Lehrstuhl II für Mathematik Dipl.-Math. Michael Hoschek

3 Matrices

Definition 1 (Matrix-vector-product). Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^{n}$ such that

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & & & \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \text{ and } \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Then

$$A\mathbf{x} = \begin{pmatrix} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n \\ \vdots \\ a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n \end{pmatrix} \in \mathbb{R}^m.$$

Definition 2. *If the matrices* A *and* B *have the same size, then their sum is the matrix* A + B *defined by*

$$(A+B)_{i,j} = (a_{i,j} + b_{i,j}).$$

Definition 3. *A matrix A can be multiplied by a scalar c to obtain the matrix cA, where*

$$(cA)_{i,j} = ca_{i,j}$$

We just multiply each entry of A by c.

Definition 4 (Matrix-matrix-product). *If the number of columns of* $A \in \mathbb{R}^{m \times n}$ *equals the number of rows of* $B \in \mathbb{R}^{n \times k}$ *, then the product* $AB \in \mathbb{R}^{m \times k}$ *is defined by*

$$(AB)_{i,j} = \sum_{l=1}^{n} a_{i,l} b_{l,j}.$$

Theorem 5 (Properties of matrix-matrix-product). Let $A, A' \in \mathbb{R}^{m \times n}$ and $B, B' \in \mathbb{R}^{n \times k}$. Then

(i) $0_{k,m}A = 0_{k,n}$ and $A0_{n,k} = 0_{m,k}$, where $0_{m,n}$ is the $(m \times n)$ -matrix containing only zeroes.

- (*ii*) A(B+B') = AB + AB' and (A + A')B = AB + A'B.
- (iii) For $C \in \mathbb{R}^{k \times \ell}$: A(BC) = (AB)C.

Definition 6 (Rank). *The* rank *of a matrix* $A \in \mathbb{R}^{m \times n}$ *is the dimension of the linear space spanned by its rows resp. columns.*

Definition 7 (Identity matrix). *For* $n \in \mathbb{N}$ *the* identity matrix I_n *is defined as*

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \ddots & & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix} \in \mathbb{R}^{n \times n},$$

i.e. the entry $a_{i,j}$ in the *i*-th row and *j*-th column is 1 if and only if i = j, and 0 otherwise.

Theorem 8 (Multiplication with the identity matrix). *The identity matrix is the neutral element regarding multiplication:*

- (*i*) $I_n \mathbf{x} = \mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^n$;
- (ii) $I_m A = A = A I_n$ for $A \in \mathbb{R}^{m \times n}$.

Definition 9 (Inverse matrix). Let $A \in \mathbb{R}^{n \times n}$. Then $B \in \mathbb{R}^{n \times n}$ is called inverse of A, denoted by A^{-1} , if

$$AB = I_n = BA.$$

If A has an inverse, it is called invertible or regular.

Theorem 10 (Invertibility & the product of matrices). *Let* $A, B \in \mathbb{R}^{n \times n}$.

(*i*) If $AB = I_n$ or $BA = I_n$, then $B = A^{-1}$.

(ii) If A and B are invertible, then AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.