Lehrstuhl II für Mathematik Dipl.-Math. Michael Hoschek

10 Series

Definition 1 (series). Let (x_n) be a sequence. The series $\sum_{n=0}^{\infty} x_n$ is the sequence (y_n) of partial sums

$$y_n = \sum_{k=0}^n x_k.$$

The series converges to $y \in \mathbb{R}$ *if* $y_n \to y$ *. In this case we write*

$$\sum_{n=0}^{\infty} x_n = y.$$

A series converges absolutely if

$$\sum_{n=0}^{\infty} |x_n|$$

converges. We also use the notation $\sum x_n$.

Theorem 2. If $\sum_{n=0}^{\infty} x_n$ converges, then $x_n \to 0$.

Theorem 3 (majorant criterion). Let $x_n, y_n \ge 0$ for $n \in \mathbb{N}_0$. If there exists a number $n_0 \in \mathbb{N}_0$ such that

for all
$$n \ge n_0$$
: $x_n \le y_n$,

then the following holds.

- (*i*) If $\sum y_n$ converges, then $\sum x_n$ converges.
- (*ii*) If $\sum x_n$ diverges, then $\sum y_n$ diverges.

Proposition 4 ((absolute) convergence). *If a series converges absolutely, then it is convergent.*

Theorem 5 (root criterion). Let $x_n \ge 0$ for $n \in \mathbb{N}_0$. If

$$\lim_{n\to\infty}\sqrt[n]{x_n}<1,$$

then $\sum x_n$ is convergent. If

$$\lim_{n\to\infty}\sqrt[n]{x_n}>1,$$

then $\sum x_n$ is divergent.

Theorem 6 (quotient criterion). Let $x_n > 0$ for $n \in \mathbb{N}_0$. If

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_n}<1,$$

then $\sum x_n$ is convergent. If

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_n}>1$$

then $\sum x_n$ is divergent.

Theorem 7 (LEIBNIZ criterion). If (x_n) is a monotonically decreasing sequence with $x_n \to 0$, then $\sum (-1)^n x_n$ converges.

Definition 8 (power series). *For* $a_k \in \mathbb{R}$ *, where* $k \in \mathbb{N}_0$ *, and* $x_0 \in \mathbb{R}$ *, a series*

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k$$

is called a power series.

Theorem 9 (radius of convergence). Let $\sum_{k=0}^{\infty} a_k (x - x_0)^k$ be a power series. If

$$\lim_{n\to\infty}\sqrt[n]{|a_n|}=c,$$

the power series converges for every x with $|x - x_0| < \frac{1}{c}$ and diverges for every x with $|x - x_0| > \frac{1}{c}$. (If c = 0, the power series converges for every x.) If

$$\lim_{n\to\infty}|\frac{a_n}{a_{n+1}}|=r,$$

the power series converges for every x with $|x - x_0| < r$ and diverges for every x with $|x - x_0| > r$. Moreover, if one of the two limits exists, the other exists too, and $\frac{1}{c} = r$. The number r is called the radius of convergence and $(x_0 - r, x_0 + r)$ is called the interval of convergence.