
Algorithmic Graph Theory:
How hard is your

combinatorial optimization problem?

Arie M.C.A. Koster

Lecture 9

Clemson, June 13, 2017

Outline

1 Parameterized Problems
2 W-Hierarchy
3 Designing Parameterized Algorithms

Arie M.C.A. Koster – RWTH Aachen University 2 / 26

Parameterized Problem

Definition

A parameterized problem is a pair (Π, κ), where Π is a decision problem
with set of instances I and κ : I → N a so-called parameter, a in
polynomial time (in the size of I) computable function.

Parameterized problems are denoted by “p-” if parameterized by its
“objective”.

Example (p-VERTEX COVER)

Given: G = (V ,E) and integer k ∈ N
Parameter: k
Question: Does G have a vertex cover of size at most k?

Example (p-tw-INDEPENDENT SET)

Given: Graph G = (V ,E) and integer k ∈ N
Parameter: tw(G)
Question: Does G have an independent set of size at least k?

Arie M.C.A. Koster – RWTH Aachen University 3 / 26

Parameterized Problem

Definition

A parameterized problem is a pair (Π, κ), where Π is a decision problem
with set of instances I and κ : I → N a so-called parameter, a in
polynomial time (in the size of I) computable function.

Parameterized problems are denoted by “p-” if parameterized by its
“objective”.

Example (p-VERTEX COVER)

Given: G = (V ,E) and integer k ∈ N
Parameter: k
Question: Does G have a vertex cover of size at most k?

Example (p-tw-INDEPENDENT SET)

Given: Graph G = (V ,E) and integer k ∈ N
Parameter: tw(G)
Question: Does G have an independent set of size at least k?

Arie M.C.A. Koster – RWTH Aachen University 3 / 26

Parameterized Problem

Definition

A parameterized problem is a pair (Π, κ), where Π is a decision problem
with set of instances I and κ : I → N a so-called parameter, a in
polynomial time (in the size of I) computable function.

Parameterized problems are denoted by “p-” if parameterized by its
“objective”.

Example (p-VERTEX COVER)

Given: G = (V ,E) and integer k ∈ N
Parameter: k
Question: Does G have a vertex cover of size at most k?

Example (p-tw-INDEPENDENT SET)

Given: Graph G = (V ,E) and integer k ∈ N
Parameter: tw(G)
Question: Does G have an independent set of size at least k?

Arie M.C.A. Koster – RWTH Aachen University 3 / 26

Parameterized Problem

Definition

A parameterized problem is a pair (Π, κ), where Π is a decision problem
with set of instances I and κ : I → N a so-called parameter, a in
polynomial time (in the size of I) computable function.

Parameterized problems are denoted by “p-” if parameterized by its
“objective”.

Example (p-VERTEX COVER)

Given: G = (V ,E) and integer k ∈ N
Parameter: k
Question: Does G have a vertex cover of size at most k?

Example (p-tw-INDEPENDENT SET)

Given: Graph G = (V ,E) of bounded treewidth and integer k ∈ N
Parameter: tw(G)
Question: Does G have an independent set of size at least k?

Arie M.C.A. Koster – RWTH Aachen University 3 / 26

FPT Algorithm

Definition

Let (Π, κ) be a parameterized problem, I its set of instances.

An algorithm A is called fixed parameter tractable (FPT) w.r.t. a
parameter κ, if there exists a computable function f : N→ N and a
polynomial p, such that for every instance I ∈ I, the running time of A
is bounded by

f (κ(I)) · p(|I |).

A parameterized problem (Π, κ) is called fixed parameter tractable
(FPT) if there exists a FPT-algorithm w.r.t. κ solving the decision
problem Π.

FPT is the class of all parameterized problems that are fixed parameter
tractable.

Theorem

p-TREEWIDTH∈ FPT

Arie M.C.A. Koster – RWTH Aachen University 4 / 26

FPT Algorithm

Definition

Let (Π, κ) be a parameterized problem, I its set of instances.

An algorithm A is called fixed parameter tractable (FPT) w.r.t. a
parameter κ, if there exists a computable function f : N→ N and a
polynomial p, such that for every instance I ∈ I, the running time of A
is bounded by

f (κ(I)) · p(|I |).

A parameterized problem (Π, κ) is called fixed parameter tractable
(FPT) if there exists a FPT-algorithm w.r.t. κ solving the decision
problem Π.

FPT is the class of all parameterized problems that are fixed parameter
tractable.

Theorem

p-TREEWIDTH∈ FPT

Arie M.C.A. Koster – RWTH Aachen University 4 / 26

FPT Algorithm

Definition

Let (Π, κ) be a parameterized problem, I its set of instances.

An algorithm A is called fixed parameter tractable (FPT) w.r.t. a
parameter κ, if there exists a computable function f : N→ N and a
polynomial p, such that for every instance I ∈ I, the running time of A
is bounded by

f (κ(I)) · p(|I |).

A parameterized problem (Π, κ) is called fixed parameter tractable
(FPT) if there exists a FPT-algorithm w.r.t. κ solving the decision
problem Π.

FPT is the class of all parameterized problems that are fixed parameter
tractable.

Theorem

p-TREEWIDTH∈ FPT

Arie M.C.A. Koster – RWTH Aachen University 4 / 26

FPT Algorithm

Definition

Let (Π, κ) be a parameterized problem, I its set of instances.

An algorithm A is called fixed parameter tractable (FPT) w.r.t. a
parameter κ, if there exists a computable function f : N→ N and a
polynomial p, such that for every instance I ∈ I, the running time of A
is bounded by

f (κ(I)) · p(|I |).

A parameterized problem (Π, κ) is called fixed parameter tractable
(FPT) if there exists a FPT-algorithm w.r.t. κ solving the decision
problem Π.

FPT is the class of all parameterized problems that are fixed parameter
tractable.

Theorem

p-TREEWIDTH∈ FPT

Arie M.C.A. Koster – RWTH Aachen University 4 / 26

Examples

Theorem

p-VERTEX COVER∈ FPT

Example (LOG-VERTEX COVER)

Given: G = (V ,E)
Question: Does G have a vertex cover of size at most log |V |?

Theorem

LOG-VERTEX COVER can be solved in O(n2)

Note: Every problem Π ∈ P is with every parameterization κ in FPT .
Note: Instead of multiplication, FPT can also be defined equivalently by

f (κ(I)) + p(|I |)

or the combination

g(κ(I)) + f (κ(I)) · p(|I |+ κ(I)).

Arie M.C.A. Koster – RWTH Aachen University 5 / 26

Examples

Theorem

p-VERTEX COVER∈ FPT

Example (LOG-VERTEX COVER)

Given: G = (V ,E)
Question: Does G have a vertex cover of size at most log |V |?

