Algorithm Graph Theory:

How hard is your
combinatorial optimization problem?

Short Course — Lecture 1
June 7, 2017

07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 1 CLEMS"‘N R“UINI Il@égg%l

1. Basic Complexity Theory and polynomial
solvable graph classes:
= P NP, weak and strong NP-hardness

= polynomial algorithms for combinatorial problems on
interval, chordal, perfect, and perfect graphs

2. Graphs of bounded Treewidth:
= path and tree decompositions of graphs
" path- and treewidth
= computing treewidth

" dynamic programming algorithms for combinatorial
problems on graphs of bounded treewidth

07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 2 CJ‘LEM S"%’N R“UINI IE‘?@*%Q%\;

3. Fixed Parameter and Exact Algorithms:
= fixed parameter tractability
= kernelization
= W-hierarchy
= exponential time algorithms

" branching algorithms, dynamic programming
algorithms

07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 3 CLEMS%‘N R“UINI Il\l}éggl%

Schedule

9.00-10.30 11:00-12:30

Wed 06/07 Basics: Complexity Break Basics: First Examples

Basics: Interval graphs Break LR @nERE) Eel PEiifseEt
graphs
Treewidth: Graph classes of

Treewidth: introduction Break bounded treewidth

Treewidth: Lower and Upper Treewidth: Dynamic

Bounds Break Programming
IS0 JAESS FPT: Parameterized Complexity Break FPT: Kernelization
Wed 06/14 Exact: Branching Algorithms Break Exact: Dynamic Programming

7] wTH
07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 4 CLEMS“'N i UNI@E&Q%I
BENid Y E RS LT TN

" Knapsack Problem

" Travelling Salesman Problem

07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 5 CLEMS%‘N R“UINI Il@él%&%l

A very informal introduction to

computational complexity

07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 6 CLEMS""’N R“UINI Ileéggl%l

Problems, Instances & Solutions

= A problem is a general question, where several
parameters are left open

= A solution consist of answers for these parameters

= A problem is defined by a description of all its
parameters and which properties require an answer

» Given a digraph D=(V,A), distances d(a), a source s and a
target t, what is the length of a shortest path from s to t?

= A problem instance is a specific input where all
parameters are given explicitedly

" [et D be the road network of Clemson, distances given by
travel times, s=211 Fernow St and t=581 Berkeley Dir.

" How long does it take to go from s to t?

07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 7 CJ‘LEM S"'%N ng&%g%

" The task , Find a shortest traveling salesman tour
in a graph!“ is a problem with parameters a
number of cities and a distance matrix

" The file ,bier127.tsp” is a problem instance

07.06.2017

Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 J CLEMS@NR UNI\LI\QF({;EI%

Algorithms & Efficiency

" We denote a problem by 11, whereas an instance
of Problem I1 is denoted by lI1

" An algorithm solves problem I1if for every
problem instance |11, the algorithm finds a
solution

= Dijkstra‘s algorithm finds a shortest path in any
digraph with nonnegative distances, arbitrary source
s and arbitrary target t

" The aim of designing algorithms is to develop
efficient procedures to find a solution, where
efficient refers to time and memory storage

07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 9 CJ‘LEM S"%’N R“UINI IE‘?@*%Q%\;

Two Problem Types

= Decision problems: Problems that can be answered
by ,yes“ or ,,no“
= Does there exist a solution to the TSP with value at most
K?“ can be answered by ,yes“ or ,,no“
= Optimization problems: Problems that ask to find
an object with certain prescribed properties

= What ist the shortest traveling salesman tour in this
graph?“ requires to provide a tour
= Of course, the answer ,yes” should be verifyable
with a tour of length at most K, and an answer ,,no“
should be guaranteed as well

= For yes/no decision problems, we do not have to
distinguish between solution and optimal solution;
for optimization problems we do.

07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 10 CJ‘LEM S"'%N R UN!‘?@E’%?!%\;

IIIIIIIIII

Problem Encoding

" The time complexity (resp. memory complexity)
of an algorithm depends in general on the ,,size”

of the problem instance, i.e., the amount of
input data.

" The encoding of a problem instance is of critical
Importance

" |Integers are binary encoded.:
= Nonnegative integer n requires rlogz(n+1)_| bits
" One more bit is required for the sign of an integer

" The coding length <I> of an instance Ill is the
number of bits required to encode | completely

.) b ~%2\] RWNTHAACHEN
07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 11 SQITEMbs‘l'N UNIVERSITY

Problem Encoding

" The coding length of
" an integernis <n>:=rlog2(n+1)_|+1
= arational r=p/q is <r>:=<p>+<qg>
= a vector x=(xy,...,x,)T eQ" is <x>:= X<x.>
" a matrix AeQ™"is <A>:1= X X <3;>
" A (simple) graph with n vertices and m edges can
be encoded in different ways:
= vertex-edge incident matrix
= adjacency list for every vertex

m yertex-vertex incident matrix

e | = 8,
07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 N CILEMS@N Rw@@gg%
uuuuuuuuuu

Example: Knapsack

= |nput consists of vectors ceQ* and aeQk, scalar
0eQ

" Knapsack with k items has input length
<I>=<c>+<a>+ < 2k*<max {c,a,}>+
< (2k+1)*

™ &,
07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 B CLEMS@N RNUINI IIVAAEI%I%
uuuuuuuuuu

