Algorithmic Graph Theory: How hard is your combinatorial optimization problem?

Arie M.C.A. Koster

Lecture 7

Clemson, June 12, 2017

RWTHAACHEN UNIVERSITY

Treewidth: Recap

Max. Weighted Independent Set in Trees Max. Weighted Independent Set in SP-graphs Max. Weighted Independent Set in Bounded Treewidth Graphs Treewidth in Theory and Practice

Lower Bounds:

$tw(G) \ge \delta C(G) \ge \delta D(G) \ge \omega(G) - 1 \ge \delta(G)$

Lower Bounds:

$$tw(G) \ge \delta C(G) \ge \delta D(G) \ge \omega(G) - 1 \ge \delta(G)$$

Definition

Let G = (V, E) be a graph and k integer. The (k + 1)-neighbor improved graph G' = (V, E') can be constructed as follows: take G and add edge uv as long as two non-adjacent vertices u, v exist, having k + 1 joint neighbors.

Theorem

Let (X, T) be a tree decomposition for G with width at most k. Then, (X, T) is also a tree decomposition for the (k + 1)-neighbor improved graph G' with width k and vice versa.

Theorem

Let (X, T) be a tree decomposition for G with width at most k. Then, (X, T) is also a tree decomposition for the (k + 1)-neighbor improved graph G' with width k and vice versa.

Corollary

Let G = (V, E) be a graph and ℓ a lower bound on tw(G). Further, let G' be the $(\ell + 1)$ -neighbor improved graph and ℓ' be a further lower bound on tw(G'). If $\ell' > \ell$, then it holds that $tw(G) \ge \ell + 1$.

Many NP-hard problems are easy on trees!

- Many NP-hard problems are easy on trees!
- Many NP-hard problems remain easy on series-parallel graphs!

- Many NP-hard problems are easy on trees!
- Many NP-hard problems remain easy on series-parallel graphs!
- Many NP-hard problems are still easy if the graph has bounded treewidth!

Max. Weighted Independent Set in Trees

Max. Weighted Independent Set in SP-graphs Max. Weighted Independent Set in Bounded Treewidth Graphs Treewidth in Theory and Practice

Given G = (V, E) with vertex weights $c(v) \in \mathbf{Z}^+$, a **max. weighted independent set** is a subset of the vertices $S \subseteq V$ such that they are pairwise non-adjacent and the sum of the weights $c(S) = \sum_{v \in S} c(v)$ is maximised.

Given G = (V, E) with vertex weights $c(v) \in \mathbf{Z}^+$, a **max. weighted independent set** is a subset of the vertices $S \subseteq V$ such that they are pairwise non-adjacent and the sum of the weights $c(S) = \sum_{v \in S} c(v)$ is maximised.

If G is a tree T,

- we root it at an arbitrary vertex $r \in V$ and
- let T(v) denote the subtree with v as root.

Given G = (V, E) with vertex weights $c(v) \in \mathbf{Z}^+$, a **max. weighted independent set** is a subset of the vertices $S \subseteq V$ such that they are pairwise non-adjacent and the sum of the weights $c(S) = \sum_{v \in S} c(v)$ is maximised.

If G is a tree T,

- we root it at an arbitrary vertex $r \in V$ and
- let T(v) denote the subtree with v as root.
 Define
- A(v) = the max. weight of an independent set in T(v)
- B(v) = the max. weight of an independent set in T(v) not containing v

Given G = (V, E) with vertex weights $c(v) \in \mathbf{Z}^+$, a **max. weighted independent set** is a subset of the vertices $S \subseteq V$ such that they are pairwise non-adjacent and the sum of the weights $c(S) = \sum_{v \in S} c(v)$ is maximised.

If G is a tree T,

- we root it at an arbitrary vertex $r \in V$ and
- let T(v) denote the subtree with v as root.
 Define
- A(v) = the max. weight of an independent set in T(v)
- B(v) = the max. weight of an independent set in T(v) not containing v

A(r) provides the max. weight independent set

v is a leaf		
	A(v)	= c(v)
	B(v)	= 0

v is a leaf			
	A(v)	= c(v)	
	B(v)	= 0	

v is non-leaf with children x_1, \ldots, x_r

$$A(v) = B(v) = A(x_1) + \ldots + A(x_r)$$

v is a leaf		
	A(v)	= c(v)
	B(v)	= 0

v is non-leaf with children x_1, \ldots, x_r

$$A(v) = \max \{ c(v) + B(x_1) + \ldots + B(x_r), A(x_1) + \ldots + A(x_r) \}$$

$$B(v) = A(x_1) + \ldots + A(x_r)$$

v is a leaf		
	A(v)	= c(v)
	B(v)	= 0

v is non-leaf with children x_1, \ldots, x_r

$$A(v) = \max \{ c(v) + B(x_1) + \ldots + B(x_r), A(x_1) + \ldots + A(x_r) \}$$

$$B(v) = A(x_1) + \ldots + A(x_r)$$

Running time: O(n)

