1 Numbers

Definition 1. Important sets of numbers.

- $\mathbb{N}=\{1,2,3, \ldots\}$ set of natural numbers,
- $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$,
- $\mathbb{Z}=\{0,1,-1,2,-2, \ldots\}$ set of integers,
- $\mathbb{Q}=\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{Z} \backslash\{0\}\right\}$ set of rational numbers,
- \mathbb{R} set of all decimal expansions, set of real numbers.

Definition 2 (Prime Number). A prime number or prime is a natural number greater than one that is divisible by only one and itself. $\mathbb{P}:=\{p \in \mathbb{N} \mid p$ prime $\}$

Theorem 3 (Fundamental theorem of arithmetic). Every positive integer $n>1$ can be represented in exactly one way as a product of prime powers:

$$
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}
$$

where $p_{1}<p_{2}<\ldots<p_{k}$ are primes and the a_{i} are positive integers.
Theorem 4 (Euclid). There are infinitely many primes.
Definition 5 (axioms of real numbers). Let $x, y, z \in \mathbb{R}$.
Axioms of addition

- neutral element: $x+0=x$,
- associativity: $(x+y)+z=x+(y+z)$,
- commutativity: $x+y=y+x$,
- inverse element: $y+(-y)=0$;

Axioms of multiplication

- neutral element: $x \cdot 1=x$,
- associativity: $(x \cdot y) \cdot z=x \cdot(y \cdot z)$,
- commutativity: $x \cdot y=y \cdot x$,
- inverse element: $y \cdot \frac{1}{y}=1$ for $y \neq 0$;
- distribution: $x \cdot(y+z)=x \cdot y+x \cdot z$.

We write $x y$ for $x \cdot y, x-y$ for $x+(-y), y^{-1}$ for $\frac{1}{y}, \frac{x}{y}$ for $x \cdot \frac{1}{y}, x+x+\cdots+x=n x$, and $x \cdot x \cdot \ldots \cdot x=x^{n}$. Furthermore, we define $x^{0}=1$ for all $x \in \mathbb{R}$.

Theorem 6 (Computation rules for powers). If $n, m \in \mathbb{N}_{0}$ and $x, y \in \mathbb{R}$, then
(i) $x^{n} x^{m}=x^{n+m}$,
(ii) $x^{n} y^{n}=(x y)^{n}$,
(iii) $\left(x^{n}\right)^{m}=x^{n m}$.

Theorem 7 (Existence of non-rational numbers). There exists no rational number x with the property that $x^{2}=2$.

Definition 8 (Ordering Axioms). For all $x, y \in \mathbb{R}$ we have $x<y$ or $x=y$ or $y<x$ and these three possibilities are mutually exclusive. Moreover, for all $x, y, z \in \mathbb{R}$ the relation $<$ has the following properties:
a) $x<y$ and $y<z$ implies $x<z$.
b) $x<y$ and $z>0$ implies $x+z<y+z$.
c) $x<y$ and $z>0$ implies $x \cdot z<y \cdot z$.

Definition 9 (Minimum/Maximum). Let $M \subset \mathbb{R}$ be a subset of the real numbers. An element $x \in M$ is a minimum [maximum] of M if $x \leq y[x \geq y]$ for every element $y \in M$. We write $x=\min M[x=\max M]$.

Theorem 10 (Uniqueness of minima/maxima). If both x and y are minima/maxima of a set $M \subset \mathbb{R}$, then $x=y$.

Definition 11 (Absolute value). The absolute value or modulus of a real number x is defined by

$$
|x|= \begin{cases}x & \text { for } x \geq 0 \\ -x & \text { for } x<0\end{cases}
$$

Theorem 12 (Properties of the absolute value). Let $x, y \in \mathbb{R}$. Then

- $|x| \geq 0$ and $x=0$ precisely if $x=0$,
- $|x y|=|x||y|$, in particular $|x|=|-x|$,
- $|x+y| \leq|x|+|y|$ (triangle inequality),
- $-|x| \leq x \leq|x|$,
- if $|x| \leq y$, then $-y \leq x \leq y$.

Definition 13 (Negative powers). For $n \in \mathbb{N}$ and $x \in \mathbb{R} \backslash\{0\}$ we define

$$
x^{-n}=\left(x^{-1}\right)^{n}=\frac{1}{x^{n}} .
$$

Theorem 14 (Existence of roots). For $n \in \mathbb{N}$ and $x>0$ there is a unique number $y>0$ such that $y^{n}=x$.

