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A Visualization
Network Design with Compression:
m Given a Network G = (V, E),

m With capacity ¢,, = ¢ > 0 for all edges uv.
m 2 Demands d?, d? (with a potential compression rate \).
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A Visualization

Network Design with Compression:

m Given a Network G = (V, E),

m With capacity c,, = ¢ > 0 for all edges uv.

m 2 Demands d!, d? (with a potential compression rate )).
m Find a feasible routing with minimal energy costs.
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A Visualization

Network Design with Compression:

m Given a Network G = (V, E),

m With capacity ¢,, = ¢ > 0 for all edges uv.

m 2 Demands d?, d? (with a potential compression rate \).
m Find a feasible routing with minimal energy costs.

m Employ Compression if beneficial.
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m NETWORK DESIGN WITH COMPRESSION can be fomulated as mixed
integer program.
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o NDPC as MILP

m NETWORK DESIGN WITH COMPRESSION can be fomulated as mixed
integer program.

m Set of commodities @ and capacity c installable in integers.

m Combine flow-conservation, capacity restrictions and Compression.
m Find a feasible routing,

Minimizing energy consumption (C,, for uv € E and C, for active
compression at v € V).
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o NDPC as MILP

m NETWORK DESIGN WITH COMPRESSION can be fomulated as mixed
integer program.

m Set of commodities @ and capacity c installable in integers.
m Combine flow-conservation, capacity restrictions and Compression.

m Find a feasible routing,

Minimizing energy consumption (C,, for uv € E and C, for active
compression at v € V).

m Variables:

fot € Rso:  Fraction of demand st routed uncompressed on edge vu.
goh € R>o:  Fraction of demand st routed compressed on edge vu.
Xuy € Z>o: Usage of edge uv.

yv €{0,1} : Whether compression enabled at node v.
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NDPC as MILP

min Z CuvXuv + Z Cv}/v

uveE veV 1 ifu= sq,
s.t. Z (fV‘L +g\(/7u - fu?/ - gt(]v) = 1 if u= tqa
ueN(v) 0 else
> (A (7S + £5) + Ad% (g8, + 84,)) < O
qeQ
-w< Y (gﬁv - géL) <y
ueN(v)

Xuy € ZZO’yV € {Oa 1}’ fu(z/ > nggv >0

YVveV VgeQ

YuveE

VveV VgeQ
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NDPC as MILP

min Z CuvXuv + Z Coyy

uveE veV 1 ifu= sq,
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ueN(v) 0 else
> (A (7S + £5) + Ad% (g8, + 84,)) < O
qeQ
-w< Y (gﬁv - gé’u) <y
ueN(v)

Xuy € ZZO’yV € {Oa 1}’ fu(z/ > nggv >0

YVveV VgeQ

YuveE
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NDPC as MILP

min Z Cquuv + Z vav

uveE veVv 1 ifu= Sq,
st Y (Fl+gl—fl—gl) =41 ifu=t9,
ueN(v) 0 else
> (d(f8, + £2) + Ad? (g8, + 83,)) < oxun
qeQ
— W < Z (ggv_ggu> éyv
ueN(v)

Xy, € Zzo,y\, S {0, 1}, flﬂ, > O,gﬁv >0

YVveV VgeQ

YuveE

VveV VgeQ
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NDPC as MILP

min Z CuvXuv + Z Cv}/v

uveE veV 1 ifu= sq,
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How difficult is Network Design with Compression?
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How difficult is Network Design with Compression?

instance abilene  germany
|V 12 17
|E]| 15 26
Q| 130 251

CPU time to optimality
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How difficult is Network Design with Compression?

instance abilene  germany  factor
|V 12 17

|E]| 15 26

Q| 130 251

w/o compression  0.14 s 582s

with compression 19.95s 2,219.25s > 142
CPU time to optimality
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o Compression vs. No Compression

How difficult is Network Design with Compression?

instance abilene  germany  factor
|V 12 17

|E]| 15 26

Q| 130 251

w/o compression  0.14 s 582s

with compression 19.95s 2,219.25s > 142

CPU time to optimality

Conclusion: Complexity increases significantly!
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CLEMS@N Complexity of the General Problem

Cost of links: C,,
Objective: min Z CuvXuv
uveE

Network Design w/o Compression

The NETWORK DESIGN problem is NP-hard.
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Complexity of the General Problem

Cost of links: C,,
Objective: min Z CuvXuv
uveE

Network Design w/o Compression

The NETWORK DESIGN problem is NP-hard.

