Algorithmic Graph Theory: How hard is your combinatorial optimization problem?

Arie M.C.A. Koster
Lecture 7

Clemson, June 12, 2017

CLEMSeten
 RWIHAACHEN
 UNIVERSITY
 Outline

Treewidth: Recap
 Max. Weighted Independent Set in Trees
 Max. Weighted Independent Set in SP-graphs
 Max. Weighted Independent Set in Bounded Treewidth Graphs
 Treewidth in Theory and Practice

Lower Bounds:

$$
t w(G) \geq \delta C(G) \geq \delta D(G) \geq \omega(G)-1 \geq \delta(G)
$$

Lower Bounds:

$$
t w(G) \geq \delta C(G) \geq \delta D(G) \geq \omega(G)-1 \geq \delta(G)
$$

Definition

Let $G=(V, E)$ be a graph and k integer. The $(k+1)$-neighbor improved graph $G^{\prime}=\left(V, E^{\prime}\right)$ can be constructed as follows: take G and add edge $u v$ as long as two non-adjacent vertices u, v exist, having $k+1$ joint neighbors.

Theorem

Let (X, T) be a tree decomposition for G wtih width at most k. Then, (X, T) is also a tree decomposition for the $(k+1)$-neighbor improved graph G^{\prime} with width k and vice versa.

Theorem

Let (X, T) be a tree decomposition for G wtih width at most k. Then, (X, T) is also a tree decomposition for the $(k+1)$-neighbor improved graph G^{\prime} with width k and vice versa.

Corollary

Let $G=(V, E)$ be a graph and ℓ a lower bound on $\operatorname{tw}(G)$. Further, let G^{\prime} be the $(\ell+1)$-neighbor improved graph and ℓ^{\prime} be a further lower bound on $\operatorname{tw}\left(G^{\prime}\right)$. If $\ell^{\prime}>\ell$, then it holds that $\operatorname{tw}(G) \geq \ell+1$.

■ Many NP-hard problems are easy on trees!

■ Many NP-hard problems are easy on trees!

- Many NP-hard problems remain easy on series-parallel graphs!

■ Many NP-hard problems are easy on trees!

- Many NP-hard problems remain easy on series-parallel graphs!

■ Many NP-hard problems are still easy if the graph has bounded treewidth!

Outline

-
 Treewidth: Recap
 Max. Weighted Independent Set in Trees
 Max. Weighted Independent Set in SP-graphs Max. Weighted Independent Set in Bounded Treewidth Graphs Treewidth in Theory and Practice

Max. weighted independent set

Given $G=(V, E)$ with vertex weights $c(v) \in \mathbf{Z}^{+}$, a max. weighted independent set is a subset of the vertices $S \subseteq V$ such that they are pairwise non-adjacent and the sum of the weights $c(S)=\sum_{v \in S} c(v)$ is maximised.

Max. weighted independent set

Given $G=(V, E)$ with vertex weights $c(v) \in \mathbf{Z}^{+}$, a max. weighted independent set is a subset of the vertices $S \subseteq V$ such that they are pairwise non-adjacent and the sum of the weights $c(S)=\sum_{v \in S} c(v)$ is maximised.

If G is a tree T,

- we root it at an arbitrary vertex $r \in V$ and
- let $T(v)$ denote the subtree with v as root.

RWIHACHEN
Max. Weighted Ind. Set

Max. weighted independent set

Given $G=(V, E)$ with vertex weights $c(v) \in \mathbf{Z}^{+}$, a max. weighted independent set is a subset of the vertices $S \subseteq V$ such that they are pairwise non-adjacent and the sum of the weights $c(S)=\sum_{v \in S} c(v)$ is maximised.

If G is a tree T,

- we root it at an arbitrary vertex $r \in V$ and
- let $T(v)$ denote the subtree with v as root.

Define
$A(v) \quad=$ the max. weight of an independent set in $T(v)$
$B(v) \quad=$ the max. weight of an independent set in $T(v)$ not containing v

RWIHACHEN
Max. Weighted Ind. Set

Max. weighted independent set

Given $G=(V, E)$ with vertex weights $c(v) \in \mathbf{Z}^{+}$, a max. weighted independent set is a subset of the vertices $S \subseteq V$ such that they are pairwise non-adjacent and the sum of the weights $c(S)=\sum_{v \in S} c(v)$ is maximised.

If G is a tree T,

- we root it at an arbitrary vertex $r \in V$ and
- let $T(v)$ denote the subtree with v as root.

