# Algorithmic Graph Theory: How hard is your combinatorial optimization problem? 

Arie M.C.A. Koster

Lecture 2

Clemson, June 7, 2017

## Outline

## (1) Example 1: Network Design with Compression Example 2: Train Packing Problem Example 3: Spectrum Allocation

Network Design with Compression:

- Given a Network $G=(V, E)$,

■ With capacity $c_{u v}=c \geq 0$ for all edges $u v$.

- 2 Demands $d^{1}, d^{2}$ ( with a potential compression rate $\lambda$ ).


Figures provided by Truong Khoa Phan

Network Design with Compression:

- Given a Network $G=(V, E)$,

■ With capacity $c_{u v}=c \geq 0$ for all edges $u v$.

- 2 Demands $d^{1}, d^{2}$ (with a potential compression rate $\lambda$ ).
- Find a feasible routing


Figures provided by Truong Khoa Phan

Network Design with Compression:

- Given a Network $G=(V, E)$,

■ With capacity $c_{u v}=c \geq 0$ for all edges $u v$.

- 2 Demands $d^{1}, d^{2}$ (with a potential compression rate $\lambda$ ).

■ Find a feasible routing with minimal energy costs.


Figures provided by Truong Khoa Phan

Network Design with Compression:

- Given a Network $G=(V, E)$,
- With capacity $c_{u v}=c \geq 0$ for all edges $u v$.
- 2 Demands $d^{1}, d^{2}$ (with a potential compression rate $\lambda$ ).

■ Find a feasible routing with minimal energy costs.

- Employ Compression if beneficial.


Figures provided by Truong Khoa Phan

■ Network Design with Compression can be fomulated as mixed integer program.

■ Network Design with Compression can be fomulated as mixed integer program.

■ Set of commodities $Q$ and capacity c installable in integers.

■ Network Design with Compression can be fomulated as mixed integer program.

- Set of commodities $Q$ and capacity c installable in integers.

■ Combine flow-conservation, capacity restrictions and Compression.

■ Network Design with Compression can be fomulated as mixed integer program.

- Set of commodities $Q$ and capacity c installable in integers.
- Combine flow-conservation, capacity restrictions and Compression.

■ Find a feasible routing,
Minimizing energy consumption ( $C_{u v}$ for $u v \in E$ and $C_{v}$ for active compression at $v \in V)$.

■ Network Design with Compression can be fomulated as mixed integer program.

- Set of commodities $Q$ and capacity c installable in integers.
- Combine flow-conservation, capacity restrictions and Compression.

■ Find a feasible routing,
Minimizing energy consumption ( $C_{u v}$ for $u v \in E$ and $C_{v}$ for active compression at $v \in V$ ).

- Variables:
$f_{v u}^{s t} \in \mathbb{R}_{\geq 0}$ : Fraction of demand st routed uncompressed on edge $v u$.
$g_{v u}^{s t} \in \mathbb{R}_{\geq 0}$ : Fraction of demand st routed compressed on edge $v u$.
$x_{u v} \in \mathbb{Z}_{\geq 0}$ : Usage of edge $u v$.
$y_{v} \in\{0,1\}$ : Whether compression enabled at node $v$.

$$
\begin{array}{ll}
\min & \sum_{u v \in E} C_{u v} x_{u v}+\sum_{v \in V} C_{v} y_{v} \\
\text { s.t. } & \sum_{u \in N(v)}\left(f_{v u}^{q}+g_{v u}^{q}-f_{u v}^{q}-g_{u v}^{q}\right)= \begin{cases}-1 & \text { if } u=s^{q}, \\
1 & \text { if } u=t^{q}, \\
0 & \text { else }\end{cases} \\
\quad \sum_{q \in Q}\left(d^{q}\left(f_{u v}^{q}+f_{v u}^{q}\right)+\lambda d^{q}\left(g_{u v}^{q}+g_{v u}^{q}\right)\right) \leq c x_{u v} & \forall u v \in V, \forall q \in Q \\
& -y_{v} \leq \sum_{u \in N(v)}\left(g_{u v}^{q}-g_{v u}^{q}\right) \leq y_{v} \\
& x_{u v} \in \mathbb{Z} \geq 0, y_{v} \in\{0,1\}, f_{u v}^{q} \geq 0, g_{u v}^{q} \geq 0
\end{array}
$$

$$
\left.\begin{array}{ll}
\min & \sum_{u v \in E} C_{u v} x_{u v}+\sum_{v \in v} C_{v} y_{v} \\
\text { s.t. } & \sum_{u \in N(v)}\left(f_{v u}^{q}+g_{v u}^{q}-f_{u v}^{q}-g_{u v}^{q}\right)= \begin{cases}-1 & \text { if } u=s^{q}, \\
1 & \text { if } u=t^{q}, \\
0 & \text { else }\end{cases} \\
\quad \sum_{q \in Q}\left(d^{q}\left(f_{u v}^{q}+f_{v u}^{q}\right)+\lambda d^{q}\left(g_{u v}^{q}+g_{v u}^{q}\right)\right) \leq c x_{u v} & \forall u v \in V, \forall q \in Q \\
& -y_{v} \leq \sum_{u \in N(v)}\left(g_{u v}^{q}-g_{v u}^{q}\right) \leq y_{v} \\
& x_{u v} \in \mathbb{Z} \geq 0, y_{v} \in\{0,1\}, f_{u v}^{q} \geq 0, g_{u v}^{q} \geq 0
\end{array} \quad \forall v \in V, \forall q \in Q\right\}
$$

$$
\left.\begin{array}{ll}
\min & \sum_{u v \in E} C_{u v} x_{u v}+\sum_{v \in v} C_{v} y_{v} \\
\text { s.t. } & \sum_{u \in N(v)}\left(f_{v u}^{q}+g_{v u}^{q}-f_{u v}^{q}-g_{u v}^{q}\right)= \begin{cases}-1 & \text { if } u=s^{q}, \\
1 & \text { if } u=t^{q}, \\
0 & \text { else }\end{cases} \\
\quad \sum_{q \in Q}\left(d^{q}\left(f_{u v}^{q}+f_{v u}^{q}\right)+\lambda d^{q}\left(g_{u v}^{q}+g_{v u}^{q}\right)\right) \leq c x_{u v} & \forall u v \in V, \forall q \in Q \\
& -y_{v} \leq \sum_{u \in N(v)}\left(g_{u v}^{q}-g_{v u}^{q}\right) \leq y_{v} \\
& x_{u v} \in \mathbb{Z} \geq 0, y_{v} \in\{0,1\}, f_{u v}^{q} \geq 0, g_{u v}^{q} \geq 0
\end{array} \quad \forall v \in V, \forall q \in Q\right\}
$$