Cost of compression at node v: C,

Objective: min Z CovXuv + Z Coyv
uveE veV

Network Design with Compression

Corollary: NETWORK DESIGN WITH COMPRESSION is NP-hard as well.
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Complexity of the General Problem

Cost of links: C,,
Objective: min Z CuvXuv

uveE

Network Design w/o Compression

The NETWORK DESIGN problem is NP-hard.

Cost of compression at node v: C,
Objective: min Z CuvXuv + Z Coyy

uveE veVv

Network Design with Compression
Corollary: NETWORK DESIGN WITH COMPRESSION is NP-hard as well.

but, is it “more difficult” than NETWORK DESIGN?

Arie M.C.A. Koster — RWTH Aachen University 7 /30
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Easy case (w/o Compression!):

If G is a tree, NETWORK DESIGN can be solved in polynomial time.
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Easy case (w/o Compression!):

If G is a tree, NETWORK DESIGN can be solved in polynomial time.

Observation: Routing is fixed
— Simple rounding of flows yields required capacities.

What impact does compression have?
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Network Design on a Tree

Easy case (w/o Compression!):

If G is a tree, NETWORK DESIGN can be solved in polynomial time.

Observation: Routing is fixed
— Simple rounding of flows yields required capacities.

What impact does compression have?

Definition

Given a fixed routing, the compressor placement problem is to
determine the active compressors and link capacities at minimum cost.
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Network Design on a Star

m Star G with n+ 1 vertices
m Demands dj,, i=1,...,n—1

m Capacity of ¢ on every link
(very expensive to install more)

9/30



CLEMS@Ngy | Network Design on a Star

m Star G with n+ 1 vertices
n ®m Demandsdj, i=1,...,n—1

m Capacity of ¢ on every link
(very expensive to install more)

n—1 @----n-ma----"7"

m If di > ¢, then y; = 1 (Compression needed in /)
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m Star G with n+ 1 vertices
n ®m Demandsdj, i=1,...,n—1

m Capacity of ¢ on every link
(very expensive to install more)

n—1 @----n-ma----"7"

m If dj > ¢, then y; = 1 (Compression needed in i) — dj, < c w.l.o.g.
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CLEMS@N G Network Design on a Star

m Star G with n+ 1 vertices
n ®m Demandsdj, i=1,...,n—1

m Capacity of ¢ on every link
(very expensive to install more)

n—1 @----n-ma----"7"

m If dj > ¢, then y; = 1 (Compression needed in i) — di, < c w.l.o.g.
n—1

m If Z din > ¢, then at least two compressors needed
i=1
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SLEMS@NG Network Design on a Star

m Star G with n+ 1 vertices
n ®m Demandsdj, i=1,...,n—1

m Capacity of ¢ on every link
(very expensive to install more)

n—1 @----n-ma----"7"

m If dj > ¢, then y; = 1 (Compression needed in i) — di, < c w.l.o.g.
n—1
m If Z d;, > c, then at least two compressors needed
i=1
Where to place converters? In center-node, or individual nodes
1,...,n—17
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NETWORK DESIGN WITH COMPRESSION on stars is at least weakly
NP-hard.

Proof:
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Network Design on a Star

NETWORK DESIGN WITH COMPRESSION on stars is at least weakly
NP-hard.

Proof: Reduction from Knapsack

m profits ¢;, ie N:={1,...,n—1}

m weights a;, i € N

m capacity B with max;cy a; < B and Zie,\,a,- > B
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Network Design on a Star

NETWORK DESIGN WITH COMPRESSION on stars is at least weakly
NP-hard.

Proof: Reduction from Knapsack

m profits ¢;, ie N:={1,...,n—1}

m weights a;, i € N

m capacity B with max;cy a; < B and Zie,\,a,- > B
1. Let G =(V,E) with V := NU{n,c}, E star edges
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Network Design on a Star

NETWORK DESIGN WITH COMPRESSION on stars is at least weakly
NP-hard.

Proof: Reduction from Knapsack

m profits ¢;, ie N:={1,...,n—1}

m weights a;, i € N

m capacity B with max;cy a; < B and Zie,\,a,- > B
1. Let G =(V,E) with V := NU{n,c}, E star edges

¢ ieN
2.5t C:=4X0 i=n
oo i=c¢
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Network Design on a Star

NETWORK DESIGN WITH COMPRESSION on stars is at least weakly
NP-hard.

