Algorithmic Graph Theory: How hard is your combinatorial optimization problem?

Arie M.C.A. Koster

Lecture 3

Clemson, June 8, 2017

Outline

(1) Intersection Graphs
 Chordal graphs

Definition

The intersection graph of a collection \mathcal{F} of non-empty sets contains a vertex for every set $F \in \mathcal{F}$ and an edge $\{v, w\}$ if and only if the two corresponding sets intersect.

Definition

The intersection graph of a collection \mathcal{F} of non-empty sets contains a vertex for every set $F \in \mathcal{F}$ and an edge $\{v, w\}$ if and only if the two corresponding sets intersect.

source: wikipedia

Definition

A interval graph is an intersection graph of a collection of intervals on the real line.

Definition

The intersection graph of a collection \mathcal{F} of non-empty sets contains a vertex for every set $F \in \mathcal{F}$ and an edge $\{v, w\}$ if and only if the two corresponding sets intersect.

Definition

A interval graph is an intersection graph of a collection of intervals on the real line.

- unit interval graph: $\left|I_{p}\right|=1$ for all $p \in\{1, \ldots, n\}$

Definition

The intersection graph of a collection \mathcal{F} of non-empty sets contains a vertex for every set $F \in \mathcal{F}$ and an edge $\{v, w\}$ if and only if the two corresponding sets intersect.

Definition

A interval graph is an intersection graph of a collection of intervals on the real line.

■ unit interval graph: $\left|I_{p}\right|=1$ for all $p \in\{1, \ldots, n\}$
■ proper interval graph: $I_{p} \not \subset I_{q}$ for all $p, q \in\{1, \ldots, n\}$

Lemma

An induced subgraph of an interval graph is again an interval graph.

Lemma

An induced subgraph of an interval graph is again an interval graph.

Lemma

An interval graph does not contain induced cycles of length 4 or more.

Interval Graphs

Lemma

An induced subgraph of an interval graph is again an interval graph.

Lemma

An interval graph does not contain induced cycles of length 4 or more.

Definition

A graph is called chordal (or triangulated) if it does not contain induced cycles with length 4 or more, i.e., every cycle of length ≥ 4 contain a chord.

Lemma

An induced subgraph of an interval graph is again an interval graph.

Lemma

An interval graph does not contain induced cycles of length 4 or more.

Definition

A graph is called chordal (or triangulated) if it does not contain induced cycles with length 4 or more, i.e., every cycle of length ≥ 4 contain a chord.

Not every chordal graph is an interval graph.

Theorem (Gilmore \& Hoffman, 1964)

A graph G is an interval graph if and only if the maximal cliques of G can be ordered linearly, such that for all $v \in V(G)$, the maximal cliques containing v appear consecutively.

Theorem (Gilmore \& Hoffman, 1964)

A graph G is an interval graph if and only if the maximal cliques of G can be ordered linearly, such that for all $v \in V(G)$, the maximal cliques containing v appear consecutively.

The clique matrix $M(G)$ contains n rows and m columns (where m is the number of maximal cliques), with

$$
m_{i j}= \begin{cases}1 & \text { if } v_{i} \in Q_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Corollary

The maximum (weighted) independent set problem can be solved in polynomial time on interval graphs.

Theorem

The maximum independent set problem can be solved in $O(n \log n)$ if G is interval.

Theorem

The maximum independent set problem can be solved in $O(n \log n)$ if G is interval.

Theorem

The maximum clique problem can be solved in $O(n \log n)$ if G is interval.

Theorem

The maximum independent set problem can be solved in $O(n \log n)$ if G is interval.

Theorem

The maximum clique problem can be solved in $O(n \log n)$ if G is interval.

Corollary

The maximum weighted clique problem can be solved in $O(n \log n)$ if G is interval.

$\omega(G)=$ clique number, $\chi(G)=$ chromatic number

Theorem

For interval graphs G it holds $\chi(G)=\omega(G)$ and can be computed in $O(n \log n)$.