$$
\left.\begin{array}{ll}
\min & \sum_{u v \in E} C_{u v} x_{u v}+\sum_{v \in V} C_{v} y_{v} \\
\text { s.t. } & \sum_{u \in N(v)}\left(f_{v u}^{q}+g_{v u}^{q}-f_{u v}^{q}-g_{u v}^{q}\right)= \begin{cases}-1 & \text { if } u=s^{q}, \\
1 & \text { if } u=t^{q}, \\
0 & \text { else }\end{cases} \\
\quad \sum_{q \in Q}\left(d^{q}\left(f_{u v}^{q}+f_{v u}^{q}\right)+\lambda d^{q}\left(g_{u v}^{q}+g_{v u}^{q}\right)\right) \leq c x_{u v} & \forall u v \in V, \forall q \in Q \\
& -y_{v} \leq \sum_{u \in N(v)}\left(g_{u v}^{q}-g_{v u}^{q}\right) \leq y_{v} \\
& x_{u v} \in \mathbb{Z} \geq 0, y_{v} \in\{0,1\}, f_{u v}^{q} \geq 0, g_{u v}^{q} \geq 0
\end{array} \quad \forall v \in V, \forall q \in Q\right\}
$$

$$
\left.\begin{array}{ll}
\min & \sum_{u v \in E} C_{u v} x_{u v}+\sum_{v \in V} C_{v} y_{v} \\
\text { s.t. } & \sum_{u \in N(v)}\left(f_{v u}^{q}+g_{v u}^{q}-f_{u v}^{q}-g_{u v}^{q}\right)= \begin{cases}-1 & \text { if } u=s^{q}, \\
1 & \text { if } u=t^{q}, \\
0 & \text { else }\end{cases} \\
\quad \sum_{q \in Q}\left(d^{q}\left(f_{u v}^{q}+f_{v u}^{q}\right)+\lambda d^{q}\left(g_{u v}^{q}+g_{v u}^{q}\right)\right) \leq c x_{u v} & \forall u v \in V, \forall q \in Q \\
& -y_{v} \leq \sum_{u \in N(v)}\left(g_{u v}^{q}-g_{v u}^{q}\right) \leq y_{v} \\
& x_{u v} \in \mathbb{Z} \geq 0, y_{v} \in\{0,1\}, f_{u v}^{q} \geq 0, g_{u v}^{q} \geq 0
\end{array} \quad \forall v \in V, \forall q \in Q\right\}
$$

How difficult is Network Design with Compression?

How difficult is Network Design with Compression?

| instance | abilene | germany |
| :--- | :---: | :---: |
| $\|V\|$ | 12 | 17 |
| $\|E\|$ | 15 | 26 |
| $\|Q\|$ | 130 | 251 |

## CPU time to optimality

How difficult is Network Design with Compression?

| instance | abilene | germany | factor |
| :--- | :---: | :---: | :---: |
| $\|V\|$ | 12 | 17 |  |
| $\|E\|$ | 15 | 26 |  |
| $\|Q\|$ | 130 | 251 |  |
| w/o compression | 0.14 s | 5.82 s |  |
| with compression | 19.95 s | $2,219.25 \mathrm{~s}$ | $>142$ |
| CPU time to optimality |  |  |  |

How difficult is Network Design with Compression?

| instance | abilene | germany | factor |
| :--- | :---: | :---: | :---: |
| $\|V\|$ | 12 | 17 |  |
| $\|E\|$ | 15 | 26 |  |
| $\|Q\|$ | 130 | 251 |  |
| w/o compression | 0.14 s | 5.82 s |  |
| with compression | 19.95 s | $2,219.25 \mathrm{~s}$ | $>142$ |
| CPU time to optimality |  |  |  |

How difficult is Network Design with Compression?

| instance | abilene | germany | factor |
| :--- | :---: | :---: | :---: |
| $\|V\|$ | 12 | 17 |  |
| $\|E\|$ | 15 | 26 |  |
| $\|Q\|$ | 130 | 251 |  |
| w/o compression | 0.14 s | 5.82 s |  |
| with compression | 19.95 s | $2,219.25 \mathrm{~s}$ | $>142$ |
| CPU time to optimality |  |  |  |

Conclusion: Complexity increases significantly!

## RWTH ACHEN UNVEESTIT

## Complexity of the General Problem

Cost of links: $C_{u v}$
Objective: $\min \sum_{u v \in E} C_{u v} x_{u v}$

## Network Design w/o Compression

The Network Design problem is NP-hard.

Cost of links: $C_{u v}$
Objective: $\min \sum_{u v \in E} C_{u v} x_{u v}$

## Network Design w/o Compression

The Network Design problem is NP-hard.

Cost of compression at node v: $C_{v}$ Objective: $\min \sum_{u v \in E} C_{u v} x_{u v}+\sum_{v \in V} C_{v} y_{v}$

## Network Design with Compression

Corollary: Network Design with Compression is NP-hard as well.

Cost of links: $C_{u v}$
Objective: $\min \sum_{u v \in E} C_{u v} x_{u v}$

## Network Design w/o Compression

The Network Design problem is NP-hard.

Cost of compression at node $v: C_{v}$ Objective: $\min \sum_{u v \in E} C_{u v} x_{u v}+\sum_{v \in V} C_{v} y_{v}$

## Network Design with Compression

Corollary: Network Design with Compression is NP-hard as well.
but, is it "more difficult" than Network Design?

## Easy case (w/o Compression!):

If $G$ is a tree, Network Design can be solved in polynomial time.

## Easy case (w/o Compression!):

If $G$ is a tree, Network Design can be solved in polynomial time.

Observation: Routing is fixed

## Easy case (w/o Compression!):

If $G$ is a tree, Network Design can be solved in polynomial time.

Observation: Routing is fixed
$\hookrightarrow$ Simple rounding of flows yields required capacities.

Easy case (w/o Compression!):
If $G$ is a tree, Network Design can be solved in polynomial time.

Observation: Routing is fixed
$\hookrightarrow$ Simple rounding of flows yields required capacities.

What impact does compression have?

## Easy case (w/o Compression!):

If $G$ is a tree, Network Design can be solved in polynomial time.

Observation: Routing is fixed
$\hookrightarrow$ Simple rounding of flows yields required capacities.

What impact does compression have?

## Definition

Given a fixed routing, the compressor placement problem is to determine the active compressors and link capacities at minimum cost.


- Star $G$ with $n+1$ vertices
- Demands $d_{i n}, i=1, \ldots, n-1$
- Capacity of $c$ on every link (very expensive to install more)

- Star $G$ with $n+1$ vertices

■ Demands $d_{i n}, i=1, \ldots, n-1$

- Capacity of $c$ on every link (very expensive to install more)


## Observations

- If $d_{i n}>c$, then $y_{i}=1$ (Compression needed in $i$ )

- Star $G$ with $n+1$ vertices

■ Demands $d_{i n}, i=1, \ldots, n-1$

- Capacity of $c$ on every link (very expensive to install more)


## Observations

- If $d_{i n}>c$, then $y_{i}=1$ (Compression needed in $\left.i\right) \rightarrow d_{i n} \leq c$ w.l.o.g.