Proof: Reduction from Knapsack

m profits ¢;, ie N:={1,...,n—1}

m weights a;, i € N

m capacity B with max;cy a; < B and Zie,\,a,- > B
1. Let G =(V,E) with V := NU{n,c}, E star edges

Cj ieN 0 e N
=c
2. Set Gi:i=140 i:n3.SEtCU:={ PERI TGt M > Y G
. M i=cj=n
oo I =cC
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Network Design on a Star

NETWORK DESIGN WITH COMPRESSION on stars is at least weakly
NP-hard.

Proof: Reduction from Knapsack
1. Let G =(V,E) with V := NU{n, c}, E star edges

Cj ieN 0 e N —
2.Set C;:=4{0 i=n 3 SetC,-j:—{ ST it > Y G
. M i=cj=n
o0 | =C

4.SetA=3, c=AY;cyai+(1—-N)B

Arie M.C.A. Koster — RWTH Aachen University 10 / 30



Network Design on a Star

NETWORK DESIGN WITH COMPRESSION on stars is at least weakly
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Network Design on a Star

NETWORK DESIGN WITH COMPRESSION on stars is at least weakly
NP-hard.

Proof: Reduction from Knapsack
1. Let G =(V,E) with V := NU{n, c}, E star edges

Cj ieN 0 e N —
2.Set C;:=4{0 i=n 3 SetC,-j:—{ ST it > Y G
. M i=cj=n
o0 | =C

4.SetA=3, c=AY;cyai+(1—-N)B
5. Baseline solution: y; =1 Vie NU{n}, x; =1 Vije€E
6. Min Cost = Max Savings to baseline solution
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Network Design on a Star

NETWORK DESIGN WITH COMPRESSION on stars is at least weakly
NP-hard.

Proof: Reduction from Knapsack
1. Let G =(V,E) with V := NU{n, c}, E star edges

Cj ieN 0 e N —
2.Set C;:=4{0 i=n 3 SetC,-j:—{ ST it > Y G
. M i=cj=n
o0 | =C

Set A\=1% c=AY,cyai+(1-\B
Baseline solution: y; =1 Vie NU{n}, x; =1 Vijc€E
Min Cost = Max Savings to baseline solution
Spare capacity on link cn: (1 —\)B
Extra flow by removing compression at node i: (1 — \)a;

No ok
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Network Design on a Star

NETWORK DESIGN WITH COMPRESSION on stars is at least weakly
NP-hard.

Proof: Reduction from Knapsack
1. Let G =(V,E) with V := NU{n, c}, E star edges

Cj ieN 0 e N —
2.Set C;:=4{0 i=n 3 SetC,-j:—{ ST it > Y G
. M i=cj=n
o0 | =C

Set A\=1% c=AY,cyai+(1-\B
Baseline solution: y; =1 Vie NU{n}, x; =1 Vijc€E
Min Cost = Max Savings to baseline solution
Spare capacity on link cn: (1 —\)B
Extra flow by removing compression at node i: (1 — A)a;
8. Max Savings = Max Knapsack O

No ok
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NETWORK DESIGN WITH COMPRESSION s strongly NP-hard I

Proof:

Idea suggested by Stéphane Perennes
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SN Strong NP-completeness

NETWORK DESIGN WITH COMPRESSION s strongly NP-hard I

Proof:

Reduction from HITTING SET: “Universe” U, subsets S; C U, and integer
k, 3H C U with |H| < k such that HNS; A0 Vi=1,...,n?

o
o
o
o o
o
o
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Idea suggested by Stéphane Perennes
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k, 3H C U with |H| < k such that HNS; A0 Vi=1,...,n?
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Strong NP-completeness

NETWORK DESIGN WITH COMPRESSION s strongly NP-hard \

Proof:

Reduction from HITTING SET: “Universe” U, subsets S; C U, and integer
k, 3H C U with |H| < k such that HNS; A0 Vi=1,...,n?

vie

V2 @
- @ @ (D)
Wy wp

v’ @

Idea suggested by Stéphane Perennes
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Strong NP-completeness

NETWORK DESIGN WITH COMPRESSION s strongly NP-hard \

Proof:

Reduction from HITTING SET: “Universe” U, subsets S; C U, and integer
k, 3H C U with |H| < k such that HNS; A0 Vi=1,...,n?

iy

wyp w2

Idea suggested by Stéphane Perennes
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Strong NP-completeness

NETWORK DESIGN WITH COMPRESSION s strongly NP-hard \

Proof:

Reduction from HITTING SET: “Universe” U, subsets S; C U, and integer
k, 3H C U with |H| < k such that HNS; A0 Vi=1,...,n?

