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A Visualization

Network Design with Compression:

Given a Network G = (V ,E ),
With capacity cuv = c ≥ 0 for all edges uv .
2 Demands d1, d2 (with a potential compression rate λ).

Find a feasible routing

with minimal energy costs.

Employ Compression if beneficial.
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NDPC as MILP

Network Design with Compression can be fomulated as mixed
integer program.

Set of commodities Q and capacity c installable in integers.

Combine flow-conservation, capacity restrictions and Compression.

Find a feasible routing,

Minimizing energy consumption (Cuv for uv ∈ E and Cv for active
compression at v ∈ V ).

Variables:

f stvu ∈ R≥0 : Fraction of demand st routed uncompressed on edge vu.

g st
vu ∈ R≥0 : Fraction of demand st routed compressed on edge vu.

xuv ∈ Z≥0 : Usage of edge uv .

yv ∈ {0, 1} : Whether compression enabled at node v .
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NDPC as MILP

min
∑
uv∈E

Cuvxuv +
∑
v∈V

Cvyv

s.t.
∑

u∈N(v)

(f qvu + gq
vu − f quv − gq

uv ) =


−1 if u = sq,

1 if u = tq,

0 else

∀ v ∈ V ,∀ q ∈ Q

∑
q∈Q

(dq (f quv + f qvu) + λdq (gq
uv + gq

vu)) ≤ cxuv ∀ uv ∈ E

− yv ≤
∑

u∈N(v)

(
gq
uv − gq

vu

)
≤ yv ∀ v ∈ V ,∀ q ∈ Q

xuv ∈ Z≥0, yv ∈ {0, 1}, f quv ≥ 0, gq
uv ≥ 0
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Compression vs. No Compression

How difficult is Network Design with Compression?

instance abilene germany

factor

|V | 12 17
|E | 15 26
|Q| 130 251

w/o compression 0.14 s 5.82 s
with compression 19.95 s 2,219.25 s > 142

CPU time to optimality

Conclusion: Complexity increases significantly!

Arie M.C.A. Koster – RWTH Aachen University 6 / 30



Compression vs. No Compression

How difficult is Network Design with Compression?

instance abilene germany

factor

|V | 12 17
|E | 15 26
|Q| 130 251

w/o compression 0.14 s 5.82 s
with compression 19.95 s 2,219.25 s > 142

CPU time to optimality

Conclusion: Complexity increases significantly!

Arie M.C.A. Koster – RWTH Aachen University 6 / 30



Compression vs. No Compression

How difficult is Network Design with Compression?

instance abilene germany factor

|V | 12 17
|E | 15 26
|Q| 130 251

w/o compression 0.14 s 5.82 s
with compression 19.95 s 2,219.25 s > 142

CPU time to optimality

Conclusion: Complexity increases significantly!

Arie M.C.A. Koster – RWTH Aachen University 6 / 30



Compression vs. No Compression

How difficult is Network Design with Compression?

instance abilene germany factor

|V | 12 17
|E | 15 26
|Q| 130 251

w/o compression 0.14 s 5.82 s
with compression 19.95 s 2,219.25 s > 142

CPU time to optimality

Conclusion: Complexity increases significantly!

Arie M.C.A. Koster – RWTH Aachen University 6 / 30



Compression vs. No Compression

How difficult is Network Design with Compression?

instance abilene germany factor

|V | 12 17
|E | 15 26
|Q| 130 251

w/o compression 0.14 s 5.82 s
with compression 19.95 s 2,219.25 s > 142

CPU time to optimality

Conclusion: Complexity increases significantly!

Arie M.C.A. Koster – RWTH Aachen University 6 / 30



Complexity of the General Problem

Cost of links: Cuv

Objective: min
∑
uv∈E

Cuvxuv

Network Design w/o Compression

The Network Design problem is NP-hard.

Cost of compression at node v : Cv

Objective: min
∑
uv∈E

Cuvxuv +
∑
v∈V

Cvyv

Network Design with Compression

Corollary: Network Design with Compression is NP-hard as well.

but, is it “more difficult” than Network Design?
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Network Design on a Tree

Easy case (w/o Compression!):

If G is a tree, Network Design can be solved in polynomial time.

Observation: Routing is fixed

↪→ Simple rounding of flows yields required capacities.

What impact does compression have?