- Star $G$ with $n+1$ vertices

■ Demands $d_{i n}, i=1, \ldots, n-1$

- Capacity of $c$ on every link (very expensive to install more)


## Observations

- If $d_{i n}>c$, then $y_{i}=1$ (Compression needed in $\left.i\right) \rightarrow d_{i n} \leq c$ w.l.o.g.
- If $\sum_{i=1}^{n-1} d_{i n}>c$, then at least two compressors needed

- Star $G$ with $n+1$ vertices

■ Demands $d_{i n}, i=1, \ldots, n-1$

- Capacity of $c$ on every link (very expensive to install more)


## Observations

- If $d_{i n}>c$, then $y_{i}=1$ (Compression needed in $\left.i\right) \rightarrow d_{i n} \leq c$ w.l.o.g.
- If $\sum^{n-1} d_{i n}>c$, then at least two compressors needed

Where to place converters? In center-node, or individual nodes $1, \ldots, n-1$ ?

## Theorem

Network Design with Compression on stars is at least weakly NP-hard.

Proof:

## Theorem

Network Design with Compression on stars is at least weakly
NP-hard.
Proof: Reduction from Knapsack

- profits $c_{i}, i \in N:=\{1, \ldots, n-1\}$
- weights $a_{i}, i \in N$
- capacity $B$ with $\max _{i \in N} a_{i} \leq B$ and $\sum_{i \in N} a_{i}>B$


## Theorem

Network Design with Compression on stars is at least weakly
NP-hard.
Proof: Reduction from Knapsack
■ profits $c_{i}, i \in N:=\{1, \ldots, n-1\}$

- weights $a_{i}, i \in N$
- capacity $B$ with $\max _{i \in N} a_{i} \leq B$ and $\sum_{i \in N} a_{i}>B$

1. Let $G=(V, E)$ with $V:=N \cup\{n, c\}, E$ star edges

## Theorem

Network Design with Compression on stars is at least weakly
NP-hard.
Proof: Reduction from Knapsack

- profits $c_{i}, i \in N:=\{1, \ldots, n-1\}$
- weights $a_{i}, i \in N$
- capacity $B$ with $\max _{i \in N} a_{i} \leq B$ and $\sum_{i \in N} a_{i}>B$

1. Let $G=(V, E)$ with $V:=N \cup\{n, c\}, E$ star edges
2. Set $C_{i}:= \begin{cases}c_{i} & i \in N \\ 0 & i=n \\ \infty & i=c\end{cases}$

## Theorem

Network Design with Compression on stars is at least weakly
NP-hard.
Proof: Reduction from Knapsack

- profits $c_{i}, i \in N:=\{1, \ldots, n-1\}$
- weights $a_{i}, i \in N$
- capacity $B$ with $\max _{i \in N} a_{i} \leq B$ and $\sum_{i \in N} a_{i}>B$

1. Let $G=(V, E)$ with $V:=N \cup\{n, c\}, E$ star edges
2. Set $C_{i}:=\left\{\begin{array}{ll}c_{i} & i \in N \\ 0 & i=n \\ \infty & i=c\end{array}\right.$. Set $C_{i j}:=\left\{\begin{array}{ll}0 & i \in N, j=c \\ M & i=c, j=n\end{array}\right.$ with $M>\sum C_{i}$

## Theorem

Network Design with Compression on stars is at least weakly
NP-hard.

Proof: Reduction from Knapsack

1. Let $G=(V, E)$ with $V:=N \cup\{n, c\}, E$ star edges
2. Set $C_{i}:=\left\{\begin{array}{ll}c_{i} & i \in N \\ 0 & i=n \\ \infty & i=c\end{array} 3\right.$. Set $C_{i j}:=\left\{\begin{array}{ll}0 & i \in N, j=c \\ M & i=c, j=n\end{array}\right.$ with $M>\sum C_{i}$
3. Set $\lambda=\frac{1}{2}, c=\lambda \sum_{i \in N} a_{i}+(1-\lambda) B$

## Theorem

Network Design with Compression on stars is at least weakly
NP-hard.

Proof: Reduction from Knapsack

1. Let $G=(V, E)$ with $V:=N \cup\{n, c\}, E$ star edges
2. Set $C_{i}:=\left\{\begin{array}{ll}c_{i} & i \in N \\ 0 & i=n \\ \infty & i=c\end{array} 3\right.$. Set $C_{i j}:=\left\{\begin{array}{ll}0 & i \in N, j=c \\ M & i=c, j=n\end{array}\right.$ with $M>\sum C_{i}$
3. Set $\lambda=\frac{1}{2}, c=\lambda \sum_{i \in N} a_{i}+(1-\lambda) B$
4. Baseline solution: $y_{i}=1 \quad \forall i \in N \cup\{n\}, x_{i j}=1 \quad \forall i j \in E$

## Theorem

Network Design with Compression on stars is at least weakly
NP-hard.

Proof: Reduction from Knapsack

1. Let $G=(V, E)$ with $V:=N \cup\{n, c\}, E$ star edges
2. Set $C_{i}:=\left\{\begin{array}{ll}c_{i} & i \in N \\ 0 & i=n \\ \infty & i=c\end{array} 3\right.$. Set $C_{i j}:=\left\{\begin{array}{ll}0 & i \in N, j=c \\ M & i=c, j=n\end{array}\right.$ with $M>\sum C_{i}$
3. Set $\lambda=\frac{1}{2}, c=\lambda \sum_{i \in N} a_{i}+(1-\lambda) B$
4. Baseline solution: $y_{i}=1 \quad \forall i \in N \cup\{n\}, x_{i j}=1 \quad \forall i j \in E$
5. Min Cost $=$ Max Savings to baseline solution

## Theorem

Network Design with Compression on stars is at least weakly
NP-hard.

Proof: Reduction from Knapsack

1. Let $G=(V, E)$ with $V:=N \cup\{n, c\}, E$ star edges
2. Set $C_{i}:=\left\{\begin{array}{ll}c_{i} & i \in N \\ 0 & i=n \\ \infty & i=c\end{array} 3\right.$. Set $C_{i j}:=\left\{\begin{array}{ll}0 & i \in N, j=c \\ M & i=c, j=n\end{array}\right.$ with $M>\sum C_{i}$
3. Set $\lambda=\frac{1}{2}, c=\lambda \sum_{i \in N} a_{i}+(1-\lambda) B$
4. Baseline solution: $y_{i}=1 \quad \forall i \in N \cup\{n\}, x_{i j}=1 \quad \forall i j \in E$
5. Min Cost $=$ Max Savings to baseline solution
6. Spare capacity on link $c n:(1-\lambda) B$

Extra flow by removing compression at node $i:(1-\lambda) a_{i}$

## Theorem

Network Design with Compression on stars is at least weakly
NP-hard.

Proof: Reduction from Knapsack

1. Let $G=(V, E)$ with $V:=N \cup\{n, c\}, E$ star edges
2. Set $C_{i}:=\left\{\begin{array}{ll}c_{i} & i \in N \\ 0 & i=n \\ \infty & i=c\end{array} 3\right.$. Set $C_{i j}:=\left\{\begin{array}{ll}0 & i \in N, j=c \\ M & i=c, j=n\end{array}\right.$ with $M>\sum C_{i}$
3. Set $\lambda=\frac{1}{2}, c=\lambda \sum_{i \in N} a_{i}+(1-\lambda) B$
4. Baseline solution: $y_{i}=1 \quad \forall i \in N \cup\{n\}, x_{i j}=1 \quad \forall i j \in E$
5. Min Cost $=$ Max Savings to baseline solution
6. Spare capacity on link $c n:(1-\lambda) B$

Extra flow by removing compression at node $i:(1-\lambda) a_{i}$
8. Max Savings = Max Knapsack

## Strong NP-completeness

## Theorem <br> Network Design with Compression is strongly NP-hard

Proof:

## Theorem

Network Design with Compression is strongly NP-hard
Proof:
Reduction from Hitting Set: "Universe" $U$, subsets $S_{i} \subseteq U$, and integer $k, \exists H \subseteq U$ with $|H| \leq k$ such that $H \cap S_{i} \neq \emptyset \forall i=1, \ldots, n$ ?