Cugwy = k41 capacity c =1

_ 2
demand d,i,, = %

b = MCyy =0 1
)\_2

Idea suggested by Stéphane Perennes
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Strong NP-completeness

NETWORK DESIGN WITH COMPRESSION s strongly NP-hard \

Proof:

Reduction from HITTING SET: “Universe” U, subsets S; C U, and integer
k, 3H C U with |H| < k such that HNS; A0 Vi=1,...,n?

=M
va
v
oy = k1 capacity c =1
£ e -0 deman; (_jv,‘lw2 = %
-2

|H| < k if and only if Cost of NDPC <2k +1

Idea suggested by Stéphane Perennes
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Network Design on a Tree

_

NETWORK DESIGN WITH COMPRESSION on trees is weakly NP-hard.

m Tree G = (V,E), |V| = n, nodes labeled increasingly by BFS, starting

ati=1

1 Q<.
NG
N \
K \
> @ 3 4
/1: 1\
il I
@ Q. 7 s @
3
/: 3
1 3
9 g 1@
%
%
%
12 13
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Network Design on a Tree

NETWORK DESIGN WITH COMPRESSION on trees is weakly NP-hard. \

m Tree G = (V,E), |V| = n, nodes labeled increasingly by BFS, starting
ati=1

m Capacity ¢ € Z>q per installed batch

m Commodities Q = {(i,1) : i > 2}, d;j € Z>¢, direct routing

@ 0@ 1@
%

%
%
@ 13
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CLEMS@Ngy | Network Design on a Tree

Notation
m [/, k] subtree induced by i and offspring of i’s first k children

\
A e

9 @ u@

N\

12 13

subtree [6, 2]
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CLEMS@Ngy | Network Design on a Tree

Notation

m [/, k] subtree induced by i and offspring of i’s first k children
m p(i) predecessor of i # 1, s(i, k) sibling k of i

ZAN

N

N\

5 @ 7 s @

N

9 @ u@

N\

12 13
subtree [6, 2]
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Network Design on a Tree

Notation

m [/, k] subtree induced by i and offspring of i’s first k children
m p(i) predecessor of i # 1, s(i, k) sibling k of i

m a(/) number of children of i, a(i, k) := a(s(i, k))

1 @,

AN
AT IN

5 @ 7

N

9 @ u@

N\

12 13

subtree [6, 2]
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Notation

m [/, k] subtree induced by i and offspring of i’s first k children
m p(i) predecessor of i # 1, s(i, k) sibling k of i

a(i) number of children of i, a(i, k) := a(s(i, k))

d([/, k]) demand induced by subgraph [/, k]

1 @,

s
AT IN

5 @ 7

9

N\

12 13
subtree [6, 2]
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CLEMS@NG Network Design on a Tree

Cost functions:

m C([i, k], f): min cost of [i, k] with
compressing in i and uncompressed flow of f
on (i, p(i)) (but cost not counted yet)

m D([i, k], f): min cost of [i, k] with
decompressing in i and uncompressed flow
of f on (i, p(i))

m N ([i, k], f): min cost of [i, k] with neither
compressing nor decompressing and
uncompressed flow of f on (i, p(i))

Arie M.C.A. Koster — RWTH Aachen University
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Network Design on a Tree

Cost functions: 1 @

m C([i, k], f): min cost of [i, k] with / \

compressing in / and uncompressed flow of f 2@ 3@ 4I

on (i, p(i)) (but cost not counted yet) \

m D ([i, k], f): min cost of [i, k] with @ @ 0 0@
decompressing in i and uncompressed flow
of f on (i, p(i)) @ @ 1@

m N ([i, k], f): min cost of [i, k] with neither
compressing nor decompressing and 2@ 1@
uncompressed flow of f on (i, p(i)) subtree [6, 2]

Given a tree instance, an optimal solution of NDPC is given by

min {D ([1,a(1)],0), N ([1,a(1)],0)} -

Arie M.C.A. Koster — RWTH Aachen University 14 / 30
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Observation: For i # 1, only C([i, k], 0) and
D ([i, k], d[i, k]) needed.
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Network Design on a Tree

Observation: For i # 1, only C ([/, k], 0) and
D ([i, k], d[i, k]) needed.

