Algorithm Graph Theory: How hard is your combinatorial optimization problem?

Short Course – Lecture 1 June 7, 2017

Contents

- 1. Basic Complexity Theory and polynomial solvable graph classes:
 - P, NP, weak and strong NP-hardness
 - polynomial algorithms for combinatorial problems on interval, chordal, perfect, and perfect graphs
- 2. Graphs of bounded Treewidth:
 - path and tree decompositions of graphs
 - path- and treewidth
 - computing treewidth
 - dynamic programming algorithms for combinatorial problems on graphs of bounded treewidth

Contents

- 3. Fixed Parameter and Exact Algorithms:
 - fixed parameter tractability
 - kernelization
 - W-hierarchy
 - exponential time algorithms
 - branching algorithms, dynamic programming algorithms

Schedule

	9.00-10.30	10.30-11.00	11:00-12:30
Wed 06/07	Basics: Complexity	Break	Basics: First Examples
Thu 06/08	Basics: Interval graphs	Break	Basics: chordal and perfect graphs
Fri 06/09	Treewidth: introduction	Break	Treewidth: Graph classes of bounded treewidth
Mon 06/12	Treewidth: Lower and Upper Bounds	Break	Treewidth: Dynamic Programming
Tue 06/13	FPT: Parameterized Complexity	Break	FPT: Kernelization
Wed 06/14	Exact: Branching Algorithms	Break	Exact: Dynamic Programming

Appetizer

- Knapsack Problem
- Travelling Salesman Problem

A *very informal* introduction to computational complexity

Problems, Instances & Solutions

- A problem is a general question, where several parameters are left open
- A solution consist of answers for these parameters
- A problem is defined by a description of all its parameters and which properties require an answer
 - Given a digraph D=(V,A), distances d(a), a source s and a target t, what is the length of a shortest path from s to t?
- A problem instance is a specific input where all parameters are given explicitedly
 - Let D be the road network of Clemson, distances given by travel times, s=211 Fernow St and t=581 Berkeley Dr.
 - How long does it take to go from s to t?

Example

- The task "Find a shortest traveling salesman tour in a graph!" is a problem with parameters a number of cities and a distance matrix
- The file "bier127.tsp" is a problem instance

Algorithms & Efficiency

- We denote a problem by Π , whereas an instance of Problem Π is denoted by $I \in \Pi$
- An algorithm solves problem Π if for every problem instance $I \in \Pi$, the algorithm finds a solution
 - Dijkstra's algorithm finds a shortest path in any digraph with nonnegative distances, arbitrary source s and arbitrary target t
- The aim of designing algorithms is to develop efficient procedures to find a solution, where efficient refers to time and memory storage

Two Problem Types

- Decision problems: Problems that can be answered by "yes" or "no"
 - "Does there exist a solution to the TSP with value at most K?" can be answered by "yes" or "no"
- Optimization problems: Problems that ask to find an object with certain prescribed properties
 - "What ist the shortest traveling salesman tour in this graph?" requires to provide a tour
- Of course, the answer "yes" should be verifyable with a tour of length at most K, and an answer "no" should be guaranteed as well
- For yes/no decision problems, we do not have to distinguish between solution and optimal solution; for optimization problems we do.

Problem Encoding

- The time complexity (resp. memory complexity) of an algorithm depends in general on the "size" of the problem instance, i.e., the amount of input data.
- The encoding of a problem instance is of critical importance
- Integers are binary encoded:
 - Nonnegative integer n requires \[\log_2(n+1) \] bits
 - One more bit is required for the sign of an integer
- The coding length <I> of an instance $I \in \Pi$ is the number of bits required to encode I completely

Problem Encoding

- The coding length of
 - an integer n is $< n > := \lceil \log_2(n+1) \rceil + 1$
 - a rational r=p/q is <r>:=+<q>
 - a vector $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_n)^T \in \mathbf{Q}^n$ is $\langle \mathbf{x} \rangle := \Sigma \langle \mathbf{x}_i \rangle$
 - a matrix $A \in Q^{mxn}$ is $\langle A \rangle := \sum \sum \langle a_{ij} \rangle$
- A (simple) graph with n vertices and m edges can be encoded in different ways:
 - vertex-edge incident matrix
 - adjacency list for every vertex
 - vertex-vertex incident matrix

