
Mathematics and Gambling

Ingo Althöfer
Friedrich-Schiller-Universität Jena

What is the distance between Mathematics and gambling? For someone who studied
Mathematics in Bielefeld during the 1980’s, it is not a large one. We tell four stories of
betting and gambling in math.

* Erdős Prizes (100 Dollars and more)

* A stage on the way to solving the board game ”Mühle” (10 vs 100 DM)

* The Eternity Puzzle (1 Million British Pounds)

* Gerd Opfer’s attempt to solve the Collatz problem (100 vs 10,000 Euro)

Finally, the audience gets a prize puzzle on a combinatorial problem with them (three
levels: 500 Euro; 1,000 Euro; 2,500 Euro).

The speaker believes in a variant of Friedrich Schiller’s old motto:
Ein Mathematiker ist nur da ganz Mathematiker, wo er auch wettet.

(A mathematician is a true mathematician only when he is gambling)

Finding Defectives by Random Docking and Moving

Peter Damaschke
Chalmers University, Göteborg

Proteins that repair defectives on the DNA seem to apply some form of group testing
on a line. They send signals to each other, and a signal is received if and only if no
defective is between sender and recipient. Depending on the signals received, proteins
move on the DNA until they hit a defective, or they leave. However the points where
the proteins arrive are random. Inspired by this scenario we study a model where robots
are searching for defectives on a line. We do not claim that the model accurately reflects
the situation in the living cell, rather, we study which abilities of the robots enable
which search times. While a group testing strategy that can select the tested intervals
would trivially find defectives in logarithmic time, we show that random test points and
deterministic moves still find defectives in a time proportional to the square root of the
length.



Worm Colorings of Planar Graphs

Stanislav Jendrol’
Pavol Jozef Safarik University, Košice

(joint work with Július Czap and Juraj Valiska)

Given three planar graphs F , H, and G. An (F,H)-WORM coloring of G is a vertex
coloring such that no subgraph isomorphic to F is rainbow and no subgraph isomorphic
to H is monochromatic. If G has at least one (F,H)-WORM coloring, then W−

F,H(G)
denotes the minimum number of colors in an (F,H)-WORM coloring of G. We show
that

a) W−
F,H(G) ≤ 2 if |V (F )| ≥ 3 and H contains a cycle,

b) W−
F,H(G) ≤ 3 if |V (F )| ≥ 4 and H is a forest with ∆(H) ≥ 3,

c) W−
F,H(G) ≤ 4 if |V (F )| ≥ 5 and H is a forest with 1 ≤ ∆(H) ≤ 2.

We also discuss the remaining cases. The cases when both F and H are nontrivial
paths are more complicated; therefore we consider a relaxation of the original problem.
Among others, we prove that any 3-connected plane graph (resp. outerplane graph) ad-
mits a 2-coloring such that no facial path on five (resp. four) vertices is monochromatic.

Representations of Posets, Groups, Monoids and
Categories

Jaroslav Nešetřil
Charles University, Prague

Classical results imply that every group (monoid, category) can be represented as the
group (monoid, category) of all isomorphisms (endomorphisms, homomorphisms) of a
particular graph (or of a class of graphs). While all partial orders may be represented
even by oriented paths (and e.g. by outerplanar graphs), for groups, monoids and
categories this is not possible. In the context of the sparse hierarchy we determine
complexity of these problems in perhaps surprising exactness. This is a recent joint
work with Jan Hubicka (Prague) and Patrice Ossona de Mendez (Paris and Prague).



Burning a Graph

Dieter Rautenbach
Universität Ulm

Motivated by a graph theoretic process intended to measure the speed of the spread of
contagion in a graph, Bonato et al. [Burning a Graph as a Model of Social Contagion,
Lecture Notes in Computer Science 8882 (2014) 13-22] define the burning number b(G)
of a graph G as the smallest integer k for which there are vertices x1, . . . , xk such that
for every vertex u of G, there is some i ∈ {1, . . . , k} with distG(u, xi) ≤ k − i, and
distG(xi, xj) ≥ j − i for every i, j ∈ {1, . . . , k}.

