the root to a leaf, and the weft is the maximal number of gates of fan-in at least three on any path from the root to a leaf. Question: Is the boolean formula satisfiable with k variables set to TRUE?

Boolean circuit with weft=3 and depth=5

Definition

The W-Hierarchy consists of the complexity classes W[t], $t \ge 1$. A parameterized problem (Π, κ) is a member of W[t] if it can be reduced parameterized to p-WEIGHTED WEFT-t-DEPTH-d SAT for some $d \in \mathbb{N}$.

Definition

The W-Hierarchy consists of the complexity classes W[t], $t \ge 1$. A parameterized problem (Π, κ) is a member of W[t] if it can be reduced parameterized to p-WEIGHTED WEFT-*t*-DEPTH-*d* SAT for some $d \in \mathbb{N}$.

Example

p-INDEPENDENT SET W[1]

Definition

The W-Hierarchy consists of the complexity classes W[t], $t \ge 1$. A parameterized problem (Π, κ) is a member of W[t] if it can be reduced parameterized to p-WEIGHTED WEFT-*t*-DEPTH-*d* SAT for some $d \in \mathbb{N}$.

Example

p-INDEPENDENT SET $\in W[1]$

Example

 $p-CLIQUE \in W[1]$

Example (p-DOMINATING SET) Given: Graph G = (V, E), integer $k \in \mathbb{N}$ Parameter: kQuestion: Does G have a dominating set of size at most k, i.e., a subset of the vertices $S \subseteq V$ such that for all vertices $v \in V$: $N[v] \cap S \neq \emptyset$.

Example (p-DOMINATING SET) Given: Graph G = (V, E), integer $k \in \mathbb{N}$ Parameter: kQuestion: Does G have a dominating set of size at most k, i.e., a subset of the vertices $S \subseteq V$ such that for all vertices $v \in V$: $N[v] \cap S \neq \emptyset$.

Lemma

p-DOMINATING SET∈ W[2]

Definition

A parameterized problem (Π, κ) is W[t]-hard if every problem in W[t] can be reduced parameterized to (Π, κ).

Definition

- A parameterized problem (Π, κ) is W[t]-hard if every problem in W[t] can be reduced parameterized to (Π, κ).
- A parameterized problem (Π, κ) is W[t]-complete if it is W[t]-hard and a member of W[t] itself.

Corollary: p-WEIGHTED WEFT-*t*-DEPTH-*d* SAT is W[t]-complete (by definition).

Definition

- A parameterized problem (Π, κ) is W[t]-hard if every problem in W[t] can be reduced parameterized to (Π, κ).
- A parameterized problem (Π, κ) is W[t]-complete if it is W[t]-hard and a member of W[t] itself.

Corollary: p-WEIGHTED WEFT-*t*-DEPTH-*d* SAT is W[t]-complete (by definition).

Theorem

■ *p*-INDEPENDENT SET and *p*-CLIQUE are W[1]-complete

Definition

- A parameterized problem (Π, κ) is W[t]-hard if every problem in W[t] can be reduced parameterized to (Π, κ).
- A parameterized problem (Π, κ) is W[t]-complete if it is W[t]-hard and a member of W[t] itself.

Corollary: p-WEIGHTED WEFT-*t*-DEPTH-*d* SAT is W[t]-complete (by definition).

Theorem

- *p*-INDEPENDENT SET and *p*-CLIQUE are W[1]-complete
- p-DOMINATING SET is W[2]-complete

Theorem

For every $t \ge 1$, $W[t] = \mathcal{FPT}$ if and only if a W[t]-hard problem is a member of \mathcal{FPT} .

Parameterized Problems

N-Hierarchy

Designing Parameterized Algorithms

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances of Π . A in polynomial time computable function $f : \mathcal{I} \times \mathbb{N} \to \mathcal{I} \times \mathbb{N}$ is called kernelization for (Π, κ) if $(I', \kappa(I')) = f(I, \kappa(I))$ satisfies the following three properties:

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances of Π . A in polynomial time computable function $f : \mathcal{I} \times \mathbb{N} \to \mathcal{I} \times \mathbb{N}$ is called kernelization for (Π, κ) if $(I', \kappa(I')) = f(I, \kappa(I))$ satisfies the following three properties:

1. For all $I \in \mathcal{I}$, $(I, \kappa(I))$ is a "yes"-instance if and only if $(I', \kappa(I'))$ a "yes"-instance of Π

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances of Π . A in polynomial time computable function $f : \mathcal{I} \times \mathbb{N} \to \mathcal{I} \times \mathbb{N}$ is called kernelization for (Π, κ) if $(I', \kappa(I')) = f(I, \kappa(I))$ satisfies the following three properties:

