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Treewidth

Lower Bounds:

tw(G ) ≥ δC (G ) ≥ δD(G ) ≥ ω(G )− 1 ≥ δ(G )

Definition

Let G = (V ,E ) be a graph and k integer. The (k + 1)-neighbor improved
graph G ′ = (V ,E ′) can be constructed as follows: take G and add edge uv
as long as two non-adjacent vertices u, v exist, having k + 1 joint neighbors.
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Treewidth

Theorem

Let (X ,T ) be a tree decomposition for G wtih width at most k. Then,
(X ,T ) is also a tree decomposition for the (k + 1)-neighbor improved
graph G ′ with width k and vice versa.

Corollary

Let G = (V ,E ) be a graph and ` a lower bound on tw(G ). Further, let G ′

be the (`+ 1)-neighbor improved graph and `′ be a further lower bound on
tw(G ′). If `′ > `, then it holds that tw(G ) ≥ `+ 1.
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Introduction

Many NP-hard problems are easy on trees!

Many NP-hard problems remain easy on series-parallel graphs!

Many NP-hard problems are still easy if the graph has bounded
treewidth!
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Max. Weighted Ind. Set

Max. weighted independent set

Given G = (V ,E ) with vertex weights c(v) ∈ Z+, a max. weighted
independent set is a subset of the vertices S ⊆ V such that they are
pairwise non-adjacent and the sum of the weights c(S) =

∑
v∈S c(v) is

maximised.

If G is a tree T ,

we root it at an arbitrary vertex r ∈ V and

let T (v) denote the subtree with v as root.

Define

A(v) = the max. weight of an independent set in T (v)

B(v) = the max. weight of an independent set in T (v) not containing v

A(r) provides the max. weight independent set
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Max. Weighted Ind. Set

Compute A(v) and B(v) from the leafs to the root:

v is a leaf

A(v) = c(v)

B(v) = 0

v is non-leaf with children x1, . . . , xr

A(v) =

max {c(v) + B(x1) + . . .+ B(xr ),A(x1) + . . .+ A(xr )}

B(v) =

A(x1) + . . .+ A(xr )

Running time: O(n)
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SP-trees

If G is a series-parallel graph with SP-tree T (G ),

the leafs of the SP-tree T (G ) correspond to the edges e ∈ E
internal nodes labelled s or p for series and parallel composition

AA(i) : maximum weight of independent set containing both s and t

AB(i) : maximum weight of independent set containing s but not t

BA(i) : maximum weight of independent set containing t but not s

BB(i) : maximum weight of independent set containing neither s nor t
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Max. Weighted Ind. Set

v is a leaf

AA(i) := −∞, AB(i) := c(s), BA(i) := c(t), and BB(i) := 0

Internal node i with children i1 and i2
If i is an s node (with s ′ the terminal between i1 and i2):

AA(i) := max{AA(i1) + AA(i2)− c(s ′),AB(i1) + BA(i2)} ,
AB(i) := max{AA(i1) + AB(i2)− c(s ′),AB(i1) + BB(i2)} ,
BA(i) := max{BA(i1) + AA(i2)− c(s ′),BB(i1) + BA(i2)} , and

BB(i) := max{BA(i1) + AB(i2)− c(s ′),BB(i1) + BB(i2)} .
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Max. Weighted Ind. Set

Internal node i with children i1 and i2
If i is an p node:

AA(i) := AA(i1) + AA(i2)− c(s)− c(t) ,

AB(i) := AB(i1) + AB(i2)− c(s) ,

BA(i) := BA(i1) + BA(i2)− c(t) , and

BB(i) := BB(i1) + BB(i2) .

Running time: O(m)
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Nice Tree Decompositions

In a nice tree decomposition is rooted, and each node i ∈ I is of one of the
four following types:

Leaf: Node i is a leaf of T , and |Xi | = 1.

Join: Node i has exactly two children, say j1 and j2 and Xi = Xj1 = Xj2 .

Introduce: Node i has exactly one child, say j , and there is a vertex
v ∈ V with Xi = Xj ∪ {v}.
Forget: Node i has exactly one child, say j , and there is a vertex v ∈ V
with Xj = Xi ∪ {v}.

Lemma

If G has treewidth at most k, then G also has a nice tree decomposition of
width at most k which has O(n) tree nodes.
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Max. Weighted Ind. Set

Nice tree decomposition ({Xi | i ∈ I},T = (I ,F ))
For i ∈ I , let Gi = (Vi ,Ei ) with

Vi is the union of all bags Xj , with j = i or j a descendant of i in T , and

Ei = E ∩ (Vi × Vi ) is the set of all edges in E which have both
endpoints in Vi

For each node i ∈ I , we compute a table Ci :

Ci (S), for S ⊆ Xi , equals the maximum weight of an independent set
W ⊆ Vi in Gi such that Xi ∩W = S

Number of entries to compute for node i ∈ I : 2|Xi |
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Max. Weighted Ind. Set

Leaf node i ∈ I :

Say Xi = {v}.

Ci (∅) = 0

Ci ({v}) = c(v)

Introduce node i with child j

Suppose Xi = Xj ∪ {v}. Let S ⊆ Xj .