## Theorem

Network Design with Compression is strongly NP-hard
Proof:
Reduction from Hitting Set: "Universe" $U$, subsets $S_{i} \subseteq U$, and integer $k, \exists H \subseteq U$ with $|H| \leq k$ such that $H \cap S_{i} \neq \emptyset \forall i=1, \ldots, n$ ?


## Theorem

Network Design with Compression is strongly NP-hard
Proof:
Reduction from Hitting Set: "Universe" $U$, subsets $S_{i} \subseteq U$, and integer $k, \exists H \subseteq U$ with $|H| \leq k$ such that $H \cap S_{i} \neq \emptyset \forall i=1, \ldots, n$ ?


## Theorem

Network Design with Compression is strongly NP-hard
Proof:
Reduction from Hitting Set: "Universe" $U$, subsets $S_{i} \subseteq U$, and integer $k, \exists H \subseteq U$ with $|H| \leq k$ such that $H \cap S_{i} \neq \emptyset \forall i=1, \ldots, n$ ?


## Theorem

Network Design with Compression is strongly NP-hard

## Proof:

Reduction from Hitting Set: "Universe" $U$, subsets $S_{i} \subseteq U$, and integer $k, \exists H \subseteq U$ with $|H| \leq k$ such that $H \cap S_{i} \neq \emptyset \forall i=1, \ldots, n$ ?


## Theorem

Network Design with Compression is strongly NP-hard

## Proof:

Reduction from Hitting Set: "Universe" $U$, subsets $S_{i} \subseteq U$, and integer $k, \exists H \subseteq U$ with $|H| \leq k$ such that $H \cap S_{i} \neq \emptyset \forall i=1, \ldots, n$ ?


## Theorem

Network Design with Compression is strongly NP-hard

## Proof:

Reduction from Hitting Set: "Universe" $U$, subsets $S_{i} \subseteq U$, and integer $k, \exists H \subseteq U$ with $|H| \leq k$ such that $H \cap S_{i} \neq \emptyset \forall i=1, \ldots, n$ ?


## Theorem

Network Design with Compression is strongly NP-hard

## Proof:

Reduction from Hitting Set: "Universe" $U$, subsets $S_{i} \subseteq U$, and integer $k, \exists H \subseteq U$ with $|H| \leq k$ such that $H \cap S_{i} \neq \emptyset \forall i=1, \ldots, n$ ?

capacity $c=1$ demand $d_{v^{i} w_{2}}=\frac{2}{n}$

$$
\lambda=\frac{1}{2}
$$

## Theorem

Network Design with Compression is strongly NP-hard

## Proof:

Reduction from Hitting Set: "Universe" $U$, subsets $S_{i} \subseteq U$, and integer $k, \exists H \subseteq U$ with $|H| \leq k$ such that $H \cap S_{i} \neq \emptyset \forall i=1, \ldots, n$ ?

capacity $c=1$ demand $d_{v^{i} w_{2}}=\frac{2}{n}$

$$
\lambda=\frac{1}{2}
$$

$$
|H| \leq k \text { if and only if Cost of NDPC } \leq 2 k+1
$$

## Theorem

Network Design with Compression on trees is weakly NP-hard.
■ Tree $G=(V, E),|V|=n$, nodes labeled increasingly by BFS, starting at $i=1$


## Theorem

Network Design with Compression on trees is weakly NP-hard.
■ Tree $G=(V, E),|V|=n$, nodes labeled increasingly by BFS, starting at $i=1$

- Capacity $c \in \mathbb{Z}_{\geq 0}$ per installed batch

■ Commodities $Q=\{(i, 1): i \geq 2\}, d_{i} \in \mathbb{Z}_{\geq 0}$, direct routing


Notation
■ [ $i, k$ ] subtree induced by $i$ and offspring of $i$ 's first $k$ children


Notation
■ [ $i, k]$ subtree induced by $i$ and offspring of $i$ 's first $k$ children

- $p(i)$ predecessor of $i \neq 1, s(i, k)$ sibling $k$ of $i$


Notation
■ [ $i, k$ ] subtree induced by $i$ and offspring of $i$ 's first $k$ children

- $p(i)$ predecessor of $i \neq 1, s(i, k)$ sibling $k$ of $i$
- a(i) number of children of $i, a(i, k):=a(s(i, k))$

subtree $[6,2]$


## Notation

■ [ $i, k$ ] subtree induced by $i$ and offspring of $i$ 's first $k$ children

- $p(i)$ predecessor of $i \neq 1, s(i, k)$ sibling $k$ of $i$
- a(i) number of children of $i, a(i, k):=a(s(i, k))$

■ $d([i, k])$ demand induced by subgraph $[i, k]$


Cost functions:

- $\mathcal{C}([i, k], f): \min$ cost of $[i, k]$ with compressing in $i$ and uncompressed flow of $f$ on (i,p(i)) (but cost not counted yet)
- $\mathcal{D}([i, k], f): \min$ cost of $[i, k]$ with decompressing in $i$ and uncompressed flow of $f$ on (i,p(i))
- $\mathcal{N}([i, k], f): \min$ cost of $[i, k]$ with neither compressing nor decompressing and uncompressed flow of $f$ on (i,p(i))

subtree $[6,2]$


## Cost functions:

- $\mathcal{C}([i, k], f): \min$ cost of $[i, k]$ with compressing in $i$ and uncompressed flow of $f$ on (i,p(i)) (but cost not counted yet)
■ $\mathcal{D}([i, k], f):$ min cost of $[i, k]$ with decompressing in $i$ and uncompressed flow of $f$ on (i,p(i))
- $\mathcal{N}([i, k], f):$ min cost of $[i, k]$ with neither compressing nor decompressing and uncompressed flow of $f$ on (i,p(i))

subtree $[6,2]$


## Lemma

Given a tree instance, an optimal solution of NDPC is given by $\min \{\mathcal{D}([1, a(1)], 0), \mathcal{N}([1, a(1)], 0)\}$.

Observation: For $i \neq 1$, only $\mathcal{C}([i, k], 0)$ and $\mathcal{D}([i, k], d[i, k])$ needed.

Observation: For $i \neq 1$, only $\mathcal{C}([i, k], 0)$ and $\mathcal{D}([i, k], d[i, k])$ needed.

## Lemma (Initialization)

For $i \in V \backslash\{1\}$ and $f \in \mathbb{Z}_{+}$, it is

- $\mathcal{C}([i, 0], 0)=C_{i}$,
- $\mathcal{D}([i, a(i)], d([i, 0]))=C_{i}$,
- $\mathcal{N}([i, 0], f)=0$.