Definition

Given a fixed routing, the compressor placement problem is to
determine the active compressors and link capacities at minimum cost.
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Network Design on a Star

n − 1

...

2

1

c
n

Star G with n + 1 vertices

Demands din, i = 1, . . . , n − 1

Capacity of c on every link
(very expensive to install more)

Observations

If din > c, then yi = 1 (Compression needed in i)

→ din ≤ c w.l.o.g.

If
n−1∑
i=1

din > c , then at least two compressors needed

Where to place converters? In center-node, or individual nodes
1, . . . , n − 1?
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Network Design on a Star

Theorem

Network Design with Compression on stars is at least weakly
NP-hard.

Proof:

Reduction from Knapsack

1. Let G = (V ,E ) with V := N ∪ {n, c}, E star edges

2. Set Ci :=


ci i ∈ N

0 i = n

∞ i = c

3. Set Cij :=

{
0 i ∈ N, j = c

M i = c , j = n
with M >

∑
Ci

4. Set λ = 1
2 , c = λ

∑
i∈N ai + (1− λ)B

5. Baseline solution: yi = 1 ∀i ∈ N ∪ {n}, xij = 1 ∀ij ∈ E
6. Min Cost = Max Savings to baseline solution
7. Spare capacity on link cn: (1− λ)B

Extra flow by removing compression at node i : (1− λ)ai
8. Max Savings = Max Knapsack
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Strong NP-completeness

Theorem

Network Design with Compression is strongly NP-hard

Proof:

Reduction from Hitting Set: “Universe” U, subsets Si ⊆ U, and integer
k , ∃H ⊆ U with |H| ≤ k such that H ∩ Si 6= ∅ ∀i = 1, . . . , n?

v1

v2

. . .

vn

w1 w2

Cw1w2
= k + 1

C i
v = M

Cv = 1

Cw1
= MCw2

= 0

capacity c = 1
demand dv iw2

= 2
n

λ = 1
2

|H| ≤ k if and only if Cost of NDPC ≤ 2k + 1

Idea suggested by Stéphane Perennes
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Arie M.C.A. Koster – RWTH Aachen University 11 / 30



Strong NP-completeness

Theorem

Network Design with Compression is strongly NP-hard

Proof:
Reduction from Hitting Set: “Universe” U, subsets Si ⊆ U, and integer
k , ∃H ⊆ U with |H| ≤ k such that H ∩ Si 6= ∅ ∀i = 1, . . . , n?

v1

v2

. . .

vn

w1 w2

Cw1w2
= k + 1

C i
v = M

Cv = 1

Cw1
= MCw2

= 0

capacity c = 1
demand dv iw2

= 2
n

λ = 1
2

|H| ≤ k if and only if Cost of NDPC ≤ 2k + 1

Idea suggested by Stéphane Perennes
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Arie M.C.A. Koster – RWTH Aachen University 11 / 30



Strong NP-completeness

Theorem

Network Design with Compression is strongly NP-hard

Proof:
Reduction from Hitting Set: “Universe” U, subsets Si ⊆ U, and integer
k , ∃H ⊆ U with |H| ≤ k such that H ∩ Si 6= ∅ ∀i = 1, . . . , n?

v1

v2

. . .

vn

w1 w2

Cw1w2
= k + 1

C i
v = M

Cv = 1

Cw1
= MCw2

= 0

capacity c = 1
demand dv iw2

= 2
n

λ = 1
2

|H| ≤ k if and only if Cost of NDPC ≤ 2k + 1

Idea suggested by Stéphane Perennes
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Network Design on a Tree

Theorem

Network Design with Compression on trees is weakly NP-hard.

Tree G = (V ,E ), |V | = n, nodes labeled increasingly by BFS, starting
at i = 1

Capacity c ∈ Z≥0 per installed batch
Commodities Q = {(i , 1) : i ≥ 2}, di ∈ Z≥0, direct routing

1

2 3 4

5 6 7 8

9 10 11

12 13
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Network Design on a Tree

Notation

[i , k] subtree induced by i and offspring of i ’s first k children

p(i) predecessor of i 6= 1, s(i , k) sibling k of i

a(i) number of children of i , a(i , k) := a(s(i , k))

d([i , k]) demand induced by subgraph [i , k]