Outline

(1) Intersection Graphs
 2) Chordal graphs

Definition

A vertex $v \in V(G)$ is called simplicial if the neighbors $N(v)$ induce a clique in G (and thus also $N[v]$ induces a clique).

Definition

A vertex $v \in V(G)$ is called simplicial if the neighbors $N(v)$ induce a clique in G (and thus also $N[v]$ induces a clique).

Definition

A subset $S \subseteq V$ is a vertex separator if there exist two non-adjacent vertices a and b such that a and b are in different components of $G[V \backslash S]$. (S is an a - b-Separator.)

Definition

A vertex $v \in V(G)$ is called simplicial if the neighbors $N(v)$ induce a clique in G (and thus also $N[v]$ induces a clique).

Definition

A subset $S \subseteq V$ is a vertex separator if there exist two non-adjacent vertices a and b such that a and b are in different components of $G[V \backslash S]$. (S is an a - b-Separator.)

Theorem

Every chordal graph has a simplicial vertex. If G is not complete, there exist at least two non-adjacent simplicial vertices.

Definition

A vertex $v \in V(G)$ is called simplicial if the neighbors $N(v)$ induce a clique in G (and thus also $N[v]$ induces a clique).

Definition

A subset $S \subseteq V$ is a vertex separator if there exist two non-adjacent vertices a and b such that a and b are in different components of $G[V \backslash S]$. (S is an a - b-Separator.)

Theorem

Every chordal graph has a simplicial vertex. If G is not complete, there exist at least two non-adjacent simplicial vertices.

Corollary

The minimal a-b-separators of a chordal graph induce cliques.

Chordal Graphs

Theorem

A graph is chrodal if and only if every minimal vertex separator induces a clique.

Chordal Graphs

Theorem

A graph is chrodal if and only if every minimal vertex separator induces a clique.

Definition

Let $G=(V, E)$ be a graph and $\sigma=\left[v_{1}, \ldots, v_{n}\right]$ be an ordering of the vertices. The ordering is called a perfect elimination scheme (PES) if for all $i=1, \ldots, n$ the vertex v_{i} is simplicial in $G\left[v_{i}, \ldots, v_{n}\right]$.

Chordal Graphs

Theorem

A graph is chrodal if and only if every minimal vertex separator induces a clique.

Definition

Let $G=(V, E)$ be a graph and $\sigma=\left[v_{1}, \ldots, v_{n}\right]$ be an ordering of the vertices. The ordering is called a perfect elimination scheme (PES) if for all $i=1, \ldots, n$ the vertex v_{i} is simplicial in $G\left[v_{i}, \ldots, v_{n}\right]$.

Theorem

A graph G is chordal if and only if a PES exists. Moreover, the PES can start with any simplicial vertex of G.

Chordal Graphs

How to determine if G is chordal?

Lemma

If G is chordal, there exists a PES with an arbitrary vertex as v_{n}.

How to determine if G is chordal?

Lemma

If G is chordal, there exists a PES with an arbitrary vertex as v_{n}.
Lexicographic Breadth First Search (LBFS)
Maximum Cardinality Search (MCS)

How to determine if G is chordal?

Lemma

If G is chordal, there exists a PES with an arbitrary vertex as v_{n}.
Lexicographic Breadth First Search (LBFS)
Maximum Cardinality Search (MCS)

Theorem

A chordal graph with n vertices has at most n maximal cliques (with equality if and only if no edges exist).

Chordal Graphs

How to determine if G is chordal?

Lemma

If G is chordal, there exists a PES with an arbitrary vertex as v_{n}.
Lexicographic Breadth First Search (LBFS)
Maximum Cardinality Search (MCS)

Theorem

A chordal graph with n vertices has at most n maximal cliques (with equality if and only if no edges exist).

Theorem

For a chordal graph it holds that $\chi(G)=\omega(G)$.