Definition 15 (Roots). In the situation of Theorem 14, we define

$$
y=x^{\frac{1}{n}}=\sqrt[n]{x}
$$

and call y the n-th root of x. For $p, q \in \mathbb{Q}, q \neq 0$, we define

$$
x^{\frac{p}{q}}=\left(x^{\frac{1}{q}}\right)^{p} .
$$

Proposition 16 (Squares are positive). If $x \in \mathbb{R} \backslash\{0\}$, then $x^{2}>0$.
Definition 17 (Sums \& Products). For $n, m \in \mathbb{Z}$ with $m \leq n$ and $a_{m}, a_{m+1}, \ldots, a_{n} \in \mathbb{R}$ we define

$$
\begin{aligned}
& \sum_{k=m}^{n} a_{k}=a_{m}+a_{m+1}+\cdots+a_{n}, \\
& \prod_{k=m}^{n} a_{k}=a_{m} \cdot a_{m+1} \cdot \ldots \cdot a_{n} .
\end{aligned}
$$

Complex Numbers

In mathematics, we do a lot of solving of polynomial equation s, which amounts to finding a root of a polynomial. For example, the solutions to the equations $x^{2}=1$ are the same as the solutions of $x^{2}-1=0$, that is, they are the roots of the polynomial $x^{2}-1$. These roots are $x=1$ and $x=-1$. However, some polynomial equations have no real number solutions: for example, the equation

$$
x^{2}+1=0
$$

has no real number solutions, because $x^{2}+1 \geq 1$ if x is a real number. The complex numbers were invented to provide solutions to polynomial equations.

Definition 18. A complex number is a number z of the form $z=x+i y$, where x and y are real numbers, and i is another number such that $i^{2}=-1$. The set \mathbb{C} of complex numbers is defined as

$$
\mathbb{C}=\{(x, y): x, y \in \mathbb{R}\}
$$

together with an addition and multiplication:

$$
\begin{aligned}
(x, y)+(u, v) & =(x+u, y+v) \\
(x, y) \cdot(u, v) & =(x u-y v, x v+y u) .
\end{aligned}
$$

For the imaginary unit $i=(0,1)$ we have $i^{2}=(-1,0)$.

$$
z=x+i y, x, y \in \mathbb{R}
$$

is the standard description of complex numbers $z \in \mathbb{C}$. We call

$$
\operatorname{Re} z=x \text { and } \operatorname{Im} z=y
$$

the real and imaginary part of z. The complex conjugate of z is defined by

$$
\bar{z}=x-i y=\operatorname{Re} z-i \operatorname{Im} z
$$

With the above definitions we have

$$
\begin{aligned}
z+\bar{z} & =2 \operatorname{Re} z \\
z-\bar{z} & =2 i \operatorname{Im} z \\
z \cdot \bar{z} & =(x+i y)(x-i y)=x^{2}+y^{2} \in \mathbb{R}
\end{aligned}
$$

Theorem 19. All axioms regarding sums and products in \mathbb{R} carry over to \mathbb{C}. In particular,
(i) addition is commutative and associative;
(ii) multiplication is commutative and associative;
(iii) the distributive law relating addition and multiplication holds;
(iv) for every $z \in \mathbb{C}: z=z \cdot 1=z+0$ and $z \cdot 0=0$.

Definition 20. The distance of a complex number z from the origin is called modulus, length or absolute value of z and is given by

$$
|z|=\sqrt{(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}}=\sqrt{z \bar{z}}
$$

Theorem 21. For $z, w \in \mathbb{C}$:
a) $|z|=|-z|=|\bar{z}|$;
b) $|z| \geq 0$ and $|z|=0$ iff $z=0$;
c) $|z w|=|z||w|$;
d) $||z|-|w|| \leq|z+w| \leq|z|+|w|$.

Theorem 22. For $0 \neq z=x+i y$:

$$
(x+i y) \frac{x-i y}{x^{2}+y^{2}}=1
$$

Hence, the denominator of a quotient $\frac{z}{w}$ can be made a real number by multiplication with $\frac{\bar{v}}{\bar{\omega}}$.

Theorem 23. For $z \in \mathbb{C}$ there exist real numbers $r \geq 0$ and $\varphi \in \mathbb{R}$ with

$$
z=r(\cos \varphi+i \sin \varphi)
$$

We always have $r=|z|$, and for $z \neq 0$, the number φ is uniquely determined by the condition $-\pi<\varphi \leq \pi$. The pair (r, φ) are the polar coordinates of z, and φ is called the $\operatorname{argument}$ of z, denoted by $\arg z$.

Theorem 24. For $\varphi \in \mathbb{R}$:

$$
e^{i \varphi}=\exp (i \varphi)=\cos \varphi+i \sin \varphi .
$$

Theorem 25. For complex numbers $z_{1}=r_{1} e^{i \varphi_{1}}$ and $z_{2}=r_{2} e^{i \varphi_{2}}$:

$$
z_{1} \cdot z_{2}=r_{1} r_{2} e^{i\left(\varphi_{1}+\varphi_{2}\right)}
$$

Theorem 26 (Formula of de Moivre). For $n \in \mathbb{N}$ and $w \in \mathbb{C} \backslash\{0\}$ there exist exactly n different solutions of the equation $z^{n}=w$ given by

$$
z_{k}=\sqrt[n]{|w|} e^{\frac{i \psi+2 k \pi}{n}}, k=0,1, \ldots, n-1
$$

where $\psi=\arg w$.
Theorem 27 (Fundamental Theorem of Algebra). Every polynomial with coefficients in C has a root in \mathbb{C}.