- If G is a series-parallel graph with SP-tree T(G),
- the leafs of the SP-tree T(G) correspond to the edges $e \in E$
- internal nodes labelled S or P for series and parallel composition

- If G is a series-parallel graph with SP-tree T(G),
- the leafs of the SP-tree T(G) correspond to the edges $e \in E$
- internal nodes labelled S or P for series and parallel composition
- AA(i): maximum weight of independent set containing both s and t
- AB(i): maximum weight of independent set containing s but not t
- BA(i): maximum weight of independent set containing t but not s
- BB(i): maximum weight of independent set containing neither s nor t

v is a leaf

$$AA(i) := -\infty$$
, $AB(i) := c(s)$, $BA(i) := c(t)$, and $BB(i) := 0$

v is a leaf

$$AA(i) := -\infty$$
, $AB(i) := c(s)$, $BA(i) := c(t)$, and $BB(i) := 0$

Internal node *i* with children i_1 and i_2

If *i* is an s node (with s' the terminal between i_1 and i_2):

$$AA(i) := \max\{AA(i_1) + AA(i_2) - c(s'), AB(i_1) + BA(i_2)\},\$$

$$B(i) := \max\{AA(i_1) + AB(i_2) - c(s'), AB(i_1) + BB(i_2)\},\$$

$$\mathcal{BA}(i) \;\; := \;\; \max\{\mathcal{BA}(i_1) + \mathcal{AA}(i_2) - c(s'), \mathcal{BB}(i_1) + \mathcal{BA}(i_2)\}$$
 , and

$$BB(i) := \max\{BA(i_1) + AB(i_2) - c(s'), BB(i_1) + BB(i_2)\}.$$

Internal node *i* with children i_1 and i_2

RWTH

If i is an P node:

$$\begin{array}{rcl} AA(i) &:= & AA(i_1) + AA(i_2) - c(s) - c(t) \,, \\ AB(i) &:= & AB(i_1) + AB(i_2) - c(s) \,, \\ BA(i) &:= & BA(i_1) + BA(i_2) - c(t) \,, \text{ and} \\ BB(i) &:= & BB(i_1) + BB(i_2) \,. \end{array}$$

Internal node *i* with children i_1 and i_2

If i is an P node:

$$AA(i) := AA(i_1) + AA(i_2) - c(s) - c(t) + AB(i_2) - c(s) + AB(i_1) + AB(i_2) - c(s) + BA(i_1) + BA(i_2) - c(t) + BA(i_2) - c(t) + BB(i_1) + BB(i_2) + BB($$

Running time: O(m)

In a nice tree decomposition is rooted, and each node $i \in I$ is of one of the four following types:

- Leaf: Node *i* is a leaf of *T*, and $|X_i| = 1$.
- **Join**: Node *i* has exactly two children, say j_1 and j_2 and $X_i = X_{j_1} = X_{j_2}$.
- Introduce: Node *i* has exactly one child, say *j*, and there is a vertex $v \in V$ with $X_i = X_j \cup \{v\}$.
- Forget: Node *i* has exactly one child, say *j*, and there is a vertex $v \in V$ with $X_j = X_i \cup \{v\}$.

In a nice tree decomposition is rooted, and each node $i \in I$ is of one of the four following types:

- Leaf: Node *i* is a leaf of *T*, and $|X_i| = 1$.
- **Join**: Node *i* has exactly two children, say j_1 and j_2 and $X_i = X_{j_1} = X_{j_2}$.
- Introduce: Node *i* has exactly one child, say *j*, and there is a vertex $v \in V$ with $X_i = X_j \cup \{v\}$.
- Forget: Node *i* has exactly one child, say *j*, and there is a vertex $v \in V$ with $X_j = X_i \cup \{v\}$.

Lemma

If G has treewidth at most k, then G also has a nice tree decomposition of width at most k which has O(n) tree nodes.

Nice tree decomposition $({X_i | i \in I}, T = (I, F))$ For $i \in I$, let $G_i = (V_i, E_i)$ with

- V_i is the union of all bags X_j , with j = i or j a descendant of i in T, and
- $E_i = E \cap (V_i \times V_i)$ is the set of all edges in E which have both endpoints in V_i

Nice tree decomposition $({X_i | i \in I}, T = (I, F))$ For $i \in I$, let $G_i = (V_i, E_i)$ with

- V_i is the union of all bags X_j , with j = i or j a descendant of i in T, and
- E_i = E ∩ (V_i × V_i) is the set of all edges in E which have both endpoints in V_i

For each node $i \in I$, we compute a table C_i :

• $C_i(S)$, for $S \subseteq X_i$, equals the maximum weight of an independent set $W \subseteq V_i$ in G_i such that $X_i \cap W = S$

Nice tree decomposition $({X_i | i \in I}, T = (I, F))$ For $i \in I$, let $G_i = (V_i, E_i)$ with

- V_i is the union of all bags X_j , with j = i or j a descendant of i in T, and
- $E_i = E \cap (V_i \times V_i)$ is the set of all edges in E which have both endpoints in V_i