Lemma (Initialization)

Forie V\{1} and f € Zy, it is
mC ([’7 0] 70): @n

= D ([i,a(i)], d(li,0]))= G,

m N ([i,0],f)=0.
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‘‘‘‘‘‘‘‘‘‘‘ Network Design on a Tree
1

Observation: For i # 1, only C ([/, k], 0) and /

D ([i, k], d[i, k]) needed. @9 3@ ¢ \

Lemma (Initialization) 5 6 Q 7 5@

Forie V\{1} and f € Zy, it is / \
m C([i,0],0)= G, 9 @ 1@
= D ([i, a(i)], d([i, 0]))= G, /

= N ([i,0], f)=0.

Lemma (Recursion Compression)

Let xo := d([s(i, k), a(i, k)]). For every node i #1 and k =1,...,a(i), it is

¢ (i, k],0) = C ([i, k — 1], 0) + min
+Cs Ik)l|— +X0 X.l

c([s(i= k)va(iv k)]70) + Cs(i,k)i’—%-la
{ N ([s(i, k), a(i, k)], x) }

min
xe{ds(ivk) ..... Xg}

Arie M.C.A. Koster — RWTH Aachen University 15 / 30
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Network Design on a Tree
1

Observation: For i # 1, only C ([/, k], 0) and / \

D ([i, k], d[i, k]) needed. * @

/T IN

5@ 6 s @

Lemma (Initialization)

Forie V\{1} and f € Zy, it is
m C([/,0],0)=C @ 10 1@
= D ([i,a()], d([i,0]))= G,

s N ([i,0], f)=0.

2@

Lemma (Recursion Compression)

Let xo := d([s(i, k), a(i, k)]). For every node i #1 and k =1,...,a(i), it is

C ([s(i, k), a(i, k)], 0) + C(i ki [ 321,
C ([i, k] ,0) = C ([i, k — 1] ,0) + min o N ([s(i, k), a(i, k)], x) :
FCqppll 2 4 21

yc
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Lemma (Recursion Decompression)
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1 @
Lemma (Recursion Decompression) / \
2@ 3@ 4
Let xo := d([s(i, k), a(i, k)]). For every node i # 1 and
k=1,...,a(i), itis
@ @ 7 s @

D ([i, K, d([i, a()])) = D ([i, a(i)] , d([i, k — 1))
{ C([S(f, k)>a(ia k)] 70) + Cs(i,k)i’—%-ly } 9 . 10 <, 11 .
+ min }

N ([s(i, k), a(i, k)], x)
- Copi il 2 4 2=

2@ 1B3@

Lemma (Recursion Neither compression nor decompression)
Define xo := d([s(i, k), a(i, k)]). Fori#1, k=1,...,a(i), and for f = d' ..., d([i,k]), it is

N (i, k=11, ) +C([s(i, k), a(i, k)], 0) + Cs(ihyi[ 2% 1,
N ([i, k =11, f = x0) + D ([s(i, k), a(i, k)], Xo)+C(,k,f [E
—1],f = x) + N ([s(i, k), a(i, k)], x) }

N(['v k]vf) = min N([I
xe{d(s(i, k)) ..... f—d(i)} { +Cyikyi [C n X%C W
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L iy
wwwwwwwwww -l

Network Design on a Tree

L @
Lemma (Recursion Decompression) / \
Let xo := d([s(i, k), a(i, k)]). For every node i # 1 and ’ /3. ) \
k=1,...,a(i), itis
@ @ 7 s @
D (0, K1, d(li, (1)) = D ([ 2(0)], (L k — 11))

C([s(i, k), a(i, k)], 0) + Csi ki [ 221, @ 0@ 1@
+min{ - { N ([s(i, k),a(7,xé<_)]x,x) } }

i il =

2@ 1B3@
Lemma (Recursion Neither compression nor decompression)

Define xo := d([s(i, k), a(i, k)]). Fori#1, k=1,...,a(i), and for f = d' ..., d([i,k]), it is

N (lis k=11, £) +C ([s(i, k), a(i, k)1, 0) + Ci i 2],
N A7) mmind A G —00) + DG, ), (3 ), x0) + Co i [2],