Observation: For $i \neq 1$, only $\mathcal{C}([i, k], 0)$ and $\mathcal{D}([i, k], d[i, k])$ needed.

## Lemma (Initialization)

For $i \in V \backslash\{1\}$ and $f \in \mathbb{Z}_{+}$, it is

- $\mathcal{C}([i, 0], 0)=C_{i}$,
- $\mathcal{D}([i, a(i)], d([i, 0]))=C_{i}$,
- $\mathcal{N}([i, 0], f)=0$.

Observation: For $i \neq 1$, only $\mathcal{C}([i, k], 0)$ and $\mathcal{D}([i, k], d[i, k])$ needed.

## Lemma (Initialization)

For $i \in V \backslash\{1\}$ and $f \in \mathbb{Z}_{+}$, it is

- $\mathcal{C}([i, 0], 0)=C_{i}$,
- $\mathcal{D}([i, a(i)], d([i, 0]))=c_{i}$,
- $\mathcal{N}([i, 0], f)=0$.

Observation: For $i \neq 1$, only $\mathcal{C}([i, k], 0)$ and $\mathcal{D}([i, k], d[i, k])$ needed.

## Lemma (Initialization)

For $i \in V \backslash\{1\}$ and $f \in \mathbb{Z}_{+}$, it is

- $\mathcal{C}([i, 0], 0)=C_{i}$,
- $\mathcal{D}([i, a(i)], d([i, 0]))=C_{i}$,
- $\mathcal{N}([i, 0], f)=0$.



## Lemma (Recursion Compression)

Let $x_{0}:=d([s(i, k), a(i, k)])$. For every node $i \neq 1$ and $k=1, \ldots, a(i)$, it is

$$
\mathcal{C}([i, k], 0)=\mathcal{C}([i, k-1], 0)+\min \left\{\begin{array}{c}
\mathcal{C}([s(i, k), a(i, k)], 0)+C_{s(i, k) i\left\lceil\frac{x_{0}}{\gamma c}\right\rceil}^{\frac{1}{c}}, \\
\min _{x \in\left\{d^{s(i, k)}, \ldots, x_{0}\right\}}\left\{\begin{array}{l}
\mathcal{N}([s(i, k), a(i, k)], x) \\
\left.+C_{s(i, k) i} i \frac{x}{c}+\frac{x_{0}-x}{\gamma c}\right\rceil
\end{array}\right\}
\end{array}\right\} .
$$

Observation: For $i \neq 1$, only $\mathcal{C}([i, k], 0)$ and $\mathcal{D}([i, k], d[i, k])$ needed.

## Lemma (Initialization)

For $i \in V \backslash\{1\}$ and $f \in \mathbb{Z}_{+}$, it is

- $\mathcal{C}([i, 0], 0)=C_{i}$,
- $\mathcal{D}([i, a(i)], d([i, 0]))=C_{i}$,
- $\mathcal{N}([i, 0], f)=0$.



## Lemma (Recursion Compression)

Let $x_{0}:=d([s(i, k), a(i, k)])$. For every node $i \neq 1$ and $k=1, \ldots, a(i)$, it is

$$
\mathcal{C}([i, k], 0)=\mathcal{C}([i, k-1], 0)+\min \left\{\begin{array}{c}
\mathcal{C}([s(i, k), a(i, k)], 0)+C_{s(i, k) i}\left\lceil\frac{x_{0}}{\gamma c}\right\rceil, \\
\min _{x \in\left\{d^{s(i, k)}, \ldots, x_{0}\right\}}\left\{\begin{array}{l}
\mathcal{N}([s(i, k), a(i, k)], x) \\
\left.+C_{s(i, k) i} i \frac{x}{c}+\frac{x_{0}-x}{\gamma c}\right\rceil
\end{array}\right\}
\end{array}\right\} .
$$

## Lemma (Recursion Decompression)

Let $x_{0}:=d([s(i, k), a(i, k)])$. For every node $i \neq 1$ and $k=1, \ldots, a(i)$, it is

$$
\begin{aligned}
& \mathcal{D}([i, k], d([i, a(i)]))=\mathcal{D}([i, a(i)], d([i, k-1])) \\
& +\min \left\{\begin{array}{l}
\mathcal{C}([s(i, k), a(i, k)], 0)+C_{s(i, k) i}\left\lceil\frac{x_{0}}{\gamma c}\right], \\
\min _{x \in\left\{s(i, k), \ldots, x_{0}\right\}}\left\{\begin{array}{l}
\mathcal{N}([s(i, k), a(i, k)], x) \\
+C_{s(i, k) i}\left\lceil\frac{x}{c}+\frac{x_{0}-x}{\gamma c}\right\rceil
\end{array}\right\}
\end{array}\right\}
\end{aligned}
$$

## Lemma (Recursion Decompression)

Let $x_{0}:=d([s(i, k), a(i, k)])$. For every node $i \neq 1$ and $k=1, \ldots, a(i)$, it is

$$
\begin{aligned}
& \mathcal{D}([i, k], d([i, a(i)]))=\mathcal{D}([i, a(i)], d([i, k-1])) \\
& +\min \left\{\begin{array}{c}
\left.\mathcal{C}([s(i, k), a(i, k)], 0)+C_{s(i, k) i} i \frac{x_{0}}{\gamma c}\right], \\
\min _{x \in\left\{d^{s}(i, k), \ldots, x_{0}\right\}}\left\{\begin{array}{l}
\mathcal{N}([s(i, k), a(i, k)], x) \\
+C_{s(i, k) i}\left\lceil\frac{x}{c}+\frac{x_{0}-x}{\gamma c}\right\rceil
\end{array}\right\}
\end{array}\right\}
\end{aligned}
$$



## Lemma (Recursion Neither compression nor decompression)

Define $x_{0}:=d([s(i, k), a(i, k)])$. For $i \neq 1, k=1, \ldots, a(i)$, and for $f=d^{i} \ldots, d([i, k])$, it is

$$
\mathcal{N}([i, k], f)=\min \left\{\begin{array}{l}
\mathcal{N}([i, k-1], f)+\mathcal{C}([s(i, k), a(i, k)], 0)+C_{s(i, k) i}\left\lceil\frac{x_{0}}{\gamma c}\right\rceil, \\
\mathcal{N}\left([i, k-1], f-x_{0}\right)+\mathcal{D}\left([s(i, k), a(i, k)], x_{0}\right)+C_{s(i, k) i}\left\lceil\frac{x_{0}}{c}\right\rceil, \\
\min _{x \in\{d(s(i, k)), \ldots, f-d(i)\}}\left\{\begin{array}{c}
\mathcal{N}([i, k-1], f-x)+\mathcal{N}([s(i, k), a(i, k)], x) \\
+C_{s(i, k) i}\left\lceil\frac{x}{c}+\frac{x_{0}-x}{\gamma c}\right\rceil
\end{array}\right\}
\end{array}\right.
$$