- 1. For all $I \in \mathcal{I}$, $(I, \kappa(I))$ is a "yes"-instance if and only if $(I', \kappa(I'))$ a "yes"-instance of Π
- 2. There exists a function $f': \mathbb{N} \to \mathbb{N}$ such that $|I'| \leq f'(\kappa(I))$

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances of Π . A in polynomial time computable function $f : \mathcal{I} \times \mathbb{N} \to \mathcal{I} \times \mathbb{N}$ is called kernelization for (Π, κ) if $(I', \kappa(I')) = f(I, \kappa(I))$ satisfies the following three properties:

- 1. For all $I \in \mathcal{I}$, $(I, \kappa(I))$ is a "yes"-instance if and only if $(I', \kappa(I'))$ a "yes"-instance of Π
- 2. There exists a function $f': \mathbb{N} \to \mathbb{N}$ such that $|I'| \leq f'(\kappa(I))$
- 3. $\kappa(I') \leq \kappa(I)$

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances of Π . A in polynomial time computable function $f : \mathcal{I} \times \mathbb{N} \to \mathcal{I} \times \mathbb{N}$ is called kernelization for (Π, κ) if $(I', \kappa(I')) = f(I, \kappa(I))$ satisfies the following three properties:

- 1. For all $I \in \mathcal{I}$, $(I, \kappa(I))$ is a "yes"-instance if and only if $(I', \kappa(I'))$ a "yes"-instance of Π
- 2. There exists a function $f': \mathbb{N} \to \mathbb{N}$ such that $|I'| \leq f'(\kappa(I))$
- 3. $\kappa(I') \leq \kappa(I)$

The instance I' is called kernel of (Π, κ) and $f'(\kappa(I))$ is called the size of the kernel.

Definition

Let (Π, κ) be a parameterized problem with \mathcal{I} the set of instances of Π . A in polynomial time computable function $f : \mathcal{I} \times \mathbb{N} \to \mathcal{I} \times \mathbb{N}$ is called kernelization for (Π, κ) if $(I', \kappa(I')) = f(I, \kappa(I))$ satisfies the following three properties:

- 1. For all $I \in \mathcal{I}$, $(I, \kappa(I))$ is a "yes"-instance if and only if $(I', \kappa(I'))$ a "yes"-instance of Π
- 2. There exists a function $f': \mathbb{N} \to \mathbb{N}$ such that $|I'| \leq f'(\kappa(I))$
- 3. $\kappa(I') \leq \kappa(I)$

The instance I' is called kernel of (Π, κ) and $f'(\kappa(I))$ is called the size of the kernel.

Example: p-VERTEX COVER

2 Reduction rules:

Lemma

Let G = (V, E) be a graph and $v \in V$ a vertex of degree 0. G has a vertex cover of size k, if and only if G - v has a vertex cover of size k.

2 Reduction rules:

Lemma

Let G = (V, E) be a graph and $v \in V$ a vertex of degree 0. G has a vertex cover of size k, if and only if G - v has a vertex cover of size k.

Lemma

Let G = (V, E) be a graph and $v \in V$ a vertex of degree at least k + 1. G has a vertex cover of size k if and only if G - v has a vertex cover of size k - 1.

2 Reduction rules:

Lemma

Let G = (V, E) be a graph and $v \in V$ a vertex of degree 0. G has a vertex cover of size k, if and only if G - v has a vertex cover of size k.

Lemma

Let G = (V, E) be a graph and $v \in V$ a vertex of degree at least k + 1. G has a vertex cover of size k if and only if G - v has a vertex cover of size k - 1.

Lemma

Let G = (V, E) be a graph without isolated vertices. If G has a vertex cover of size at most k and $\Delta(G) \leq d$, then G has at most k(d + 1) vertices.

Lemma

p-VERTEX COVER has a kernel of size at most k(k + 1), where k is the parameter of the problem.

Lemma

p-VERTEX COVER has a kernel of size at most k(k + 1), where k is the parameter of the problem.

Theorem

 If a parameterized problem (Π, κ) has a kernelization, then the problem is a member of FPT
p-VERTEX COVER has a kernel of size at most k(k + 1), where k is the parameter of the problem.

Theorem

- If a parameterized problem (Π, κ) has a kernelization, then the problem is a member of FPT
- Every problem (Π, κ) in the class *FPT* can be solved by a kernelization algorithm.

p-VERTEX COVER has a kernel of size at most k(k + 1), where k is the parameter of the problem.

Theorem

- If a parameterized problem (Π, κ) has a kernelization, then the problem is a member of *FPT*
- Every problem (Π, κ) in the class *FPT* can be solved by a kernelization algorithm.