1

2 3 4

5 6 7 8

9 10 11

12 13

subtree [6, 2]
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Network Design on a Tree

Cost functions:

C ([i , k] , f ): min cost of [i , k] with
compressing in i and uncompressed flow of f
on (i , p(i)) (but cost not counted yet)

D ([i , k] , f ): min cost of [i , k] with
decompressing in i and uncompressed flow
of f on (i , p(i))

N ([i , k] , f ): min cost of [i , k] with neither
compressing nor decompressing and
uncompressed flow of f on (i , p(i))

1

2 3 4

5 6 7 8

9 10 11

12 13

subtree [6, 2]

Lemma

Given a tree instance, an optimal solution of NDPC is given by
min {D ([1, a(1)] , 0) ,N ([1, a(1)] , 0)} .
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Network Design on a Tree

Observation: For i 6= 1, only C ([i , k] , 0) and
D ([i , k] , d [i , k]) needed.

Lemma (Initialization)

For i ∈ V \ {1} and f ∈ Z+, it is

C ([i , 0] , 0)= Ci ,

D ([i , a(i)] , d([i , 0]))= Ci ,

N ([i , 0] , f )=0.

1

2 3 4

5 6 7 8

9 10 11

12 13

Lemma (Recursion Compression)

Let x0 := d([s(i , k), a(i , k)]). For every node i 6= 1 and k = 1, . . . , a(i), it is

C ([i , k] , 0) = C ([i , k − 1] , 0) + min


C ([s(i , k), a(i , k)] , 0) + Cs(i,k)id

x0
γc
e,

min
x∈{ds(i,k),...,x0}

{
N ([s(i , k), a(i , k)] , x)

+Cs(i,k)id xc + x0−x
γc
e

}  .
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Network Design on a Tree

Lemma (Recursion Decompression)

Let x0 := d([s(i , k), a(i , k)]). For every node i 6= 1 and
k = 1, . . . , a(i), it is

D ([i , k] , d([i , a(i)])) = D ([i , a(i)] , d([i , k − 1]))

+ min


C ([s(i , k), a(i , k)] , 0) + Cs(i,k)id

x0
γc
e,

min
x∈{ds(i,k),...,x0}

{
N ([s(i , k), a(i , k)] , x)

+Cs(i,k)id xc + x0−x
γc
e

} 

1

2 3 4

5 6 7 8

9 10 11

12 13

Lemma (Recursion Neither compression nor decompression)

Define x0 := d([s(i , k), a(i , k)]). For i 6= 1, k = 1, . . . , a(i), and for f = d i . . . , d([i , k]), it is

N ([i , k] , f ) = min


N ([i , k − 1] , f ) + C ([s(i , k), a(i , k)] , 0) + Cs(i,k)i

⌈ x0
γc

⌉
,

N ([i , k − 1] , f − x0) +D ([s(i , k), a(i , k)] , x0) + Cs(i,k)i

⌈ x0
c

⌉
,

min
x∈{d(s(i,k)),...,f−d(i)}

{
N ([i , k − 1] , f − x) +N ([s(i , k), a(i , k)] , x)

+Cs(i,k)i

⌈
x
c

+ x0−x
γc

⌉ }

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Network Design on a Tree

Let 4 := maxq∈Q dq be the maximum demand value

Theorem

NDPC on trees can be solved in O(n342).

Proof:

Number of subtrees: 2n − 1

Computing one entry of C, D, and N takes O(n4).

N has n4 entries per [i , k]

Total runtime of O(n342)
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Outline

1 Example 1: Network Design with Compression
2 Example 2: Train Packing Problem
3 Example 3: Spectrum Allocation
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A Rail Cargo Problem

Train Packing Problem

Given a set of commodities Q = {(sq, tq, dq) : q = 1, . . . , |Q|}, a network
G = (V ,A), a set of shunting yards R ⊂ V , and a train capacity C ,
determine the minimum number of trains needed to transport all demands,
where each train can be rearranged at shunting yards R (but at least one
commodity should continue with the same train).

