# Lehrstuhl II für Mathematik 

## 11 Continuity

Definition 1 (limits of functions via sequences). Let $f: D \rightarrow \mathbb{R}$ be a function, where $D \subset \mathbb{R}^{n}$, and $x_{0} \in \mathbb{R}^{n}$. A number $a \in \mathbb{R}$ is called limit of $f$ in $x_{0}$ if for all sequences $\left(y_{n}\right) \subset D \backslash\left\{x_{0}\right\}$ satisfying $y_{n} \rightarrow x_{0}:$

$$
\lim _{n \rightarrow \infty} f\left(y_{n}\right)=a
$$

We write $f(x) \rightarrow$ a for $x \rightarrow x_{0}$.
Definition 2 (continuity). Let $f: D \rightarrow \mathbb{R}$ be a function, where $D \subset \mathbb{R}^{n}$. The function $f$ is called
(i) continuous at $x_{0} \in D$ if

$$
f\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} f(x)
$$

(ii) continuous on $D$ if $f$ is continuous at every point $x_{0} \in D$.

Theorem 3 ( $\varepsilon$ - $\delta$-criterion). Let $f: D \rightarrow \mathbb{R}$ be a function, where $D \subset \mathbb{R}^{n}$. The function $f$ is continuous at $x_{0}$ if and only if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
\text { for all } x \in D:\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon
$$

Theorem 4 (continuity \& operations on functions). If $f, g: D \rightarrow \mathbb{R}$, where $D \subset \mathbb{R}^{n}$, are functions that are continuous at $x_{0}$, then $f+g, f \cdot g$, and $\frac{f}{g}\left(\right.$ for $\left.g\left(x_{0}\right) \neq 0\right)$ are continuous at $x_{0}$.

Theorem 5 (continuity \& concatenation of functions). If $f: D_{1} \rightarrow D_{2}$ and $g: D_{2} \rightarrow \mathbb{R}$, where $D_{1}, D_{2} \subset \mathbb{R}$, are continuous at $x_{0}$ and $f\left(x_{0}\right)$, respectively, then $g \circ f: D_{1} \rightarrow \mathbb{R}$ is continuous at $x_{0}$.

Theorem 6 (continuity of $f^{-1}$ ). Let $f: I \rightarrow \mathbb{R}$ be a continuous function, where $I$ is an interval. If $f$ is strictly monotonic on $I$, then $f^{-1}: f(I) \rightarrow I$ is continuous on $f(I)$.

Theorem 7 (classes of continuous functions). The following functions are continuous on their respective domains.
(i) The absolute value $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(\mathbf{x})=|\mathbf{x}|$;
(ii) Polynomials;
(iii) Roots;
(iv) Trigonometric functions;
(v) Exponential functions $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=c^{x}$ for fixed $c>0$;
(vi) The minimum and maximum function

$$
\begin{aligned}
& \min (\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}, \min (\mathbf{x})=\min \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
& \max (\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}, \max (\mathbf{x})=\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
\end{aligned}
$$

Theorem 8 (intervals \& continuous functions). Let $f: D \rightarrow \mathbb{R}$ be a continuous function, where $D \subset \mathbb{R}$. If $[a, b] \subset D$, there exist $c, d \in \mathbb{R}$ such that $f([a, b])=[c, d]$, i.e. the image of a closed interval under a continuous function is again a closed interval.

Corollary 9 (Weierstrass' extremal value theorem). Let $f: D \rightarrow \mathbb{R}$ be a continuous function, where $D \subset \mathbb{R}$. If $[a, b] \subset D$, then $f$ has a minimum and maximum in $[a, b]$, i.e. there exist $x_{\min }, x_{\max } \in[a, b]$ such that $f\left(x_{\min }\right) \leq f(x) \leq f\left(x_{\max }\right)$ for every $x \in[a, b]$.

Corollary 10 (Intermediate value theorem). Let $f: D \rightarrow \mathbb{R}$ be a continuous function, where $D \subset \mathbb{R}$, and $[a, b] \subset D$. For every $y$ between $f(a)$ and $f(b)$ there is an $x \in[a, b]$ with $f(x)=y$.

Corollary 11 (existence of roots). Let $f: D \rightarrow \mathbb{R}$ be a continuous function, where $D \subset \mathbb{R}$, and $[a, b] \subset D$. If $f(a) f(b)<0$, there is an $x \in[a, b]$ with $f(x)=0$.