1. Ci (S) = Cj(S).

2. If there is a vertex w ∈ S with {v ,w} ∈ E , then Ci (S ∪ {v}) = −∞.

3. If for all w ∈ S , {v ,w} 6∈ E , then Ci (S ∪ {v}) = Cj(S) + c(v).
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Max. Weighted Ind. Set

Forget node i with child j

Suppose v ∈ Xj \ Xi (unique). Let S ⊆ Xi .

Ci (S) = max{Cj(S),Cj(S ∪ {v})}.

Join node i with children j1 and j2
Gi can be seen as a kind of union of Gj1 and Gj2 .

If v ∈ Vj1 , w ∈ Vj2 , and v ,w 6∈ Xi , then {v ,w} 6∈ E .

Let S ⊆ Xi . Ci (S) = Cj1(S) + Cj2(S)− c(S).

Optimal solution: maxS⊆Xr Cr (S)
If tw(G ) = k , the running time is O(2k · n)

Arie M.C.A. Koster – RWTH Aachen University 17 / 21



Max. Weighted Ind. Set

Forget node i with child j

Suppose v ∈ Xj \ Xi (unique). Let S ⊆ Xi .

Ci (S) = max{Cj(S),Cj(S ∪ {v})}.

Join node i with children j1 and j2
Gi can be seen as a kind of union of Gj1 and Gj2 .

If v ∈ Vj1 , w ∈ Vj2 , and v ,w 6∈ Xi , then {v ,w} 6∈ E .

Let S ⊆ Xi . Ci (S) = Cj1(S) + Cj2(S)− c(S).

Optimal solution: maxS⊆Xr Cr (S)
If tw(G ) = k , the running time is O(2k · n)

Arie M.C.A. Koster – RWTH Aachen University 17 / 21



Max. Weighted Ind. Set

Forget node i with child j

Suppose v ∈ Xj \ Xi (unique). Let S ⊆ Xi .

Ci (S) = max{Cj(S),Cj(S ∪ {v})}.

Join node i with children j1 and j2
Gi can be seen as a kind of union of Gj1 and Gj2 .

If v ∈ Vj1 , w ∈ Vj2 , and v ,w 6∈ Xi , then {v ,w} 6∈ E .

Let S ⊆ Xi . Ci (S) = Cj1(S) + Cj2(S)− c(S).

Optimal solution: maxS⊆Xr Cr (S)
If tw(G ) = k , the running time is O(2k · n)

Arie M.C.A. Koster – RWTH Aachen University 17 / 21



Max. Weighted Ind. Set

Forget node i with child j

Suppose v ∈ Xj \ Xi (unique). Let S ⊆ Xi .

Ci (S) = max{Cj(S),Cj(S ∪ {v})}.

Join node i with children j1 and j2
Gi can be seen as a kind of union of Gj1 and Gj2 .

If v ∈ Vj1 , w ∈ Vj2 , and v ,w 6∈ Xi , then {v ,w} 6∈ E .

Let S ⊆ Xi . Ci (S) = Cj1(S) + Cj2(S)− c(S).

Optimal solution: maxS⊆Xr Cr (S)
If tw(G ) = k , the running time is O(2k · n)

Arie M.C.A. Koster – RWTH Aachen University 17 / 21



Max. Weighted Ind. Set

Forget node i with child j

Suppose v ∈ Xj \ Xi (unique). Let S ⊆ Xi .

Ci (S) = max{Cj(S),Cj(S ∪ {v})}.

Join node i with children j1 and j2
Gi can be seen as a kind of union of Gj1 and Gj2 .

If v ∈ Vj1 , w ∈ Vj2 , and v ,w 6∈ Xi , then {v ,w} 6∈ E .

Let S ⊆ Xi . Ci (S) = Cj1(S) + Cj2(S)− c(S).

Optimal solution: maxS⊆Xr Cr (S)

If tw(G ) = k , the running time is O(2k · n)

Arie M.C.A. Koster – RWTH Aachen University 17 / 21



Max. Weighted Ind. Set

Forget node i with child j

Suppose v ∈ Xj \ Xi (unique). Let S ⊆ Xi .

Ci (S) = max{Cj(S),Cj(S ∪ {v})}.

Join node i with children j1 and j2
Gi can be seen as a kind of union of Gj1 and Gj2 .

If v ∈ Vj1 , w ∈ Vj2 , and v ,w 6∈ Xi , then {v ,w} 6∈ E .

Let S ⊆ Xi . Ci (S) = Cj1(S) + Cj2(S)− c(S).

Optimal solution: maxS⊆Xr Cr (S)
If tw(G ) = k , the running time is O(2k · n)

Arie M.C.A. Koster – RWTH Aachen University 17 / 21



Outline

1 Treewidth: Recap
2 Max. Weighted Independent Set in Trees
3 Max. Weighted Independent Set in SP-graphs
4 Max. Weighted Independent Set in Bounded Treewidth Graphs
5 Treewidth in Theory and Practice

Arie M.C.A. Koster – RWTH Aachen University 18 / 21



Frequency Assignment

The (Minimum Interfernce) Frequency Assignment Problem asks for a
coloring of the vertices of a graph G = (V ,E ) such that

each vertex v ∈ V is colored with a color f (v) from its domain F (v),

the sum of assignment cost
∑

v∈V cv (f (v)) and interference cost∑
vw∈E cvw (f (v), f (w)) is minimized.
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Frequency Assignment

Theoretical number of assignments vs. actual number

Actual number of assignments achieved by

graph reduction

upper bounding techniques, dominance techniques
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