Theorem

LOG-VERTEX COVER can be solved in O(n2)

Note: Every problem Π ∈ P is with every parameterization κ in FPT .
Note: Instead of multiplication, FPT can also be defined equivalently by

f (κ(I)) + p(|I |)

or the combination

g(κ(I)) + f (κ(I)) · p(|I |+ κ(I)).

Arie M.C.A. Koster – RWTH Aachen University 5 / 26

Examples

Theorem

p-VERTEX COVER∈ FPT

Example (LOG-VERTEX COVER)

Given: G = (V ,E)
Question: Does G have a vertex cover of size at most log |V |?

Theorem

LOG-VERTEX COVER can be solved in O(n2)

Note: Every problem Π ∈ P is with every parameterization κ in FPT .
Note: Instead of multiplication, FPT can also be defined equivalently by

f (κ(I)) + p(|I |)

or the combination

g(κ(I)) + f (κ(I)) · p(|I |+ κ(I)).

Arie M.C.A. Koster – RWTH Aachen University 5 / 26

Examples

Theorem

p-VERTEX COVER∈ FPT

Example (LOG-VERTEX COVER)

Given: G = (V ,E)
Question: Does G have a vertex cover of size at most log |V |?

Theorem

LOG-VERTEX COVER can be solved in O(n2)

Note: Every problem Π ∈ P is with every parameterization κ in FPT .

Note: Instead of multiplication, FPT can also be defined equivalently by

f (κ(I)) + p(|I |)

or the combination

g(κ(I)) + f (κ(I)) · p(|I |+ κ(I)).

Arie M.C.A. Koster – RWTH Aachen University 5 / 26

Examples

Theorem

p-VERTEX COVER∈ FPT

Example (LOG-VERTEX COVER)

Given: G = (V ,E)
Question: Does G have a vertex cover of size at most log |V |?

Theorem

LOG-VERTEX COVER can be solved in O(n2)

Note: Every problem Π ∈ P is with every parameterization κ in FPT .
Note: Instead of multiplication, FPT can also be defined equivalently by

f (κ(I)) + p(|I |)

or the combination

g(κ(I)) + f (κ(I)) · p(|I |+ κ(I)).

Arie M.C.A. Koster – RWTH Aachen University 5 / 26

k-th Slice of a problem

How can we show a problem is in FPT ?

Find a FPT-algorithm!

How can we show a problem is NOT in FPT ?

Prove that no FPT-algorithm can exist, unless P = NP.

Definition

Let (Π, κ) be a parameterized problem and k ∈ N. Then, the k-th slice of
(Π, κ) is the classical decision problem Π restricted to the instances I
having κ(I) = k .

Example (p-PARTITION IN INDEPENDENT SETS)

Given: G = (V ,E), integer k ∈ N.
Parameter: k
Question: Does V have a partition in k independent sets?

Arie M.C.A. Koster – RWTH Aachen University 6 / 26

k-th Slice of a problem

How can we show a problem is in FPT ?

Find a FPT-algorithm!

How can we show a problem is NOT in FPT ?

Prove that no FPT-algorithm can exist, unless P = NP.

Definition

Let (Π, κ) be a parameterized problem and k ∈ N. Then, the k-th slice of
(Π, κ) is the classical decision problem Π restricted to the instances I
having κ(I) = k .

Example (p-PARTITION IN INDEPENDENT SETS)

Given: G = (V ,E), integer k ∈ N.
Parameter: k
Question: Does V have a partition in k independent sets?

Arie M.C.A. Koster – RWTH Aachen University 6 / 26

k-th Slice of a problem

How can we show a problem is in FPT ?

Find a FPT-algorithm!

How can we show a problem is NOT in FPT ?

Prove that no FPT-algorithm can exist, unless P = NP.

Definition

Let (Π, κ) be a parameterized problem and k ∈ N. Then, the k-th slice of
(Π, κ) is the classical decision problem Π restricted to the instances I
having κ(I) = k .

Example (p-PARTITION IN INDEPENDENT SETS)

Given: G = (V ,E), integer k ∈ N.
Parameter: k
Question: Does V have a partition in k independent sets?

Arie M.C.A. Koster – RWTH Aachen University 6 / 26

k-th Slice of a problem

How can we show a problem is in FPT ?

Find a FPT-algorithm!

How can we show a problem is NOT in FPT ?

Prove that no FPT-algorithm can exist, unless P = NP.

Definition

Let (Π, κ) be a parameterized problem and k ∈ N. Then, the k-th slice of
(Π, κ) is the classical decision problem Π restricted to the instances I
having κ(I) = k .

Example (p-PARTITION IN INDEPENDENT SETS)

Given: G = (V ,E), integer k ∈ N.
Parameter: k
Question: Does V have a partition in k independent sets?

Arie M.C.A. Koster – RWTH Aachen University 6 / 26

k-th Slice of a problem

How can we show a problem is in FPT ?

Find a FPT-algorithm!

How can we show a problem is NOT in FPT ?

Prove that no FPT-algorithm can exist, unless P = NP.

Definition

Let (Π, κ) be a parameterized problem and k ∈ N. Then, the k-th slice of
(Π, κ) is the classical decision problem Π restricted to the instances I
having κ(I) = k .

Example (p-PARTITION IN INDEPENDENT SETS)

Given: G = (V ,E), integer k ∈ N.
Parameter: k
Question: Does V have a partition in k independent sets?

Arie M.C.A. Koster – RWTH Aachen University 6 / 26

k-th Slice of a problem

How can we show a problem is in FPT ?

Find a FPT-algorithm!

How can we show a problem is NOT in FPT ?

Prove that no FPT-algorithm can exist, unless P = NP.

Definition

Let (Π, κ) be a parameterized problem and k ∈ N. Then, the k-th slice of
(Π, κ) is the classical decision problem Π restricted to the instances I
having κ(I) = k .

Example (p-PARTITION IN INDEPENDENT SETS)

Given: G = (V ,E), integer k ∈ N.
Parameter: k
Question: Does V have a partition in k independent sets?

Arie M.C.A. Koster – RWTH Aachen University 6 / 26

k-th Slice of a problem

Theorem

Let (Π, κ) be a parameterized problem and k ∈ N. Is (Π, κ) fixed parameter
tractable, then the k-th slice (Π, κ) can be solved in polynomial time.

Corollary

Unless P = NP, p-PARTITION IN INDEPENDENT SETS6∈ FPT .

Note: If all slices can be solved in polynomial time, it is not yet clear that
the problem is in FPT .

Arie M.C.A. Koster – RWTH Aachen University 7 / 26

k-th Slice of a problem

Theorem

Let (Π, κ) be a parameterized problem and k ∈ N. Is (Π, κ) fixed parameter
tractable, then the k-th slice (Π, κ) can be solved in polynomial time.

Corollary

Unless P = NP, p-PARTITION IN INDEPENDENT SETS6∈ FPT .

Note: If all slices can be solved in polynomial time, it is not yet clear that
the problem is in FPT .

