Lehrstuhl II für Mathematik Dipl.-Math. Michael Hoschek

1 Numbers

Definition 1. Important sets of numbers.

- $\mathbb{N} = \{1, 2, 3, \ldots\}$ set of natural numbers,
- $\mathbb{N}_0 = \mathbb{N} \cup \{0\},\$
- $\mathbb{Z} = \{0, 1, -1, 2, -2, ...\}$ set of integers,
- $\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{Z} \setminus \{0\} \right\}$ set of rational numbers,
- \mathbb{R} set of all decimal expansions, set of real numbers.

Definition 2 (Prime Number). *A prime number or prime is a natural number greater than one that is divisible by only one and itself.* $\mathbb{P} := \{p \in \mathbb{N} \mid p \text{ prime}\}$

Theorem 3 (Fundamental theorem of arithmetic). *Every positive integer* n > 1 *can be represented in exactly one way as a product of prime powers:*

$$n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$$

where $p_1 < p_2 < ... < p_k$ are primes and the a_i are positive integers.

Theorem 4 (Euclid). There are infinitely many primes.

Definition 5 (axioms of real numbers). *Let* $x, y, z \in \mathbb{R}$. **Axioms of addition**

- *neutral element:* x + 0 = x,
- *associativity*: (x + y) + z = x + (y + z),
- *commutativity:* x + y = y + x,
- *inverse element:* y + (-y) = 0;

Axioms of multiplication

- *neutral element:* $x \cdot 1 = x$,
- associativity: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$,
- *commutativity:* $x \cdot y = y \cdot x$,
- *inverse element:* $y \cdot \frac{1}{y} = 1$ *for* $y \neq 0$;
- *distribution:* $x \cdot (y+z) = x \cdot y + x \cdot z$.

We write xy for $x \cdot y$, x - y for x + (-y), y^{-1} for $\frac{1}{y}$, $\frac{x}{y}$ for $x \cdot \frac{1}{y}$, $x + x + \dots + x = nx$, and $x \cdot x \cdot \dots \cdot x = x^n$. Furthermore, we define $x^0 = 1$ for all $x \in \mathbb{R}$.

Theorem 6 (Computation rules for powers). *If* $n, m \in \mathbb{N}_0$ *and* $x, y \in \mathbb{R}$ *, then*

(*i*) $x^n x^m = x^{n+m}$,

(ii)
$$x^n y^n = (xy)^n$$
,

(*iii*) $(x^n)^m = x^{nm}$.

Theorem 7 (Existence of non-rational numbers). *There exists no rational number x with the property that* $x^2 = 2$.

Definition 8 (Ordering Axioms). For all $x, y \in \mathbb{R}$ we have x < y or x = y or y < x and these three possibilities are mutually exclusive. Moreover, for all $x, y, z \in \mathbb{R}$ the relation < has the following properties:

- a) x < y and y < z implies x < z.
- b) x < y and z > 0 implies x + z < y + z.
- c) x < y and z > 0 implies $x \cdot z < y \cdot z$.

Definition 9 (Minimum/Maximum). Let $M \subset \mathbb{R}$ be a subset of the real numbers. An element $x \in M$ is a minimum [maximum] of M if $x \leq y$ [$x \geq y$] for every element $y \in M$. We write $x = \min M$ [$x = \max M$].

Theorem 10 (Uniqueness of minima/maxima). *If both x and y are minima/maxima of a* set $M \subset \mathbb{R}$, then x = y.

Definition 11 (Absolute value). *The* absolute value *or* modulus *of a real number* x *is defined by*

$$|x| = \begin{cases} x & \text{for } x \ge 0 \\ -x & \text{for } x < 0 \end{cases}$$

Theorem 12 (Properties of the absolute value). *Let* $x, y \in \mathbb{R}$ *. Then*

- $|x| \ge 0$ and x = 0 precisely if x = 0,
- |xy| = |x||y|, in particular |x| = |-x|,
- $|x + y| \le |x| + |y|$ (triangle inequality),
- $-|x| \leq x \leq |x|$,
- *if* $|x| \leq y$, then $-y \leq x \leq y$.

Definition 13 (Negative powers). *For* $n \in \mathbb{N}$ *and* $x \in \mathbb{R} \setminus \{0\}$ *we define*

$$x^{-n} = (x^{-1})^n = \frac{1}{x^n}.$$

Theorem 14 (Existence of roots). *For* $n \in \mathbb{N}$ *and* x > 0 *there is a unique number* y > 0 *such that* $y^n = x$.