Define
$A(v) \quad=$ the max. weight of an independent set in $T(v)$
$B(v) \quad=$ the max. weight of an independent set in $T(v)$ not containing v
$A(r)$ provides the max. weight independent set

Compute $A(v)$ and $B(v)$ from the leafs to the root:

Compute $A(v)$ and $B(v)$ from the leafs to the root:

v is a leaf

$$
\begin{array}{ll}
A(v) & =c(v) \\
B(v) & =0
\end{array}
$$

Compute $A(v)$ and $B(v)$ from the leafs to the root:

v is a leaf

$$
\begin{array}{ll}
A(v) & =c(v) \\
B(v) & =0
\end{array}
$$

v is non-leaf with children x_{1}, \ldots, x_{r}

$$
\begin{aligned}
& A(v)= \\
& B(v)=A\left(x_{1}\right)+\ldots+A\left(x_{r}\right)
\end{aligned}
$$

Compute $A(v)$ and $B(v)$ from the leafs to the root:

v is a leaf

$$
\begin{array}{ll}
A(v) & =c(v) \\
B(v) & =0
\end{array}
$$

v is non-leaf with children x_{1}, \ldots, x_{r}

$$
\begin{aligned}
A(v) & =\max \left\{c(v)+B\left(x_{1}\right)+\ldots+B\left(x_{r}\right), A\left(x_{1}\right)+\ldots+A\left(x_{r}\right)\right\} \\
B(v) & =A\left(x_{1}\right)+\ldots+A\left(x_{r}\right)
\end{aligned}
$$

Compute $A(v)$ and $B(v)$ from the leafs to the root:

v is a leaf

$$
\begin{array}{ll}
A(v) & =c(v) \\
B(v) & =0
\end{array}
$$

v is non-leaf with children x_{1}, \ldots, x_{r}

$$
\begin{aligned}
& A(v)=\max \left\{c(v)+B\left(x_{1}\right)+\ldots+B\left(x_{r}\right), A\left(x_{1}\right)+\ldots+A\left(x_{r}\right)\right\} \\
& B(v) \quad=A\left(x_{1}\right)+\ldots+A\left(x_{r}\right)
\end{aligned}
$$

Running time: $O(n)$

Outline

:
 Treewidth: Recap
 Max. Weighted Independent Set in Trees
 Max. Weighted Independent Set in SP-graphs Max. Weighted Independent Set in Bounded Treewidth Graphs Treewidth in Theory and Practice

If G is a series-parallel graph with SP-tree $T(G)$,

- the leafs of the SP-tree $T(G)$ correspond to the edges $e \in E$
- internal nodes labelled S or P for series and parallel composition

If G is a series-parallel graph with SP-tree $T(G)$,

- the leafs of the SP-tree $T(G)$ correspond to the edges $e \in E$
- internal nodes labelled S or P for series and parallel composition
$A A(i)$: maximum weight of independent set containing both s and t $A B(i)$: maximum weight of independent set containing s but not t $B A(i)$: maximum weight of independent set containing t but not s $B B(i)$: maximum weight of independent set containing neither s nor t

```
v is a leaf
AA(i):=-\infty,AB(i):=c(s),BA(i):=c(t), and BB(i):=0
```

v is a leaf
$A A(i):=-\infty, A B(i):=c(s), B A(i):=c(t)$, and $B B(i):=0$

Internal node i with children i_{1} and i_{2}
If i is an S node (with s^{\prime} the terminal between i_{1} and i_{2}):

$$
\begin{aligned}
A A(i) & :=\max \left\{A A\left(i_{1}\right)+A A\left(i_{2}\right)-c\left(s^{\prime}\right), A B\left(i_{1}\right)+B A\left(i_{2}\right)\right\}, \\
A B(i) & :=\max \left\{A A\left(i_{1}\right)+A B\left(i_{2}\right)-c\left(s^{\prime}\right), A B\left(i_{1}\right)+B B\left(i_{2}\right)\right\}, \\
B A(i) & :=\max \left\{B A\left(i_{1}\right)+A A\left(i_{2}\right)-c\left(s^{\prime}\right), B B\left(i_{1}\right)+B A\left(i_{2}\right)\right\}, \text { and } \\
B B(i) & :=\max \left\{B A\left(i_{1}\right)+A B\left(i_{2}\right)-c\left(s^{\prime}\right), B B\left(i_{1}\right)+B B\left(i_{2}\right)\right\} .
\end{aligned}
$$

Internal node i with children i_{1} and i_{2}

If i is an P node:

$$
\begin{aligned}
A A(i) & :=A A\left(i_{1}\right)+A A\left(i_{2}\right)-c(s)-c(t), \\
A B(i) & :=A B\left(i_{1}\right)+A B\left(i_{2}\right)-c(s), \\
B A(i) & :=B A\left(i_{1}\right)+B A\left(i_{2}\right)-c(t), \text { and } \\
B B(i) & :=B B\left(i_{1}\right)+B B\left(i_{2}\right) .
\end{aligned}
$$