For each node $i \in I$, we compute a table C_i :

• $C_i(S)$, for $S \subseteq X_i$, equals the maximum weight of an independent set $W \subseteq V_i$ in G_i such that $X_i \cap W = S$

Number of entries to compute for node $i \in I$: $2^{|X_i|}$

Leaf node $i \in I$:	
Say $X_i = \{v\}$.	
- (1)	
$C_i(\emptyset)$	= 0
$C_i(\{v\})$	= c(v)

Leaf node $i \in I$:

Say
$$X_i = \{v\}$$
.

$$egin{aligned} C_i(\emptyset) &= 0 \ C_i(\{v\}) &= c(v) \end{aligned}$$

Introduce node *i* with child *j*

Suppose
$$X_i = X_j \cup \{v\}$$
. Let $S \subseteq X_j$.

1.
$$C_i(S) = C_j(S)$$
.

- 2. If there is a vertex $w \in S$ with $\{v, w\} \in E$, then $C_i(S \cup \{v\}) = -\infty$.
- 3. If for all $w \in S$, $\{v, w\} \notin E$, then $C_i(S \cup \{v\}) = C_j(S) + c(v)$.

Suppose $v \in X_j \setminus X_i$ (unique). Let $S \subseteq X_i$. • $C_i(S) = \max\{C_i(S), C_i(S \cup \{v\})\}.$

Suppose $v \in X_j \setminus X_i$ (unique). Let $S \subseteq X_i$. • $C_i(S) = \max\{C_i(S), C_i(S \cup \{v\})\}$.

Join node *i* with children j_1 and j_2

 G_i can be seen as a kind of union of G_{j_1} and G_{j_2} .

Suppose $v \in X_j \setminus X_i$ (unique). Let $S \subseteq X_i$. • $C_i(S) = \max\{C_i(S), C_i(S \cup \{v\})\}.$

Join node *i* with children j_1 and j_2

 G_i can be seen as a kind of union of G_{j_1} and G_{j_2} . If $v \in V_{j_1}$, $w \in V_{j_2}$, and $v, w \notin X_i$, then $\{v, w\} \notin E$.

Suppose
$$v \in X_j \setminus X_i$$
 (unique). Let $S \subseteq X_i$.
• $C_i(S) = \max\{C_i(S), C_i(S \cup \{v\})\}.$

Join node *i* with children j_1 and j_2

 G_i can be seen as a kind of union of G_{j_1} and G_{j_2} . If $v \in V_{j_1}$, $w \in V_{j_2}$, and $v, w \notin X_i$, then $\{v, w\} \notin E$. Let $S \subseteq X_i$. $C_i(S) = C_{j_1}(S) + C_{j_2}(S) - c(S)$.

Suppose
$$v \in X_j \setminus X_i$$
 (unique). Let $S \subseteq X_i$.
• $C_i(S) = \max\{C_i(S), C_i(S \cup \{v\})\}.$

Join node *i* with children j_1 and j_2

 G_i can be seen as a kind of union of G_{j_1} and G_{j_2} . If $v \in V_{j_1}$, $w \in V_{j_2}$, and $v, w \notin X_i$, then $\{v, w\} \notin E$. Let $S \subseteq X_i$. $C_i(S) = C_{j_1}(S) + C_{j_2}(S) - c(S)$.

Optimal solution: $\max_{S \subseteq X_r} C_r(S)$

Suppose
$$v \in X_j \setminus X_i$$
 (unique). Let $S \subseteq X_i$.
• $C_i(S) = \max\{C_i(S), C_i(S \cup \{v\})\}.$

Join node *i* with children j_1 and j_2

 $\begin{array}{l} G_i \text{ can be seen as a kind of union of } G_{j_1} \text{ and } G_{j_2}. \\ \bullet \quad \text{If } v \in V_{j_1}, \ w \in V_{j_2}, \text{ and } v, w \notin X_i, \text{ then } \{v, w\} \notin E. \\ \bullet \quad \text{Let } S \subseteq X_i. \ C_i(S) = C_{j_1}(S) + C_{j_2}(S) - c(S). \end{array}$

Optimal solution: $\max_{S \subseteq X_r} C_r(S)$ If tw(G) = k, the running time is $O(2^k \cdot n)$

The (Minimum Interfernce) Frequency Assignment Problem asks for a coloring of the vertices of a graph G = (V, E) such that

- each vertex $v \in V$ is colored with a color f(v) from its domain F(v),
- the sum of assignment cost $\sum_{v \in V} c_v(f(v))$ and interference cost $\sum_{vw \in E} c_{vw}(f(v), f(w))$ is minimized.

Frequency Assignment

Theoretical number of assignments vs. actual number

subsets during dynamic programming algorithm — computed — theoretical

Actual number of assignments achieved by

10000

- graph reduction
- upper bounding techniques, dominance techniques

Algorithmic Graph Theory: How hard is your combinatorial optimization problem?

Arie M.C.A. Koster

Lecture 7

Clemson, June 12, 2017

RWTHAACHEN UNIVERSITY