12 Differentiability

Definition 1 (secant, slope \& difference quotient). Let (a, b) be an open interval and $x_{0} \in(a, b)$. Let $f:(a, b) \rightarrow \mathbb{R}$ be a function.
(i) The secant to f through x_{0} and x is the straight line connecting $\left(x_{0}, f\left(x_{0}\right)\right)$ and $(x, f(x))$.
(ii) The slope of the secant through x_{0} and x given as

$$
\Delta f\left(x_{0} ; x\right)=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

is called the difference quotient.
Definition 2 (differentiability \& derivative). Let $D \subset \mathbb{R}$ and $f: D \rightarrow \mathbb{R}$ be a function. Then f is called differentiable at $x_{0} \in D$ if for some $\delta>0:\left(x_{0}-\delta, x_{0}+\delta\right) \subset D$ and

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \triangle f\left(x_{0} ; x\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

exists in \mathbb{R}. The limit $f^{\prime}\left(x_{0}\right)$ is called derivative of f at x_{0}. If f is differentiable at every point $x_{0} \in D$, the function $f^{\prime}: D \rightarrow \mathbb{R}$ is called derivative (function) of f.

There is another form of the difference quotient. We replace $x-x_{0}$ by h and consider

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=f^{\prime}\left(x_{0}\right) .
$$

Theorem 3 (differentiability \& continuity). If f is differentiable, it is continuous.
Theorem 4 (differentiability \& operations on functions). Let $f, g: D \rightarrow \mathbb{R}$ be differentiable functions, where $D \subset \mathbb{R}$. Then
(i) $(f+g)^{\prime}=f^{\prime}+g^{\prime}$,
(ii) $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$,
(iii) $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ whenever $g \neq 0$.

Theorem 5 (chain rule). Let $f: D_{1} \rightarrow D_{2}$ and $g: D_{2} \rightarrow \mathbb{R}$, where $D_{1}, D_{2} \subset \mathbb{R}$, be continuous functions. If f is differentiable in x_{0} and g is differentiable in $f\left(x_{0}\right)$, then $g \circ$ $f: D_{1} \rightarrow \mathbb{R}$ is differentiable in x_{0} and

$$
(g \circ f)^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right)
$$

Theorem 6 (differentiability of f^{-1}). Let $f: I \rightarrow \mathbb{R}$ be a differentiable and strictly monotonic function, where $I \subset \mathbb{R}$ is an interval. Then $f^{-1}: f(I) \rightarrow I$ is differentiable and

$$
\left(f^{-1}\right)^{\prime}\left(f\left(x_{0}\right)\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}
$$

Definition 7 (higher order derivatives). Let $f: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}$, be a differentiable function. If f^{\prime} is differentiable on D, the derivative of f^{\prime} is called second derivative of f :

$$
f^{(2)}=f^{\prime \prime}
$$

In this case f is called twice differentiable. More generally, if f is n-times differentiable, $n \in \mathbb{N}$, and its n-th derivative $f^{(n)}$ is differentiable, the $(n+1)$-st derivative of f is the derivative of $f^{(n)}$:

$$
f^{(n+1)}=\left(f^{(n)}\right)^{\prime} .
$$

In this case f is called $(n+1)$-times differentiable. If $f^{(n)}$ exists for all $n \in \mathbb{N}$, then f is indefinitely differentiable.

An arbitrary function with domain \mathbb{R}^{n} and target \mathbb{R}^{m} has the form $f\left(x_{1}, \ldots, x_{n}\right)=$ $\left(f_{1}, \ldots, f_{m}\right)$ where each of the component functions, f_{i}, is a real-valued function with domain \mathbb{R}^{n}. To make the dependence on n variables explicit, we can write $f_{i}\left(x_{1}, \ldots, x_{n}\right)$.

Definition 8 (partial derivative). A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called partially differentiable at \mathbf{x}_{0} in direction x_{i} if the limit

$$
\frac{\partial f}{\partial x_{i}}\left(\mathbf{x}_{0}\right)=\partial_{j} f\left(\mathbf{x}_{0}\right)=\lim _{t \rightarrow 0} \frac{f\left(\mathbf{x}_{0}+t \mathbf{e}_{i}\right)-f\left(\mathbf{x}_{0}\right)}{t} \in \mathbb{R}^{m}
$$

exists. Here \mathbf{e}_{i} is the i-th unit vector. The limit $\partial_{j} f\left(\mathbf{x}_{0}\right)$ is called i-th partial derivative of f at x_{0}. If f is partially differentiable at every point $x_{0} \in D$ in every direction x_{i}, then f is called partially differentiable on D.

Definition 9 (directional derivative). A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called directionally differentiable at \mathbf{x}_{0} along $\mathbf{v} \neq \mathbf{0}$ if the limit

$$
\partial_{\mathbf{v}} f\left(\mathbf{x}_{0}\right)=\lim _{t \rightarrow 0} \frac{f\left(\mathbf{x}_{0}+t \mathbf{v}\right)-f\left(\mathbf{x}_{0}\right)}{t} \in \mathbb{R}^{m}
$$

exists. The limit $\partial_{\mathbf{v}} f\left(\mathbf{x}_{0}\right)$ is called directional derivative of f at \mathbf{x}_{0} along \mathbf{v}.

Definition 10 (Jacobian Matrix). The Jacobian matrix for $f=f\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}, \ldots, f_{m}\right)$ is a matrix filled with partial derivatives. The entry in the i-th row and j-th column is $\frac{\partial f_{i}}{\partial x_{j}}$:

$$
J_{f}:=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right)
$$

Theorem 11. If $f: D \rightarrow \mathbb{R}$ is twice continuously differentiable at $\mathbf{x}_{0} \in D$, then

$$
\partial_{i} \partial_{j} f\left(\mathbf{x}_{0}\right)=\partial_{j} \partial_{i} f\left(\mathbf{x}_{0}\right) .
$$

Definition 12. If $f: D \rightarrow \mathbb{R}$ is twice continuously differentiable at $\mathbf{x}_{0} \in D$, then the matrix $H f\left(\mathbf{x}_{0}\right)$ defined by

$$
\left(H f\left(\mathbf{x}_{0}\right)\right)_{i, j}=\partial_{i} \partial_{j} f\left(\mathbf{x}_{0}\right)
$$

for $i, j=1,2, \ldots, n$ is called the Hessian matrix of f at \mathbf{x}_{0}, or simply Hessian. (With regard to Theorem 11, the Hessian is symmetrical.)

Derivatives of elementary functions

$f(x)$	$f^{\prime}(x)$
$c=$ const	0
x^{n}	$n x^{n-1}$
\sqrt{x}	$\frac{1}{2 \sqrt{x}}$
$\sin (x)$	$\cos (x)$
$\cos (x)$	$-\sin (x)$
$\tan (x)$	$\frac{1}{\cos ^{2}(x)}$
$\arcsin (x)$	$\frac{1}{\sqrt{1-x^{2}}}$
$\arccos (x)$	$\frac{-1}{\sqrt{1-x^{2}}}$
$\arctan (x)$	$\frac{1}{1+x^{2}}$
e^{x}	e^{x}
a^{x}	$\ln (a) a^{x}$
$\ln (x)$	$\frac{1}{x}$