## Lemma (Recursion Decompression)

Let $x_{0}:=d([s(i, k), a(i, k)])$. For every node $i \neq 1$ and $k=1, \ldots, a(i)$, it is

$$
\begin{aligned}
& \mathcal{D}([i, k], d([i, a(i)]))=\mathcal{D}([i, a(i)], d([i, k-1])) \\
& +\min \left\{\begin{array}{c}
\left.\mathcal{C}([s(i, k), a(i, k)], 0)+C_{s(i, k) i} i \frac{x_{0}}{\gamma c}\right], \\
\min _{x \in\left\{d^{s}(i, k), \ldots, x_{0}\right\}}\left\{\begin{array}{l}
\mathcal{N}([s(i, k), a(i, k)], x) \\
+C_{s(i, k) i}\left\lceil\frac{x}{c}+\frac{x_{0}-x}{\gamma c}\right\rceil
\end{array}\right\}
\end{array}\right\}
\end{aligned}
$$



## Lemma (Recursion Neither compression nor decompression)

Define $x_{0}:=d([s(i, k), a(i, k)])$. For $i \neq 1, k=1, \ldots, a(i)$, and for $f=d^{i} \ldots, d([i, k])$, it is

$$
\mathcal{N}([i, k], f)=\min \left\{\begin{array}{l}
\mathcal{N}([i, k-1], f)+\mathcal{C}([s(i, k), a(i, k)], 0)+C_{s(i, k) i}\left\lceil\frac{x_{0}}{\gamma c}\right\rceil, \\
\mathcal{N}\left([i, k-1], f-x_{0}\right)+\mathcal{D}\left([s(i, k), a(i, k)], x_{0}\right)+C_{s(i, k) i}\left\lceil\frac{x_{0}}{c}\right\rceil, \\
\min _{x \in\{d(s(i, k)), \ldots, f-d(i)\}}\left\{\begin{array}{c}
\mathcal{N}([i, k-1], f-x)+\mathcal{N}([s(i, k), a(i, k)], x) \\
+C_{s(i, k) i}\left\lceil\frac{x}{c}+\frac{x_{0}-x}{\gamma c}\right\rceil
\end{array}\right\}
\end{array}\right.
$$

## Lemma (Recursion Decompression)

Let $x_{0}:=d([s(i, k), a(i, k)])$. For every node $i \neq 1$ and $k=1, \ldots, a(i)$, it is

$$
\begin{aligned}
& \mathcal{D}([i, k], d([i, a(i)]))=\mathcal{D}([i, a(i)], d([i, k-1])) \\
& +\min \left\{\begin{array}{c}
\left.\mathcal{C}([s(i, k), a(i, k)], 0)+C_{s(i, k) i} i \frac{x_{0}}{\gamma c}\right], \\
\min _{x \in\left\{d^{s}(i, k), \ldots, x_{0}\right\}}\left\{\begin{array}{l}
\mathcal{N}([s(i, k), a(i, k)], x) \\
+C_{s(i, k) i}\left\lceil\frac{x}{c}+\frac{x_{0}-x}{\gamma c}\right\rceil
\end{array}\right\}
\end{array}\right\}
\end{aligned}
$$



## Lemma (Recursion Neither compression nor decompression)

Define $x_{0}:=d([s(i, k), a(i, k)])$. For $i \neq 1, k=1, \ldots, a(i)$, and for $f=d^{i} \ldots, d([i, k])$, it is

$$
\mathcal{N}([i, k], f)=\min \left\{\begin{array}{l}
\left.\mathcal{N}([i, k-1], f)+\mathcal{C}([s(i, k), a(i, k)], 0)+C_{s(i, k) i} i \frac{x_{0}}{\gamma c}\right\rceil, \\
\left.\mathcal{N}\left([i, k-1], f-x_{0}\right)+\mathcal{D}\left([s(i, k), a(i, k)], x_{0}\right)+C_{s(i, k) i} i \frac{x_{0}}{c}\right\rceil, \\
\min _{x \in\{d(s(i, k)), \ldots, f-d(i)\}}\left\{\begin{array}{c}
\mathcal{N}([i, k-1], f-x)+\mathcal{N}([s(i, k), a(i, k)], x) \\
+C_{s(i, k) i}\left\lceil\frac{x}{c}+\frac{x_{0}-x}{\gamma c}\right\rceil
\end{array}\right\}
\end{array}\right\}
$$

Let $\triangle:=\max _{q \in Q} d^{q}$ be the maximum demand value

## Theorem

NDPC on trees can be solved in $O\left(n^{3} \triangle^{2}\right)$.
Proof:

Let $\triangle:=\max _{q \in Q} d^{q}$ be the maximum demand value

## Theorem

NDPC on trees can be solved in $O\left(n^{3} \triangle^{2}\right)$.
Proof:
■ Number of subtrees: $2 n-1$

Let $\triangle:=\max _{q \in Q} d^{q}$ be the maximum demand value

## Theorem

NDPC on trees can be solved in $O\left(n^{3} \triangle^{2}\right)$.

## Proof:

■ Number of subtrees: $2 n-1$
■ Computing one entry of $\mathcal{C}, \mathcal{D}$, and $\mathcal{N}$ takes $O(n \triangle)$.

- $\mathcal{N}$ has $n \triangle$ entries per $[i, k]$


## Network Design on a Tree

Let $\triangle:=\max _{q \in Q} d^{q}$ be the maximum demand value

## Theorem

NDPC on trees can be solved in $O\left(n^{3} \triangle^{2}\right)$.

## Proof:

■ Number of subtrees: $2 n-1$
■ Computing one entry of $\mathcal{C}, \mathcal{D}$, and $\mathcal{N}$ takes $O(n \triangle)$.

- $\mathcal{N}$ has $n \triangle$ entries per $[i, k]$
- Total runtime of $O\left(n^{3} \triangle^{2}\right)$


## Outline

## (1) Example 1: Network Design with Compression

(2) Example 2: Train Packing Problem

Example 3: Spectrum Allocation

## Train Packing Problem

Given a set of commodities $Q=\left\{\left(s^{q}, t^{q}, d^{q}\right): q=1, \ldots,|Q|\right\}$, a network $G=(V, A)$, a set of shunting yards $R \subset V$, and a train capacity $C$, determine the minimum number of trains needed to transport all demands, where each train can be rearranged at shunting yards $R$ (but at least one commodity should continue with the same train).

## Train Packing Problem

Given a set of commodities $Q=\left\{\left(s^{q}, t^{q}, d^{q}\right): q=1, \ldots,|Q|\right\}$, a network $G=(V, A)$, a set of shunting yards $R \subset V$, and a train capacity $C$, determine the minimum number of trains needed to transport all demands, where each train can be rearranged at shunting yards $R$ (but at least one commodity should continue with the same train).

First Results: Master thesis F. Heckhausen (in preparation)

- $|A|=1$ : bin packing - NP-complete


## Train Packing Problem

Given a set of commodities $Q=\left\{\left(s^{q}, t^{q}, d^{q}\right): q=1, \ldots,|Q|\right\}$, a network $G=(V, A)$, a set of shunting yards $R \subset V$, and a train capacity $C$, determine the minimum number of trains needed to transport all demands, where each train can be rearranged at shunting yards $R$ (but at least one commodity should continue with the same train).