N (i, k= 1], f = x) + N ([s(i, k), a(i, k)], x)
xe{d(s(i, k)) ..... F—d(i)} FCq | £ 4+ 2= W J

e
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1 @
Lemma (Recursion Decompression) / \
2@ 3@ ¢

Let xo := d([s(i, k), a(i, k)]). For every node i # 1 and K \
k=1,...,a(i), it is Y
s@ -6 @ 7 s @
D (li, k1, d([i, a(N]) = D ([i, ()], d([i, k = 1])) ,

C([S(f, k)>a(i’ k)]70)+ Cs(i,k)i’—%.l’ 9 . 10 .' x 11 .
+min { { N (Is(i, K, a(i, K], ) } }
- Copi il 2 4 2=
2@ 1B3@

Lemma (Recursion Neither compression nor decompression)

Define xo := d([s(i, k), a(i, k)]). Fori#1, k=1,...,a(i), and for f = d' ..., d([i,k]), it is
N (i, k = 1], f) +C(Is(i, k), a(i, k)], 0) + Cs(ikyi[ 221,
: ) N (i k=1], f —x0) + D ([s(i, k), a(i, k)]X)+C i[2]
N ([i, k], f) = min _ ’ (f, k—1], f—x)o—l—/\/ [5(73 [) = )
e {d(s( kD F— ()} { T Cofir iy L 4 XOWCXW }
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Let A := maxgzec@ d9 be the maximum demand value

NDPC on trees can be solved in O(n3/A?).

Proof:

Arie M.C.A. Koster — RWTH Aachen University 17 / 30



CLEMS@Nhy | WA Network Design on a Tree

Let A := maxgzec@ d9 be the maximum demand value

NDPC on trees can be solved in O(n3/A?).

Proof:

m Number of subtrees: 2n — 1
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Network Design on a Tree

Let A := maxgzec@ d9 be the maximum demand value

NDPC on trees can be solved in O(n3/A?). \

Proof:

m Number of subtrees: 2n — 1

m Computing one entry of C, D, and N takes O(nA).
m N has nA entries per [/, K]

Arie M.C.A. Koster — RWTH Aachen University 17 / 30



[0

Network Design on a Tree

Let A := maxgzec@ d9 be the maximum demand value

NDPC on trees can be solved in O(n3/A?).

Proof:

m Number of subtrees: 2n —1

m Computing one entry of C, D, and N takes O(nA).
m N has nA entries per [/, K]

m Total runtime of O(n3A?2)

Arie M.C.A. Koster — RWTH Aachen University 17 / 30
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Train Packing Problem

Given a set of commodities Q = {(s9,t9,d9) : g =1,...,|Q|}, a network
G = (V,A), a set of shunting yards R C V/, and a train capacity C,
determine the minimum number of trains needed to transport all demands,
where each train can be rearranged at shunting yards R (but at least one
commodity should continue with the same train).

Arie M.C.A. Koster — RWTH Aachen University 19 / 30
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Given a set of commodities Q = {(s9,t9,d9) : g =1,...,|Q|}, a network
G = (V,A), a set of shunting yards R C V/, and a train capacity C,
determine the minimum number of trains needed to transport all demands,
where each train can be rearranged at shunting yards R (but at least one
commodity should continue with the same train).

First Results: Master thesis F. Heckhausen (in preparation)

m |A| = 1: bin packing — NP-complete

Arie M.C.A. Koster — RWTH Aachen University 19 / 30



N

CLEMS@Ngy | A Rail Cargo Problem

Train Packing Problem

Given a set of commodities Q = {(s9,t9,d9) : g =1,...,|Q|}, a network
G = (V,A), a set of shunting yards R C V/, and a train capacity C,
determine the minimum number of trains needed to transport all demands,
where each train can be rearranged at shunting yards R (but at least one
commodity should continue with the same train).

First Results: Master thesis F. Heckhausen (in preparation)
m |A| = 1: bin packing — NP-complete

m G=P, C=2,d9=1|R|=1: number of trains = W
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CLEMS@Ngy | A Rail Cargo Problem

Train Packing Problem

Given a set of commodities Q = {(s9,t9,d9) : g =1,...,|Q|}, a network
G = (V,A), a set of shunting yards R C V/, and a train capacity C,
determine the minimum number of trains needed to transport all demands,
where each train can be rearranged at shunting yards R (but at least one
commodity should continue with the same train).