Computing Model

" To execute an algorithm and to compute its
running time and memory requirement
depending on the input length of a problem
instance, we need a computing model

" Examples:
= Turing machine W
= RAM machine g

Band mit Feldern

" An algorithm first reads the data of a problem
instance and uses for this <I> bits of memory

" Further bits are required to compute the
solution

e - 3 ~%2\] RWNTHAACHEN
07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 14 SﬁL’EMbs‘.'N UNIVERSITY

Memory requirement

= The number of bits that are used at least once

during the execution of Algorithm A is called the
memory requirement of A to solve |

" Example:

= Dynamic Programming for Knapsack with k items requires
at most k*b*<C> bits of memory where Cis 2c,

= Or b*<C> bits of memory if memory is reused

" The memory requirement is estimated from above

™ Al
07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 M CLEMS®N RW@@F?&ETI\\}
uuuuuuuuuu

" The running time of A to solve | is the number of

elementary operations which A requires until the
end of the procedure.

" Elementary operations are
= Reading, writing, and deleting,

= Addition, subtraction, multiplication, division and
comparison

= of rational (or integer) numbers.

" Here, we estimate each operation w.r.t. the
maximum numbers involved

SR - 7 ~%2\] RWNTHAACHEN
07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 16 SQITEMbs‘l'N UNIVERSITY

A bit more formally

The function f4 : N — N defined by

= i ti fAt lve [
fa(n) reqp Whax I>§n{ running time o o solve [}

is called the running time function of A.
The function s4 : N — N defined by

sa(n) = max { memory requirement of A to solve I}
I€ll with <I><n

is called the memory function of A.

The algorithm A has polynomial running time (short: A is a poly-
nomial algorithm) if there exists a polynomial p : N — N with
fa(n) < p(n) for all n € N.

If p is a polynomial of degree k, we call f4 of order at most n* and
write f4 = O(n")

Algorithm A has polynomial memory requirements if there exists

a polynomial ¢ : N — N with s4(n) < ¢(n) for all n € N.

™ Al
07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 17 (,LEMbS&I%T Y Rw\'}\égglw

U NTVER

Pseudopolynomiality

Algorithm A has pseudopolynomial running time if the running
time is bounded by a polynomial p in both < I > and the values of
the input data.

Algorithm A has pseudopolynomial memory requirements if the
memory consumption is bounded by a polynomial ¢ in both < I >
and the values of the input data.

5 | 8,
07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 N CIL EMS@N RwUINI II\?@I%I%'Y\]
U NI Y ERSITY

Classes of Problems

P Pseudo-
polynomial
polynomial time time

solvable solvable
problems problems

The class of all decision problems for which there exists a polynomial time
algorithm is denoted by 7

A decision problem IT belongs to the class A2 (nondeterministic polynomial) if

a) For every problem instance Iell with positive answer an object Q exists which allows ist
verification

b) There exists an algorithm taking problem instance | and Q as input to verify on the basis
of Q the positive answer, which runs polynomial in <I>

07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 19 CLEMS“'.‘NI““UINI IJIVUE\I(%EE-QI
BENd Y E RS T TN

Are the following problems part of A/7?

" Does graph G have a cycle?
[Q:

" Does graph G have a Hamilton cycle?
[Q:

" Does G not have a Hamilton cycle?

" co-NPis the class of problems, where a negative
answer can be verified in polynomial time (with
an object Q).

e | = 8,
07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 N CI EMS@N “w\?@%%
uuuuuuuuuu

Results & Questions

" PCNP

= Pcco-NP

= Pc(NPmco-NP)

" Question: P=NP ?

8,
07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 M C] EMS@N RWUINI II\I}EFC{:EI%]
uuuuuuuuuu

Polynomial transformation

= Let II, and I1, be two decision problems. A
polynomial transformation of I'1, to I, is a
polynomial time algorithm which constructs
from a problem instance |, € 11, a problem
instance |, e I, such that the answer of |, is
positive if and only if the answer of |, is positive.

= Remark: if I, is solvable in polynomial time,
then also 11,

.) b ~%2\] RWNTHAACHEN
07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 22 SQITEMbs‘l'N UNIVERSITY

NP-complete

polynomial time

solvable /\/P

problems

= A decision problem I1is called NP-complete if
ITeNP and every other problem in NP can be
polynomial transformed to I1.

= Remark: if any NP-complete problem can be solved
in polynomial time, all can, i.e., P=NP

07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 23 u(:uLuE'MSs“."N mﬁmoegglw

= SAT is NP-complete
= K-SAT is NP-complete
= EXACT COVER is NP-complete

= DIRECTED HAMILTON CYCLE is NP-complete
= UNDIRECTED HAMILTON CYCLE is NP-complete

" TSP is NP-complete

07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017

b J2foN] RWTHAACHEN
24 LLEMb"N UNIVERSITY

NP-complete NP-hard

D

polynomial time
solvable
problems

" A problem is NP-hard if all problems in NP can be
polynomially transformed to it (but it is not
necessarily known whether it is in NP)

" Remark: Optimization versions of NP-complete
problems are NP-hard:

b - 22\ RINTHAACHEN
07.06.2017 Algorithmic Graph Theory - © Prof. Dr. Arie M.C.A. Koster, 2017 25 QLEMSSCI N UNIVERSITY

