3 Matrices

Definition 1 (Matrix-vector-product). Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^{n}$ such that

$$
A=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
& \vdots & & \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right) \text { and } \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

Then

$$
A \mathbf{x}=\left(\begin{array}{c}
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, n} x_{n} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, n} x_{n} \\
\vdots \\
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\cdots+a_{m, n} x_{n}
\end{array}\right) \in \mathbb{R}^{m}
$$

Definition 2. If the matrices A and B have the same size, then their sum is the matrix $A+B$ defined by

$$
(A+B)_{i, j}=\left(a_{i, j}+b_{i, j}\right)
$$

Definition 3. A matrix A can be multiplied by a scalar c to obtain the matrix $c A$, where

$$
(c A)_{i, j}=c a_{i, j}
$$

We just multiply each entry of A by c.
Definition 4 (Matrix-matrix-product). If the number of columns of $A \in \mathbb{R}^{m \times n}$ equals the number of rows of $B \in \mathbb{R}^{n \times k}$, then the product $A B \in \mathbb{R}^{m \times k}$ is defined by

$$
(A B)_{i, j}=\sum_{l=1}^{n} a_{i, l} b_{l, j} .
$$

Theorem 5 (Properties of matrix-matrix-product). Let $A, A^{\prime} \in \mathbb{R}^{m \times n}$ and $B, B^{\prime} \in$ $\mathbb{R}^{n \times k}$. Then
(i) $0_{k, m} A=0_{k, n}$ and $A 0_{n, k}=0_{m, k}$, where $0_{m, n}$ is the ($m \times n$)-matrix containing only zeroes.
(ii) $A\left(B+B^{\prime}\right)=A B+A B^{\prime}$ and $\left(A+A^{\prime}\right) B=A B+A^{\prime} B$.
(iii) For $C \in \mathbb{R}^{k \times \ell}: A(B C)=(A B) C$.

Definition 6 (Rank). The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is the dimension of the linear space spanned by its rows resp. columns.

Definition 7 (Identity matrix). For $n \in \mathbb{N}$ the identity matrix I_{n} is defined as

$$
I_{n}=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & 0 & 1
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

i.e. the entry $a_{i, j}$ in the i-th row and j-th column is 1 if and only if $i=j$, and 0 otherwise.

Theorem 8 (Multiplication with the identity matrix). The identity matrix is the neutral element regarding multiplication:
(i) $I_{n} \mathbf{x}=\mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^{n}$;
(ii) $I_{m} A=A=A I_{n}$ for $A \in \mathbb{R}^{m \times n}$.

Definition 9 (Inverse matrix). Let $A \in \mathbb{R}^{n \times n}$. Then $B \in \mathbb{R}^{n \times n}$ is called inverse of A, denoted by A^{-1}, if

$$
A B=I_{n}=B A
$$

If A has an inverse, it is called invertible or regular.
Theorem 10 (Invertibility \& the product of matrices). Let $A, B \in \mathbb{R}^{n \times n}$.
(i) If $A B=I_{n}$ or $B A=I_{n}$, then $B=A^{-1}$.
(ii) If A and B are invertible, then $A B$ is invertible, and $(A B)^{-1}=B^{-1} A^{-1}$.