Definition 15 (Roots). In the situation of Theorem 14, we define

$$y = x^{\frac{1}{n}} = \sqrt[n]{x}$$

and call *y* the *n*-th root of *x*. For $p, q \in \mathbb{Q}$, $q \neq 0$, we define

$$x^{\frac{p}{q}} = (x^{\frac{1}{q}})^p.$$

Proposition 16 (Squares are positive). *If* $x \in \mathbb{R} \setminus \{0\}$ *, then* $x^2 > 0$ *.*

Definition 17 (Sums & Products). *For* $n, m \in \mathbb{Z}$ *with* $m \le n$ *and* $a_m, a_{m+1}, \ldots, a_n \in \mathbb{R}$ *we define*

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + \dots + a_n,$$
$$\prod_{k=m}^{n} a_k = a_m \cdot a_{m+1} \cdot \dots \cdot a_n.$$

Complex Numbers

In mathematics, we do a lot of solving of polynomial equation s, which amounts to finding a root of a polynomial. For example, the solutions to the equations $x^2 = 1$ are the same as the solutions of $x^2 - 1 = 0$, that is, they are the roots of the polynomial $x^2 - 1$. These roots are x = 1 and x = -1. However, some polynomial equations have no real number solutions: for example, the equation

$$x^2 + 1 = 0$$

has no real number solutions, because $x^2 + 1 \ge 1$ if *x* is a real number. The complex numbers were invented to provide solutions to polynomial equations.

Definition 18. A complex number is a number z of the form z = x + iy, where x and y are real numbers, and i is another number such that $i^2 = -1$. The set \mathbb{C} of complex numbers is defined as

$$\mathbb{C} = \{(x, y) \colon x, y \in \mathbb{R}\}$$

together with an addition and multiplication:

$$(x,y) + (u,v) = (x + u, y + v),$$

 $(x,y) \cdot (u,v) = (xu - yv, xv + yu)$

For the imaginary unit i = (0, 1) we have $i^2 = (-1, 0)$.

$$z = x + iy, x, y \in \mathbb{R}$$

is the standard description of complex numbers $z \in \mathbb{C}$ *. We call*

$$\operatorname{Re} z = x$$
 and $\operatorname{Im} z = y$

the real and imaginary part of z. The complex conjugate of z is defined by

$$\bar{z} = x - iy = \operatorname{Re} z - i\operatorname{Im} z.$$

With the above definitions we have

$$z + \overline{z} = 2\operatorname{Re} z,$$

$$z - \overline{z} = 2i\operatorname{Im} z,$$

$$z \cdot \overline{z} = (x + iy)(x - iy) = x^2 + y^2 \in \mathbb{R}.$$

Theorem 19. All axioms regarding sums and products in \mathbb{R} carry over to \mathbb{C} . In particular,

- *(i) addition is commutative and associative;*
- (ii) multiplication is commutative and associative;
- (iii) the distributive law relating addition and multiplication holds;
- (iv) for every $z \in \mathbb{C}$: $z = z \cdot 1 = z + 0$ and $z \cdot 0 = 0$.

Definition 20. *The distance of a complex number z from the origin is called* modulus, length *or* absolute value *of z and is given by*

$$|z| = \sqrt{(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2} = \sqrt{z\overline{z}}.$$

Theorem 21. *For* $z, w \in \mathbb{C}$ *:*

- a) $|z| = |-z| = |\bar{z}|;$
- b) $|z| \ge 0$ and |z| = 0 iff z = 0;
- c) |zw| = |z||w|;
- d) $||z| |w|| \le |z + w| \le |z| + |w|.$

Theorem 22. For $0 \neq z = x + iy$:

$$(x+iy)\frac{x-iy}{x^2+y^2} = 1.$$

Hence, the denominator of a quotient $\frac{z}{w}$ can be made a real number by multiplication with $\frac{\overline{w}}{\overline{w}}$.

Theorem 23. For $z \in \mathbb{C}$ there exist real numbers $r \ge 0$ and $\varphi \in \mathbb{R}$ with

$$z = r(\cos\varphi + i\sin\varphi).$$

We always have r = |z|, and for $z \neq 0$, the number φ is uniquely determined by the condition $-\pi < \varphi \leq \pi$. The pair (r, φ) are the polar coordinates of z, and φ is called the argument of z, denoted by arg z.

Theorem 24. *For* $\varphi \in \mathbb{R}$ *:*

$$e^{i\varphi} = \exp(i\varphi) = \cos\varphi + i\sin\varphi.$$

Theorem 25. For complex numbers $z_1 = r_1 e^{i\varphi_1}$ and $z_2 = r_2 e^{i\varphi_2}$:

$$z_1 \cdot z_2 = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}.$$

Theorem 26 (Formula of DE MOIVRE). For $n \in \mathbb{N}$ and $w \in \mathbb{C} \setminus \{0\}$ there exist exactly *n* different solutions of the equation $z^n = w$ given by

$$z_k = \sqrt[n]{|w|} e^{i \frac{\psi + 2k\pi}{n}}, k = 0, 1, \dots, n-1,$$

where $\psi = \arg w$.

Theorem 27 (Fundamental Theorem of Algebra). *Every polynomial with coefficients in* \mathbb{C} *has a root in* \mathbb{C} .