Arie M.C.A. Koster – RWTH Aachen University 7 / 26

k-th Slice of a problem

Theorem

Let (Π, κ) be a parameterized problem and k ∈ N. Is (Π, κ) fixed parameter
tractable, then the k-th slice (Π, κ) can be solved in polynomial time.

Corollary

Unless P = NP, p-PARTITION IN INDEPENDENT SETS6∈ FPT .

Note: If all slices can be solved in polynomial time, it is not yet clear that
the problem is in FPT .

Arie M.C.A. Koster – RWTH Aachen University 7 / 26

Example

Example (p-INDEPENDENT SET)

Given: Graph G = (V ,E) and integer k ∈ N
Parameter: k
Question: Does G have an independent set of size at least k?

If k is added, a running time of O((∆(G) + 1)kn) = O(p(n)) can be
achieved (for fixed k).
This is not an FPT-algorithm! (f (k) depends on ∆(G))

Arie M.C.A. Koster – RWTH Aachen University 8 / 26

Example

Example (p-INDEPENDENT SET)

Given: Graph G = (V ,E) and integer k ∈ N
Parameter: k
Question: Does G have an independent set of size at least k?

If k is added, a running time of O((∆(G) + 1)kn) = O(p(n)) can be
achieved (for fixed k).
This is not an FPT-algorithm! (f (k) depends on ∆(G))

Arie M.C.A. Koster – RWTH Aachen University 8 / 26

Example

Example (p-INDEPENDENT SET)

Given: Graph G = (V ,E) and integer k ∈ N
Parameter: k
Question: Does G have an independent set of size at least k?

If k is added, a running time of O((∆(G) + 1)kn) = O(p(n)) can be
achieved (for fixed k).

This is not an FPT-algorithm! (f (k) depends on ∆(G))

Arie M.C.A. Koster – RWTH Aachen University 8 / 26

Example

Example (p-INDEPENDENT SET)

Given: Graph G = (V ,E) and integer k ∈ N
Parameter: k
Question: Does G have an independent set of size at least k?

If k is added, a running time of O((∆(G) + 1)kn) = O(p(n)) can be
achieved (for fixed k).
This is not an FPT-algorithm! (f (k) depends on ∆(G))

Arie M.C.A. Koster – RWTH Aachen University 8 / 26

Example (cont.)

Example (p-deg-INDEPENDENT SET)

Given: Graph G = (V ,E) and integer k ∈ N
Parameter: k + ∆(G)
Question: Does G have an independent set of size at least k?

Corollary

p-deg-INDEPENDENT SET∈ FPT

Arie M.C.A. Koster – RWTH Aachen University 9 / 26

Example (cont.)

Example (p-deg-INDEPENDENT SET)

Given: Graph G = (V ,E) and integer k ∈ N
Parameter: k + ∆(G)
Question: Does G have an independent set of size at least k?

Corollary

p-deg-INDEPENDENT SET∈ FPT

Arie M.C.A. Koster – RWTH Aachen University 9 / 26

XP-Algorithm

For p-INDEPENDENT SET, the algorithm has running time O(nk+1).

Definition

Let (Π, κ) be a parameterized problem with I the set of instances.

An algorithm A is called XP-algorithm w.r.t. a parameterization
κ : I → N if there exists computable functions f , g : N→ N such that
for every instance I ∈ I the running time of A is bounded by

f (κ(I)) · |I |g(κ(I)).

XP defines the set of all parameterized problems for which an
XP-algorithm exists.

Note: FPT ⊆ XP

Theorem

p-INDEPENDENT SET∈ XP

Arie M.C.A. Koster – RWTH Aachen University 10 / 26

XP-Algorithm

For p-INDEPENDENT SET, the algorithm has running time O(nk+1).

Definition

Let (Π, κ) be a parameterized problem with I the set of instances.

An algorithm A is called XP-algorithm w.r.t. a parameterization
κ : I → N if there exists computable functions f , g : N→ N such that
for every instance I ∈ I the running time of A is bounded by

f (κ(I)) · |I |g(κ(I)).

XP defines the set of all parameterized problems for which an
XP-algorithm exists.

Note: FPT ⊆ XP

Theorem

p-INDEPENDENT SET∈ XP

Arie M.C.A. Koster – RWTH Aachen University 10 / 26

XP-Algorithm

For p-INDEPENDENT SET, the algorithm has running time O(nk+1).

Definition

Let (Π, κ) be a parameterized problem with I the set of instances.

An algorithm A is called XP-algorithm w.r.t. a parameterization
κ : I → N if there exists computable functions f , g : N→ N such that
for every instance I ∈ I the running time of A is bounded by

f (κ(I)) · |I |g(κ(I)).

XP defines the set of all parameterized problems for which an
XP-algorithm exists.

Note: FPT ⊆ XP

Theorem

p-INDEPENDENT SET∈ XP

Arie M.C.A. Koster – RWTH Aachen University 10 / 26

XP-Algorithm

For p-INDEPENDENT SET, the algorithm has running time O(nk+1).

Definition

Let (Π, κ) be a parameterized problem with I the set of instances.

An algorithm A is called XP-algorithm w.r.t. a parameterization
κ : I → N if there exists computable functions f , g : N→ N such that
for every instance I ∈ I the running time of A is bounded by

f (κ(I)) · |I |g(κ(I)).

XP defines the set of all parameterized problems for which an
XP-algorithm exists.

Note: FPT ⊆ XP

Theorem

p-INDEPENDENT SET∈ XP

Arie M.C.A. Koster – RWTH Aachen University 10 / 26

XP-Algorithm

For p-INDEPENDENT SET, the algorithm has running time O(nk+1).

Definition

Let (Π, κ) be a parameterized problem with I the set of instances.

An algorithm A is called XP-algorithm w.r.t. a parameterization
κ : I → N if there exists computable functions f , g : N→ N such that
for every instance I ∈ I the running time of A is bounded by

f (κ(I)) · |I |g(κ(I)).

XP defines the set of all parameterized problems for which an
XP-algorithm exists.

Note: FPT ⊆ XP

Theorem

p-INDEPENDENT SET∈ XP

Arie M.C.A. Koster – RWTH Aachen University 10 / 26

Outline

1 Parameterized Problems
2 W-Hierarchy
3 Designing Parameterized Algorithms

Arie M.C.A. Koster – RWTH Aachen University 11 / 26

W-Hierarchy

Can we distinguish between FPT and XP in more detail?

Definition

A parameterized problem (Π1, κ1) reduces parameterized to a
parameterized problem (Π2, κ2) if there exists a function r : I1 → I2 such
that

for all I ∈ I1, I is a “yes”-instance of Π1 if and only if r(I) is a
“yes”-instance of Π2.

r(I) is computable in time f (κ1(I)) · p(|I |) for a computable function f
and a polynomial p.

for I ∈ I1 and a computable function g : N→ N it holds
κ2(r(I)) ≤ g(κ1(I)).