Example: Knapsack

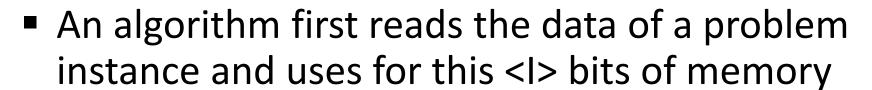
- Input consists of vectors c∈Q^k and a∈Q^k, scalar b∈Q
- Knapsack with k items has input length $< l>=< c>+< a>+< b> ≤ 2k*< max {c_i,a_i}>+< b> ≤ (2k+1)*< b>$

Computing Model

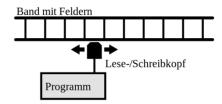
To execute an algorithm and to compute its running time and memory requirement depending on the input length of a problem instance, we need a computing model

Examples:

- Turing machine
- RAM machine



Further bits are required to compute the solution



Memory requirement

 The number of bits that are used at least once during the execution of Algorithm A is called the memory requirement of A to solve I

Example:

- Dynamic Programming for Knapsack with k items requires at most k*b*<C> bits of memory where C is Σc_i
- Or b*<C> bits of memory if memory is reused
- The memory requirement is estimated from above

Running time

- The running time of A to solve I is the number of elementary operations which A requires until the end of the procedure.
- Elementary operations are
 - Reading, writing, and deleting,
 - Addition, subtraction, multiplication, division and comparison
- of rational (or integer) numbers.
- Here, we estimate each operation w.r.t. the maximum numbers involved

A bit more formally

The function $f_A: \mathbb{N} \to \mathbb{N}$ defined by

$$f_A(n) := \max_{I \in \Pi \text{ with } \langle I \rangle \leq n} \{ \text{ running time of } A \text{ to solve } I \}$$

is called the running time function of A.

The function $s_A: \mathbb{N} \to \mathbb{N}$ defined by

$$s_A(n) := \max_{I \in \Pi \text{ with } \langle I \rangle \leq n} \{ \text{ memory requirement of } A \text{ to solve } I \}$$

is called the memory function of A.

The algorithm A has polynomial running time (short: A is a polynomial algorithm) if there exists a polynomial $p: \mathbb{N} \to \mathbb{N}$ with $f_A(n) \leq p(n)$ for all $n \in N$.

If p is a polynomial of degree k, we call f_A of order at most n^k and write $f_A = \mathcal{O}(n^k)$

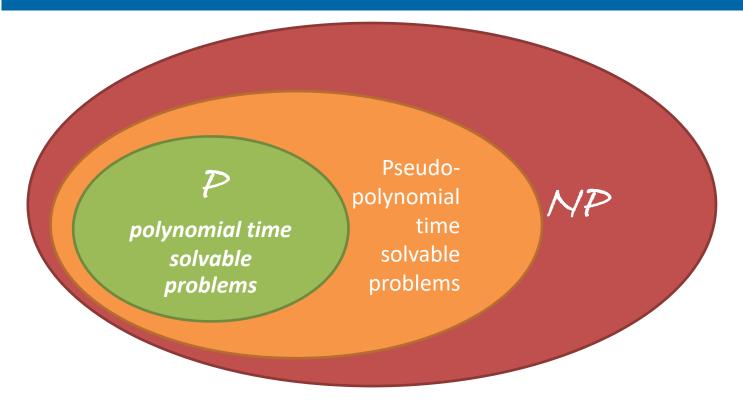
Algorithm A has polynomial memory requirements if there exists a polynomial $q: \mathbb{N} \to \mathbb{N}$ with $s_A(n) \leq q(n)$ for all $n \in N$.

Pseudopolynomiality

Algorithm A has pseudopolynomial running time if the running time is bounded by a polynomial p in both < I > and the values of the input data.

Algorithm A has pseudopolynomial memory requirements if the memory consumption is bounded by a polynomial q in both $\langle I \rangle$ and the values of the input data.