First Results: Master thesis F. Heckhausen (in preparation)

|A| = 1: bin packing – NP-complete

G = Pn,C = 2, dq = 1, |R| = 1: number of trains = (n−1)(n−2)
2

G = Pn,C = 2, dq = 1, |R| = n:

number of trains =


(n−1)(n+1)

8 if n = 2k + 1
n2

8 if n = 4k
n2

8 + 1
2 if n = 4k + 2
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2 Example 2: Train Packing Problem
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Flexgrid Optical Networks

Idea: fixed spectrum-block size → flexible block-size

Standard grid

Flexgrid

Spectrum is divided into a small slots (e.g. 6.25GHz)

Demands request a custom amount of these slots (’size’)

⇒ Less spectrum wasted by custom-tailored slot sizes

“Freedom” is paid for: contiguity of assigned slots required
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Spectrum Allocation Problem

Spectrum 1 2 3 4 5 6 7 8 9

Demands: 2 3 4 2

Definition (Spectrum Allocation Problem (SA))

Given a simple undirected graph G = (V ,E ) and a set R of pairs
Ri = (Pi , di ) ∈ P × N, 1 ≤ i ≤ l , determine

1. for every Ri an interval Ii = [ai , bi ) with ai ≤ bi ∈ N und bi − ai = di ,
such that max{bi |i = 1, . . . , l} minimal, where Ii ∩ Ij = ∅ if paths Pi and
Pj share an edge in G .

Let SA(G ,R) denote the value of an optimal solution.
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Interval-Coloring Problem

Definition (Interval-Coloring Problem (IC))

Let G = (V ,E ) and d : V 7→ N. The Interval Coloring Problem is to assign
to every vertex v an interval of length d(v), such that adjacent vertices are
assigned disjoint intervals. χI (G ) = the minimum of colors required.

v1 v2

v3

v4

v5

v6 v7

3 1

2

1

2

1 3

0

0

1

2

3

4

5

1 2 3 4 5 6

v1

v2

v3

v4

v6

v7

v5

SA(G ,R ,P) = χI (G
′)

The Spectrum Allocation Problem (G ,R,P) is equivalent to the
Interval-Coloring Problem on the edge-intersection graph G ′ of paths Pi .
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Complexity

Corollary

Spectrum Allocation is NP-hard on general networks as well as on star
networks

Proof for star networks: wavelength assignment (di = 1) is NP-hard by
a reduction from edge coloring.

Corollary

Spectrum Allocation is already NP-hard on path networks and di ∈ {1, 2}

Proof: Interval-Coloring on a path is equivalent to Dynamic Storage
Allocation, which is known to be NP-hard.
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Interval-Coloring Problem

Definition (Interval-Coloring Problem (IC))

Given a graph G = (V ,E ) and a weight function d : V 7→ N, the Interval
Coloring Problem is to assign to every vertex v an interval of length d(v),
such that adjacent vertices are not assigned common colors. Let χI (G )
denote the minimum of colors required.
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(R)SA on Star Networks

Definition (Star)

A star K1,n is a graph with vertex set V (K1,n) = {v0, . . . , vn} and edge set
E (K1,n) = {(v0, vi )|i = 1, . . . , n)}.

Lemma

The (R)SA problem on stars is NP-hard, even if all di = 1.
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E (K1,n) = {(v0, vi )|i = 1, . . . , n)}.

Lemma

The (R)SA problem on stars is NP-hard, even if all di = 1.

Proof: Equivalent to Edge Interval-Coloring on a multigraph
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Edge Interval-Coloring on Pk

d1 d2 d3 d4
. . . dk−1

Color edges with intervals [ai , bi ) of length di such that

[ai−1, bi−1) ∩ [ai , bi ) = ∅ = [ai , bi ) ∩ [ai+1, bi+1)

Optimal Solution: Consider odd and even edges separately

Assign [0, d2j+1) for j = 0, . . . , bk−1
2 c − 1

Assign [χ− d2j , χ) for j = 1, . . . , bk−1
2 c with

χ := maxj=1,...,k−2{dj + dj+1}
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Edge Interval-Coloring on Pk with
loops

|Pi | = 1⇔ Loop in G ′

d1 d2 d3 d4
. . . dk−1
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Edge Interval-Coloring on Ck

k even: analogue to paths

k odd:

after removal of a single edge, we obtain a path

removed edge requires third level

search for edge (vj , vj+1) such that dj−1 + dj + dj+1 is minimized

Single block at 3rd level
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Algorithmic Graph Theory:
How hard is your

combinatorial optimization problem?

Arie M.C.A. Koster

Lecture 2
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