Lehrstuhl II für Mathematik Dipl.-Math. Michael Hoschek

11 Continuity

Definition 1 (limits of functions via sequences). Let $f: D \to \mathbb{R}$ be a function, where $D \subset \mathbb{R}^n$, and $x_0 \in \mathbb{R}^n$. A number $a \in \mathbb{R}$ is called limit of f in x_0 if for all sequences $(y_n) \subset D \setminus \{x_0\}$ satisfying $y_n \to x_0$:

$$\lim_{n\to\infty}f(y_n)=a.$$

We write $f(x) \rightarrow a$ for $x \rightarrow x_0$.

Definition 2 (continuity). Let $f: D \to \mathbb{R}$ be a function, where $D \subset \mathbb{R}^n$. The function f is called

(*i*) continuous at $x_0 \in D$ *if*

$$f(x_0) = \lim_{x \to x_0} f(x).$$

(*ii*) continuous on *D* if *f* is continuous at every point $x_0 \in D$.

Theorem 3 (ε - δ -criterion). Let $f: D \to \mathbb{R}$ be a function, where $D \subset \mathbb{R}^n$. The function f is continuous at x_0 if and only if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

for all
$$x \in D$$
: $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$.

Theorem 4 (continuity & operations on functions). *If* $f, g: D \to \mathbb{R}$, where $D \subset \mathbb{R}^n$, are *functions that are continuous at* x_0 , *then* f + g, $f \cdot g$, and $\frac{f}{g}$ (for $g(x_0) \neq 0$) are continuous at x_0 .

Theorem 5 (continuity & concatenation of functions). If $f: D_1 \to D_2$ and $g: D_2 \to \mathbb{R}$, where $D_1, D_2 \subset \mathbb{R}$, are continuous at x_0 and $f(x_0)$, respectively, then $g \circ f: D_1 \to \mathbb{R}$ is continuous at x_0 .

Theorem 6 (continuity of f^{-1}). Let $f: I \to \mathbb{R}$ be a continuous function, where I is an interval. If f is strictly monotonic on I, then $f^{-1}: f(I) \to I$ is continuous on f(I).

Theorem 7 (classes of continuous functions). *The following functions are continuous on their respective domains.*

- (i) The absolute value $f \colon \mathbb{R}^n \to \mathbb{R}$, $f(\mathbf{x}) = |\mathbf{x}|$;
- (ii) Polynomials;
- (iii) Roots;
- (iv) Trigonometric functions;
- (v) Exponential functions $f : \mathbb{R} \to \mathbb{R}$, $f(x) = c^x$ for fixed c > 0;
- (vi) The minimum and maximum function

$$\min(\mathbf{x}) \colon \mathbb{R}^n \to \mathbb{R}, \min(\mathbf{x}) = \min\{x_1, x_2, \dots, x_n\},\\ \max(\mathbf{x}) \colon \mathbb{R}^n \to \mathbb{R}, \max(\mathbf{x}) = \max\{x_1, x_2, \dots, x_n\}.$$

Theorem 8 (intervals & continuous functions). Let $f: D \to \mathbb{R}$ be a continuous function, where $D \subset \mathbb{R}$. If $[a, b] \subset D$, there exist $c, d \in \mathbb{R}$ such that f([a, b]) = [c, d], i.e. the image of a closed interval under a continuous function is again a closed interval.

Corollary 9 (WEIERSTRASS' extremal value theorem). Let $f: D \to \mathbb{R}$ be a continuous function, where $D \subset \mathbb{R}$. If $[a, b] \subset D$, then f has a minimum and maximum in [a, b], i.e. there exist $x_{min}, x_{max} \in [a, b]$ such that $f(x_{min}) \leq f(x) \leq f(x_{max})$ for every $x \in [a, b]$.

Corollary 10 (Intermediate value theorem). Let $f: D \to \mathbb{R}$ be a continuous function, where $D \subset \mathbb{R}$, and $[a,b] \subset D$. For every y between f(a) and f(b) there is an $x \in [a,b]$ with f(x) = y.

Corollary 11 (existence of roots). *Let* $f : D \to \mathbb{R}$ *be a continuous function, where* $D \subset \mathbb{R}$ *, and* $[a,b] \subset D$. *If* f(a)f(b) < 0*, there is an* $x \in [a,b]$ *with* f(x) = 0.