First Results: Master thesis F. Heckhausen (in preparation)
m |A| = 1: bin packing — NP-complete
B G=P,, C=2,d9=1|R|=1: number of trains = W
B G=P,,C=2,d"=1|R|=n:
(=1)(0D) i = 2k + 1

[N]

number of trains = % if n=4k
r4l if n =4k 42

Arie M.C.A. Koster — RWTH Aachen University 19 / 30



CLEMS@N iy | RWTHGAHEY Outline

Arie M.C.A. Koster — RWTH Aachen University 20 / 30



CLEMS@Nghy | PWRIER Flexgrid Optical Networks

Idea: fixed spectrum-block size — flexible block-size

Standard grid 1 I I !

Flexgrid

m Spectrum is divided into a small slots (e.g. 6.25GHz)
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Flexgrid Optical Networks

Idea: fixed spectrum-block size — flexible block-size

Standard grid ¢ T Ol " ol ~ o

Flexgrid

m Spectrum is divided into a small slots (e.g. 6.25GHz)

m Demands request a custom amount of these slots ('size’)
= Less spectrum wasted by custom-tailored slot sizes

m “Freedom” is paid for: contiguity of assigned slots required
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Spectrum Allocation Problem

Spectrum

Demands:

Definition (Spectrum Allocation Problem (SA))

Given a simple undirected graph G = (V, E) and a set R of pairs

R; = (Pi,d;) € P x N, 1 <i </, determine

1. for every R; an interval [; = [aj, bj) with a; < b; € N und b; — a; = d},
such that max{b;|i = 1,...,/} minimal, where [; N [; = 0 i paths P; and
P; share an edge in G.

Let SA(G, R) denote the value of an optimal solution.
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\ Spectrum '112!3141516!7.8!9]

Demands:

Definition (Spectrum Allocation Problem (SA))

Given a simple undirected graph G = (V, E) and a set R of pairs

R; = (Pi,d;) € P x N, 1 <i </, determine

1. for every R; an interval [; = [aj, bj) with a; < b; € N und b; — a; = d},
such that max{b;|i = 1,...,/} minimal, where [; N [; = 0 i paths P; and
P; share an edge in G.

Let SA(G, R) denote the value of an optimal solution.
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Demands:

Definition (Spectrum Allocation Problem (SA))

Given a simple undirected graph G = (V, E) and a set R of pairs

R; = (Pi,d;) € P x N, 1 <i </, determine

1. for every R; an interval [; = [aj, bj) with a; < b; € N und b; — a; = d},
such that max{b;|i = 1,...,/} minimal, where [; N [; = 0 i paths P; and
P; share an edge in G.

Let SA(G, R) denote the value of an optimal solution.
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UN T VERSI TYMX

SN~

1112134]5,6,7,8,9,

\ Spectrum
/ Demands:

Definition (Spectrum Allocation Problem (SA))

Given a simple undirected graph G = (V, E) and a set R of pairs

R; = (Pi,d;) € P x N, 1 <i </, determine

1. for every R; an interval I; = [aj, b;) with a; < b; € N und b; — a; = d},
such that max{b;|i = 1,...,/} minimal, where [; N [; = 0 i paths P; and
P; share an edge in G.

Let SA(G, R) denote the value of an optimal solution.
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/ Demands:

Definition (Spectrum Allocation Problem (SA))

Given a simple undirected graph G = (V, E) and a set R of pairs

R; = (Pi,d;) € P x N, 1 <i </, determine

1. for every R; an interval I; = [aj, b;) with a; < b; € N und b; — a; = d},
such that max{b;|i = 1,...,/} minimal, where [; N [; = 0 i paths P; and
P; share an edge in G.

Let SA(G, R) denote the value of an optimal solution.
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o Interval-Coloring Problem

Definition (Interval-Coloring Problem (IC))

Let G = (V,E) and d : V — N. The Interval Coloring Problem is to assign
to every vertex v an interval of length d(v), such that adjacent vertices are
assigned disjoint intervals. x;(G) = the minimum of colors required.

%1 %) 1 Ve V7

v3 Vs
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Interval-Coloring Problem

Definition (Interval-Coloring Problem (IC))

Let G = (V,E) and d : V — N. The Interval Coloring Problem is to assign
to every vertex v an interval of length d(v), such that adjacent vertices are
assigned disjoint intervals. x;(G) = the minimum of colors required.