The classical reduction of p-INDEPENDENT SET to p-VERTEX
COVER is not a parameterized reduction

p-INDEPENDENT SET reduces parameterized to p-CLIQUE

Arie M.C.A. Koster – RWTH Aachen University 12 / 26

W-Hierarchy

Can we distinguish between FPT and XP in more detail?

Yes, we can!

Definition

A parameterized problem (Π1, κ1) reduces parameterized to a
parameterized problem (Π2, κ2) if there exists a function r : I1 → I2 such
that

for all I ∈ I1, I is a “yes”-instance of Π1 if and only if r(I) is a
“yes”-instance of Π2.

r(I) is computable in time f (κ1(I)) · p(|I |) for a computable function f
and a polynomial p.

for I ∈ I1 and a computable function g : N→ N it holds
κ2(r(I)) ≤ g(κ1(I)).

The classical reduction of p-INDEPENDENT SET to p-VERTEX
COVER is not a parameterized reduction
p-INDEPENDENT SET reduces parameterized to p-CLIQUE

Arie M.C.A. Koster – RWTH Aachen University 12 / 26

W-Hierarchy

Can we distinguish between FPT and XP in more detail?

Definition

A parameterized problem (Π1, κ1) reduces parameterized to a
parameterized problem (Π2, κ2) if there exists a function r : I1 → I2 such
that

for all I ∈ I1, I is a “yes”-instance of Π1 if and only if r(I) is a
“yes”-instance of Π2.

r(I) is computable in time f (κ1(I)) · p(|I |) for a computable function f
and a polynomial p.

for I ∈ I1 and a computable function g : N→ N it holds
κ2(r(I)) ≤ g(κ1(I)).

The classical reduction of p-INDEPENDENT SET to p-VERTEX
COVER is not a parameterized reduction

p-INDEPENDENT SET reduces parameterized to p-CLIQUE

Arie M.C.A. Koster – RWTH Aachen University 12 / 26

W-Hierarchy

Can we distinguish between FPT and XP in more detail?

Definition

A parameterized problem (Π1, κ1) reduces parameterized to a
parameterized problem (Π2, κ2) if there exists a function r : I1 → I2 such
that

for all I ∈ I1, I is a “yes”-instance of Π1 if and only if r(I) is a
“yes”-instance of Π2.

r(I) is computable in time f (κ1(I)) · p(|I |) for a computable function f
and a polynomial p.

for I ∈ I1 and a computable function g : N→ N it holds
κ2(r(I)) ≤ g(κ1(I)).

The classical reduction of p-INDEPENDENT SET to p-VERTEX
COVER is not a parameterized reduction

p-INDEPENDENT SET reduces parameterized to p-CLIQUE

Arie M.C.A. Koster – RWTH Aachen University 12 / 26

W-Hierarchy

Can we distinguish between FPT and XP in more detail?

Definition

A parameterized problem (Π1, κ1) reduces parameterized to a
parameterized problem (Π2, κ2) if there exists a function r : I1 → I2 such
that

for all I ∈ I1, I is a “yes”-instance of Π1 if and only if r(I) is a
“yes”-instance of Π2.

r(I) is computable in time f (κ1(I)) · p(|I |) for a computable function f
and a polynomial p.

for I ∈ I1 and a computable function g : N→ N it holds
κ2(r(I)) ≤ g(κ1(I)).

The classical reduction of p-INDEPENDENT SET to p-VERTEX
COVER is not a parameterized reduction

p-INDEPENDENT SET reduces parameterized to p-CLIQUE

Arie M.C.A. Koster – RWTH Aachen University 12 / 26

W-Hierarchy

Can we distinguish between FPT and XP in more detail?

Definition

A parameterized problem (Π1, κ1) reduces parameterized to a
parameterized problem (Π2, κ2) if there exists a function r : I1 → I2 such
that

for all I ∈ I1, I is a “yes”-instance of Π1 if and only if r(I) is a
“yes”-instance of Π2.

r(I) is computable in time f (κ1(I)) · p(|I |) for a computable function f
and a polynomial p.

for I ∈ I1 and a computable function g : N→ N it holds
κ2(r(I)) ≤ g(κ1(I)).

The classical reduction of p-INDEPENDENT SET to p-VERTEX
COVER is not a parameterized reduction

p-INDEPENDENT SET reduces parameterized to p-CLIQUE

Arie M.C.A. Koster – RWTH Aachen University 12 / 26

W-Hierarchy

Can we distinguish between FPT and XP in more detail?

Definition

A parameterized problem (Π1, κ1) reduces parameterized to a
parameterized problem (Π2, κ2) if there exists a function r : I1 → I2 such
that

for all I ∈ I1, I is a “yes”-instance of Π1 if and only if r(I) is a
“yes”-instance of Π2.

r(I) is computable in time f (κ1(I)) · p(|I |) for a computable function f
and a polynomial p.

for I ∈ I1 and a computable function g : N→ N it holds
κ2(r(I)) ≤ g(κ1(I)).

The classical reduction of p-INDEPENDENT SET to p-VERTEX
COVER is not a parameterized reduction

p-INDEPENDENT SET reduces parameterized to p-CLIQUE

Arie M.C.A. Koster – RWTH Aachen University 12 / 26

Parameterized Reduction

Theorem

Let (Π1, κ1) and (Π2, κ2) be parameterized problems. If (Π1, κ1) reduces
parameterized to (Π2, κ2), and (Π2, κ2) ∈ FPT , then (Π1, κ1) ∈ FPT .

Arie M.C.A. Koster – RWTH Aachen University 13 / 26

Parameterized Reduction

Theorem

Let (Π1, κ1) and (Π2, κ2) be parameterized problems. If (Π1, κ1) reduces
parameterized to (Π2, κ2), and (Π2, κ2) ∈ FPT , then (Π1, κ1) ∈ FPT .

Arie M.C.A. Koster – RWTH Aachen University 13 / 26

W-Hierarchy

SAT is the classical NP-complete problem. Can we define something
similar for parameterized complexity?

Definition (p-WEIGHTED SAT)

Given: a boolean formula and integer k ∈ N
Parameter: k
Question: Is the boolean formula satisfiable with at least k variables set to
TRUE?

Definition (WEIGHTED WEFT-t-DEPTH-d SAT)

Given: A Boolean formula of depth at most d and weft at most t, and a
number k . The depth is the maximal number of gates on any path from
the root to a leaf, and the weft is the maximal number of gates of fan-in at
least three on any path from the root to a leaf.
Question: Is the boolean formula satisfiable with k variables set to TRUE?

Arie M.C.A. Koster – RWTH Aachen University 14 / 26

W-Hierarchy

SAT is the classical NP-complete problem. Can we define something
similar for parameterized complexity?