Corollary

p-VERTEX COVER∈ FPT

FPT algorithm for p-VERTEX COVER 1. $(G, k) \rightarrow (G - v, k - 1)$ for all vertices v of degree > k

1.
$$(G, k) \rightarrow (G - v, k - 1)$$
 for all vertices v of degree $> k$

2. remove isolated vertices

1.
$$(G, k) \rightarrow (G - v, k - 1)$$
 for all vertices v of degree $> k$

- 2. remove isolated vertices
- 3. If |V| > k(k+1), then **return** "No"

1.
$$(G, k) \rightarrow (G - v, k - 1)$$
 for all vertices v of degree $> k$

- 2. remove isolated vertices
- 3. If |V| > k(k+1), then **return** "No"
- 4. If $|V| \le k(k+1)$, then enumerate all subsets *S*, and check on vertex cover, take the smallest.

If $|S| \leq k$, then **return** "Yes" else **return** "No"

1.
$$(G, k) \rightarrow (G - v, k - 1)$$
 for all vertices v of degree $> k$

- 2. remove isolated vertices
- 3. If |V| > k(k+1), then **return** "No"
- 4. If $|V| \le k(k+1)$, then enumerate all subsets S, and check on vertex cover, take the smallest.
 - If $|S| \leq k$, then **return** "Yes" else **return** "No"

Theorem

The FPT-algorithm for p-VERTEX COVER decides for every graph G with n vertices in $O(kn + k^{2k})$ whether G has a vertex cover of size at most k.

Let G = (V, E) be a graph and $v \in V$ a vertex of degree 1 with neighbor w. G has a vertex cover of size k if and only if $G - \{v, w\}$ has a vertex cover of size k - 1.

Let G = (V, E) be a graph and $v \in V$ a vertex of degree 1 with neighbor w. G has a vertex cover of size k if and only if $G - \{v, w\}$ has a vertex cover of size k - 1.

Theorem

p-VERTEX COVER has a kernel of size at most k^2

Let G = (V, E) be a graph and $v \in V$ a vertex of degree 1 with neighbor w. G has a vertex cover of size k if and only if $G - \{v, w\}$ has a vertex cover of size k - 1.

Theorem

p-VERTEX COVER has a kernel of size at most k^2

Theorem

p-VERTEX COVER has a kernel of size at most 2k

VC1 If v is a vertex of degree 1, add $w \in N(v)$ to the vertex cover; continue with (G - w, k - 1)

- VC1 If v is a vertex of degree 1, add $w \in N(v)$ to the vertex cover; continue with (G w, k 1)
- VC2 If v is a vertex of degree 2, either both neighbors of v are part of the vertex cover or v and all neighbors of both neighbors of v are: branch into (G - N(v), k - 2) and $(G - v - N_2(v), k - \ell)$

- VC1 If v is a vertex of degree 1, add $w \in N(v)$ to the vertex cover; continue with (G w, k 1)
- VC2 If v is a vertex of degree 2, either both neighbors of v are part of the vertex cover or v and all neighbors of both neighbors of v are: branch into (G - N(v), k - 2) and $(G - v - N_2(v), k - \ell)$
- VC3 If v is a vertex of degree at least 3, then either v or all its neighbors are part of the vertex cover: branch into (G v, k 1) and (G N(v), k |N(v)|).

- VC1 If v is a vertex of degree 1, add $w \in N(v)$ to the vertex cover; continue with (G w, k 1)
- VC2 If v is a vertex of degree 2, either both neighbors of v are part of the vertex cover or v and all neighbors of both neighbors of v are: branch into (G - N(v), k - 2) and $(G - v - N_2(v), k - \ell)$

VC3 If v is a vertex of degree at least 3, then either v or all its neighbors are part of the vertex cover: branch into (G - v, k - 1) and (G - N(v), k - |N(v)|).

Theorem

The search tree defined by VC1, VC2, and VC3 for p-VERTEX COVER has a size of $O(1.47^k)$.

- VC1 If v is a vertex of degree 1, add $w \in N(v)$ to the vertex cover; continue with (G w, k 1)
- VC2 If v is a vertex of degree 2, either both neighbors of v are part of the vertex cover or v and all neighbors of both neighbors of v are: branch into (G - N(v), k - 2) and $(G - v - N_2(v), k - \ell)$

VC3 If v is a vertex of degree at least 3, then either v or all its neighbors are part of the vertex cover: branch into (G - v, k - 1) and (G - N(v), k - |N(v)|).

Theorem

The search tree defined by VC1, VC2, and VC3 for p-VERTEX COVER has a size of $O(1.47^k)$.

A combination of kernelization and search tree is also possible.

Algorithmic Graph Theory: How hard is your combinatorial optimization problem?

Arie M.C.A. Koster

Lecture 9

Clemson, June 13, 2017

RWTHAACHEN UNIVERSITY