Internal node i with children i_{1} and i_{2}

If i is an P node:

$$
\begin{aligned}
A A(i) & :=A A\left(i_{1}\right)+A A\left(i_{2}\right)-c(s)-c(t), \\
A B(i) & :=A B\left(i_{1}\right)+A B\left(i_{2}\right)-c(s), \\
B A(i) & :=B A\left(i_{1}\right)+B A\left(i_{2}\right)-c(t), \text { and } \\
B B(i) & :=B B\left(i_{1}\right)+B B\left(i_{2}\right) .
\end{aligned}
$$

Running time: $O(m)$

Outline

。

Treewidth: Recap

Max. Weighted Independent Set in Trees Max. Weighted Independent Set in SP-graphs
(4) Max. Weighted Independent Set in Bounded Treewidth Graphs Treewidth in Theory and Practice

Nice Tree Decompositions

In a nice tree decomposition is rooted, and each node $i \in I$ is of one of the four following types:
■ Leaf: Node i is a leaf of T, and $\left|X_{i}\right|=1$.

- Join: Node i has exactly two children, say j_{1} and j_{2} and $X_{i}=X_{j_{1}}=X_{j_{2}}$.

■ Introduce: Node i has exactly one child, say j, and there is a vertex $v \in V$ with $X_{i}=X_{j} \cup\{v\}$.
■ Forget: Node i has exactly one child, say j, and there is a vertex $v \in V$ with $X_{j}=X_{i} \cup\{v\}$.

Nice Tree Decompositions

In a nice tree decomposition is rooted, and each node $i \in I$ is of one of the four following types:
■ Leaf: Node i is a leaf of T, and $\left|X_{i}\right|=1$.
■ Join: Node i has exactly two children, say j_{1} and j_{2} and $X_{i}=X_{j_{1}}=X_{j_{2}}$.
■ Introduce: Node i has exactly one child, say j, and there is a vertex $v \in V$ with $X_{i}=X_{j} \cup\{v\}$.
■ Forget: Node i has exactly one child, say j, and there is a vertex $v \in V$ with $X_{j}=X_{i} \cup\{v\}$.

Lemma

If G has treewidth at most k, then G also has a nice tree decomposition of width at most k which has $O(n)$ tree nodes.

Nice tree decomposition $\left(\left\{X_{i} \mid i \in I\right\}, T=(I, F)\right)$
For $i \in I$, let $G_{i}=\left(V_{i}, E_{i}\right)$ with
■ V_{i} is the union of all bags X_{j}, with $j=i$ or j a descendant of i in T, and

- $E_{i}=E \cap\left(V_{i} \times V_{i}\right)$ is the set of all edges in E which have both endpoints in V_{i}

Nice tree decomposition $\left(\left\{X_{i} \mid i \in I\right\}, T=(I, F)\right)$
For $i \in I$, let $G_{i}=\left(V_{i}, E_{i}\right)$ with
■ V_{i} is the union of all bags X_{j}, with $j=i$ or j a descendant of i in T, and
■ $E_{i}=E \cap\left(V_{i} \times V_{i}\right)$ is the set of all edges in E which have both endpoints in V_{i}
For each node $i \in I$, we compute a table C_{i} :

- $C_{i}(S)$, for $S \subseteq X_{i}$, equals the maximum weight of an independent set $W \subseteq V_{i}$ in G_{i} such that $X_{i} \cap W=S$

Nice tree decomposition $\left(\left\{X_{i} \mid i \in I\right\}, T=(I, F)\right)$
For $i \in I$, let $G_{i}=\left(V_{i}, E_{i}\right)$ with

- V_{i} is the union of all bags X_{j}, with $j=i$ or j a descendant of i in T, and

■ $E_{i}=E \cap\left(V_{i} \times V_{i}\right)$ is the set of all edges in E which have both endpoints in V_{i}
For each node $i \in I$, we compute a table C_{i} :

- $C_{i}(S)$, for $S \subseteq X_{i}$, equals the maximum weight of an independent set $W \subseteq V_{i}$ in G_{i} such that $X_{i} \cap W=S$
Number of entries to compute for node $i \in I: 2^{\left|X_{i}\right|}$

Leaf node $i \in I$:

$$
\text { Say } X_{i}=\{v\}
$$

$$
\begin{aligned}
C_{i}(\emptyset) & =0 \\
C_{i}(\{v\}) & =c(v)
\end{aligned}
$$

Leaf node $i \in I$:

Say $X_{i}=\{v\}$.

$$
\begin{aligned}
C_{i}(\emptyset) & =0 \\
C_{i}(\{v\}) & =c(v)
\end{aligned}
$$

Introduce node i with child j

Suppose $X_{i}=X_{j} \cup\{v\}$. Let $S \subseteq X_{j}$.

1. $C_{i}(S)=C_{j}(S)$.
2. If there is a vertex $w \in S$ with $\{v, w\} \in E$, then $C_{i}(S \cup\{v\})=-\infty$.
3. If for all $w \in S,\{v, w\} \notin E$, then $C_{i}(S \cup\{v\})=C_{j}(S)+c(v)$.