Definition (p-WEIGHTED SAT)

Given: a boolean formula and integer k ∈ N
Parameter: k
Question: Is the boolean formula satisfiable with at least k variables set to
TRUE?

Definition (WEIGHTED WEFT-t-DEPTH-d SAT)

Given: A Boolean formula of depth at most d and weft at most t, and a
number k . The depth is the maximal number of gates on any path from
the root to a leaf, and the weft is the maximal number of gates of fan-in at
least three on any path from the root to a leaf.
Question: Is the boolean formula satisfiable with k variables set to TRUE?

Arie M.C.A. Koster – RWTH Aachen University 14 / 26

W-Hierarchy

SAT is the classical NP-complete problem. Can we define something
similar for parameterized complexity?

Definition (p-WEIGHTED SAT)

Given: a boolean formula and integer k ∈ N
Parameter: k
Question: Is the boolean formula satisfiable with at least k variables set to
TRUE?

Definition (WEIGHTED WEFT-t-DEPTH-d SAT)

Given: A Boolean formula of depth at most d and weft at most t, and a
number k . The depth is the maximal number of gates on any path from
the root to a leaf, and the weft is the maximal number of gates of fan-in at
least three on any path from the root to a leaf.
Question: Is the boolean formula satisfiable with k variables set to TRUE?

Arie M.C.A. Koster – RWTH Aachen University 14 / 26

Example

Boolean circuit with weft=3 and depth=5

Arie M.C.A. Koster – RWTH Aachen University 15 / 26

W-Hierarchy

Es is conjuctured that boolean formula with high weft are more difficult
than those with low weft.

Definition

The W-Hierarchy consists of the complexity classes W [t], t ≥ 1. A
parameterized problem (Π, κ) is a member of W [t] if it can be reduced
parameterized to p-WEIGHTED WEFT-t-DEPTH-d SAT for some d ∈ N.

Example

p-INDEPENDENT SET∈W [1]

Example

p-CLIQUE∈W [1]

Arie M.C.A. Koster – RWTH Aachen University 16 / 26

W-Hierarchy

Es is conjuctured that boolean formula with high weft are more difficult
than those with low weft.

Definition

The W-Hierarchy consists of the complexity classes W [t], t ≥ 1. A
parameterized problem (Π, κ) is a member of W [t] if it can be reduced
parameterized to p-WEIGHTED WEFT-t-DEPTH-d SAT for some d ∈ N.

Example

p-INDEPENDENT SET∈W [1]

Example

p-CLIQUE∈W [1]

Arie M.C.A. Koster – RWTH Aachen University 16 / 26

W-Hierarchy

Es is conjuctured that boolean formula with high weft are more difficult
than those with low weft.

Definition

The W-Hierarchy consists of the complexity classes W [t], t ≥ 1. A
parameterized problem (Π, κ) is a member of W [t] if it can be reduced
parameterized to p-WEIGHTED WEFT-t-DEPTH-d SAT for some d ∈ N.

Example

p-INDEPENDENT SET∈W [1]

Example

p-CLIQUE∈W [1]

Arie M.C.A. Koster – RWTH Aachen University 16 / 26

W-Hierarchy

Es is conjuctured that boolean formula with high weft are more difficult
than those with low weft.

Definition

The W-Hierarchy consists of the complexity classes W [t], t ≥ 1. A
parameterized problem (Π, κ) is a member of W [t] if it can be reduced
parameterized to p-WEIGHTED WEFT-t-DEPTH-d SAT for some d ∈ N.

Example

p-INDEPENDENT SET∈W [1]

Example

p-CLIQUE∈W [1]

Arie M.C.A. Koster – RWTH Aachen University 16 / 26

W-Hierarchy

Example (p-DOMINATING SET)

Given: Graph G = (V ,E), integer k ∈ N
Parameter: k
Question: Does G have a dominating set of size at most k , i.e., a subset of
the vertices S ⊆ V such that for all vertices v ∈ V : N[v] ∩ S 6= ∅.

Lemma

p-DOMINATING SET∈W [2]

Arie M.C.A. Koster – RWTH Aachen University 17 / 26

W-Hierarchy

Example (p-DOMINATING SET)

Given: Graph G = (V ,E), integer k ∈ N
Parameter: k
Question: Does G have a dominating set of size at most k , i.e., a subset of
the vertices S ⊆ V such that for all vertices v ∈ V : N[v] ∩ S 6= ∅.

Lemma

p-DOMINATING SET∈W [2]

Arie M.C.A. Koster – RWTH Aachen University 17 / 26

W [t]-Completeness

Definition

A parameterized problem (Π, κ) is W [t]-hard if every problem in W [t]
can be reduced parameterized to (Π, κ).

A parameterized problem (Π, κ) is W [t]-complete if it is W [t]-hard and
a member of W [t] itself.

Corollary: p-WEIGHTED WEFT-t-DEPTH-d SAT is W [t]-complete (by
definition).

Theorem

p-INDEPENDENT SET and p-CLIQUE are W [1]-complete

p-DOMINATING SET is W [2]-complete

Theorem

For every t ≥ 1, W [t] = FPT if and only if a W [t]-hard problem is a
member of FPT .

Arie M.C.A. Koster – RWTH Aachen University 18 / 26

W [t]-Completeness

Definition

A parameterized problem (Π, κ) is W [t]-hard if every problem in W [t]
can be reduced parameterized to (Π, κ).

A parameterized problem (Π, κ) is W [t]-complete if it is W [t]-hard and
a member of W [t] itself.

Corollary: p-WEIGHTED WEFT-t-DEPTH-d SAT is W [t]-complete (by
definition).

Theorem

p-INDEPENDENT SET and p-CLIQUE are W [1]-complete

p-DOMINATING SET is W [2]-complete

Theorem

For every t ≥ 1, W [t] = FPT if and only if a W [t]-hard problem is a
member of FPT .

Arie M.C.A. Koster – RWTH Aachen University 18 / 26

W [t]-Completeness

Definition

A parameterized problem (Π, κ) is W [t]-hard if every problem in W [t]
can be reduced parameterized to (Π, κ).

A parameterized problem (Π, κ) is W [t]-complete if it is W [t]-hard and
a member of W [t] itself.

Corollary: p-WEIGHTED WEFT-t-DEPTH-d SAT is W [t]-complete (by
definition).

Theorem

p-INDEPENDENT SET and p-CLIQUE are W [1]-complete

p-DOMINATING SET is W [2]-complete

Theorem

For every t ≥ 1, W [t] = FPT if and only if a W [t]-hard problem is a
member of FPT .

Arie M.C.A. Koster – RWTH Aachen University 18 / 26

W [t]-Completeness

Definition

A parameterized problem (Π, κ) is W [t]-hard if every problem in W [t]
can be reduced parameterized to (Π, κ).

A parameterized problem (Π, κ) is W [t]-complete if it is W [t]-hard and
a member of W [t] itself.