First Results: Master thesis F. Heckhausen (in preparation)

- $|A|=1$ : bin packing - NP-complete
- $G=P_{n}, C=2, d^{q}=1,|R|=1$ : number of trains $=\frac{(n-1)(n-2)}{2}$


## Train Packing Problem

Given a set of commodities $Q=\left\{\left(s^{q}, t^{q}, d^{q}\right): q=1, \ldots,|Q|\right\}$, a network $G=(V, A)$, a set of shunting yards $R \subset V$, and a train capacity $C$, determine the minimum number of trains needed to transport all demands, where each train can be rearranged at shunting yards $R$ (but at least one commodity should continue with the same train).

First Results: Master thesis F. Heckhausen (in preparation)

- $|A|=1$ : bin packing - NP-complete
- $G=P_{n}, C=2, d^{q}=1,|R|=1$ : number of trains $=\frac{(n-1)(n-2)}{2}$

■ $G=P_{n}, C=2, d^{q}=1,|R|=n$ :
number of trains $= \begin{cases}\frac{(n-1)(n+1)}{8} & \text { if } n=2 k+1 \\ \frac{n^{2}}{8} & \text { if } n=4 k \\ \frac{n^{2}}{8}+\frac{1}{2} & \text { if } n=4 k+2\end{cases}$

## Outline

## (1) Example 1: Network Design with Compression Example 2: Train Packing Problem

(3) Example 3: Spectrum Allocation

Idea: fixed spectrum-block size $\rightarrow$ flexible block-size
Standard grid


Flexgrid


■ Spectrum is divided into a small slots (e.g. 6.25 GHz )

Idea: fixed spectrum-block size $\rightarrow$ flexible block-size
Standard grid


Flexgrid


■ Spectrum is divided into a small slots (e.g. 6.25 GHz )

- Demands request a custom amount of these slots ('size')

Idea: fixed spectrum-block size $\rightarrow$ flexible block-size
Standard grid


Flexgrid


- Spectrum is divided into a small slots (e.g. 6.25 GHz )
- Demands request a custom amount of these slots ('size') $\Rightarrow$ Less spectrum wasted by custom-tailored slot sizes

Idea: fixed spectrum-block size $\rightarrow$ flexible block-size
Standard grid


Flexgrid


■ Spectrum is divided into a small slots (e.g. 6.25 GHz )

- Demands request a custom amount of these slots ('size') $\Rightarrow$ Less spectrum wasted by custom-tailored slot sizes
- "Freedom" is paid for: contiguity of assigned slots required


Spectrum

Demands:


|  | 3 |
| :--- | :--- | :--- | :--- |
| $\square$ | 2 |

## Definition (Spectrum Allocation Problem (SA))

Given a simple undirected graph $G=(V, E)$ and a set $R$ of pairs $R_{i}=\left(P_{i}, d_{i}\right) \in \mathcal{P} \times \mathbb{N}, 1 \leq i \leq I$, determine

1. for every $R_{i}$ an interval $I_{i}=\left[a_{i}, b_{i}\right)$ with $a_{i} \leq b_{i} \in \mathbb{N}$ und $b_{i}-a_{i}=d_{i}$, such that $\max \left\{b_{i} \mid i=1, \ldots, I\right\}$ minimal, where $I_{i} \cap I_{j}=\emptyset$ if paths $P_{i}$ and $P_{j}$ share an edge in $G$.
Let $S A(G, R)$ denote the value of an optimal solution.


Spectrum

Demands:


|  | 3 |
| :--- | :--- | :--- | :--- | :--- |
| $\square$ | 2 |

## Definition (Spectrum Allocation Problem (SA))

Given a simple undirected graph $G=(V, E)$ and a set $R$ of pairs $R_{i}=\left(P_{i}, d_{i}\right) \in \mathcal{P} \times \mathbb{N}, 1 \leq i \leq I$, determine

1. for every $R_{i}$ an interval $I_{i}=\left[a_{i}, b_{i}\right)$ with $a_{i} \leq b_{i} \in \mathbb{N}$ und $b_{i}-a_{i}=d_{i}$, such that $\max \left\{b_{i} \mid i=1, \ldots, I\right\}$ minimal, where $I_{i} \cap I_{j}=\emptyset$ if paths $P_{i}$ and $P_{j}$ share an edge in $G$.
Let $S A(G, R)$ denote the value of an optimal solution.


Spectrum

Demands:
 $, 1,2,3,4,5,6,7,8,9$ !


## Definition (Spectrum Allocation Problem (SA))

Given a simple undirected graph $G=(V, E)$ and a set $R$ of pairs $R_{i}=\left(P_{i}, d_{i}\right) \in \mathcal{P} \times \mathbb{N}, 1 \leq i \leq I$, determine

1. for every $R_{i}$ an interval $I_{i}=\left[a_{i}, b_{i}\right)$ with $a_{i} \leq b_{i} \in \mathbb{N}$ und $b_{i}-a_{i}=d_{i}$, such that $\max \left\{b_{i} \mid i=1, \ldots, I\right\}$ minimal, where $I_{i} \cap I_{j}=\emptyset$ if paths $P_{i}$ and $P_{j}$ share an edge in $G$.
Let $S A(G, R)$ denote the value of an optimal solution.


Spectrum

Demands:

$, 1,2,3,4,5,6,7,8,9$ !

|  | 3 |
| :--- | :--- | :--- | :--- | :--- |

## Definition (Spectrum Allocation Problem (SA))

Given a simple undirected graph $G=(V, E)$ and a set $R$ of pairs $R_{i}=\left(P_{i}, d_{i}\right) \in \mathcal{P} \times \mathbb{N}, 1 \leq i \leq I$, determine

1. for every $R_{i}$ an interval $I_{i}=\left[a_{i}, b_{i}\right)$ with $a_{i} \leq b_{i} \in \mathbb{N}$ und $b_{i}-a_{i}=d_{i}$, such that $\max \left\{b_{i} \mid i=1, \ldots, I\right\}$ minimal, where $I_{i} \cap I_{j}=\emptyset$ if paths $P_{i}$ and $P_{j}$ share an edge in $G$.
Let $S A(G, R)$ denote the value of an optimal solution.


Spectrum

Demands:

$, 1,2,3,4,5,6,7,8,9$ !


## Definition (Spectrum Allocation Problem (SA))

Given a simple undirected graph $G=(V, E)$ and a set $R$ of pairs $R_{i}=\left(P_{i}, d_{i}\right) \in \mathcal{P} \times \mathbb{N}, 1 \leq i \leq I$, determine

1. for every $R_{i}$ an interval $I_{i}=\left[a_{i}, b_{i}\right)$ with $a_{i} \leq b_{i} \in \mathbb{N}$ und $b_{i}-a_{i}=d_{i}$, such that $\max \left\{b_{i} \mid i=1, \ldots, I\right\}$ minimal, where $I_{i} \cap I_{j}=\emptyset$ if paths $P_{i}$ and $P_{j}$ share an edge in $G$.
Let $S A(G, R)$ denote the value of an optimal solution.