For a connected graph G of order n, they prove b(G) ≤ 2 d
√
ne − 1, and conjecture

b(G) ≤ d
√
ne. We show that b(G) ≤

√
32
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n
1−ε +

√
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19ε and b(G) ≤

√
12n
7 + 3 ≈

1.309
√
n+ 3 for every connected graph G of order n and every 0 < ε < 1. For a tree T

of order n with n2 vertices of degree 2, and n≥3 vertices of degree at least 3, we show

b(T ) ≤
⌈√

(n+ n2) + 1
4 + 1

2

⌉
and b(T ) ≤ d

√
ne+n≥3. Finally, we show that the problem

of deciding whether b(G) ≤ k for a given graph G and a given integer k is NP-complete
even when restricting the graphs G to either the unions of paths or to trees that have
exactly one vertex of degree at least 3.

The presented results are joint work with Stephane Bessy.

The Partially Disjoint Paths Problem

Alexander Schrijver
University of Amsterdam and CWI Amsterdam

The partially disjoint paths problem asks for paths between given pairs of terminals,
while certain prescribed pairs of paths are required to be disjoint. With the help of com-
binatorial group theory, we show that, for any fixed number of terminals, this problem
can be solved in polynomial time for planar directed graphs. We also discuss related
problems. No specific pre-knowledge is assumed.

Some extremal problems in graph theory

Zsolt Tuza
Alfréd Rényi Institute of Mathematics, Budapest, and University of
Pannonia, Veszprém

Starting from my joint works with Eberhard, I discuss some old and new problems in
extremal graph theory.



Graph Fill-In, Elimination Ordering, Nested Dissection
and Contraction Hierarchies

Dorothea Wagner
Karlsruhe Institute of Technology

Graph fill-in, chordal graph completion, elimination ordering, separators, nested dis-
section orders and tree-width are only some examples of classical graph concepts that
are related in manifold ways. This talk shows how contraction hierarchies, a successful
approach to speed up Dijkstras algorithm for shortest paths fits into this series of graph
concepts. As theoretical consequence of this insight, a guarantee for the search space
required by Dijkstras algorithm combined with contraction hierarchies can be proved.
On the other hand, the use of nested dissection leads to a very practicable variant of
contraction hierarchies that can be applied in scenarios where edge lengths often change.

Cannons at Sparrows

Günter M. Ziegler
Freie Universität Berlin

The story told in this lecture starts with an innocuous little geometry problem, posed
in a September 2006 blog entry by R. Nandakumar, an engineer from Calcutta, India:
“Can you cut every polygon into a prescribed number of convex pieces that have equal
area and equal perimeter?” This little problem is a “sparrow”, tantalizing, not as easy
as one could perhaps expect, and Recreational Mathematics: of no practical use.

I will sketch, however, how this little problem connects to very serious mathematics,
including Computational Geometry: For the modelling of this problem we employ in-
sights from a key area of Applied Mathematics, the Theory of Optimal Transportation,
which leads to weighted Voronoi diagrams with prescribed areas. This will set up the
stage for application of a major tool from Very Pure Mathematics, known as Equivari-
ant Obstruction Theory. This is a “cannon”, and we’ll have fun with shooting it at the
sparrow.

On the way to a solution, combinatorial properties of the permutahedron turn out to
be essential. These will, at the end of the story, lead us back to India, with some time
travel 100 years into the past: For the last step in our (partial) solution of the sparrows
problem we need a simple divisibility property for the numbers in Pascals triangle, which
was first observed by Balak Ram, in Madras 1909.

But even if the existence problem is solved, the Computational Geometry problem
is not: If the solution exists, how do you find one? This problem will be left to you.
Instead, I will comment on the strained relationship between cannons and sparrows, and
to this avail quote a poem by Hans Magnus Enzensberger.