Corollary: p-WEIGHTED WEFT-t-DEPTH-d SAT is W [t]-complete (by
definition).

Theorem

p-INDEPENDENT SET and p-CLIQUE are W [1]-complete

p-DOMINATING SET is W [2]-complete

Theorem

For every t ≥ 1, W [t] = FPT if and only if a W [t]-hard problem is a
member of FPT .

Arie M.C.A. Koster – RWTH Aachen University 18 / 26

Outline

1 Parameterized Problems
2 W-Hierarchy
3 Designing Parameterized Algorithms

Arie M.C.A. Koster – RWTH Aachen University 19 / 26

Kernelization

Idea: reduce an instance I to an instance I ′ which size only depends on the
parameter, not on the original instance size

Definition

Let (Π, κ) be a parameterized problem with I the set of instances of Π. A
in polynomial time computable function f : I × N→ I × N is called
kernelization for (Π, κ) if (I ′, κ(I ′)) = f (I , κ(I)) satisfies the following three
properties:

1. For all I ∈ I, (I , κ(I)) is a “yes”-instance if and only if (I ′, κ(I ′)) a
“yes”-instance of Π

2. There exists a function f ′ : N→ N such that |I ′| ≤ f ′(κ(I))

3. κ(I ′) ≤ κ(I)

The instance I ′ is called kernel of (Π, κ) and f ′(κ(I)) is called the size of
the kernel.

Example: p-VERTEX COVER

Arie M.C.A. Koster – RWTH Aachen University 20 / 26

Kernelization

Idea: reduce an instance I to an instance I ′ which size only depends on the
parameter, not on the original instance size

Definition

Let (Π, κ) be a parameterized problem with I the set of instances of Π. A
in polynomial time computable function f : I × N→ I × N is called
kernelization for (Π, κ) if (I ′, κ(I ′)) = f (I , κ(I)) satisfies the following three
properties:

1. For all I ∈ I, (I , κ(I)) is a “yes”-instance if and only if (I ′, κ(I ′)) a
“yes”-instance of Π

2. There exists a function f ′ : N→ N such that |I ′| ≤ f ′(κ(I))

3. κ(I ′) ≤ κ(I)

The instance I ′ is called kernel of (Π, κ) and f ′(κ(I)) is called the size of
the kernel.

Example: p-VERTEX COVER

Arie M.C.A. Koster – RWTH Aachen University 20 / 26

Kernelization

Idea: reduce an instance I to an instance I ′ which size only depends on the
parameter, not on the original instance size

Definition

Let (Π, κ) be a parameterized problem with I the set of instances of Π. A
in polynomial time computable function f : I × N→ I × N is called
kernelization for (Π, κ) if (I ′, κ(I ′)) = f (I , κ(I)) satisfies the following three
properties:

1. For all I ∈ I, (I , κ(I)) is a “yes”-instance if and only if (I ′, κ(I ′)) a
“yes”-instance of Π

2. There exists a function f ′ : N→ N such that |I ′| ≤ f ′(κ(I))

3. κ(I ′) ≤ κ(I)

The instance I ′ is called kernel of (Π, κ) and f ′(κ(I)) is called the size of
the kernel.

Example: p-VERTEX COVER

Arie M.C.A. Koster – RWTH Aachen University 20 / 26

Kernelization

Idea: reduce an instance I to an instance I ′ which size only depends on the
parameter, not on the original instance size

Definition

Let (Π, κ) be a parameterized problem with I the set of instances of Π. A
in polynomial time computable function f : I × N→ I × N is called
kernelization for (Π, κ) if (I ′, κ(I ′)) = f (I , κ(I)) satisfies the following three
properties:

1. For all I ∈ I, (I , κ(I)) is a “yes”-instance if and only if (I ′, κ(I ′)) a
“yes”-instance of Π

2. There exists a function f ′ : N→ N such that |I ′| ≤ f ′(κ(I))

3. κ(I ′) ≤ κ(I)

The instance I ′ is called kernel of (Π, κ) and f ′(κ(I)) is called the size of
the kernel.

Example: p-VERTEX COVER

Arie M.C.A. Koster – RWTH Aachen University 20 / 26

Kernelization

Idea: reduce an instance I to an instance I ′ which size only depends on the
parameter, not on the original instance size

Definition

Let (Π, κ) be a parameterized problem with I the set of instances of Π. A
in polynomial time computable function f : I × N→ I × N is called
kernelization for (Π, κ) if (I ′, κ(I ′)) = f (I , κ(I)) satisfies the following three
properties:

1. For all I ∈ I, (I , κ(I)) is a “yes”-instance if and only if (I ′, κ(I ′)) a
“yes”-instance of Π

2. There exists a function f ′ : N→ N such that |I ′| ≤ f ′(κ(I))

3. κ(I ′) ≤ κ(I)

The instance I ′ is called kernel of (Π, κ) and f ′(κ(I)) is called the size of
the kernel.

Example: p-VERTEX COVER

Arie M.C.A. Koster – RWTH Aachen University 20 / 26

Kernelization

Idea: reduce an instance I to an instance I ′ which size only depends on the
parameter, not on the original instance size

Definition

Let (Π, κ) be a parameterized problem with I the set of instances of Π. A
in polynomial time computable function f : I × N→ I × N is called
kernelization for (Π, κ) if (I ′, κ(I ′)) = f (I , κ(I)) satisfies the following three
properties:

1. For all I ∈ I, (I , κ(I)) is a “yes”-instance if and only if (I ′, κ(I ′)) a
“yes”-instance of Π

2. There exists a function f ′ : N→ N such that |I ′| ≤ f ′(κ(I))

3. κ(I ′) ≤ κ(I)

The instance I ′ is called kernel of (Π, κ) and f ′(κ(I)) is called the size of
the kernel.

Example: p-VERTEX COVER

Arie M.C.A. Koster – RWTH Aachen University 20 / 26

Kernelization

Idea: reduce an instance I to an instance I ′ which size only depends on the
parameter, not on the original instance size

Definition

Let (Π, κ) be a parameterized problem with I the set of instances of Π. A
in polynomial time computable function f : I × N→ I × N is called
kernelization for (Π, κ) if (I ′, κ(I ′)) = f (I , κ(I)) satisfies the following three
properties:

1. For all I ∈ I, (I , κ(I)) is a “yes”-instance if and only if (I ′, κ(I ′)) a
“yes”-instance of Π

2. There exists a function f ′ : N→ N such that |I ′| ≤ f ′(κ(I))

3. κ(I ′) ≤ κ(I)

The instance I ′ is called kernel of (Π, κ) and f ′(κ(I)) is called the size of
the kernel.

Example: p-VERTEX COVER

Arie M.C.A. Koster – RWTH Aachen University 20 / 26

Kernelization of p-VERTEX
COVER

2 Reduction rules:

Lemma

Let G = (V ,E) be a graph and v ∈ V a vertex of degree 0. G has a vertex
cover of size k, if and only if G − v has a vertex cover of size k.

Lemma

Let G = (V ,E) be a graph and v ∈ V a vertex of degree at least k + 1. G
has a vertex cover of size k if and only if G − v has a vertex cover of size
k − 1.

Lemma

Let G = (V ,E) be a graph without isolated vertices. If G has a vertex
cover of size at most k and ∆(G) ≤ d, then G has at most k(d + 1)
vertices.

Arie M.C.A. Koster – RWTH Aachen University 21 / 26

Kernelization of p-VERTEX
COVER

2 Reduction rules:

Lemma

Let G = (V ,E) be a graph and v ∈ V a vertex of degree 0. G has a vertex
cover of size k, if and only if G − v has a vertex cover of size k.

Lemma

Let G = (V ,E) be a graph and v ∈ V a vertex of degree at least k + 1. G
has a vertex cover of size k if and only if G − v has a vertex cover of size
k − 1.

Lemma

Let G = (V ,E) be a graph without isolated vertices. If G has a vertex
cover of size at most k and ∆(G) ≤ d, then G has at most k(d + 1)
vertices.

Arie M.C.A. Koster – RWTH Aachen University 21 / 26

Kernelization of p-VERTEX
COVER

2 Reduction rules:

Lemma

Let G = (V ,E) be a graph and v ∈ V a vertex of degree 0. G has a vertex
cover of size k, if and only if G − v has a vertex cover of size k.

Lemma

Let G = (V ,E) be a graph and v ∈ V a vertex of degree at least k + 1. G
has a vertex cover of size k if and only if G − v has a vertex cover of size
k − 1.

Lemma

Let G = (V ,E) be a graph without isolated vertices. If G has a vertex
cover of size at most k and ∆(G) ≤ d, then G has at most k(d + 1)
vertices.

Arie M.C.A. Koster – RWTH Aachen University 21 / 26

Kernelization

Lemma

p-VERTEX COVER has a kernel of size at most k(k + 1), where k is the
parameter of the problem.

Theorem

If a parameterized problem (Π, κ) has a kernelization, then the problem
is a member of FPT
Every problem (Π, κ) in the class FPT can be solved by a kernelization
algorithm.

Corollary

p-VERTEX COVER∈ FPT

Arie M.C.A. Koster – RWTH Aachen University 22 / 26

Kernelization

Lemma

p-VERTEX COVER has a kernel of size at most k(k + 1), where k is the
parameter of the problem.

Theorem

If a parameterized problem (Π, κ) has a kernelization, then the problem
is a member of FPT

Every problem (Π, κ) in the class FPT can be solved by a kernelization
algorithm.

Corollary

p-VERTEX COVER∈ FPT

Arie M.C.A. Koster – RWTH Aachen University 22 / 26

Kernelization

Lemma

p-VERTEX COVER has a kernel of size at most k(k + 1), where k is the
parameter of the problem.

Theorem

If a parameterized problem (Π, κ) has a kernelization, then the problem
is a member of FPT
Every problem (Π, κ) in the class FPT can be solved by a kernelization
algorithm.

Corollary

p-VERTEX COVER∈ FPT

Arie M.C.A. Koster – RWTH Aachen University 22 / 26

Kernelization

Lemma

p-VERTEX COVER has a kernel of size at most k(k + 1), where k is the
parameter of the problem.

Theorem

If a parameterized problem (Π, κ) has a kernelization, then the problem
is a member of FPT
Every problem (Π, κ) in the class FPT can be solved by a kernelization
algorithm.

Corollary

p-VERTEX COVER∈ FPT

Arie M.C.A. Koster – RWTH Aachen University 22 / 26

Kernelization of p-VERTEX
COVER

FPT algorithm for p-VERTEX COVER

1. (G , k)→ (G − v , k − 1) for all vertices v of degree > k

2. remove isolated vertices

3. If |V | > k(k + 1), then return “No”

4. If |V | ≤ k(k + 1), then enumerate all subsets S , and check on vertex
cover, take the smallest.
If |S | ≤ k , then return “Yes” else return “No”

Theorem

The FPT-algorithm for p-VERTEX COVER decides for every graph G with
n vertices in O(kn + k2k) whether G has a vertex cover of size at most k.

Arie M.C.A. Koster – RWTH Aachen University 23 / 26

Kernelization of p-VERTEX
COVER

FPT algorithm for p-VERTEX COVER

1. (G , k)→ (G − v , k − 1) for all vertices v of degree > k

2. remove isolated vertices

3. If |V | > k(k + 1), then return “No”

4. If |V | ≤ k(k + 1), then enumerate all subsets S , and check on vertex
cover, take the smallest.
If |S | ≤ k , then return “Yes” else return “No”

Theorem

The FPT-algorithm for p-VERTEX COVER decides for every graph G with
n vertices in O(kn + k2k) whether G has a vertex cover of size at most k.

Arie M.C.A. Koster – RWTH Aachen University 23 / 26

Kernelization of p-VERTEX
COVER

FPT algorithm for p-VERTEX COVER

1. (G , k)→ (G − v , k − 1) for all vertices v of degree > k

2. remove isolated vertices

3. If |V | > k(k + 1), then return “No”

4. If |V | ≤ k(k + 1), then enumerate all subsets S , and check on vertex
cover, take the smallest.
If |S | ≤ k , then return “Yes” else return “No”

Theorem

The FPT-algorithm for p-VERTEX COVER decides for every graph G with
n vertices in O(kn + k2k) whether G has a vertex cover of size at most k.

Arie M.C.A. Koster – RWTH Aachen University 23 / 26

Kernelization of p-VERTEX
COVER

FPT algorithm for p-VERTEX COVER

1. (G , k)→ (G − v , k − 1) for all vertices v of degree > k

2. remove isolated vertices

3. If |V | > k(k + 1), then return “No”

4. If |V | ≤ k(k + 1), then enumerate all subsets S , and check on vertex
cover, take the smallest.
If |S | ≤ k , then return “Yes” else return “No”

Theorem

The FPT-algorithm for p-VERTEX COVER decides for every graph G with
n vertices in O(kn + k2k) whether G has a vertex cover of size at most k.

Arie M.C.A. Koster – RWTH Aachen University 23 / 26

Kernelization of p-VERTEX
COVER

FPT algorithm for p-VERTEX COVER

1. (G , k)→ (G − v , k − 1) for all vertices v of degree > k

2. remove isolated vertices

3. If |V | > k(k + 1), then return “No”

4. If |V | ≤ k(k + 1), then enumerate all subsets S , and check on vertex
cover, take the smallest.
If |S | ≤ k , then return “Yes” else return “No”

Theorem

The FPT-algorithm for p-VERTEX COVER decides for every graph G with
n vertices in O(kn + k2k) whether G has a vertex cover of size at most k.

Arie M.C.A. Koster – RWTH Aachen University 23 / 26

Kernelization of p-VERTEX
COVER

Lemma

Let G = (V ,E) be a graph and v ∈ V a vertex of degree 1 with neighbor
w. G has a vertex cover of size k if and only if G − {v ,w} has a vertex
cover of size k − 1.

Theorem

p-VERTEX COVER has a kernel of size at most k2

Theorem

p-VERTEX COVER has a kernel of size at most 2k

Arie M.C.A. Koster – RWTH Aachen University 24 / 26

Kernelization of p-VERTEX
COVER

Lemma

Let G = (V ,E) be a graph and v ∈ V a vertex of degree 1 with neighbor
w. G has a vertex cover of size k if and only if G − {v ,w} has a vertex
cover of size k − 1.

Theorem

p-VERTEX COVER has a kernel of size at most k2

Theorem

p-VERTEX COVER has a kernel of size at most 2k

Arie M.C.A. Koster – RWTH Aachen University 24 / 26

Kernelization of p-VERTEX
COVER

Lemma

Let G = (V ,E) be a graph and v ∈ V a vertex of degree 1 with neighbor
w. G has a vertex cover of size k if and only if G − {v ,w} has a vertex
cover of size k − 1.

Theorem

p-VERTEX COVER has a kernel of size at most k2

Theorem

p-VERTEX COVER has a kernel of size at most 2k

Arie M.C.A. Koster – RWTH Aachen University 24 / 26

Further FPT Techniques

Search trees of limited height: Example p-VERTEX COVER (earlier)

3 rules:

VC1 If v is a vertex of degree 1, add w ∈ N(v) to the vertex
cover; continue with (G − w , k − 1)

VC2 If v is a vertex of degree 2, either both neighbors of v are
part of the vertex cover or v and all neighbors of both
neighbors of v are: branch into (G − N(v), k − 2) and
(G − v − N2(v), k − `)

VC3 If v is a vertex of degree at least 3, then either v or all its
neighbors are part of the vertex cover: branch into
(G − v , k − 1) and (G − N(v), k − |N(v)|).

Theorem

The search tree defined by VC1, VC2, and VC3 for p-VERTEX COVER has
a size of O(1.47k).

A combination of kernelization and search tree is also possible.

Arie M.C.A. Koster – RWTH Aachen University 25 / 26

Further FPT Techniques

Search trees of limited height: Example p-VERTEX COVER (earlier)
3 rules:

VC1 If v is a vertex of degree 1, add w ∈ N(v) to the vertex
cover; continue with (G − w , k − 1)

VC2 If v is a vertex of degree 2, either both neighbors of v are
part of the vertex cover or v and all neighbors of both
neighbors of v are: branch into (G − N(v), k − 2) and
(G − v − N2(v), k − `)

VC3 If v is a vertex of degree at least 3, then either v or all its
neighbors are part of the vertex cover: branch into
(G − v , k − 1) and (G − N(v), k − |N(v)|).

Theorem

The search tree defined by VC1, VC2, and VC3 for p-VERTEX COVER has
a size of O(1.47k).

A combination of kernelization and search tree is also possible.

Arie M.C.A. Koster – RWTH Aachen University 25 / 26

Further FPT Techniques

Search trees of limited height: Example p-VERTEX COVER (earlier)
3 rules:

VC1 If v is a vertex of degree 1, add w ∈ N(v) to the vertex
cover; continue with (G − w , k − 1)

VC2 If v is a vertex of degree 2, either both neighbors of v are
part of the vertex cover or v and all neighbors of both
neighbors of v are: branch into (G − N(v), k − 2) and
(G − v − N2(v), k − `)

VC3 If v is a vertex of degree at least 3, then either v or all its
neighbors are part of the vertex cover: branch into
(G − v , k − 1) and (G − N(v), k − |N(v)|).

Theorem

The search tree defined by VC1, VC2, and VC3 for p-VERTEX COVER has
a size of O(1.47k).

A combination of kernelization and search tree is also possible.

Arie M.C.A. Koster – RWTH Aachen University 25 / 26

Further FPT Techniques

Search trees of limited height: Example p-VERTEX COVER (earlier)
3 rules:

VC1 If v is a vertex of degree 1, add w ∈ N(v) to the vertex
cover; continue with (G − w , k − 1)

VC2 If v is a vertex of degree 2, either both neighbors of v are
part of the vertex cover or v and all neighbors of both
neighbors of v are: branch into (G − N(v), k − 2) and
(G − v − N2(v), k − `)

VC3 If v is a vertex of degree at least 3, then either v or all its
neighbors are part of the vertex cover: branch into
(G − v , k − 1) and (G − N(v), k − |N(v)|).

Theorem

The search tree defined by VC1, VC2, and VC3 for p-VERTEX COVER has
a size of O(1.47k).

A combination of kernelization and search tree is also possible.

Arie M.C.A. Koster – RWTH Aachen University 25 / 26

Further FPT Techniques

Search trees of limited height: Example p-VERTEX COVER (earlier)
3 rules:

VC1 If v is a vertex of degree 1, add w ∈ N(v) to the vertex
cover; continue with (G − w , k − 1)

VC2 If v is a vertex of degree 2, either both neighbors of v are
part of the vertex cover or v and all neighbors of both
neighbors of v are: branch into (G − N(v), k − 2) and
(G − v − N2(v), k − `)

VC3 If v is a vertex of degree at least 3, then either v or all its
neighbors are part of the vertex cover: branch into
(G − v , k − 1) and (G − N(v), k − |N(v)|).

Theorem

The search tree defined by VC1, VC2, and VC3 for p-VERTEX COVER has
a size of O(1.47k).

A combination of kernelization and search tree is also possible.

Arie M.C.A. Koster – RWTH Aachen University 25 / 26

Further FPT Techniques

Search trees of limited height: Example p-VERTEX COVER (earlier)
3 rules:

VC1 If v is a vertex of degree 1, add w ∈ N(v) to the vertex
cover; continue with (G − w , k − 1)

VC2 If v is a vertex of degree 2, either both neighbors of v are
part of the vertex cover or v and all neighbors of both
neighbors of v are: branch into (G − N(v), k − 2) and
(G − v − N2(v), k − `)

VC3 If v is a vertex of degree at least 3, then either v or all its
neighbors are part of the vertex cover: branch into
(G − v , k − 1) and (G − N(v), k − |N(v)|).

Theorem

The search tree defined by VC1, VC2, and VC3 for p-VERTEX COVER has
a size of O(1.47k).

A combination of kernelization and search tree is also possible.

Arie M.C.A. Koster – RWTH Aachen University 25 / 26

Algorithmic Graph Theory:
How hard is your

combinatorial optimization problem?

Arie M.C.A. Koster

Lecture 9

Clemson, June 13, 2017

	Parameterized Problems
	W-Hierarchy
	Designing Parameterized Algorithms