SA(G,R,P) = x:(G)

The Spectrum Allocation Problem (G, R, P) is equivalent to the
Interval-Coloring Problem on the edge-intersection graph G’ of paths P;.
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Complexity

Spectrum Allocation is N'P-hard on general networks as well as on star
networks

Proof for star networks: wavelength assignment (d; = 1) is N'P-hard by
a reduction from edge coloring.
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Complexity

Spectrum Allocation is N'P-hard on general networks as well as on star
networks

Proof for star networks: wavelength assignment (d; = 1) is N'P-hard by
a reduction from edge coloring.

Spectrum Allocation is already N'P-hard on path networks and d; € {1,2}

Proof: Interval-Coloring on a path is equivalent to Dynamic Storage
Allocation, which is known to be NP-hard.
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Interval-Coloring Problem

Definition (Interval-Coloring Problem (IC))

Given a graph G = (V, E) and a weight function d : V — N, the Interval
Coloring Problem is to assign to every vertex v an interval of length d(v),
such that adjacent vertices are not assigned common colors. Let x;(G)
denote the minimum of colors required.

vi V2 1 Ve vy

v3 Vs
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Definition (Interval-Coloring Problem (IC))

Given a graph G = (V, E) and a weight function d : V — N, the Interval
Coloring Problem is to assign to every vertex v an interval of length d(v),
such that adjacent vertices are not assigned common colors. Let x;(G)
denote the minimum of colors required.

v3 V5 0 1 2 3 4 5 6

SA(G, R, P) = xi(G")

The Spectrum Allocation Problem (G, R, P) is equivalent to the
Interval-Coloring Problem on the edge-intersection graph G’ of paths P;.

Arie M.C.A. Koster — RWTH Aachen University 25 /30



i (R)SA on Star Networks

Definition (Star)

A star Ky is a graph with vertex set V(Ki ) = {vo,..., s} and edge set
E(KL,,) = {(Vo, V,')|i = 1, cocg n)}
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(R)SA on Star Networks

Definition (Star)

A star Ky is a graph with vertex set V(K1) = {vo,..., s} and edge set
E(Kyn) = {(vo, vi)li =1,...,n)}.

The (R)SA problem on stars is NP-hard, even if all di = 1.

Proof: Equivalent to EDGE INTERVAL-COLORING on a multigraph
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Edge Interval-Coloring on Py

o o%ehegde glig

Color edges with intervals [a;, b;) of length d; such that

di g b o d3 g ds

[ai_1, bi—1) N[a;, b)) = 0 = [a;, b;) N [aj+1, bit1)
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Edge Interval-Coloring on Py

d 1 d2 d3 d4 d k—

o0 -0—-0"0o—0" ‘e
Color edges with intervals [a;, b;) of length d; such that

[ai_1, bi—1) N[a;, b)) = 0 = [a;, b;) N [aj+1, bit1)

Optimal Solution: Consider odd and even edges separately
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o o%ehegde glig

Color edges with intervals [a;, b;) of length d; such that

di g b o d3 o dy

lai—1, bi—1) N[aj, bi) = 0 = [a;, bi) N [ai11, bit1)

Optimal Solution: Consider odd and even edges separately
m Assign [0,dpj11) for j=0,..., [ 55t -1

—
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SN Edge Interval-Coloring on Py

di g dr o d3 d

o0 -0"“0o—0''e®
Color edges with intervals [a;, b;) of length d; such that

da

lai—1, bi—1) N[aj, bi) = 0 = [a;, bi) N [ai11, bit1)

Optimal Solution: Consider odd and even edges separately
m Assign [0,dpj11) for j=0,..., [ 55t -1
m Assign [y — doj, X) for j =1,..., [ 552 ] with

X i= maxj_1,. k—2{dj + djiy1}
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|Pi| =1« Loop in G’

di o dh & d3 o ds g - - 2di 1
@ @ @ @
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|Pi| =1« Loop in G’

oot gdiedie glig

1
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|Pi| =1« Loop in G’

oot gdiedie glig
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|Pi| =1« Loop in G’

oot gdiedie glig

F_
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k even: analogue to paths
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m after removal of a single edge, we obtain a path
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CLEMS@Nhy | PRRERERY Edge Interval-Coloring on Cj

k even: analogue to paths
k odd:

m after removal of a single edge, we obtain a path
m removed edge requires third level

m search for edge (v}, vj11) such that dj_; + d; + dj11 is minimized

Single block at 3rd level
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