CLEMSUNAN

```
Forget node \(i\) with child \(j\)
Suppose \(v \in X_{j} \backslash X_{i}\) (unique). Let \(S \subseteq X_{i}\).
- \(C_{i}(S)=\max \left\{C_{j}(S), C_{j}(S \cup\{v\})\right\}\).
```

Forget node i with child j
Suppose $v \in X_{j} \backslash X_{i}$ (unique). Let $S \subseteq X_{i}$.

- $C_{i}(S)=\max \left\{C_{j}(S), C_{j}(S \cup\{v\})\right\}$.

Join node i with children j_{1} and j_{2}
G_{i} can be seen as a kind of union of $G_{j_{1}}$ and $G_{j_{2}}$.

Forget node i with child j
Suppose $v \in X_{j} \backslash X_{i}$ (unique). Let $S \subseteq X_{i}$.

- $C_{i}(S)=\max \left\{C_{j}(S), C_{j}(S \cup\{v\})\right\}$.

Join node i with children j_{1} and j_{2}

G_{i} can be seen as a kind of union of $G_{j_{1}}$ and $G_{j_{2}}$.
■ If $v \in V_{j_{1}}, w \in V_{j_{2}}$, and $v, w \notin X_{i}$, then $\{v, w\} \notin E$.

Forget node i with child j
Suppose $v \in X_{j} \backslash X_{i}$ (unique). Let $S \subseteq X_{i}$.

- $C_{i}(S)=\max \left\{C_{j}(S), C_{j}(S \cup\{v\})\right\}$.

Join node i with children j_{1} and j_{2}
G_{i} can be seen as a kind of union of $G_{j_{1}}$ and $G_{j_{2}}$.

- If $v \in V_{j_{1}}, w \in V_{j_{2}}$, and $v, w \notin X_{i}$, then $\{v, w\} \notin E$.
- Let $S \subseteq X_{i} . C_{i}(S)=C_{j_{1}}(S)+C_{j_{2}}(S)-c(S)$.

Forget node i with child j
Suppose $v \in X_{j} \backslash X_{i}$ (unique). Let $S \subseteq X_{i}$.

- $C_{i}(S)=\max \left\{C_{j}(S), C_{j}(S \cup\{v\})\right\}$.

Join node i with children j_{1} and j_{2}
G_{i} can be seen as a kind of union of $G_{j_{1}}$ and $G_{j_{2}}$.

- If $v \in V_{j_{1}}, w \in V_{j_{2}}$, and $v, w \notin X_{i}$, then $\{v, w\} \notin E$.
- Let $S \subseteq X_{i} . C_{i}(S)=C_{j_{1}}(S)+C_{j_{2}}(S)-c(S)$.

Optimal solution: $\max _{S \subseteq X_{r}} C_{r}(S)$

Forget node i with child j
Suppose $v \in X_{j} \backslash X_{i}$ (unique). Let $S \subseteq X_{i}$.

- $C_{i}(S)=\max \left\{C_{j}(S), C_{j}(S \cup\{v\})\right\}$.

Join node i with children j_{1} and j_{2}
G_{i} can be seen as a kind of union of $G_{j_{1}}$ and $G_{j_{2}}$.

- If $v \in V_{j_{1}}, w \in V_{j 2}$, and $v, w \notin X_{i}$, then $\{v, w\} \notin E$.
- Let $S \subseteq X_{i} . C_{i}(S)=C_{j_{1}}(S)+C_{j_{2}}(S)-c(S)$.

Optimal solution: $\max s \subseteq X_{r} C_{r}(S)$
If $t w(G)=k$, the running time is $O\left(2^{k} \cdot n\right)$

Outline

。

Treewidth: Recap

Max. Weighted Independent Set in Trees Max. Weighted Independent Set in SP-graphs Max. Weighted Independent Set in Bounded Treewidth Graphs
(5) Treewidth in Theory and Practice

The (Minimum Interfernce) Frequency Assignment Problem asks for a coloring of the vertices of a graph $G=(V, E)$ such that

- each vertex $v \in V$ is colored with a color $f(v)$ from its domain $F(v)$,

■ the sum of assignment cost $\sum_{v \in V} c_{v}(f(v))$ and interference cost $\sum_{v w \in E} c_{v w}(f(v), f(w))$ is minimized.

subsets during dynamic programming algorithm

- computed -theoretical

Theoretical number of assignments vs. actual number
Actual number of assignments achieved by

- graph reduction

■ upper bounding techniques, dominance techniques

Algorithmic Graph Theory: How hard is your combinatorial optimization problem?

Arie M.C.A. Koster
Lecture 7

Clemson, June 12, 2017