## Definition (Interval-Coloring Problem (IC))

Let $G=(V, E)$ and $d: V \mapsto \mathbb{N}$. The Interval Coloring Problem is to assign to every vertex $v$ an interval of length $d(v)$, such that adjacent vertices are assigned disjoint intervals. $\chi_{I}(G)=$ the minimum of colors required.


## Definition (Interval-Coloring Problem (IC))

Let $G=(V, E)$ and $d: V \mapsto \mathbb{N}$. The Interval Coloring Problem is to assign to every vertex $v$ an interval of length $d(v)$, such that adjacent vertices are assigned disjoint intervals. $\chi_{I}(G)=$ the minimum of colors required.



## $S A(G, R, P)=\chi_{I}\left(G^{\prime}\right)$

The Spectrum Allocation Problem $(G, R, P)$ is equivalent to the Interval-Coloring Problem on the edge-intersection graph $G^{\prime}$ of paths $P_{i}$.

## Corollary

Spectrum Allocation is $\mathcal{N} \mathcal{P}$-hard on general networks as well as on star networks

Proof for star networks: wavelength assignment $\left(d_{i}=1\right)$ is $\mathcal{N} \mathcal{P}$-hard by a reduction from edge coloring.

## Corollary

Spectrum Allocation is $\mathcal{N} \mathcal{P}$-hard on general networks as well as on star networks

Proof for star networks: wavelength assignment $\left(d_{i}=1\right)$ is $\mathcal{N} \mathcal{P}$-hard by a reduction from edge coloring.

## Corollary

Spectrum Allocation is already $\mathcal{N P}$-hard on path networks and $d_{i} \in\{1,2\}$
Proof: Interval-Coloring on a path is equivalent to Dynamic Storage Allocation, which is known to be $\mathcal{N} \mathcal{P}$-hard.

## Definition (Interval-Coloring Problem (IC))

Given a graph $G=(V, E)$ and a weight function $d: V \mapsto \mathbb{N}$, the Interval Coloring Problem is to assign to every vertex $v$ an interval of length $d(v)$, such that adjacent vertices are not assigned common colors. Let $\chi_{I}(G)$ denote the minimum of colors required.


## Definition (Interval-Coloring Problem (IC))

Given a graph $G=(V, E)$ and a weight function $d: V \mapsto \mathbb{N}$, the Interval Coloring Problem is to assign to every vertex $v$ an interval of length $d(v)$, such that adjacent vertices are not assigned common colors. Let $\chi_{I}(G)$ denote the minimum of colors required.


$$
S A(G, R, P)=\chi_{I}\left(G^{\prime}\right)
$$

The Spectrum Allocation Problem $(G, R, P)$ is equivalent to the Interval-Coloring Problem on the edge-intersection graph $G^{\prime}$ of paths $P_{i}$.

## (R)SA on Star Networks

## Definition (Star)

A star $K_{1, n}$ is a graph with vertex set $V\left(K_{1, n}\right)=\left\{v_{0}, \ldots, v_{n}\right\}$ and edge set $\left.E\left(K_{1, n}\right)=\left\{\left(v_{0}, v_{i}\right) \mid i=1, \ldots, n\right)\right\}$.

## (R)SA on Star Networks

## Definition (Star)

A star $K_{1, n}$ is a graph with vertex set $V\left(K_{1, n}\right)=\left\{v_{0}, \ldots, v_{n}\right\}$ and edge set $\left.E\left(K_{1, n}\right)=\left\{\left(v_{0}, v_{i}\right) \mid i=1, \ldots, n\right)\right\}$.

## Lemma

The $(R) S A$ problem on stars is NP-hard, even if all $d_{i}=1$.
Proof: Equivalent to Edge Interval-Coloring on a multigraph



Color edges with intervals $\left[a_{i}, b_{i}\right.$ ) of length $d_{i}$ such that

$$
\left[a_{i-1}, b_{i-1}\right) \cap\left[a_{i}, b_{i}\right)=\emptyset=\left[a_{i}, b_{i}\right) \cap\left[a_{i+1}, b_{i+1}\right)
$$




Color edges with intervals $\left[a_{i}, b_{i}\right.$ ) of length $d_{i}$ such that

$$
\left[a_{i-1}, b_{i-1}\right) \cap\left[a_{i}, b_{i}\right)=\emptyset=\left[a_{i}, b_{i}\right) \cap\left[a_{i+1}, b_{i+1}\right)
$$

Optimal Solution: Consider odd and even edges separately



Color edges with intervals $\left[a_{i}, b_{i}\right.$ ) of length $d_{i}$ such that

$$
\left[a_{i-1}, b_{i-1}\right) \cap\left[a_{i}, b_{i}\right)=\emptyset=\left[a_{i}, b_{i}\right) \cap\left[a_{i+1}, b_{i+1}\right)
$$

Optimal Solution: Consider odd and even edges separately

- Assign $\left[0, d_{2 j+1}\right)$ for $j=0, \ldots,\left\lfloor\frac{k-1}{2}\right\rfloor-1$



Color edges with intervals $\left[a_{i}, b_{i}\right.$ ) of length $d_{i}$ such that

$$
\left[a_{i-1}, b_{i-1}\right) \cap\left[a_{i}, b_{i}\right)=\emptyset=\left[a_{i}, b_{i}\right) \cap\left[a_{i+1}, b_{i+1}\right)
$$

Optimal Solution: Consider odd and even edges separately

- Assign $\left[0, d_{2 j+1}\right)$ for $j=0, \ldots,\left\lfloor\frac{k-1}{2}\right\rfloor-1$
- Assign $\left[\chi-d_{2 j}, \chi\right)$ for $j=1, \ldots,\left\lfloor\frac{k-1}{2}\right\rfloor$ with
$\chi:=\max _{j=1, \ldots, k-2}\left\{d_{j}+d_{j+1}\right\}$



## 

$\left|P_{i}\right|=1 \Leftrightarrow$ Loop in $G^{\prime}$


## 

$\left|P_{i}\right|=1 \Leftrightarrow$ Loop in $G^{\prime}$

$\left|P_{i}\right|=1 \Leftrightarrow$ Loop in $G^{\prime}$

$\left|P_{i}\right|=1 \Leftrightarrow$ Loop in $G^{\prime}$


## RWTHAACHEN <br> UNIVERSITY

$k$ even: analogue to paths


## CLEMSTNAN

$k$ even: analogue to paths
$k$ odd:

- after removal of a single edge, we obtain a path



## CLEMS苒N:

$k$ even: analogue to paths
$k$ odd:

- after removal of a single edge, we obtain a path

$k$ even: analogue to paths
k odd:
- after removal of a single edge, we obtain a path
- removed edge requires third level

$k$ even: analogue to paths
$k$ odd:
- after removal of a single edge, we obtain a path
- removed edge requires third level

■ search for edge $\left(v_{j}, v_{j+1}\right)$ such that $d_{j-1}+d_{j}+d_{j+1}$ is minimized


# Algorithmic Graph Theory: How hard is your combinatorial optimization problem? 

Arie M.C.A. Koster

Lecture 2

Clemson, June 7, 2017