Chordal Graphs

Let

$$
\begin{gathered}
y_{1} \\
y_{i}=\sigma(1) \\
y_{i}\left(\min \left\{j \leq n: \sigma(j) \notin X_{y_{1}} \cup X_{y_{2}} \cup \cdots \cup X_{y_{i-1}}\right\}\right)
\end{gathered}
$$

until no further vertices exist.. In the end, there exists a $t>0$ such that

$$
\left\{y_{1}, y_{2}, \ldots, y_{t}\right\} \cup X_{y_{1}} \cup X_{y_{2}} \cup \cdots \cup X_{y_{t}}=V
$$

Theorem

The set $\left\{y_{1}, \ldots, y_{t}\right\}$ is a maximum independent set.

Let

$$
\begin{gathered}
y_{1}=\sigma(1) \\
y_{i}=\sigma\left(\min \left\{j \leq n: \sigma(j) \notin X_{y_{1}} \cup X_{y_{2}} \cup \cdots \cup X_{y_{i-1}}\right\}\right)
\end{gathered}
$$

until no further vertices exist.. In the end, there exists a $t>0$ such that

$$
\left\{y_{1}, y_{2}, \ldots, y_{t}\right\} \cup X_{y_{1}} \cup X_{y_{2}} \cup \cdots \cup X_{y_{t}}=V
$$

Theorem

The set $\left\{y_{1}, \ldots, y_{t}\right\}$ is a maximum independent set.

Corollary

For chordal graphs, $k(G)=\alpha(G)$ with $k(G)$ the clique cover number, i.e., the minimum number of cliques to cover all vertices of G.

Let

$$
\begin{gathered}
y_{1} \\
y_{i}=\sigma(1) \\
y_{i}\left(\min \left\{j \leq n: \sigma(j) \notin X_{y_{1}} \cup X_{y_{2}} \cup \cdots \cup X_{y_{i-1}}\right\}\right)
\end{gathered}
$$

until no further vertices exist.. In the end, there exists a $t>0$ such that

$$
\left\{y_{1}, y_{2}, \ldots, y_{t}\right\} \cup X_{y_{1}} \cup X_{y_{2}} \cup \cdots \cup X_{y_{t}}=V
$$

Theorem

The set $\left\{y_{1}, \ldots, y_{t}\right\}$ is a maximum independent set.

Corollary

For chordal graphs, $k(G)=\alpha(G)$ with $k(G)$ the clique cover number, i.e., the minimum number of cliques to cover all vertices of G.

Corollary

Chordal graphs are perfect.

Chordal Graphs

Definition

A collection $\left\{T_{i}\right\}_{i \in l}$ of subsets of a set T has the Helly property if $J \subset I$ with $T_{i} \cap T_{j} \neq \emptyset$ for all $i, j \in J$ implies: $\bigcap_{j \in J} T_{j} \neq \emptyset$.

Chordal Graphs

Definition

A collection $\left\{T_{i}\right\}_{i \in I}$ of subsets of a set T has the Helly property if $J \subset I$ with $T_{i} \cap T_{j} \neq \emptyset$ for all $i, j \in J$ implies: $\bigcap_{j \in J} T_{j} \neq \emptyset$.

Lemma

Let T be a tree and T_{i} a subtree of T for all $i \in I$. Then, the collection of subtrees has the Helly property.

Definition

A collection $\left\{T_{i}\right\}_{i \in I}$ of subsets of a set T has the Helly property if $J \subset I$ with $T_{i} \cap T_{j} \neq \emptyset$ for all $i, j \in J$ implies: $\bigcap_{j \in J} T_{j} \neq \emptyset$.

Lemma

Let T be a tree and T_{i} a subtree of T for all $i \in I$. Then, the collection of subtrees has the Helly property.

Theorem

Let G be a graph. The following properties are equivalent:

1. G is chordal
2. G is the intersection graph of a collection of subtrees of a tree
3. there exists a tree $T=(K, L)$ such that node set K represents all maximal cliques in G and edge set L is chosen such that the subgraph induced by $K_{v}:=\{Q \in K: v \in Q$ clique in $G\}$ represents a subtree.

Algorithmic Graph Theory: How hard is your combinatorial optimization problem?

Arie M.C.A. Koster

Lecture 3

Clemson, June 8, 2017