Classes of Problems



The class of all decision problems for which there exists a polynomial time algorithm is denoted by \mathcal{P}

A decision problem Π belongs to the class NP (nondeterministic polynomial) if

- a) For every problem instance $I \in \Pi$ with positive answer an object Q exists which allows ist verification
- b) There exists an algorithm taking problem instance I and Q as input to verify on the basis of Q the positive answer, which runs polynomial in <I>

Example

Are the following problems part of $\nearrow P$?

- Does graph G have a cycle?
 - Q =
- Does graph G have a Hamilton cycle?
 - Q =
- Does G not have a Hamilton cycle?

■ co-NP is the class of problems, where a negative answer can be verified in polynomial time (with an object Q).

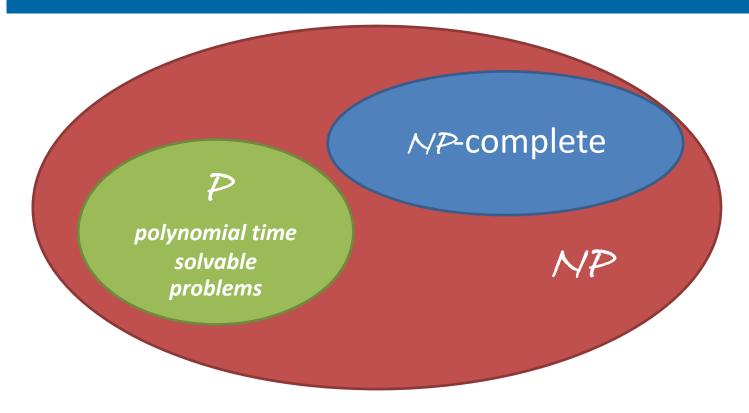
Results & Questions

- P⊆NP
- P⊆co-NP
- P⊆(NP∩co-NP)
- Question: P=NP?

Polynomial transformation

■ Let Π_1 and Π_2 be two decision problems. A polynomial transformation of Π_1 to Π_2 is a polynomial time algorithm which constructs from a problem instance $I_1 \in \Pi_1$ a problem instance $I_2 \in \Pi_2$ such that the answer of I_1 is positive if and only if the answer of I_2 is positive.

■ Remark: if Π_2 is solvable in polynomial time, then also Π_1

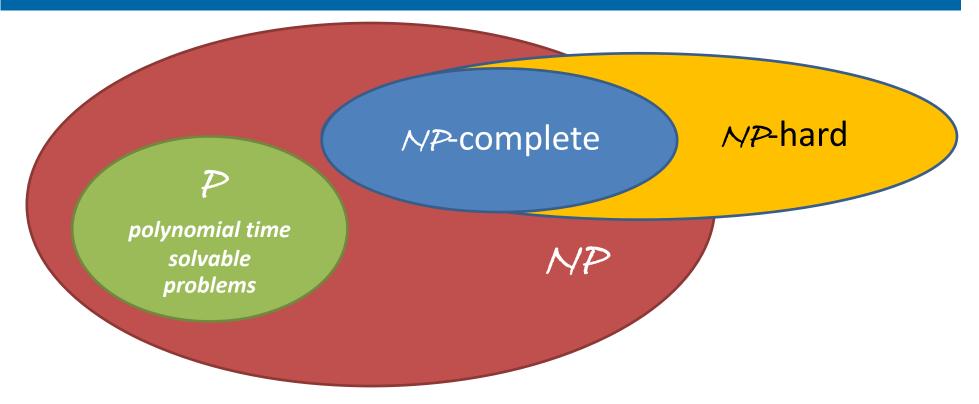


- A decision problem Π is called NP-complete if $\Pi \in NP$ and every other problem in NP can be polynomial transformed to Π .
- Remark: if any NP-complete problem can be solved in polynomial time, all can, i.e., P=NP

Examples

- SAT is NP-complete
- K-SAT is NP-complete
- EXACT COVER is NP-complete
- DIRECTED HAMILTON CYCLE is NP-complete
- UNDIRECTED HAMILTON CYCLE is NP-complete

TSP is NP-complete



- A problem is NP-hard if all problems in NP can be polynomially transformed to it (but it is not necessarily known whether it is in NP)
- Remark: Optimization versions of NP-complete problems are NP-hard: